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Abstract. In this paper, we discuss the computational complexities of
determining optimal length refutations of infeasible integer programs
(IPs). We focus on three different types of refutations, namely read-
once refutations, tree-like refutations, and dag-like refutations. For each
refutation type, we are interested in finding the length of the short-
est possible refutation of that type. For our purposes, the length of a
refutation is equal to the number of inferences in that refutation. The
refutations in this paper are also defined by the types of inferences that
can be used to derive new constraints. We are interested in refutations
with two inference rules. The first rule corresponds to the summation
of two constraints and is called the ADD rule. The second rule is the
DIV rule which divides a constraint by a positive integer. For integer
programs, we study the complexity of approximating the length of the
shortest refutation of each type (read-once, tree-like, and dag-like). In
this paper, we show that the problem of finding the shortest read-once
refutation is NPO PB-complete. Additionally, we show that the prob-
lem of finding the shortest tree-like refutation is NPO-hard for IPs. We
also show that the problem of finding the shortest dag-like refutation is
NPO-hard for IPs. Finally, we show that the problems of finding the
shortest tree-like and dag-like refutations are in FPSPACE.

1 Introduction

This paper examines the problems of finding optimal length refutations of infea-
sible integer programs (IPs). We study three different types of refutations, each
of which is characterized by how the reuse of constraints is permitted.

The first type of refutation examined in this paper is read-once refutation. In
a read-once refutation, for the most part, constraints cannot be reused. However,
if a constraint can be rederived without reusing constraints from the original
system, then it can be used as many times as it can be derived.

The second type of refutation examined is tree-like refutation. In a tree-
like refutation, constraints from the original system can be reused, and derived
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constraints cannot. As with read-once refutations, constraints can be rederived.
However, for tree-like refutations, these rederivations can reuse constraints from
the original system.

The third type of refutation examined is dag-like refutation. In a dag-like
refutation, both constraints in the original system and derived constraints can
be reused. This means that constraints do not need to be rederived.

For each refutation type, we are interested in finding the length of the short-
est possible refutation of that type. For our purposes, the length of a refutation
is equal to the number of inferences in that refutation. For both read-once refu-
tations and tree-like refutations, the rederivation of a constraint increases the
length of the refutation. This does not matter in the case of dag-like refutations,
since rederivation is unnecessary. Each refutation system is associated with a
set of inference rules that can be used to produce refutations of a given type of
constraint system. For integer programs, we examine refutations that allow for
two types of inferences.

The first rule corresponds to the summation of two constraints and is called
the ADD rule. The second rule is the DIV rule which divides a constraint by a
positive integer. For IPs, we study the complexity of approximating the length
of the shortest refutation of each type (read-once, tree-like, and dag-like). In this
paper, we show that the problem of finding the shortest read-once refutation is
NPO PB-complete. Additionally, we show that the problem of finding the
shortest tree-like refutation and the problem of finding the shortest dag-like
refutation are both NPO-hard. Finally, we show that the problems of finding
the shortest tree-like and dag-like refutations are in FPSPACE.

2 Statement of Problems

In this section, we introduce the concepts examined in this paper and define the
problems under consideration.

Definition 1. A polyhedral constraint system is a conjunction of con-
straints in which each constraint in C is an inequality of the form aj · x ≤ bj

where aj ∈ Qn and bj ∈ Q.

Note that C can be represented in matrix form as A · x ≤ b. In the constraint
aj · x ≤ bj , bj is referred to as the defining constant.

Definition 2. An integer polyhedral constraint system is a polyhedral con-
straint system in which for each variable xi, the corresponding domain Di = Z.

Such a constraint system is known as an integer program (IP).

Example 1. System (1) is an integer program.

3 · x1 + 5 · x2 − 4 · x3 ≤ −2 − 2 · x2 + 7 · x3 ≤ 4 (1)
x1 ∈ {0, 1} x2 ∈ {−1, 0, 1} x3 ∈ {0, 1, 2}
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Refutations are defined by the inference rules that can be used to deduce a
contradiction. Refutations of integer programs can use two inference rules.

