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Abstract. We consider the mobile robot dispersion problem in the presence of
faulty robots (crash-fault). Mobile robot dispersion consists of k ≤ n robots in
an n-node anonymous graph. The goal is to ensure that regardless of the initial
placement of the robots over the nodes, the final configuration consists of hav-
ing at most one robot at each node. In a crash-fault setting, up to f ≤ k robots
may fail by crashing arbitrarily and subsequently lose all the information stored
at the robots, rendering them unable to communicate. In this paper, we solve the
dispersion problem in a crash-fault setting by considering two different initial
configurations: i) the rooted configuration, and ii) the arbitrary configuration. In
the rooted case, all robots are placed together at a single node at the start. The
arbitrary configuration is a general configuration (a.k.a. arbitrary configuration
in the literature) where the robots are placed in some l < k clusters arbitrarily
across the graph. For the first case, we develop an algorithm solving dispersion
in the presence of faulty robots in O(k2) rounds, which improves over the previ-
ous O(f · min(m, kΔ))-round result by [23]. For the arbitrary configuration, we
present an algorithm solving dispersion in O((f + l) · min(m, kΔ, k2)) rounds,
when the number of edges m and the maximum degree Δ of the graph is known
to the robots.

Keywords: Distributed algorithm · Mobile robot · Dispersion · Fault-tolerant
algorithm · Crash-fault · Round complexity · Memory complexity

1 Introduction

The dispersion of autonomous mobile robots to spread them out evenly in a region is a
problem of significant interest in distributed robotics, e.g. [9,10]. Initially, this problem
was formulated by Augustine and Moses Jr. [2] in the context of graphs. They defined
the problem as follows: Given any arbitrary initial configuration of k ≤ n robots posi-
tioned on the nodes of an n-node anonymous graph, the robots reposition autonomously
to reach a configuration where each robot is positioned on a distinct node of the graph.
Mobile robot dispersion has various real-world and practical applications, such as the
relocation of self-driving electric cars (robots) to recharge stations (nodes). Assuming
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that the cars have smart devices to communicate with each other, the process to find a
free or empty charging station, coordination including exploration (to visit each node
of the graph in minimum possible time), scattering (spread out in an equidistant man-
ner in symmetric graphs like rings), load balancing (nodes send or receives loads, and
distributes them evenly among the nodes), covering, and self-deployment can all be
explored as mobile robot dispersion problems [11,13–15].

The problem has been extensively studied in different graphs with varying assump-
tions since its conceptualization [11–16,19–22]. In this paper, we continue the study
about the trade-off of memory requirement and time to solve the dispersion problem.
Recently, Pattanayak et al. [23] explored the problem of dispersion in a set-up where
some of these mobile robots are prone to crash faults. Whenever a robot crashes, it
loses all its information immediately, as if the robot has vanished from the network.
This makes the problem more challenging and also makes it more realistic in terms of
real-world scenarios, where faulty robots can crash at any moment. In this paper, we
have continued to study the efficacy of the problem in the same faulty environment. We
studied the dispersion problem with both the rooted and arbitrary configuration of the
robots in a faulty setup. Both algorithms maintain the optimal level of memory require-
ment for each robot.

The following table (Table 1) lists up the major notations used throughout the paper.

Table 1. List of major notations

Symbols Meaning

G The arbitrary graph acting as the underlying network for the robots

n The number of nodes (vertices) in G

m The number of edges in G

Δ The highest degree of the nodes in G

k Number of robots

f Number of faulty robots among the k robots

l Number of initial clusters of robots in the arbitrary configuration

ri A robot with ID i

Rc root node in the rooted configuration

1.1 Our Results

We consider a team of k ≤ n mobile robots placed on an arbitrary, undirected sim-
ple graph, consisting of n anonymous, memory-less nodes and m edges. The ports at
each node are labelled. The robots have unique IDs and a restricted amount of memory
(measured in the number of bits). These robots have some computing capability and
can communicate with the other robots, only when they are at the same node. We con-
sider two different starting scenarios, based on the initial configuration of the robots.
When the robots start from a single node, we call the configuration as rooted, other-
wise, we call it an arbitrary configuration. We further assume that f ≤ k faulty robots



