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Abstract. A variant of graph covering problem demands to find a set
of sub-graphs when the union of sub-graphs contain all the edges of G.
Another variant of graph covering problem requires finding a collection of
subgraphs such that the union of the vertices of subgraphs forms a vertex
cover. We study the later version of the graph covering problem. The
objective of these problems is to minimize the size/cost of the collection
of subgraphs. Covering graphs with the help of a set of edges, set of
vertices, tree or tour has been studied extensively in the past few decades.
In this paper, we study a variant of the graph covering problem using
two special subgraphs. The first problem is called bounded component
forest cover problem. The objective is to find a collection of minimum
number of edge-disjoint bounded weight trees such that the vertices of the
forest, i.e., collection of edge-disjoint trees, cover the graph. The second
problem is called bounded size walk cover problem. It asks to minimize
the number of bounded size walks which can cover the graph. Walks
allow repetition of vertices/edges. Both problems are a generalization
of classical vertex cover problem, therefore, are NP-hard. We give 4ρ
and 6ρ factor approximation algorithm for bounded component forest
cover and bounded size walk cover problems respectively, where ρ is an
approximation factor to find a solution to the tree cover problem.

Keywords: Graph Covering · Vertex Cover Problem · Tree Cover
Problem · Approximation Algorithm

1 Introduction

A set of vertices are said to cover an edge if at least one end vertex of that edge
is present in that set of vertices. Graph covering problems aim to find a subset
of graph vertices such that all edges are covered by that subset while minimizing
some objective function. The classical vertex cover problem is a graph covering
problem which requires finding a minimum size/cost subset of graph vertices that
covers all the edges of a given graph. The problem of covering graphs with specific
subgraphs is studied by several researchers in the past four decades [1–3,5]. The
objective in such problems is to determine an optimal size/cost collection of
subgraphs of a graph such that the union of vertices of the subgraphs covers
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all edges of the original graph. Based on the topology of subgraphs, several
variations of the problem are defined. As most of these variations are NP-hard,
the main goal is to design efficient approximation schemes.

In this paper, we aim to study two variants of graph covering with bounded
size subgraphs. The problems aim to cover the graph with a minimum number
of subgraphs each of whose weight is bounded by a given real number. Formally,
let G = (V,E,w) be a weighted graph where w : E → R+. A forest cover of G is
a collection of disjoint trees {T1, T2, · · · , Tj} such that the union of the vertices
in all the trees in the collection will be a vertex cover. Note that disjoint trees
do not have any common vertices/edges. The cardinality of a forest cover is j,
the number of trees in the forest cover. We define a problem named bounded
component forest cover (BCFC) problem as follows.

Definition 1. For a given weighted graph G = (V,E,w), and a non-negative
real number λ, find a forest cover of minimum cardinality such that the weight
of each tree in the forest cover is at most λ.

Note that when λ = 0, the problem is reduced to the minimum vertex cover
problem. Hence, we have the following result.

Theorem 1. The BCFC problem over (G,λ) is NP-hard.

The second problem is motivated by a real-life application problem monitor-
ing a large art gallery. A guard can see the entire corridor from one of its end
junction points. The objective is to place a minimum number of mobile guards
in such a way that every corridor can be under the scrutiny of at least one guard
in t time period, for a given time t > 0. If every guard moves with a constant
average velocity v, then the movement routes of the guards decompose the graph
into subgraphs, each of which has a length at most vt, and the set of vertices
covered by the guards must form a vertex cover. In this case, each subgraph is
a walk of length at most vt, and the walks in the solution may be intersecting,
i.e., may have common edges/vertices.

Formally, let G = (V,E) be a weighted graph with the weight function
w : E → R+. A walk cover of G is a collection of walks {P1, P2, · · · , Pj} which
are allowed to intersect, i.e., may have common edges/vertices such that the
union of the vertices on all the walks in the collection, forms a vertex cover. The
cardinality of a walk cover is j, the number of walks in the walk cover. Analo-
gous to BCFC, we define a problem named bounded size walk cover (BSWC) as
follows.