The first rule corresponds to the summation of two constraints and is defined
as follows:

ADD :
∑n

i=1 ai · xi ≤ b1
∑n

i=1 a′
i · xi ≤ b2∑n

i=1(ai + a′
i) · xi ≤ b1 + b2

(2)

We refer to Rule (2) as the ADD rule.

Example 2. Consider the constraints 3 · x1 + 5 · x2 − 4 · x3 ≤ −2 and −2 · x2 +
7 · x3 ≤ 4. Applying the ADD rule to these constraints results in the constraint
3 · x1 + 3 · x2 + 3 · x3 ≤ 2.

It is easy to see that Rule (2) is sound in that any assignment satisfying the
hypotheses must satisfy the consequent.

Refutations of integer programs also use an additional rule. This is referred
to as the DIV rule and is defined as follows:

DIV :
∑n

i=1 ai · xi ≤ b k ∈ Z+ : ai

k ∈ Z
∑n

i=1
ai

k · xi ≤ ⌊
b
k

⌋ (3)

Example 3. Consider the constraint 3 ·x1 +3 ·x2 +3 ·x3 ≤ 2. Applying the DIV
rule to this constraint with k = 3 results in the constraint x1 + x2 + x3 ≤ 0.

Rule (3) corresponds to dividing a constraint by a common divisor of the
left-hand coefficients and then rounding the right-hand side. Since each ai

k is an
integer. This inference preserves integer solutions but does necessarily preserve
linear solutions. A constraint derived using the DIV rule is also known as a
Chvátal-Gomory cut [10].

Definition 3. An integer refutation is a sequence of applications of the ADD
and DIV rules that results in a contradiction of the form 0 ≤ b, b < 0.

In this paper, we study several types of refutations. These are read-once
refutations, tree-like refutations, and dag-like refutations. Our focus is on deter-
mining the optimal number of inferences in a refutation. Note that both the
ADD rule and the DIV rule contribute to the length of the refutation.

Definition 4. A read-once refutation is a refutation in which each constraint
C can be used in only one inference. This applies to constraints present in the
original formula and those derived as a result of previous inferences.

Note that in a read-once refutation, a constraint can be reused if it can be
rederived. However, it must be rederived from a different set of input constraints.

Definition 5. A tree-like refutation is a refutation in which each derived con-
straint can be used at most once.
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Note that in tree-like refutations, the input constraints can be used multiple
times. Thus any derived constraint can be derived multiple times as long as it is
rederived each time it is used. This rederivation can reuse derived constraints.
However, those constraints also need to be rederived. Tree-like refutation is a
complete refutation system [5].

Definition 6. A dag-like refutation is a refutation in which each constraint
can be used multiple times.

It follows that dag-like refutations procedures are complete as well.
We now define the notion of length of a refutation.

Definition 7. The length of a refutation R of a constraint system is the num-
ber of inferences (both ADD and DIV) made in R.

For each type of refutation, there are two associated problems. These are
the decision problem, asking if a system has the desired type of refutation, and
the optimization problem, asking for the length of the shortest refutation of
the desired type. Note that every infeasible constraint system has a tree-like
refutation and a dag-like refutation. Thus, the decision problems for these two
refutation types are trivial. Furthermore, we have shown that the problem of
determining if an IP has a read-once refutation is NP-hard even when the
constraints are UTVPI (Unit Two Variable Per Inequality) constraints [26,27].

In this paper, we examine the following optimization problems:

1. The Integer Programming Optimal Length Read-once Refutation
(IP-OLRR) problem: Given an infeasible IP I, what is the length of the
shortest read-once refutation of I?

2. The Integer Programming Optimal Length Tree-like Refutation (IP-
OLTR) problem: Given an infeasible IP I, what is the length of the shortest
tree-like refutation of I?