30 P. K. Chand et al.

in the network are prone to crash at any point of time. Our first algorithm for the rooted
configuration crucially uses depth first search (DFS) traversal and improves the round
complexity from O(f · min(m, kΔ)) [23] rounds to O(k2). The second algorithm for
the arbitrary configuration is an entirely new result whose complexity depends upon
the factors: the number of faulty robots (f), number of robot clusters (l), total number
of edges in the graph (m), number of robots (k) and the highest degree of the graph
(Δ). In this case, the round complexity is O((f + l) ·min(m, kΔ, k2)). The results are
summarized in the following two theorems:

Theorem 1 (Crash Fault with Rooted Initial Configuration). Consider any rooted
initial configuration of k ≤ n mobile robots, out of which f ≤ k may crash, posi-
tioned on a single node of an arbitrary, anonymous n-node graph G having m edges,
in synchronous setting DISPERSION can be solved deterministically in O(k2) rounds
with O(log(k + Δ)) bits memory at each robot, where Δ is the highest degree of the
graph.

Theorem 1 improves over the previously known algorithm (in the worst case,
improvement is from cubic to quadratic) that takes O(f · min(m, kΔ)) rounds
for f faulty robots [23]. The theorem also matches the optimal memory bound
(Ω(log(max(k,Δ))) [13]) with O(log(k+Δ)) bit memory and can handle any number
of crashes.

Theorem 2 (Crash Fault with arbitrary Initial Configuration). Consider any arbi-
trary initial configuration of k ≤ n mobile robots, out of which f ≤ k may crash and
positioned on l ≤ k/2 nodes of an arbitrary and anonymous n-node graph G hav-
ing m edges, in synchronous setting DISPERSION can be solved deterministically in
O((f + l) · min(m, kΔ, k2)) time with O(log(k + Δ)) bits memory at each robot.

Theorem 2 solves the dispersion for arbitrary configuration with optimal memory
per robot. The time complexity matches the one conjectured by Pattanayak et al. [23].
When f, l and Δ are constants, the time complexity matches the lower bound of Ω(k).
Moreover, the algorithm can handle any number of faulty robots. The results are sum-
marized in the Table 2.

2 Related Work

The problem of dispersion was first introduced in [2] by Moses Jr. et al., where
they solved the problem for different types of graphs. They had given a lower
bound of Ω(log n) on the memory of each robot (later, made more specific with
Ω(log(max(k,Δ))) in [13]) and of Ω(D) on the time complexity, for any deterministic
algorithm on arbitrary graphs. They also proposed two algorithms on arbitrary graphs,
one requiring O(log n) memory and running for O(mn) time while the other needing
a O(n log n) memory and having a time complexity of O(m) .

Kshemkalyani and Ali [11] provided several algorithms for both synchronous and
asynchronous models. In the synchronous model, they solved the dispersion problem
in O(min(m, kΔ)) rounds with O(k logΔ) memory. For the asynchronous cases, they
proposed several algorithms, one particularly requiringO(ΔD) rounds andO(D logΔ)
memory, while another requiring O(max(log k, logΔ)) memory and having a time
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complexity of O((m − n)k). In a later work, Kshemkalyani et al., in [13] improved
the time complexity to O(min(m, kΔ) log k) keeping the memory requirement to
O(log n), while requiring that the robots know the parameters m,n, k,Δ beforehand.
In a subsequent work, [24] kept the time and memory complexity of [13] intact while
dropping the requirement of the robots having to know m, k,Δ beforehand. Recently,
Kshemkalyani and Sharma [16] improved the time complexity to O(min(m, kΔ)).
Works of [6,22] used randomization, which helped to reduce the memory requirement
for each robot.