Definition 2. For a given weighted graph G = (V,E,w), and a non-negative
real number λ, find a walk cover of minimum cardinality such that the weight of
each walk in the walk cover is at most λ.

If λ = 0, BSWC problem is reduced to the minimum vertex cover problem.
Therefore, the following result holds.

Theorem 2. The BSWC problem over (G,λ) is NP-hard.
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2 Related Work

In this section, we briefly mention works related to BCFC, BSWC and graph cov-
ering problems. The tree(tour) cover problem was first defined by Arkin et al. [1]
in 1993. The tree(tour) cover problem of an edge weighted graph deals with
finding a minimum weight tree(tour) in the graph such that the vertices of
the tree(tour) are the vertices of some vertex cover of the graph. These two
problems are NP-hard as an instance of vertex cover problem, and traveling
salesperson problem [6] can be reduced to an instance of tree and tour cover
problem, respectively. Arkin et al. have designed a 3.55 and 5.5-factor approxi-
mation algorithm for tree cover and tour cover problems, respectively. In [2,3],
researchers have studied the tree cover problem and proposed improved approx-
imation algorithms. Koneman et al. [2] gave a linear programming formulation
for the tree cover problem and derived a 3-factor rounding algorithm. Fujito [3]
gave a 2-factor approximation algorithm to find a minimum tree cover. Viet
Hung Nguyen [4] established a 3.5 approximation factor for the tour cover using
a compact linear program which is weaker as compared to 3-factor proposed by
Konemann et al. [2]. Researchers have studied a similar problem called edge dom-
inating set problem [5,7,8] that finds a subset of edges E1 in a graph G = (V,E)
such that for each edge not in E1 has at least one common end vertex with some
edges of E1. It is a minimization problem.. This problem is a special case of
BSWC problem when λ = 1 and the graph is unweighted. Researchers [5,7,8]
have proposed various approximation algorithms to solve the edge dominating
set problem and the best-known algorithm has an approximation factor 2 [5].
Fujito and Nagamochi [5] and Parekh [9] have proposed 2-factor approxima-
tion algorithms to find minimum vertex cover, minimum edge dominating set,
and some related problems. Monien and Speckeumeyer [11] have established an
approximation factor ≤ 1.8 for finding a minimum vertex cover in all graphs
with ≤ 146000 nodes. To find a minimum vertex cover in graphs authors [12,13]
have proposed different approximation algorithms whose approximation factors
are lesser than 2. In [14], authors have proved that it is NP-hard to establish an
approximation factor lesser than 1.36067 for a vertex cover problem in a graph.

The problem of graph covering using walks is related to a well-studied prob-
lem of graph exploration by mobile agents. If the mobile agents have to monitor
the edges of the network by visiting at least one of its end vertices, they have
to visit walks containing all vertices of some vertex cover of the graph. The
optimal number of agents required for edge exploration is a related problem to
BSWC; therefore, we briefly mention a few results on edge exploration. In a graph
exploration problem single or multiple mobile agents have to visit the nodes or
edges of a graph. Many research works are concerned with the exploration of
the graph by a single mobile agent, as discussed in [15–18,20]. In [21], authors
have assumed that in the deterministic exploration of the graph by multiple
agents, the movement of the agents are coordinated centrally. In [22], authors
have designed different approximation algorithms for the collective exploration
of an arbitrary graph by a group of mobile agents. In [19], authors have studied
the problem graph exploration where starting from a node, a mobile agent has to
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visit all the vertices of an anonymous graph where the nodes do not have ids, but
the edges incident on a node are labeled with port numbers. Dhar et al. [23,24]
studied the edge exploration of an anonymous graph by a mobile agent.

3 Results

In this section, we present constant factor approximation schemes for both con-
sidered problems.