3. The Integer Programming Optimal Length Dag-like Refutation (IP-
OLDR) problem: Given an infeasible IP I, what is the length of the shortest
dag-like refutation of I?

Note that the problem of determining if an IP has a refutation is only interest-
ing if the IP is infeasible. Thus, the problems studied in this paper are promise
problems [17]. That is, the problems are only defined on a subset of possible
inputs. Observe that the IP-OLRR, IP-OLTR, and IP-OLDR problems are only
defined on infeasible IPs. Additionally, the problem of determining if an integer
program is infeasible is coNP-complete. The reductions used in this paper are
guaranteed to generate infeasible IPs. Thus, the complexity results we obtain
only apply to the set of infeasible IPs. Note that a feasible IP trivially lacks any
refutation. Since the set of infeasible IPs is a subset of all IPs, our results can
easily be generalized to all IPs. Thus, we can consider the non-promise versions
of each problem.
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3 Motivation and Related Work

In this section, we motivate our work and describe existing work for related
problems.

Constraint systems are heavily used in the field of software verification
[11,12]. Corresponding to a piece of software, a constraint system can be derived
and then combined with constraints corresponding to the negation of the spec-
ifications. If the resultant system of constraints is infeasible, then the software
is consistent with its specifications. Although this approach is intuitive and
straightforward, it may become impractical because of the large number of con-
straints that are generated. A constraint-based approach to program verification
has also been attempted for rule-based programming [6]. Rule-based program-
ming has gained interest in the software industry over the past years, because of
the growing use of Business Rules Management Systems. Hence, a demand for
the verification of rule programs has emerged. Also, in [19] it is shown how the
constraint-based approach can be used to model a wide spectrum of program
analysis using disjunctions and conjunctions of linear inequalities. Linear pro-
grams have also been used as a finer grained abstraction for sequential programs
offering an effective model checking procedure [2].

For integer programs, we are interested in cutting plane based refutations.
Cutting planes are often used to refute integer programs constructed from CNF
formulas [14]. When applied to such systems, cutting plane based refutations can
be exponentially more compact than resolution based refutations [7,15,20,25].
Several restricted versions of cutting planes have been examined [28]. These
restrictions included limiting addition to cases where a variable is canceled,
and replacing the division rule with a saturation rule. It was shown that these
restricted versions of cutting planes can be simulated by resolution when the
coefficients are small [28]. Every infeasible integer program with m constraints
over n variables has a cutting plane refutation of length O(n3·n) that can be
computed using polynomial workspace [13]. Workspace is defined as the amount
of space used to store the intermediate constraints. Once an intermediate con-
straint is no longer necessary, it is removed from the workspace [13]. Recently,
Cheung et al. discussed the verification of integer programming results using
cutting plane refutations, but from an empirical perspective [9]. To the best
of our knowledge, our paper is the first of its kind to focus on approximation
complexity for the problem of determining optimal length refutations.

Closely related to the problem of finding the length of the shortest refutation
of a system S under a proof system P , is the problem of automatizability [1]. A
proof system P is automatizable if there exists a deterministic algorithm that,
when given an infeasible system S, generates a refutation of S in time polynomial
in the length of shortest refutation of S [3]. It was shown that resolution as a
proof system is not automatizable, unless P = NP [4]. In the case of integer
programming, cutting planes are not automatizable, unless P = NP [18]. In
[18] it is also shown that it is NP-hard to approximate the minimum length of
a dag-like cutting plane proof length to within 2nε

. In this paper, we show that
this problem is NPO-hard for a different proof system.
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4 Optimal Length Read-Once Refutations

In this section, we show that the problem of finding the shortest read-once refu-
tation of an IP is NPO PB-complete.

Theorem 1. The IP-OLRR problem is NPO PB-complete.