In [12], Kshemkalyani et al., studied the problem in the Global Communication
Model, in which the robots can communicate with each other irrespective of their posi-
tions in the graph1. The authors obtained a time complexity of O(kΔ) rounds when
O(log(k+Δ)) bits of memory were allowed at each robot. Whereas, when robots were
allowed O(Δ + log k)) bits, the number of rounds reduced to O(min(m, kΔ)). Both
were for arbitrary initial configuration of robots. They also used BFS traversal tech-
niques for investigating the dispersion problem. The BFS traversal technique yielded a
time of O((D+k)Δ(D+Δ)) rounds with O(logD+Δ log k) bits of memory at each
robot, using global communication, for arbitrary starting configuration of robots. Here
D denotes the diameter of the graph. The problem was also studied on dynamic graphs
in [1,15,17]. Graph Exploration, which is a related problem, has also been intensively
studied in literature [3,5,7,8]

The dispersion problem has also been recently studied for configurations with faulty
robots. In [18], Molla et al., considered the problem for anonymous rings, tolerating
weak Byzantine faults (robots that behave arbitrarily but cannot change their IDs). They
gave three algorithms (i) the first one being memory optimized, requiring O(log n) bits
of memory, O(n2) rounds and tolerating up-to n − 1 faults.(ii) the second one is time
optimized with O(n) rounds, but require O(n log n) bits of memory, tolerating up-to
n − 1 faults. (iii) the third one runs in O(n) time and O(log n) memory but cannot
tolerate more than [n−4

17 ] faulty robots. In [20], the authors proposed several algorithms
for dispersion with some of them tolerating strong Byzantine robots (robots that behave
arbitrarily and can tweak their IDs as well). Their algorithms are mainly based on the
idea of gathering the robots at a root vertex, using them to construct an isomorphic map
of G and finally dispersing them over G according to a specific protocol. However, their
algorithms take exponential rounds for strong Byzantine robots starting from an arbi-
trary configuration. For the rooted configuration, their algorithm takes O(n3) rounds,
but tolerates no more than [n/4 − 1] strong Byzantine robots. Dispersion under crash
faults has been dealt with in [23]. In [23], Pattanayak et al., have considered the prob-
lem for a team of robots starting at a rooted configuration, with some robots being crash
prone. Their algorithm handles an arbitrary number of crashes, with each robot requir-
ing O(log(k + Δ)) bits of memory. The algorithm completes in O(f · min(m, kΔ))
rounds. In our paper, we improve this time complexity while keeping the memory
requirement to optimal and also extend the problem for the robots starting in arbitrary
configuration. A comparison between our results and the most aligned works is shown
in Table 2.

1 In the Local Communication Model robots can communicate with each other only when they
are at the same node.
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Table 2. Results on Dispersion of k ≤ n robots with f ≤ k faulty robots on n-node arbitrary
anonymous graphs having m edges such that Δ is the highest degree of the graph in the local
communication model. Each uses an optimal memory of O(log(k + Δ)) bits on each robot.

Algorithm Initial Config. Crash handling Time

Kshemkalyani et al. [16]* Arbitrary No O(min(m, kΔ))

Pattanayak et al. [23] Rooted Yes O(f · min(m, kΔ))

Algorithm in Sect. 4 Rooted Yes O(k2)

Algorithm in Sect. 5 Arbitrary Yes O((f + l) · min(m, kΔ, k2))
∗The best known result as of now for fault-free dispersion.

3 Model

We now elaborate our model in detail.

Graph: The underline graph G is connected, undirected, unweighted and anonymous
with n vertices and m edges. The vertices of G (also called nodes) do not have any
distinguishing identifiers or labels. The nodes do not possess any memory and hence
cannot store any information. The degree of a node i ∈ V is denoted by δi and the max-
imum degree of G by Δ. Edges incident on i are locally labelled using a port number
in the range [1, δi]. A single edge connecting two nodes receives two independent port
numbers at either end. The edges of the graph serve as routes through which the robots
can commute. Any number of robots can travel through an edge at any given time.

