
Arbitrary-Oriented Color Spanning Region
for Line Segments

Sukanya Maji(B) and Sanjib Sadhu

Department of CSE, National Institite of Technology, Durgapur, India
sm.20cs1102@phd.nitdgp.ac.in, sanjib.sadhu@cse.nitdgp.ac.in

Abstract. Given a set of colored geometric objects, a color spanning
region of a desired shape is a region (of that shape) that contains at
least one object of each color. Here, the objective is to optimize a specific
parameter of the region as mentioned in the problem definition. In this
paper, we study the optimal color spanning region recognition problem of
different shapes for a given set L of n colored line segment objects in R

2,
where each segment is associated with any one of the m colors, namely
{1, 2, . . . , m}, where 3 ≤ m < n. These are (i) an arbitrary-oriented
color spanning strip of minimum width, (ii) two congruent arbitrary-
oriented minimum width color spanning strips which contain disjoint
subset of the members in L, (iii) two congruent arbitrary-oriented strips
of minimum width, such that their union is color spanning, and (iv)
an arbitrary-oriented color spanning rectangle of minimum area. The
time complexities of the proposed algorithms for these problems are: (i)
O(n2 log n), (ii) O(n4 logn) , (iii) O(n4m logm), and (iv) O(n3m). Better
algorithm with reduced time complexities can be achieved for problems
(ii) and (iii) if some restrictions are imposed on the relative orientation
of the outputs. Each of these problems needs linear space.

Keywords: Color spanning region recognition · Geometric duality ·
Line sweep

1 Introduction

Given a set L of n line segments, each segment is attached with one of the
m colors (3 ≤ m < n), the objective of this paper is to study the problem
of recognizing color spanning region of different shapes minimizing a specified
parameter of the region depending on the problem requirement. Here the objects
in L may be viewed as the facilities (e.g. hospitals, post-offices, schools etc.),
available in a city, and the objective is to locate a region of minimum area
where at least one facility of each type is available. The facilities may be points,
line segments, convex polygons, etc. The desired region may be a strip, disk,
rectangle, etc. The problem is well studied in the literature starting from the
work of [1], and has found a lot of applications in facility location problem [1],
pattern recognition [3], database queries [12], etc.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Bagchi and R. Muthu (Eds.): CALDAM 2023, LNCS 13947, pp. 71–86, 2023.
https://doi.org/10.1007/978-3-031-25211-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25211-2_6&domain=pdf
https://doi.org/10.1007/978-3-031-25211-2_6

72 S. Maji and S. Sadhu

Related Work: The color spanning problem was studied by Abellanas et al. [1],
where they computed a color spanning axis-parallel rectangle among a set of n
colored points with m colors in O(n(n − m) log2 m). Huttenlocher et al. [9] pro-
posed algorithm for computing the smallest color spanning circle for a given set
of n points with m colors in O(mn log n) time. The smallest color spanning strip
and rectangle of arbitrary orientation for a given set of points can be computed
in O(n2 log n) and O(n3 logm) time [6], respectively. The color spanning axis-
parallel square and equilateral triangle can be determined in time O(n log2 n) [10]
and O(n log n) [8], respectively. Acharyya et al. [2] identified the smallest color
spanning axis-parallel square, rectangle and circle for a colored point set around
a given query point. Bae [4] computed the minimum width color spanning axis-
parallel rectangular annulus for a set of points in O((n − m)3n log n).

Most of the research works on color spanning problem deals with the input
facilities as a point set. However, in real application, it is not always reason-
able to represent each facility by point only. This leads to studying the problem
of recognizing a color spanning region of optimum size among a set of convex
objects. For simplicity, we start research in this direction with colored line seg-
ments as the facilities. Note that, the method of solving color spanning region
with point set facilities cannot be extended in a straightforward manner to han-
dle this problem with line segment facilities. Huttenlocher et al. [9] computed
the smallest color spanning axis-parallel square and disk with the line segments
as facilities, in O(n2 log n) and O(n2α(n) log n) time, respectively.

Another related problem is the k-center problem, where a given set of geo-
metric objects need to be covered by k congruent disks or squares of minimum
size. The corresponding color spanning version is finding k congruent color span-
ning regions among a set of colored objects as facilities to place k demand points.
Here, the concept is that the ith facility, denoted by ri, can support at most f(ri)
demand points (centers of the color spanning regions, each of equal size). We
start studying this variation of the problem with k = 2 and f(ri) = 1 for each
facility in {r1, r2, . . . , rn}.

Depending on the problem instance, sometimes a single color spanning region
may be more costly (measured in terms of width or area of the region) than the
k congruent regions whose union is a color spanning. This motivates us to study
further the union color spanning strips problem for a set of line segments L. For
simplicity, we have considered k = 2 strips in this paper.

Our Contributions: Given a set of n colored line segment objects with m
different colors (3 ≤ m < n) in R

2, we propose algorithms for computing color
spanning (CS) arbitrary-oriented (i) a pair of strips of minimum width, and (ii) a
rectangle of minimum area. The specific problems that are studied in this paper,
are listed below in the Table 1 along with the time complexities of the proposed
algorithms. The space complexity of all these problems is O(n).