3.1 Constant Factor Approximation Algorithm for BCFC

Recall a tree cover problem in an edge weighted graph deals with finding a
minimum weight tree such that the vertices of the tree form a vertex cover of the
graph. First, we show that a constant factor approximation algorithm for the tree
cover problem can be used to design a constant factor approximation algorithm
to BCFC. The general idea is to find a tree cover of a given graph and then split
the tree into bounded size components such that all vertices of the tree cover are
preserved in the process of splitting. The resulting forest is a solution of BCFC
problem on the given graph. The tree cover problem is NP-Hard; therefore, the
proposed scheme obtains an approximated tree cover solution using some ρ-
factor approximation algorithm. The following lemma from [25] helps us to find
a solution of BCFC from a given solution of tree cover problem.

Lemma 1 ([25]). Let β > 0 be a positive real number and let T be any tree with
vertex set VT and the edge set ET . If for each e ∈ ET , w(e) ≤ β, then T can be
split into sub-trees ζ1, ζ2, · · · , ζk where k ≤ max{�w(T )

β �, 1} such that w(ζi) ≤ 2β
for each 1 ≤ i ≤ k.

The procedure of how to split the tree into sub-trees is explained in [26].
Let G = (V,E,w) be a given weighted graph. We define a weight function

w 1
2

as follows:

w 1
2
(e) =

{
2w(e)

λ if w(e) ≤ λ
2 ,

1 otherwise.

Let G′ = (V,E,w 1
2
) where G = (V,E,w). Let w 1

2
(X) denote the sum of the

weights of the edges in a subgraph X of graph G′. Similarly, w(X) is defined for a
subgraph X of graph G. The following lemma establishes a relationship between
the optimal tree cover of G′ and the number of trees in the optimal solution of
BCFC.

Lemma 2. Let OPTBCFC be the number of sub-trees in the optimal solution of
BCFC problem over (G,λ) and let OPTTC be the optimal tree cover of G′. Then
w 1

2
(OPTTC) ≤ 4OPTBCFC − 2.
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Proof. Let ξ1, ξ2, · · · , ξOPTBCF C
be the trees in an optimal solution of BCFC for

(G,λ). Then by the definition of w 1
2
, w 1

2
(ξi) ≤ 2, for each i, 1 ≤ i ≤ OPTBCFC .

Construct a graph H = (VH , EH) with OPTBCFC many vertices as follows.
For every tree ξi, take a vertex ui in VH . Add an edge (ui, uj) ∈ EH , if

there exists a vertex vi ∈ Vξi
and there exist a vertex vj ∈ Vξj

such that vi and
vj are connected by a path with at most two edges in G. Assign w(ui, uj) =

min
{Pxy|x∈Vξi

,y∈Vξj
}
{w(Pxy)}, where Pxy is a path between x and y with at most

two edges in G. Since G is connected, and the vertices of OPTBCFC forms a
vertex cover, therefore the graph H is also connected. Let τ be the minimum
spanning tree of H with respect to w and Eτ be the set of edges in the τ .
Note that for every edge in e ∈ Eτ , w 1

2
(e) ≤ 2, as there can be at most two

edges in G corresponding to one edge in τ and the weight of an edge in G with

respect to w 1
2

is at most 1. Let Z = (
OPTBCF C⋃

i=1

ξi)
⋃

τ . Clearly, Z is a tree cover

of G and w 1
2
(Z) ≤ ∑OPTBCF C

i=1 w 1
2
(ξi) +

∑
e∈Eτ

w 1
2
(e). Recall, w 1

2
(ξi) ≤ 2 and

|Eτ | = |Vτ | − 1 = |VH | − 1 = OPTBCFC − 1, therefore, we have w 1
2
(Z) ≤

2OPTBCFC + 2(OPTBCFC − 1) = 4OPTBCFC − 2.
Since, OPTTC is an optimal tree cover of G′, we have w 1

2
(OPTTC) ≤

w 1
2
(Z) ≤ 4OPTBCFC − 2 ��
Next, we describe our approach to find a solution for BCFC problem over

(G,λ). Let A̧ be an approximation algorithm with ρ-factor approximation guar-
antee for the tree cover problem. Let APXTC be the tree cover returned by A̧
for the input graph G′ = (v,E,w 1

2
). First, we obtain an approximated tree cover

APXTC of G′. Then each edge e in APXTC for which w(e) > λ
2 is deleted from

APXTC . After deletion of such edges, let APXTC splits into h sub-trees χ1, χ2,
· · · , χh. For i = 1 to h, a set of sub-trees Si is computed from χi using the tree
splitting strategy proposed in [26] such that weight of each sub-tree in Si has
weight at most 2. Finally, forest cover APXBCFC =

⋃h
i=1 Si is returned as the

solution to the BCFC problem.