Robots: We have a collection of k ≤ n robots R = {r1, r2, ..., rk} residing on the
nodes of the graph. Each robot has a unique ID and has some memory to store informa-
tion. The robots cannot stay on an edge, but one or more robots can be present at a node
at any point of time. A group of such robots at a node is called co − located robots.
Each robot knows the port number through which it has entered and exited a node.

Crash Faults: The robots are not fault-proof and a faulty robot can crash at any time
during the execution of the algorithm. Such crashes are not recoverable and once a
robot crashes it immediately loses all the information stored in itself, as if it was not
present at all. Further, a crashed robot is not visible or sensible to other robots. We
assume there are f faulty robots such that f ≤ k.

Communication Model: Our paper considers a local communication model where
only the co-located robots can communicate among themselves.

Time Cycle: Each robot ri, on activation, performs a Communicate − Compute −
Move (CCM) cycle as follows.

– Communicate: ri reads its own memory along with the memory of other robots co-
located at a node vi.
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– Compute: Based on the gathered information and subsequent computations, ri
decides on several parameters. This includes, deciding whether to settle at vi or
otherwise determine an appropriate exit port, choosing the information to pass/store
at the settled robot and the information to carry along-with, if, exiting vi.

– Move: ri moves to the neighbouring node using the computed exit port.

We consider a synchronous system, where every robot is synchronized to a common
clock and becomes active at each time cycle or round.

Time and Memory Complexity: We evaluate the time in terms of the number of dis-
crete rounds or cycles before achieving DISPERSION. Memory is the number of bits
of storage required by each robot to successfully execute DISPERSION. Our goal is to
solve DISPERSION using optimal time and memory.

Let us now formally state the problem of fault-tolerant dispersion below.

Definition 1 (Fault-Tolerant Dispersion). Given k ≤ n robots, up to f of which
are faulty (which may fail by crashing), initially placed arbitrarily on a graph of n
nodes, the non-faulty robots, i.e., the robots which are not yet crashed must re-position
themselves autonomously to reach a configuration where each node has at most one
(non-faulty) robot on it and subsequently terminate.

4 Crash-Fault Dispersion for Rooted Configuration

In this section, we present a deterministic algorithm that disperses the robots with
single-source (rooted configuration) in adaptive crash fault. Our goal is to minimize the
round complexity as well as keep the memory of the robots low. The pseudocode and a
pictorial description of the algorithm can be found in the full version of the paper [4].

4.1 Algorithm

In the absence of faulty nodes, one can run the DFS (depth first search) algorithm to
solve the robot dispersion problem in O(min(m, kΔ)) rounds. But in the presence of
crash faults, due to crashes, it becomes challenging to explore the graph. Classic disper-
sion algorithms rely on the robots themselves to keep track of the paths during explo-
ration. The presence of a crashed robot in this instance may lead to an endless cycle.
Therefore, our goal is to ensure the dispersion of mobile robots despite the presence of
faulty robots.

In the rooted configuration, to manage the presence of faults, we avoid exploring the
graph together with all the robots. That is, the graph is explored sequentially such that
each robot ri (1 ≤ i ≤ k) does not begin exploring the graph, until the previous robot
ri−1 is guaranteed to have settled. During exploration, whenever a robot ri finds an
empty node it settles down at that spot. Let us call this algorithm as ROOTED-CRASH-
FAULT-DISPERSION. Below, we explain the algorithm in detail.

Functionality: For simplicity, let us assume that the robot’s ID lies in the range of
[1, k]. Otherwise, the robots can map their IDs from the actual range to the range [1, k],



34 P. K. Chand et al.

since the IDs are distinct. We denote the rooted configuration by Rc. We slightly abuse
notation and use Rc to indicate both the root and the initial gathering of robots. Robots
at Rc traverse the graph via the DFS (Depth First Search) approach, where the decision
of which edge to traverse first is based on the port numbers. The process proceeds in
increasing order of IDs, starting with the robot with the minimum ID at Rc. Rc then
sends each robot to explore the graph via DFS.