Arbitrary-Oriented Color Spanning Region for Line Segments 73

Table 1. The result of arbitrarily oriented color spanning object(s)

Problems on color spanning regions
for a set L of line segments in R

2
Segments covered (L′, L′′ ⊆ L)
by strip(s)/rectangle

Minimizes Time
complexity

A single strip L′ is color spanning (CS) Strip width O(n2 logn)

Two congruent strips L′ and L′′ are CS (L′ ∩ L′′ = φ) Strip width O(n4 logn)

Two congruent parallel strips L′ and L′′ are CS (L′ ∩ L′′ = φ) Strip width O(n3)

Union color spanning by two strips L′ ∪ L′′ is CS (L′ ∩ L′′ = φ) Strip width O(n4m logm)

Union color spanning by two parallel strips L′ ∪ L′′ is CS (L′ ∩ L′′ = φ) Strip width O(n3 logm)

A rectangle (R) L′ is CS Area of R O(n3m)

2 Preliminaries and Notations

We use L = {�1, �2, . . . , �n} to denote the n input line segment facilities. The
subset of the segments in L with color i ∈ {1, 2, . . . ,m} is denoted by Li. We use
x(p) and y(p) to denote the x- and y-coordinate of the point p, respectively. A
line passing through any two points p and q is denoted by �(p, q). A line segment
� in R

2 is said to be covered by a region if every point on � lies inside or on the
boundary of that region. A segment with its two endpoints p and q is denoted
by [p, q].

Definition 1 (Color spanning). A region R in R
2 is said to be color span-

ning if it contains at least one member of L having color i for all i = 1, 2, . . . ,m.

A strip V is an unbounded region enclosed by two parallel lines which are called
the boundaries of V. The width of a strip V is determined by the perpendicular
distance between its two boundaries. We use CSS to denote any color spanning
strip.

Definition 2 (Minimal and minimum-CSS). A CSS is said to be a
minimal-CSS if it cannot be shrunk further without violating the definition
1 of the color spanning region. There may exist more than one minimal-CSS
for L. The one having minimum width among all minimal-CSSs is said to be
minimum width color spanning strip, and will be denoted by minimum-CSS.

2.1 A Single Color Spanning Strip of Arbitrary Orientation

Problem 1 (Single color spanning strip). Given a set L = {�1, �2, . . . , �n}
of (possibly intersecting) line segments in R

2; each segment �i ∈ L is attached
with one of m distinct colors (3 ≤ m < n), compute a minimum-CSS V of
arbitrary orientation.

We use geometric duality [5] to solve this problem. Here, a point p = (a, b)
in the primal plane is represented by a line p∗ : y = ax − b in the dual plane,
and a line l : y = mx + c in the primal plane is represented by a point l∗ =
(m,−c) in the dual plane. Note that, V may be vertical or non-vertical. We can
compute the vertical strip V by sweeping a pair of vertical lines to locate all

74 S. Maji and S. Sadhu

possible minimal − CSSs’. The one having minimum width is preserved as the
minimum − CSS as the initialization of this algorithm. This needs O(n log n)
time, maintaining an array of size m for storing the number of segments of each
color i (1 ≤ i ≤ m) lying in the present position of the strip defined by the pair of
sweep lines. We now concentrate on computing the smallest width non-vertical
CSS. Since the point-line duality cannot handle any vertical line, if there exists
any vertical line in L, we rotate the entire set L by a small angle to make each
segment non-vertical.

An arbitrary-oriented strip V is defined by its two boundaries, namely the
upper boundary ub(V) and the lower boundary lb(V), that are mutually parallel
lines; the point of intersection of ub(V) with any vertical line lies above that of
lb(V) with the same vertical line. A strip V in the primal plane is mapped to a
vertical line segment V∗ = [lb∗(V), ub∗(V)] in dual plane1. In duality transfor-
mation, a line segment �i = [p, q] ∈ L in primal plane is mapped to a double
wedge �∗

i in dual plane [5], which is closure of the symmetric difference of the two
half planes delimited by the lines p∗ and q∗, and it does not contain any vertical
line. The point of intersection of p∗ and q∗ is known as the center-point of the
double wedge �∗

i and is denoted by cp(�∗
i). Let Lv be the vertical line passing

through cp(�∗
i); �mid be the line passing through �∗

i with slope 1
2 (slope of p∗ +

slope of q∗). Each double wedge �∗
i can be viewed as four rays, namely left-top

�t(�∗
i), left-bottom �b(�∗

i), right-top rt(�∗
i) and right-bottom rb(�∗

i) emanating
from cp(�∗

i). The ray �t(�∗
i) (resp. �b(�∗

i)) lies above (resp. below) �mid to the left
of Lv, and the ray rt(�∗

i) (resp. rb(�∗
i)) lies above (resp. below) �mid to the right

of Lv (see Fig. 1). We refer to the union of �t(�∗
i) and rt(�∗

i) as UT (�∗
i) (upper

trace of �∗
i), and the union of �b(�∗

i) and rb(�∗
i) as LT (�∗

i) (lower trace of �∗
i).

While transforming a segment in primal plane to a double wedge using duality,
the color associated with that segment remains same. The color of the double
wedge (resp. line segment) �∗ (resp. �) is denoted by col(�∗) (resp. col(�)). The
following result states the property of minimum width CSS for line segments.

Theorem 1. A minimal-CSS V is defined by three segments, say �i, �j , �k ∈ L
lie inside V, and one of its boundaries (lb(V) or ub(V)) contains an endpoint of
two segments ∈ {�i, �j , �k}, and the other boundary contains an endpoint of a
segment ∈ {�i, �j , �k}. It may happen that both the boundaries of V may touch
the two endpoints of a single segment ∈ {�i, �j , �k}. The color of the segments
defining V are different and none of their colors repeat inside the V.