Theorem 3. Let |APXBCFC | be the number of trees in the forest cover
APXBCFC , then |APXBCFC | ≤ 4 · ρ · OPTBCFC , when we have a ρ-factor
approximation algorithm for the tree cover problem.

Proof. Let T be a sub-tree in a set of sub-trees Si ⊆ APXBCFC . Then,
w 1

2
(T ) ≤ 2. Furthermore, for each edge e ∈ T , w(e) ≤ λ

2 and w(T ) ≤
λ. According to Lemma 1, the number of trees in the set of sub-trees
Si, |Si| ≤ max{�w 1

2
(χi)�, 1} = max{� 2w(χi)

λ �, 1} ≤ w 1
2
(χi) + 1. Recall,

APXBCFC =
⋃h

i=1 Si, therefore, |APXBCFC | =
∑h

i=1 |Si| ≤ ∑h
i=1(w 1

2
(χi) +

1) =
∑h

i=1 w 1
2
(χi)+h. Note that, w 1

2
(APXTC) =

∑h
i=1 w 1

2
(χi)+h−1, therefore,

we have APXBCFC ≤ w 1
2
(APXTC) + 1 ≤ ρ · w 1

2
(OPTTC) + 1. Using Lemma 2,

we have APXBCFC ≤ 4ρ · OPTBCFC . ��
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Theorem 4 ([3]). There exist a 2 factor approximation algorithm for tree cover
problem.

In view of Theorem 3 and Theorem 4 we have the final result in this subsec-
tion.

Theorem 5. There exists an 8-factor approximation algorithm for BCFC.

3.2 Constant Factor Approximation Algorithm for BSWC

Recall that a solution to BCFC can be easily converted to a solution of BSWC by
doubling the edges in each component of the forest cover, breaking the tour into
two bounded size walks, which may intersect. Let |APXBCFC | be the number
of trees in the forest cover APXBCFC , which is a solution of BCFC given by the
approximation algorithm given in the above section. Then, after doubling the
trees in APXBCFC and cutting the formed tour due to doubling into two walks,
we would have 2|APXBCFC | walks. Therefore, the number of walks would be
less than or equal to 8 · ρ · OPTBCFC when we have a ρ factor approximation
algorithm for the tree cover problem.

In this section, we show that an approximation scheme for the tree cover prob-
lem can be used to design a constant factor approximation scheme for BSWC.
The general idea is to find a tree cover of a given graph and then delete high-
cost edges. This process may result in a forest. The edges in the resulting forest
are doubled to form tours over vertices in all respective components of the for-
est. Splitting these tours into bounded-size walks results in a collection of walks
which is a feasible solution for BSWC. We prove that this approximation app-
roach guarantees to give 6 · ρ · OPTBSWC solution for BSWC problem.

Let G = (V,E,w) be a weighted undirected graph, where every edge e ∈ E
has a positive real weight. We define a weight function w′ on the graph G such
that for each edge e ∈ G, w′(e) = w(e)

λ if w(e) ≤ λ else w′(e) = 1. Let G′ =
(V,E,w′) where G = (V,E,w). Let λ be a non-negative real number. Note that
two walks may intersect and may have common vertices/edges. A set of walks
{P1, P2, · · · , Pj}, such that each walk is of weight at most λ, is called bounded
size walk cover if union of vertices in all the walks forms a vertex cover of G.
For any real λ ≥ 0, the objective of BSWC problems is to find the minimum
cardinality walk cover of G such that the weight of each walk in the walk cover
is at most λ.