Let the robot with the current minimum ID be ri. Then ri begins to explore the
graph via DFS (starting with the minimum port number at Rc). Once it leaves Rc, it
has 3i rounds within which it can either i) settle at the first empty node it finds or ii)
return to Rc if it does not find an empty node to settle within 2i rounds. If ri reports
to Rc within 3i rounds, then Rc ensures that it does not release the robot with the next
lowest ID, say ri+1. This can be guaranteed as ri needs to traverse at most (i−1) edges
to explore the sub-graph traversed by ri−1. ri requires at most i rounds to return to the
base Rc since the next traversed edge might lead to the already visited node which is
not empty. As ri requires i rounds to report at the Rc, therefore, ri explores the graph
for only 2i rounds. Notice that a robot will not traverse the distance of more than (i+1),
before that, there will be an empty edge at a distance (distance from the root) of (i+1)
and the robot will settle down there. If ri did not find the empty node within 2i rounds
then it starts to traverse towards Rc. In this way, ri reports to Rc within 3i rounds so
that Rc does not send another robot to explore the graph. Rc re-sends ri to explore the
graph. In this way, any ri traverses the graph until it finds an empty node. Note that in
our process, we ensure that there are no two robots that are exploring the graph at the
same time.

To maintain the protocol, each ri maintains the following fields. Its ID (ri), a par-
ent pointer (ri.parent) that represents the edge it traversed, a current direction pointer
(ri.cdr) which indicates the direction it is required to follow. And finally, a backward
traversal value (ri.B) which is initially 0, and is set to 1 once the backward traversal is
complete. Here, our procedure performs the traditional DFS protocol but one-by-one,
that is, the robots do not explore the graph simultaneously. A detailed account of the
DFS traversal is provided in the full version [4].

Note that we have not addressed the case where a robot finds an empty node when
returning to Rc (because the previously settled robot has crashed). In such an instance,
the newly settled robot has a ri.parent and ri.cdr that point in the inappropriate direc-
tion. We address this condition below.

Decision: If ri encounters an unexpected child, ru i.e., a child whose parent and cur-
rent pointer direction are set in the inappropriate direction w.r.t the perspective of ri, it
considers (correctly) that ru replaced a robot that has previously crashed. In such a sit-
uation, ri changes the parent of ru appropriately, i.e., minimum available port number
other than ru.parent.

Lemma 1. In the non-faulty setup, round complexity is O(k2).

Proof. In a non-faulty setup, each robot behaves robustly and there are no crashes.
Therefore, after the backtracking flag is set on a node, an edge is not traversed again
during the DFS traversal. In traversing a graph from Rc, two kinds of situations may
arise, either a robot ri reaches an empty node after O(i) edge traversals, or it traverses
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O(i2) edges. In the first case, there is an empty node at a distance of O(i). Therefore, ri
settles at the empty node after O(i) rounds. If such kind of situation arises repeatedly,
then the algorithm takes O(1) + O(2) + · · · + O(k) = O(k2) rounds. In the second
case, there might be a situation such that ri traverses O(i2) edges to find the empty
node and only encounters previously settled nodes (at most i(i − 1)/2 edges). More
preciously, i/2 new edges are traversed in 3i rounds. Notice that a robot will traverse
only earlier traversed nodes at the distance (i + 1), if not, then there will be an empty
edge at a distance (distance from the root) of (i + 1) and the robot will settle down
there. Therefore, ri covers O(i2) edges in O(i2) rounds and future robots (i.e., robots
having ID rj ; ∀ j > i) will not traverse these edges again. Hence, we can conclude that
the non-faulty setup takes O(k2) rounds in the given model. ��
Lemma 2. In the faulty setting, a crashed robot may bring about an extra cost of O(k)
rounds in comparison to the non-faulty setting.