1 Due to the fact that that both the boundaries of V have same gradient.

Arbitrary-Oriented Color Spanning Region for Line Segments 75

Lv

cp(�∗
i)

�∗
i

�mid

�t(� ∗
i)

�b(�
∗
i
)

rt(�
∗
i
)

rb(� ∗
i)

Lower trace LT (�∗
i)

Upper trace

�i

Primal P lane Dual P lane

UT (�∗
i)

Fig. 1. Line segment �i in primal plane and its corresponding double wedge �∗
i in dual

plane

A segment s is said to be intersected by a double wedge �∗ if both UT (�∗) and
LT (�∗) intersect with s. If a vertical segment in the dual plane (corresponding
to a strip in the primal plane) is color spanning, it will be referred to as a
CS_segment. The dual CS_segment V∗ of a minimal-CSS V defined by three
segments �i, �j and �k is shown in the Fig. 2. Due to the Theorem 1, we observe
the following.

a

b
c

d

e

f
a∗

b∗

�i

�j

�k

�∗
j

�∗
k

c∗

d∗

f∗

e∗

cp(�∗
j)

cp
(�

∗ i
)

cp(� ∗
k)

u

v
V

Primal P lane Dual P lane

V∗

�∗
i

u
b(

V)

lb
(V
)

lb∗(V)

ub∗(V)

Fig. 2. Dual of strip V defined by three line segments �i, �j and �k.

Observation 1. A strip V whose upper (resp. lower) boundary is defined by �i
and �j, and lower (resp. upper) boundary is defined by �k in the primal plane,
corresponds to the vertical segment V∗ = [u, v] in the dual plane, where u is the
point of intersection between the lower (resp. upper) traces of �∗

i and �∗
j , and v

lies on the upper (resp. lower) trace of �∗
k vertically above (resp. below) the point

u (see Fig. 2). The width of this strip V is given by |y(u)−y(v)|√
1+(x(u))2

.

76 S. Maji and S. Sadhu

Observation 2. The dual V∗ of a strip V is color spanning if at least one (left
or right) wedge or the center-point of dual �∗ of � of each color intersects with
V∗.

Let L∗ = {�∗
i | �i ∈ L} be the set of double wedges in the dual plane correspond-

ing to the segments of L in the primal plane. We associate a vector color[1..m] of
length m with each CS_segment. Its ith entry indicates the number of double
wedges of color i are intersected by the CS_segment. We sweep a vertical line
λ from left to right among the members in L∗ to identify a CS_segment of
minimum (dual) length.

Data Structure: We use five pointers for the four rays of each double wedge
�∗ ∈ L∗; the value of these pointers corresponding to a double wedge �∗ depend
on the position (i.e. the x-coordinate) of the vertical sweep line λ. These five
pointers of all the double wedges in L∗ are initialized to NULL. We now describe
the significance of these pointers of a double wedge �∗ at a particular position,
say x=α, of the sweep line λ.

Self : This pointer, associated with the ray �t(�∗) (resp. �b(�∗)) points to �b(�∗)
(resp. �t(�∗)), and the same associated with rt(�∗) (resp. rb(�∗)) points to
rb(�∗) (resp. rt(�∗)). From an upper trace of a double wedge, we can access
its lower trace through this pointer, and vice versa.

CS_up: It is associated with the rays in the lower trace LT (�∗), and it points
to the upper trace UT (t∗) of a double wedge t∗ (say), vertically above it,
such that a vertical segment at the present position (x = α) of the sweep line
λ lying between the LT (�∗) and UT (t∗) is color spanning (See Observation
2). Note that, for the upper trace of all the members in L∗, this pointer is
always set to NULL.

CS_dwn: It is associated with the two rays in the upper trace UT (�∗), which
points to the lower trace LT (t∗) of a double wedge t∗ (say), vertically below
it, such that a vertical segment at the present position (x = α) of the sweep
line λ lying between the LT (t∗) and UT (�∗), is color spanning (See the
Observation 2). This pointer is NULL for the rays �b(�∗) and rb(�∗).

Same_col_up: It is associated with the two rays in the lower trace LT (�∗) of
each double wedge �∗. It points to the upper trace of a double wedge t∗

(�= �∗), that lies vertically above �∗ and is closest one to �∗ among all the
double wedges having the color same as that of �∗ at the present position of
the sweep line λ, provided such a double wedge t∗ exists for �∗; otherwise it is
set to NULL. Also, this pointer is NULL for the rays in UT (�∗), ∀�∗ ∈ L∗.

Same_col_dwn: It is associated with the two rays in the upper trace UT (�∗)
of each double wedge �∗. It points to the lower trace of a double wedge, say
t∗ (�= �∗), if t∗ lies vertically below �∗ and is closest one to �∗ among all
double wedges having the color same as that of �∗ at the present position of
the sweep line λ, provided such a double wedge t∗ exists for �∗; otherwise it
is set to NULL. Also, this pointer is set to NULL for the rays in LT (�∗),
∀�∗ ∈ L∗.

Arbitrary-Oriented Color Spanning Region for Line Segments 77

Algorithm: The event points of the vertical sweep line λ are the points of
intersection of the dual of the endpoints of the input segments in L (see Obser-
vation 1) in sorted order with respect to their x-coordinates. These event points
are created in O(n2) time [11], and are stored in an array A. We initialize the
aforesaid pointers for each ray of the double wedges in L∗ with their respective
values at the first event position of the sweep line λ in the array A. During the
sweep, we compute the CS_segment at each event point e ∈ A, and finally
report the minimum length CS_segment observed.

During the sweep, the status of the sweep line λ is maintained as a list of the
dual lines of L∗ that appear on the sweep line λ in top to bottom order. The
status of the sweep line is updated after processing each event point e ∈ A as
follows:

Case (i) The event point e ∈ A corresponds to cp(�∗
i), �i ∈ L :

We do the following updates:
Assign Same_col_dwn(rt(�∗

i)) = Same _col_dwn(�t(�∗
i)),

Same_col_up(rb(�∗
i)) = Same_col_up(�b(�∗

i)),
CS_up(rb(�∗

i)) = CS_up(�b(�∗
i)), and CS_dwn(rt(�∗

i)) = CS_dwn(�t(�∗
i)).