The above problem is NP-hard. To solve this problem, we design an approx-
imation algorithm that finds a tree cover of the graph and splits the tree cover
into sub-trees of smaller size by deleting high-weight edges, but all the vertices
of the tree cover must be present in the sub-trees. Deletion of high-weight edges
is a classical mechanism to break a tree in problems that have bounded size
constraints [26]. The proposed algorithm finds walk cover from a tree cover fol-
lowing the idea of constructing sub-trees from a minimum spanning tree given
in the Algorithm 1 in the paper [27]. We have modified Algorithm 1 from [27]
according to our requirement to result walks which may intersect. For the sake
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Algorithm 1: Bounded Size Walk Cover Algorithm
1 Find an approximate tree cover APXTC in G′ using ρ-approximation tree cover

algorithm .
2 From the tree cover APXTC delete each edge e with cost w(e) ≥ λ. Let k be the

number of edges deleted from APXTC . It splits APXTC into k + 1 sub-trees
denoted as T0, T1, · · · , Tk.

3 for i = 0 to k do
4 Find a tour ETi on Ti by doubling the edges.
5 Delete an arbitrary edge from ETi, to get a path Ci.

6 end
7 Define APXBSWC = ∅.
8 for i = 0 to k do
9 while w(Ci) > λ do

10 Let Ci = u1
iu

2
i · · · u|V (Ci)|

i }.

11 Let uj
i be the first vertex on Ci such that w(u1

i · · · uj+1
i ) > λ.

12 APXBSWC = APXBSWC

⋃
(u1

i · · · uj
i ), Ci = Ci \ (u1

i · · · uj
iu

j+1
i ).

13 Delete all edges of the path (u1
i · · · uj

iu
j+1
i ) from Ci. To delete the path

(u1
i · · · uj

iu
j+1
i ), we delete the vertices {u1

i , · · · , uj
i} and the edges

{(u1
i , u

2
i ), · · · , (uj−1

i , uj
i )} from Ci.

14 end
15 APXBSWC = APXBSWC

⋃
Ci

16 end
17 Return APXBSWC .

of completeness, the modified algorithm is summarized as Algorithm 1 in this
paper and its working procedure is explained as follows. The algorithm finds an
approximated tree cover APXTC in the graph G using some ρ-factor approxima-
tion algorithm. It deletes all heavy edges with weight more than λ from APXTC .
Let k number of edges are deleted which splits APXTC into k +1 different com-
ponents T0, · · · , Tk. In each Ti, i = 0, · · · , k, the algorithm finds a tour ETi by
doubling edges of Ti and at the end, it deletes one arbitrary edge from ETi to get
a walk Ci. Note that an edge may appear more than one time in such tour. For
i = 1, · · · , k, each walk Ci, is split into sub-walks of weight less than or equal to
λ and those sub-walks are added to the solution APXBSWC . Let the walk Ci is
represented as a sequence of vertices (u1

i u
2
i · · · u|V (Ci)|

i ). In the walk Ci let uj
i be

the first vertex such that w(u1
i · · · uj+1

i ) > λ, then it adds the walk (u1
i · · · uj

i ) to
the set APXBSWC and deletes the walk (u1

i · · · uj
iu

j+1
i ) from Ci. To delete any

walk (u1
i · · · uj

iu
j+1
i ) from Ci , the algorithm deletes the vertices {u1

i · · · uj
iu

j
i}

and the edges {(u1
i , u

2
i ) · · · (uj

i , u
j+1
i )}. It continues this process until w(Ci) ≤ λ.