Proof. In the faulty setup, a robot might crash at any time and the respective node
becomes empty, say node vi. As a consequence, the information held by that robot (at
the node vi) is also lost. Accordingly, the next robot that discovers vi, say ri, settles
down at vi. A robot possesses the information of current direction, parent node and
backtracking status apart from its own ID. For that reason, the current direction pointer
is pointing towards the edge based on its least labelled edge. But there might be the case
(in the worst case) that the last crashed node has traversed up to (i − 2) edges which
should be traversed again by the ri+1. This takes extra O(i) rounds. Also, in the worst
case, this value can be O(k) since the number of robots is k. Hence, the lemma. ��
Lemma 3. There is (at most) one robot moving (neither settled at its respective node,
nor at rooted configuration Rc) at any instance.

Proof. Proof by contradiction, let us suppose there exist two robots in moving condi-
tion, say ri and ri+1. Also, assume ri started before, ri+1. Now, as ri has not settled, ri
reports to Rc every 3i rounds. But if ri reports every 3i rounds then Rc does not release
the next robot which is contradictory to our assumption. ��
Lemma 4. A loop or cycle may be formed by the current direction pointer (cdr
pointer). The algorithm ROOTED-CRASH-FAULT-DISPERSION successfully avoids
any loop during dispersion.

Proof. During the execution of the algorithm, a loop or cycle may be formed if a robot
ri crashes at a node ni then the current direction pointer (cdr pointer) is set by the
upcoming robot ri+1 with the lowest port. That lowest port might have been traversed
earlier. Therefore, a loop is formed. From Lemma 3, we know that only one robot
is moving at any instance, say ri+1. Therefore, ri+2 (the next robot) starts after ri+1

settles. If ri+2 encounters any robot with an unexpected cdr pointer then ri+1 changes
the cdr pointer appropriately. Thus, loops are avoided in the network. ��
Lemma 5. The algorithm ROOTED-CRASH-FAULT-DISPERSION takes at most 7k2

rounds and O(log(k + Δ)) bits memory.
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Proof. In case of round complexity, a non-faulty set-up from Lemma 1, the total number
of rounds are 3(1 + 2+ · · ·+ k) < 3k2 (in the best case where ri finds the empty node
within 3i rounds). Additionally, a robot can traverse at most i/2 new edges in 3i rounds
(in a particular phase) without settling down on an empty node (in the worst case).
Therefore, round complexity for k(k − 1)/2 edges in the non-faulty setup is < 3k2.
Moreover, from Lemma 2, we know that the extra cost incurred for f robot’s crashing
is at most fk. Hence, overall round complexity is at most 3k2 + 3k2 + k2 = 7k2.

In case of memory complexity, each robot stores its ID which takes O(log k) bit
space. Along with that parent pointer and current direction pointer takes O(logΔ) bit
memory each. While the backward pointer takes a single bit. Therefore, the memory
complexity is O(log(k + Δ)). ��

From the above discussion, we conclude the following result.

Theorem 1. Consider any rooted initial configuration of k ≤ n mobile robots, out
of which f ≤ k may crash, positioned on a single node of an arbitrary, anonymous
n-node graph G having m edges, in synchronous setting DISPERSION can be solved
deterministically in O(k2) time with O(log(k + Δ)) bits memory at each robot, where
Δ is the highest degree of the graph.

5 Crash-Fault Dispersion for Arbitrary Configurations

In this configuration setting, the robots are distributed across the graph in clusters such
that there are C = {C1, . . . , Cl} groups of robots at l different nodes at the start such
that

∑
i Ci = k. The goal of the dispersion is to ensure that the robots are dispersed

among the graph vertices such that each node has at most one robot. In this setting, we
assume that the robots are aware of k, f,Δ, l and m.

Procedure: Our protocol runs in phases, in which each phase consists of
min(m, kΔ, k2) rounds. At the start of each phase, each cluster begins a counter that
counts down from min(m, kΔ, k2). Each cluster Ci then begins exploring the network
simultaneously via the traditional DFS algorithm (in the trivial case of a singleton clus-
ter consisting of only one robot, it considers itself dispersed). Unlike the rooted config-
uration, individual robots do not explore and return, the entire cluster moves together.
Whenever a cluster encounters a new (empty) node in the network, the robot with the
current highest ID in the cluster settles, and sets its pointers appropriately. At the end of
each round, the counter is decreased by 1. When the counter becomes zero, it signals the
end of the phase, and all flags are reset. That is all pointers become null, including the
pointers of already settled robots. After that, each cluster starts exploring the network
with its current node as a point of origin. This continues until all robots in the cluster
settle. The pseudocode and a pictorial description of the algorithm can be found in the
full version of the paper [4].