Case (ii) The event point e ∈ A corresponds to the intersection of the
upper (resp. lower) traces of two double wedges �∗

i and �∗
j of same

color:
Let e be the point of intersection of upper traces of �∗

i and �∗
j , where UT (�∗

i)
lies below UT (�∗

j) at the small distance ε > 0 to the left of e. If at the left
of e, the Same_col_dwn of UT (�∗

i) points to the lower trace LT (�∗
k) of a

double wedge �∗
k, then at the event point e, the Same_col_dwn of UT (�∗

i)
needs to be updated to LT (�∗

j) provided LT (�∗
j) lies above LT (�∗

k).
Similarly, if the Same_col_dwn pointer of UT (�∗

j) points to LT (�∗
i) just

before the event e, then at the event point e, the Same_col_dwn pointer of
UT (�∗

j) will be updated to point to the old values (i.e. just before the event e)
of Same_col_dwn of UT (�∗

i); otherwise Same_col_dwn pointer of UT (�∗
j)

remains unaltered. However, the value of CS_dwn (resp. CS_up) pointer
of the upper (resp. lower) trace remains unchanged at the event e.

Case (iii) The event point e ∈ A of λ corresponds to the intersection
of the upper (resp. lower) traces of the different colored double
wedges �∗

i and �∗
j :

Suppose the upper trace of �∗
i lies below that of �∗

j at the ε > 0 distance to
the left of the event e. Without loss of generality, we assume that at x = e,
the UT (�∗

i) and UT (�∗
j) are �t(�∗

i) and �t(�∗
j), respectively. At the event point

e of λ, the CS_dwn pointers of �t(�∗
i) and �t(�∗

j) needs to be updated as
follows.
Update of CS_dwn(�t(�∗

j)): If at ε > 0 distance to the left of the event
e, the �∗

i is essential2 in the color spanning vertical segment CS_segment
that spans from �t(�∗

j) to CS_dwn(�t(�∗
j)), then at the event e, we update

the CS_dwn(�t(�∗
j)) pointer to point to Same_col_dwn(�t(�∗

i)), otherwise
the pointer CS_dwn(�t(�∗

j)) remains unaltered.
2 color[col(�∗

i)] is 1 for an essential segment �∗
i in the CS_segment.

78 S. Maji and S. Sadhu

Update of CS_dwn(�t(�∗
i)): At the event point e, the CS_dwn(�t(�∗

i))
will be updated to point old value (i.e. just before the event e) of
CS_dwn(�t(�∗

j)), provided the lower trace of �∗
i lies above that of double

wedge pointed by old CS_dwn(�t(�∗
j)) and the lower trace of the double

wedge pointed by CS_dwn(�t(�∗
j)) lies above that of �t(�∗

i) before the event
e.

Case (iv) The event point e ∈ A of λ corresponds to the intersection of
the lower (resp. upper) and upper (resp. lower) trace of the double
wedges �∗

i and �∗
j , respectively:

In this case, only the status of the sweep line λ is changed.

All such aforesaid events take O(1) time. For each types (i.e. aforesaid cases) of
event e, if the pointer Same_col_dwn (resp. Same_col_up) associated with
a double wedge, say �∗

i , is updated to point to a double wedge �∗
k, then the

pointer Same_col_up (resp. Same_col_dwn) of the double wedge �∗
k is also

updated to point to �∗
i . As the sweep line λ passes through each of its event

point e, we update the CS_dwn (resp. CS_up) pointers of the ray involved in
the upper (resp. lower) trace associated with the event point e. Also we need
to update the CS_dwn (resp. CS_up) pointers of those rays whose CS_dwn
(resp. CS_up) pointed to the rays associated with the event e. So this update
may take linear amount of time to search for the rays whose CS_dwn (resp.
CS_up) pointers need to be updated. This time can be expedited, if we use the
idea of the following lemma and create two height balanced trees T1 and T2.
These two trees are updated as the λ moves forward.

Lemma 1. At a position, say x = α, of the sweep line λ, if the CS_up
(resp.CS_dwn) pointers of lower (resp. upper) traces of a pair of double wedges
�∗
i and �∗

j point to the upper (resp. lower) trace of the same double wedge �∗
k with

col(�i) �= col(�j) �= col(�k), then the CS_up (resp. CS_dwn) pointers for the
double wedges �∗

i+1, �∗
i+2, . . ., �∗

j−1 lying between �∗
i and �∗

j also point to �∗
k.

In T1 (resp. T2), we store the triple (i, j, k) where the CS_up (resp. CS_dwn)
pointer for the double wedges �∗

i , �∗
i+1, . . ., �∗

j points to the same double wedge
�∗
k (see the Lemma 1). The nodes in T1 (resp. T2) are mutually exclusive and

exhaustive. These nodes are stored in T1 (resp. T2) with respect to the status of
the λ (i.e. the ordered intersection of the double wedges with λ). We can create
this T1 (resp. T2) in linear amount of time. We can update the CS_up pointers
of the double wedges having the same value of CS_up pointers in O(log n) time
using T1 (or T2). Hence each event needs O(log n) processing time and since
there are total O(n2) events, we compute the minimal strips at each event point
by checking the appropriate pointer (CS_up or CS_dwn) and report the one
having minimum length among all the minimal strips obtained at each event
points. The data structure of the sweep line λ at its current event point depends
on the data structure of λ at its previous event point. As the sweep line λ
moves forward through its event points, we need to compute CS_segment at
the current event point e of λ using the data structure stored at e which can be
obtained only from the information of the data structure at its previous event

Arbitrary-Oriented Color Spanning Region for Line Segments 79

point. Hence as the sweep line moves through its event points e, we need to store
the linear sized data structures of the previous event point of e instead of storing
all the event points of λ altogether, and the same space can be reused as the λ
moves forward to its next event point. Thus we obtain the following result.