Finally, we add the truncated walk Ci to the set APXBSWC .
The execution steps of the Algorithm 1 are depicted with the help of an

example, as shown in Fig. 1. Let G = (V,E,w) be a positive edge-weighted graph
as shown in Fig. 1a and let the bound on the weight of each walk be λ = 20. The
algorithm first computes an approximate tree cover APXTC in the graph G using
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Fig. 1. Example: Construction of bounded size walk cover.

some existing tree cover algorithm. Let Fig. 1b be the approximated tree cover
APXTC . Then, the algorithm deletes the edge (v1, v3) whose weight is greater
than λ = 20 from APXTC . Deletion of (v1, v3) splits APXTC into two different
sub-trees T1 and T2 as shown in Fig. 1c. Next, the algorithm doubles the edges
of sub-trees T1 and T2 and finds tours ET1 and ET2, respectively, as depicted in
Fig. 1d. From each tour ET1 and ET2, the algorithm deletes an arbitrary edge
and gets open walks C1 and C2 as shown in Fig. 1e. In this example (v2, v7) and
(v3, v6) are deleted from ET1 and ET2 respectively. Note that an edge may occur
twice in these walks due to doubling. In the walk C1, the algorithm starts from
node v7 and visits up to the node v1. Since the walk P1 = (v7, v2, v1) is the largest
visited walk with weight at most 20, it adds the sub-walk P1 = (v7, v2, v1) into
the solution and deletes the walk P1 along with the edge (v1, v8) from C1. Then
it finds the sub-walk P2 = (v8, v1, v2) from the remaining walk of P1. Similarly,
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it finds sub-walk P3 from the walk C2. All the walks have a weight at most 20
as shown in Fig. 1f. Note that P1 and P2 are intersecting and have a common
edge (v1, v2).

The following Lemmas and Theorem give correctness and derive the approx-
imation factor of Algorithm 1. Recall APXBSWC is the output of Algorithm 1,
which is a set of walks.

Lemma 3. APXBSWC is a bounded size walk cover of graph G.

Proof. The walks in APXBSWC are constructed by deleting some edges of a
tree cover of the graph G. So the walks in APXBSWC include all the vertices of
the tree cover of G. Therefore, the vertices of all the walks in APXBSWC still
form a vertex cover of graph G. According to Algorithm 1, the weight of each
walk in APXBSWC are bounded to be less or equal to λ. Hence, APXBSWC is
a feasible solution to BSWC problem in the graph G. ��

To establish the approximation factor of Algorithm 1, we define certain vari-
ables. Let OPTBSWC be the minimum number of bounded size walks, which
forms the optimal solution of BSWC problem over a graph G. Let OPTTC

be the optimal tree cover of the graph G′. We establish a relation between
OPTBSWC and w′(OPTTC).

Lemma 4. w′(OPTTC) ≤ 3.OPTBSWC − 2

Proof. Let {Q1, Q2, · · · , QOPTBSW C
} be the set of walks which forms the optimal

solution of BSWC as shown in Fig. 2. Weight of each Qi is less than or equal
to λ, i.e. w(Qi) ≤ λ and w′(Qi) ≤ 1. We construct a graph H = (VH , EH),
similarly to how we constructed a graph H in the proof of Lemma 2. The graph
H contains all walks Q1, · · · , QOPTBSW C

as a subgraph and contains a few extra
edges/vertices from G to connect these walks into a single connected component.
In the graph G, if two walks Qi and Qj have common vertices or edges, then
join them into a single component by taking the union of those walks so that
each edge/vertex appears exactly once. We start with graph G, and then, we
contract each component from the previous step, which is a subgraph of G, into
a single vertex by contracting all the edges and respective vertices to obtain a
graph Gc = (Vc, Ec). Afterward, we find a minimum spanning tree MST T on
the contracted graph Gc. Graph H is constructed from MST T by reversing the
contraction of the components. The graph H is a sub-graph of G containing all
the vertices of walks in the set {Q1, Q2, · · · , QOPTBSW C

}. The sub-graph H is a
tree cover of G as depicted in Fig. 3.