Detailed Procedure. There are two main parts to the protocol, i) exploration, ii)
encounter. Exploration deals with the general procedure involved in exploring the
graph, while encounter deals with the details involved when robots from different clus-
ters meet.
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Let’s begin with all the information stored at a robot. Each robot r in a cluster Ci

consists of the following pointers cid, parent, cdr, priority, and B (backtrack). The
pointer cid denotes the ID of the cluster it belonged to when a robot settles. cid of a
cluster Ci is determined at the start of the phase, and it is the ID of the robot with the
highest ID. When a robot decides to settle at a node, the parent pointer keeps track
of the port through which it entered the node. Similarly, the cdr pointer is used to
keep track of the port through which a cluster leaves the node in which it is settled.
The priority pointer of a settled robot keeps track of its priority in various clusters,
originally this is simply the cid of the cluster it was part of, that is the priority of a
cluster is simply its cid. However, a robot’s priority may change if a higher priority
cluster discovers it and updates its priority pointer. In our work, priority is decided by
the cluster’s ID, that is, between two clusters, the cluster with the higher cid has higher
precedence. And of course, the backtrack pointer B keeps track of the backtrack status
of its DFS. In addition to all of these, each robot also has a field called counter, which
is set to min(m, kΔ, k2) at the beginning of each phase. Note that since all robots set
the counter at the beginning of the phase simultaneously, the counter has the same value
across all robots.

Exploration. As mentioned before, as long as a cluster is non-empty, at the beginning
of each phase, each cluster begins exploring the graph via the traditional DFS until
the cluster is empty or it encounters a robot from a higher priority cluster (more on
this in the encounter section). In each phase, each robot in any cluster Ci sets its cid
and priority to the highest ID in the cluster, and its counter to min(m, kΔ, k2). We
consider the node in which Ci is at the start of the phase, to be its root. Ci then follows
the traditional DFS format for exploration. It leaves the node via the smallest unexplored
port. If the node is empty, the robot with the current minimum ID, say r, sets its parent
and cdr pointers and settles at the node.

The update function for the cdr pointer is exactly the same as the one in the rooted
case, i.e., it follows the traditional DFS procedure, except that all the robots in the
cluster move through the exit port. All robots in Ci decrease their counter by one and
Ci leaves through the port in r.cdr. If a cluster ever finds itself returning to a node
with a robot r from its own cluster and it has exhausted all of the ports in which r has
settled, then it sets r’s backtrack flag. Once a phase has finished, if the cluster is non-
empty it resets all flags and counter and begins DFS once again. During exploration,
if the cluster Ci reaches a node u whose degree is k, then they use BFS to explore the
neighbourhood of u and settle the robots of Ci in at most O(k) rounds. However, here
we have not explored what happens if a robot from a cluster Ci meets a robot from Cj .
That brings us to the next important part of the protocol, the encounters.

Encounter. This section contains the explanation of the encounter part of the protocol.
When a robot (or cluster) meets, that is encounters a robot from a different cluster, the
next step in exploration is decided based on priority. Simply put, the robot with higher
priority always takes precedence as follows. There are two distinct scenarios, i) a cluster
finds an already settled node or ii) multiple clusters meet on the same node. In the first
case, if a cluster with a higher priority (say Ci) finds a robot rp from a lower priority
cluster (say Cj) on a node, it sets rp’s priority to its own priority, resets rp’s parent and
cid to its own, and finally sets rp’s cdr (to the minimum unexplored port the higher
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priority cluster has not explored so far) and continues its DFS. If on the other hand, a
lower priority cluster finds a robot rp with a higher priority, it stops its exploration and
just continues decreasing its counter at every round till the end of the phase, and begins
the exploration in the next phase. Note, if a cluster finds a settled robot whose flags have
been reset (i.e., set to null), then it’s the same scenario as that of finding a robot from
a lower priority cluster. The settled robot takes the priority and ID of the newly arrived
cluster.