Theorem 2. The minimum width color spanning strip of arbitrary orientation
for a given set of n colored line segments in R

2 can be determined in O(n2 log n)
time and O(n) space.

2.2 Two Congruent Strips of Arbitrary Orientation

Problem 2 (Two congruent color spanning strips). Given a set L =
{�1, �2, . . . , �n} of (possibly intersecting) line segments in R

2; each segment �i ∈ L
is attached with one of m distinct colors (3 ≤ m ≤ n), the objective is to compute
arbitrary-oriented two congruent color spanning strips V1 and V2 of minimum
width such that the set of segments covered by V1 and V2 are disjoint.

In the context of Problem 2, note that if a segment lies inside V1 ∩ V2, then it
is suitably considered to lie completely inside one of V1 and V2. This problem
is equivalent to compute a pair of minimal-CSS (V1, V2), so that the width of
its larger strip is minimized among all possible pair of minimal-CSSs. We solve
this problem by considering all possible minimal-CSS V1, and for each of them
we choose a minimum-CSS V2 which covers the segments that are not covered
by V1.

Fact 1. If the two intersecting color spanning strips Vi and Vj are disjoint with
respect to the segments (∈ L) covered by them, then there exists no double wedges
in L∗, that intersect with both the corresponding CS_segments V∗

i and V∗
j ,

respectively.

First we compute the minimal length CS_segment V∗
i at each event point e

of a sweep line λ1 using the procedure described in the Sect. 2.1. For each such
V∗
i , we compute all the V∗

j which are disjoint with V∗
i (see the Fact 1) using

another sweep line λ2 that lies to the right of λ1. Among all these V∗
j , we choose

the one with minimum length. We check whether V∗
j is disjoint with V∗

i or not,
as follows.

After computing the CS_segment V∗
i at the event point e of λ1, we deter-

mine the set of double wedges, say D∗
i ⊆ L∗, that completely intersect with V∗

i

in the sorted order using the status of the sweep line λ1. We consider the sweep
line λ2 at one of its event point, say e′ which occurs to the right of e, and let,
V∗
i′ be the CS_segment at e′ and the another endpoint of V∗

i′ be p′. If e′ is
due to the intersection of any of its double wedge in D∗

i , then we only update
D∗

i by swapping the corresponding two intersecting double wedges and move to
the next event of λ2. However, if e′ is not due to the intersection of any of its
double wedge in D∗

i , then we compute the double wedge d ∈ D∗
i (resp. d′ ∈ D∗

i)
immediately below e′ (resp. p′). This can be determined in O(log n) time from
D∗

i . The strips V∗
i′ and V∗

i will be disjoint in the following two cases:

80 S. Maji and S. Sadhu

(i) The d and d′ exist, and they are same, (ii) both of the d and d′ do not
exist.

In all other cases, V∗
i′ and V∗

i will be overlapping. As mentioned earlier in the
Sect. 2.1, all the event points of the sweep lines need not to be stored altogether
and the space complexity is also linear for the Problem 2. Since there are O(n2)
such event points for both λ1 and λ2, we obtain the following result.

Theorem 3. For a given set of n line segments in R
2, we can compute two

congruent disjoint (with respect to the segments covered) color spanning strips of
the minimum width, if such a pair exists, otherwise we report that no such pair
exists in O(n4 log n) time and O(n) space.

Problem 3 (Restricted version of the Two congruent color spanning
strip). For the same inputs as in the Problem 2, compute two congruent, min-
imum width color spanning disjoint strips which are parallel to each other.

The Theorem 1 leads to the following observation.

Observation 3. If CSSs V1 and V2 are parallel to each other, then at least
one boundary of one of the two strips V1 and V2 must contain an endpoint of
two different colored segments in L that are covered by the corresponding strip.
However, if V1 and V2 are not parallel, then one boundary of each of the strips
must contain two endpoints of two different colored segments in L. Note that,
both the endpoints of the same segment may also define a boundary.

If the two disjoint CSSs Vi and Vj are mutually parallel, then their corre-
sponding dual V∗

i and V∗
j , are two disjoint vertical segments, one lying vertically

above the other.
Consider a minimal CS_segment V∗

i at an event point ei ∈ A, determined by
the procedure described in Sect. 2.1. Now, we will determine all possible minimal
CS_segments V∗

j lying vertically above as well as below V∗
i in amortized O(n)

time. We explain the method of computing all the CS_segments below V∗
i .

Suppose �∗
i be a double wedge lying immediately below V∗

i . Take two pointers
top and bottom, where top points to �∗

i and bottom points to a double wedge, say
�∗
j , below �∗

i , such that the vertical segment from UT (�∗
i) to LT (�∗

j) at x = x(e)
is a CS_segment, say V∗

j . It can be determined from the sweep line status.
The next CS_segment below V∗

j , starting from double wedge that is just below
�∗
i , can be determined by shifting both the pointers top and bottom downwards

through the list of double wedges in the current sweep line status array. In this
way, we compute all the CS_segments lying below V∗

i in linear amount of time.
Similarly, we compute all possible minimal CS_segments that lie vertically
above V∗

i . Finally, we choose the one having minimum length as V∗
j that pairs

with V∗
i . The entire task is done in O(n) time.

We repeat the above steps to compute all possible pairs (V∗
i ,V∗

j) at each
event point ei ∈ A by sweeping the line λ. It may happen that there exists only
one CS_segment in the entire floor. In that case, only one color spanning strip
will be reported. Similar to the Problem 1 in the Sect. 2.1, we need not store
all the events for this Problem 3 and hence, it needs O(n) space. As there are
O(n2) event points in the worst case, we have the following result.