Fig. 2. Q1, · · · , QOPTBSW C be the walks in the optimal solution of BSWC



424 B. Gorain et al.

Fig. 3. Sub-graph H of G formed by edges of Qi and MST T on Gc

In the graph Gc, consider two nodes ux and uy that represent two components
that may be formed by union of few walks from the set {Q1, Q2, · · · , QOPTBSW C

}.
Let ux and uy are connected in Gc through a path pxy, which is also present in
MST T . Then, the number of edges on path pxy is at most two. Otherwise, if
three edges are present in pxy, then any end vertex of middle edge can not be
covered by any vertex of Qi, for 1 ≤ i ≤ OPTBSWC , and hence the covering of all
edges is not guaranteed. Therefore, weight of each such path pxy in G′, w′(pxy) ≤
2. Note that the vertices H form a vertex cover of G. As per the construction,
the graph H contains all walks from the set {Q1, Q2, · · · , QOPTBSW C

} and at
most OPTBSWC − 1 many paths (of pxy type) to connect all walks. The weight
of each walk Qi in G′ is w′(Qi) ≤ 1. Hence, the weight of sub-graph H in G′

is given as w′(H) ≤ OPTBSWC + 2.(OPTBSWC − 1) ≤ 3OPTBSWC − 2. Since
H is also a tree cover of the graph G, weight of the optimal tree cover in G′,
w′(OPTTC) ≤ w′(H) ≤ 3OPTBSWC − 2. ��
Theorem 6. Let Y = |APXBSWC | be the number of walks of a bounded weight
in the set APXBSWC resulted by Algorithm 1. Then, Y ≤ 6 · ρ · OPTBSWC ,
when we have a ρ-factor approximation algorithm for the tree cover problem.

Proof. The proposed algorithm obtains an approximate tree cover APXTC of
G′ using some ρ-factor approximation algorithm, i.e. weight of APXTC in G′

is w′(APXTC) ≤ ρ.w′(OPTTC), where OPTTC is the optimal tree cover of G′.
The algorithm deletes the edges from APXTC whose weight is greater than λ
in G. After deletion of heavy edges, let APXTC be split into {T1, T2, ..., Tm}
sub-trees. The algorithm doubles all edges in each sub-tree for a set of sub-
tours {ET1, ET2, ..., ETm}. After the deletion of an arbitrary edge from each
sub-tour, the algorithm finds open walks {C1, C2, ..., Cm}. Each walk Ci is then
splitted into bounded size sub-walks which are kept in the solution as walks
that may intersect. Note that Y ≤ ∑m

i=1�w′(Ci)� ≤ ∑m
i=1

w(Ci)
λ + m. We have

w′(APXTC) =
∑m

i=1 w′(Ti) + m − 1 which can be rewritten as 2w′(APXTC) ≥∑m
i=1

w(Ci)
λ +2m−2. Hence Y ≤ 2w′(APXTC)−m+2 ≤ 2ρ·w′(OPTTC)−m+2.

Using Lemma 4, we have Y ≤ 6 · ρ · OPTBSWC , as ρ > 1. ��
In view of Theorem 6 and Theorem 4, we have the final result in this sub-

section.

Theorem 7. There exists a 12-factor approximation algorithm for BSWC.
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4 Conclusion and Future Work

In this paper, we have studied two graph covering problems: bounded component
forest cover (BCFC) problem and bounded size walk cover (BSWC) problem.
The problems are NP-hard due to a trivial reduction to the classical vertex
cover problem when the bound on weight is 0. We designed 4.ρ factor approxi-
mation algorithm for the bounded component forest cover problem, where ρ is
the approximation factor for finding a solution of tree cover problem. We further
give a 6.ρ factor approximation algorithm for bounded size walk cover problem.
Using 2-factor approximation algorithm given by Fujito [3] for tree cover prob-
lem, we have 8-factor and 12-factor approximation algorithm for BCFC and
BSWC respectively.

Reducing these approximation factors is the first obvious direction to work
on. One possible such improvement may be due to starting of with a subgraph
other than a solution to the tree cover problem, which may bring down the
final approximations factors. Studying bounded size path cover and bounded
size intersecting sub-tour cover are other alternatives that we plan to look in
future. Another future direction is to study the graph covering problem using
other types of bounded size subgraphs.
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