In the second scenario, if two (or more) clusters meet, the clusters merge and take
on the priority of the cluster with the highest priority among them. They stop and count-
down and begin exploration as a merged cluster in the next phase.

Note that the number of clusters is non-increasing between two consecutive phases.
At any phase, a cluster may either (i) disperse over the nodes completely, or (ii) survive
to explore in the next phase, or (iii) merge with a higher priority cluster. Thus, the
number of clusters either remains the same or decreases at the end of every phase. Now
we show that after (l + f ) phases, dispersion is achieved.

Lemma 6. The effects of a robot crash, that is time delay caused by the presence of a
crash are limited to the phase it occurs in. After that, it ceases to have effect.

Proof. Since at the end of every phase, all robots reset their flags, including the parent
and cdr pointers, previously explored paths are equivalent to new unexplored paths in
the current phase, as their pointers are set by the currently exploring clusters. Hence,
previous phases do not have any impact on the DFS running in the current phase. ��
Lemma 7. Let Ci be the cluster with the highest priority in Phase j. Ci is guaranteed
dispersion by the end of j if j is fault-free.

Proof. From Lemma 6 we know that crashes in previous rounds do not have an effect on
exploration in the current phase. And, in the absence of faults during the phase itself,
we see that Ci exploration is equivalent to a rooted single cluster exploration of the
network. Thus it is able to complete its dispersion using DFS without any delays or
interference from other clusters, which takes less than O(min(m, kΔ, k2)) rounds to
complete. ��
Lemma 8. Each cluster Ci ∈ C is guaranteed to have at least a single fault-free phase
in which it has the highest priority.

Proof. Quite trivially, since there are (l + f) phases, each cluster is guaranteed at least
one phase in which no faults occur, and in which they are the highest priority. ��
Lemma 9. At the end of (l + f) phases, all clusters are guaranteed to have dispersed.

Proof. This follows directly from Lemmas 7 and 8. Each cluster is guaranteed to have
at least one fault-free phase in which it has the highest priority. From 6 we know, in that
phase, there is guaranteed dispersion. Hence, in (l + f) phases, we are guaranteed to
have complete dispersion of all clusters. ��
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Thus, we have the following theorem.

Theorem 2. In the synchronous setting, the crash-tolerant algorithm for the arbitrary
configuration (algorithm ARBITRARY-CRASH-FAULT-DISPERSION) ensures disper-
sion of mobile robots in an arbitrary graph from an arbitrary initial configuration in
O((f + l) · min(m, kΔ, k2)) rounds with each robot requiring O(log(k + Δ)) bits of
memory.

Remark 1. If only the number of robots (k) is known and all other factors are unknown
to the network then the algorithm for arbitrary configuration takes O(k3) rounds.

6 Conclusion and Future Work

In this paper, we studied Dispersion for distinguishable mobile robots on anonymous
port-labelled arbitrary graphs under crash faults. We presented a deterministic algorithm
that solves robot dispersion in two different settings, i) a rooted configuration of robots
and ii) an arbitrary configuration of robots. We achieved the O(k2) round complexity
in rooted configuration while O((f + l)min(m, kΔ, k2)) round complexity in arbitrary
setting. In both cases, we usedO(log(k+Δ)) bits of memory. Some open questions that
are raised by our work: i) What is the non-trivial lower bound for the round complexity
in both the setting by keeping the memory to O(log(k+Δ)). ii) If it is possible to give a
similar round complexity for the case of arbitrary configuration as we achieved in rooted
configuration. iii) If it is possible to get the same bound in the arbitrary configuration
without the knowledge of f, l,Δ and m. iv) Finally, whether similar bounds hold in the
presence of Byzantine failures.
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