Arbitrary-Oriented Color Spanning Region for Line Segments 81

Theorem 4. For a given set of n colored line segments in R
2, we can compute

two congruent disjoint parallel color spanning strips of the minimum width in
O(n3) time and O(n) space.

2.3 Two Congruent Strips of Arbitrary Orientation Whose Union is
Color Spanning

Problem 4 (Union color spanning problem). Given a set L =
{�1, �2, . . . , �n} of (not necessarily disjoint) line segments in R

2; each segment
�i ∈ L is associated with one of m distinct colors (3 ≤ m ≤ n), the objective is
to compute arbitrary-oriented two congruent (i) disjoint (ii) non-disjoint strips
V1 and V2 of minimum width, whose union is color spanning.

We first compute two arbitrary-oriented disjoint strips V1 and V2. It is obvious
that V1 and V2 are parallel. We use the line sweeping technique over the set of
double wedges L∗. For each color ci (1 ≤ i ≤ m), we maintain two sorted lists
of all the double wedges with respect to their lower traces and upper traces
respectively, at each position x = x(e), where e is the event point of the sweep
line λ. These two lists are updated in constant time at each event point e as
the line λ sweeps rightward. From these lists containing lower (resp. upper)
traces of each color, we also compute a sorted array first_col_LT [1..m] (resp.
first_col_UT [1..m]) of size m at each event point e of λ, that keeps the first
occurring lower (resp. upper) traces of each distinct colored double wedge that
lies completely below (resp. above) the point e. These two arrays are sorted with
respect to the point of intersections of the sweep line λ with the members of the
array. Our algorithm executes the following tasks at each event point e of λ.

We take V∗
i with one of its endpoints starting at the event point e. Without

loss of generality, we assume that the event point e is the intersection of two
upper traces of two different colored double wedges. The other endpoint of V∗

i

lie on the lower trace (lying vertically below e) of any one of the double wedges
from the sorted array “first_col_LT ” and suppose this V∗

i intersects with the
double wedges of k different colors. We use a color array C which keeps track of
the color of wedges that completely intersect with V∗

i and it can be computed in
O(k) time. For each V∗

i , we compute corresponding V∗
j which covers the double

wedges of remaining (m − k) colors. The two endpoints of the dual segment V∗
i

(resp. V∗
j) of the strip Vi (resp. Vj) are denoted by top1 (resp. top2) and bot1

(resp. bot2). The color of the double wedges pointed by the top1, top2, bot1 and
bot2 will be of different colors. Once we compute such a V∗

j , we measure the
length of V∗

j . Next, we shift top2 downward to the next upper trace below it
and recompute V∗

j . In this way we compute all possible V∗
j that lie below V∗

i .
Similarly we can compute all possible V∗

j lying above V∗
i in O(n) time. We choose

the V∗
j with minimum length. Now we increase the length of V∗

i by moving bot1
pointer to next entry of the array “first_col_LT ” so that V∗

i covers now one
extra color and we compute the corresponding minimum length V∗

j . To obtain
the optimal pair V∗

i and V∗
j at the event point e, we need not to compute all

possible V∗
i due to the following lemma.

82 S. Maji and S. Sadhu

Lemma 2. The function max{width(Vi), width(Vj)} is a convex function.

Proof. If we increase the width of V1, the width of V2 either remains same or
decreased, as the union of V1 and V2 is color spanning. 	

Since, the length of V∗
i is increased by shifting bot1 through the mem-

bers of the sorted array “first_col_LT ” (of size m), to minimize the
max{width(Vi), width(Vj)} we need to iterate the above procedure at most logm
times (see Lemma 2) at each event point e of λ. Finally we repeat the same pro-
cedure at each event point e of λ to find the optimal solution of the Problem 4.
Similar to the Problem 2, we need linear space to solve the Problem 4. Thus we
obtain the following result.

Theorem 5. For the set L of n line segments in R
2, we can compute two congru-

ent disjoint parallel strips of the minimum width, whose union is color spanning
in O(n3 logm) time and O(n) space.

Now, we determine two arbitrary-oriented non-disjoint strips V1 and V2,
whose union is color spanning. We apply almost the same technique as well
as the data structures that are used to compute two disjoint strips (first part of
the Problem 4). In this case, the two vertical CS_segments V∗

1 and V∗
2 will lie at

two different event positions of two different sweep lines λ1 and λ2, respectively.
Both V∗

1 and V∗
2 will be defined by three segments (see Observation 3). We first

consider a CS_segment at an event point e of the sweep line λ1 covering, say
k colors (see the algorithm described for disjoint case). Then we compute the
V∗
j (which covers the remaining (m − k) colors) at each event e′ of the sweep

line λ2 lying to the right of λ1. We can compute the two sorted arrays (defined
earlier) first_col_LT [1..m] (resp. first_col_UT [1..m]) at the event point e′

in O(m) time. For a fixed length CS_segment V∗
i at e, we can determine mini-

mum V∗
j at e′ in O(m) time. Now, the Lemma 2 says that in O(m logm) time,

we can compute the optimum pair (V∗
i ,V∗

j) with one of their endpoints at e and
e′, respectively. Now, there are O(n2) different possible positions for each of the
event points e and e′. Thus we obtain the following result.

Theorem 6. For a given set of n line segments in R
2, we can compute two con-

gruent non-disjoint strips of the minimum width, whose union is color spanning
in O(n4m logm) time and O(n) space.

2.4 Color Spanning Rectangle (CSR) of Arbitrary Orientation

Problem 5. Given a set L = {�1, �2, . . . , �n} of (possibly intersecting) n line
segments in R

2; each segment �i ∈ L is attached with one of m distinct colors
(3 ≤ m ≤ n), the objective is to compute an arbitrary-oriented color spanning
rectangle (CSR) R of minimum area.

Fact 2. A color spanning rectangle (CSR) R is the intersection of two color
spanning strips, say V1 and V2, which are perpendicular to each other and bound-
aries of V1 and V2 pass through the opposite parallel sides of R (Fig. 3).

Arbitrary-Oriented Color Spanning Region for Line Segments 83

V1

V2

�1

�2

�4

�5

�3

�∗
1

�∗
2

�∗
3

�∗
5

�∗
4

V∗
1

V∗
2

Primal Plane Dual Plane

R

Fig. 3. Color spanning rectangle R in primal is represented by a pair (V∗
1 , V∗

2) in dual.
(Color figure online)

Lemma 3. One side of the minimum area CSR R for L must contain exactly
two endpoints of any two segments (one endpoint of each) in L and each of the
remaining sides of R must contain one endpoint of a segment in L. Also the
same colored endpoints can occur at most twice on the boundary of R, and the
color of the segments whose endpoint lie on the boundary of R, will be distinct
from remaining segments that lie completely inside R.

Proof. Suppose, R be the minimum area CSR and E be the set of segments
enclosed by it. Since the area of R is minimum among all CSR of L, the color
of the segments in L whose endpoints lie on the boundary of R must be distinct
from the others lying on or inside R, otherwise we can rotate and/or shrink R
to obtain another CSR with smaller area than R, contradicting the assumption
that R is minimum area CSR. Note that, the same colored endpoints may occur
at most twice on the boundary of R, if both the endpoints of a segment occur at
the boundary of the R. Let P be the convex hull of E. Two vertices of P must
lie on a side of minimum area rectangle R, if it encloses P [7]. 	

Since the adjacent sides of a rectangle are perpendicular to each other, we observe
the following.

Observation 4. A CSR which is the intersection of two perpendicular strips
V1 and V2 in the primal plane (Fact 2), can be represented by two color spanning
vertical segments (CS_segment) V∗

1 and V∗
2 in the dual plane such that if the

V∗
1 is at x = x1, then the V∗

2 will be at x = −1
x1

, and the set of double wedges
intersecting both V∗

1 and V∗
2 must be color spanning.

Let Ra,b be the color spanning rectangle with one side defined by two points
a and b of the two segments �a and �b, respectively. The four sides of Ra,b are
numbered sequentially 1 to 4 in counter clockwise direction where the side 1
contains the points a and b. We first generate all possible CSR Ra,b with side
2 being defined by all possible segments with same (say blue) color only, and

84 S. Maji and S. Sadhu

then we compute the minimum area rectangle among them. Similarly, we use
the remaining colors for side 2 to generate all possible Ra,b. Finally, we do this
for all pairs of �a(∈ L) and �b(∈ L) to compute the overall minimum area CSR
for L. This entire process is done through the duality transformations of the
segments in L and line sweeping technique.

Two vertical lines λ1 and λ2 sweep from left to right through the set of
event points ξ generated by the intersections of the members in L∗ as defined in
Problem 1. The λ1 and λ2 have the same set of event points; however, if the λ1

reaches at its event point e ∈ ξ, then we move λ2 to its event point e′ ∈ ξ whose
position is at x = −1

x(e) (see the Observation 4). However, if no such event point
exists at x = −1

x(e) , then we choose e′ ∈ ξ that occurs immediately to the left of
x = −1

x(e) .
Consider a minimal width CSS V1 with its lower boundary passing through

the endpoints a and b of the segments �a and �b, respectively. Let c, the endpoint
of a segment �c, lies on the upper boundary of V1, so that col(�a) �= col(�b) �=
col(�c) (see the Lemma 3). The double wedges �∗

a, �∗
b and �∗

c represent the duals
of �a, �b and �c, respectively. In dual, the point of intersection of UT (�∗

a) and
UT (�∗

b) is the top endpoint of the CS_segment V∗
1 , and its bottom endpoint

will lie vertically below its top endpoint and on the LT (�∗
c). Let L∗

1 ⊆ L∗ be
the set of double wedges intersecting with V∗

1 and L∗
2 ⊂ L∗ be the set of double

wedges lying completely below V∗
1 . At each event point e of sweep line λ1, we

compute the CS_segments V∗
1 . For each such segment V∗

1 , we determine the
corresponding V∗

2 at x = −1
x(e) which lies immediately after the event point, say

e′ of the sweep line λ2. The order of the double wedges of L∗
1 at x = −1

x(e) , can
be obtained from the status of the sweep line λ2 at x = x(e′) in linear time.
The V∗

2 to be determined, must intersect with �∗
a, �∗

b and �∗
c in order to obtain a

CSR made by the intersection of V1 and V2. We take two pointers top1 (resp.
top2) and bot1 (resp. bot2) that are initialized to point to double wedges having
top endpoint and bottom endpoint of V∗

1 (resp. V∗
2), respectively. At x = −1

x(e) ,
suppose L∗

up ⊂ L∗
1 be the set of double wedges with their upper trace lying

above both UT (�∗
a) and UT (�∗

b). We choose a distinct colored (say blue) double
wedge w∗ ∈ L∗

up at x = −1
x(e) which is closest to and above both the UT (�∗

a) and
UT (�∗

b), and compute the CS_segment V∗
2 (with top endpoint on UT (w∗)) for

the double wedges in L∗
1 by maintaining a color array in linear time. Actually

this w defines the side 2 of CSR (discussed above). The bottom endpoint of V∗
2

will lie on the lower trace of a double wedge, say t∗ and bot2 will point to t∗.
Note that w∗ and t∗ must be the essential3 double wedges in V∗

2 . We determine
the area of the rectangle whose sides are given by V∗

1 and V∗
2 in dual plane. Next

we process each double wedge d∗
i ∈ L∗

2 lying below �∗
c at x = x(e), as follows.

col(d∗
i) = col(w∗): Here,
• if UT (d∗

i) lies below UT (�∗
a) or UT (�∗

b) and above LT (�∗
a) or LT (�∗

b) at
x = − 1

x(e) , then we stop, since no CSR Ra,b with col(w∗) in side 2 is
possible with such d∗

i .
3 Essential color occurs exactly once inside the color spanning region.

Arbitrary-Oriented Color Spanning Region for Line Segments 85

• if UT (d∗
i) lies above both UT (�∗

a) and UT (�∗
b) at x = −1

x(e) , and below
the double wedge pointed by top2 pointer, then we reject all the double
wedges lying above d∗

i (since same colored segment w as that of di cannot
occur in CSR Ra,b) by updating color array. We also update the top2
pointer to point to d∗

i .
• if d∗

i lies below LT (�∗
a) and LT (�∗

b) at x = − 1
x(e) , and above bot2, then

CSR Ra,b cannot include d∗
i and hence we move the bot2 pointer to the

double wedge lying immediately above d∗
i . Note that, now the vertical

segment defined by the top2 and bot2 may not be the color spanning, and
we should compute the CSR Ra,b whenever we get a V∗

2 .
• if d∗

i lies above top2 at x = − 1
x(e) , then we reject d∗

i (since col(d∗
i) and

col(w∗) are same).
col(d∗

i) �= col(w∗): If d∗
i lies between the double wedges pointed by top2 and

bot2, then we insert d∗
i in V∗

2 and update the color array for V∗
2 . If the color

of the double wedge pointed by bot2 is same as that of d∗
i then we move bot2

upwards to point to an essential wedge. If V∗
2 becomes color spanning after

insertion of d∗
i , then we update the bot1 pointer to point to d∗

i and compute
V∗
2 and the corresponding CSR. Otherwise we reject d∗

i .

Since each segment is inserted and/or deleted in V∗
2 at most once, the above

procedure needs amortized linear time. We repeat this procedure for each distinct
colored double wedge w∗ to obtain the minimum area CSR Ra,b. Finally, we
execute this process at each event point of λ1 to determine the overall minimum
area CSR for L. There are O(n2) event points for λ1. Similar to the Problem 2,
we also need the linear space to solve this problem. Since there are at most m
distinct colors, and at each event point of λ1, it takes amortized linear amount
of time to compute all possible CSS V∗

2 with each distinct color of the upper
trace, we have the following result.

Theorem 7. The minimum sized (area) color spanning rectangle of arbitrary
orientation for a given set of n colored line segments in R

2 can be determined
in O(n3m) time and O(n) space.

References

1. Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L., Palop,
B., Sacristán, V.: Smallest color-spanning objects. Algorithms - ESA 2001. In:
Proceedings of 9th Annual European Symposium, Aarhus, Denmark, 28–31 August
2001, vol. 2161, pp. 278–289 (2001)

2. Acharyya, A., Maheshwari, A., Nandy, S.C.: Color-spanning localized query. Theor.
Comput. Sci. 861, 85–101 (2021)

3. Asano, T., Bhattacharya, B.K., Keil, J.M., Yao, F.F.: Clustering algorithms based
on minimum and maximum spanning trees. Proceedings of the Fourth Annual
Symposium on Computational Geometry, Urbana-Champaign, IL, USA, 6–8 June
1988, pp. 252–257 (1988)

4. Bae, S.W.: An algorithm for computing a minimum-width color-spanning rectan-
gular annulus. J. Korean Inst. Inf. Sci. Eng. 44, 246–252 (2017)

86 S. Maji and S. Sadhu

5. de Berg, M., Cheong, O., van Kreveld, M.J., Overmars, M.H.: Computational
Geometry: Algorithms and Applications, 3rd edn. Springer, Berlin (2008)

6. Das, S., Goswami, P.P., Nandy, S.C.: Smallest color-spanning object revisited. Int.
J. Comput. Geom. Appl. 19(5), 457–478 (2009)

7. Freeman, H., Shapira, R.: Determining the minimum-area encasing rectangle for
an arbitrary closed curve. Commun. ACM 18, 409–413 (1975)

8. Hasheminejad, J., Khanteimouri, P., Mohades, A.: Computing the smallest color-
spanning equaliteral triangle. In: 31st European Workshop on Computational
Geometry. pp. 32–35 (2015)

9. Huttenlocher, D.P., Kedem, K., Sharir, M.: The upper envelope of Voronoi surfaces
and its applications. In: Proceedings of the Seventh Annual Symposium on Com-
putational Geometry, North Conway, NH, USA, 10–12 June 1991. pp. 194–203.
ACM (1991)

10. Khanteimouri, P., Mohades, A., Abam, M.A., Kazemi, M.R.: Computing the small-
est color-spanning axis-parallel square. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.)
ISAAC 2013. LNCS, vol. 8283, pp. 634–643. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-45030-3_59

11. Lee, D.T., Ching, Y.: The power of geometric duality revisited. Inf. Process. Lett.
21, 117–122 (1985)

12. Pruente, J.: Minimum diameter color-spanning sets revisited. Discret. Optim. 34,
100550 (2019)

https://doi.org/10.1007/978-3-642-45030-3_59
https://doi.org/10.1007/978-3-642-45030-3_59

	Arbitrary-Oriented Color Spanning Region for Line Segments
	1 Introduction
	2 Preliminaries and Notations
	2.1 A Single Color Spanning Strip of Arbitrary Orientation
	2.2 Two Congruent Strips of Arbitrary Orientation
	2.3 Two Congruent Strips of Arbitrary Orientation Whose Union is Color Spanning
	2.4 Color Spanning Rectangle (CSR) of Arbitrary Orientation

	References