Proof. A read-once refutation R of an integer program I is polynomially sized
in terms of the size of I. Additionally, the length of a read-once refutation can
be computed in polynomial time. Finally, since each constraint in I is used at
most once, the length of the read-once refutation is linear in terms of the size
of I. Thus, the IP-OLRR problem is in NPO PB. Now we need to show NPO
PB-hardness.

This is accomplished by a reduction from the Minimum 0-1 Programming
problem. This problem is formulated as follows:

Given an integer program A · x ≥ b, x ∈ {0, 1}n, find the minimum value of
c · x for some integer valued vector c ≥ 0.

In the general case, this problem is known to be NPO-complete [24].
However, for this reduction, we are only interested in the case where c = 1.
This specific form of Minimum 0-1 Programming is known to be NPO PB-
complete [22].

Consider the following instance of the Minimum 0-1 programming problem:
min

∑n
i=1 xi A · x = b x ∈ {0, 1}n. Even in this form, the Minimum 0-1

programming problem is NPO PB-complete [22].
Corresponding to this system, we can construct the following linear

program L:
y · A ≤ 0 −y · b ≤ −1.
From L, we can construct the IP I as follows:
1. For each variable yi in L, add the variable yi to I. Additionally, add the

new variable x0 to I. 2. Add all of the constraints in L to I. 3. Let p, be the first
prime larger than maxi=1...n(

∑m
i=1 |aij |) where aij is an element of the matrix

A. 4. Add the term p · x0 to the constraint in I with defining constant −1.
By construction, there is exactly one such constraint. We will refer to this new
constraint as I1. 5. Add the constraint −x0 ≤ 0 to I.

We will now show that I has a read-once integer refutation of length (k + 2)
if and only if L has a read-once linear refutation of length k.

First, assume that L has a read-once linear refutation of length k. By con-
struction, any read-once refutation of L corresponds to a read-once derivation of
the constraint p · x0 ≤ −1. We can then divide this constraint by p and sum the
result with the constraint −x0 ≤ 0 to obtain a contradiction. Since the original
refutation had length k, the new refutation has length (k + 2).

Now assume that I has a read-once integer refutation of length (k + 2). As
mentioned above, we can assume without loss of generality that the constraint
I1 is the only constraint in I with negative defining constant. Thus, it must be
used in any refutation of I.
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The only other constraint in I with the variable x0 is −x0 ≤ 0. Thus, this
constraint must be used to cancel the variable x0. Since the refutation is read-
once, we must first apply the DIV rule to the constraint derived from I1. By
construction, the DIV rule must be applied to this constraint with coefficient
p. However, by construction, p is larger than any coefficient in any constraint
derived from I1. Thus, the DIV rule cannot be applied until all other variables
are eliminated from I1. Thus, we must derive the constraint p · x0 ≤ −1. This
derivation takes k steps and corresponds to a read-once linear refutation of I.
This means that I has a read-once linear refutation of length k. Thus, the IP-
OLRR problem is NPO PB-complete. ��

Since the IP-OLRR problem is NPO PB-complete, there exists an ε > 0
such that the IP-OLRR cannot be approximated to within a factor of O(nε),
unless P = NP [21]. Thus, the IP-OLRR cannot be approximated to within a
polylogarithmic factor, unless P = NP.

5 Optimal Length Tree-Like and Dag-Like Refutations

In this section, we show that the IP-OLTR and IP-OLDR are NPO-hard. Note
that for these problems, we are not guaranteed polynomial length refutations.
Thus we do not have NPO-completeness.

Theorem 2. The IP-OLTR problem is NPO-hard.

Proof. This will be accomplished by a reduction from the Traveling Salesman
Path Problem. This problem is NPO-complete [24].

Let G be a complete undirected graph with n vertices. From G we create an
IP I as follows: 1. For each vertex vi in G, create the variable xi. 2. Create the
constraint x1 + 2 · x2 + 2 · x3 + . . . + 2 · xn−1 + 2 · xn + p · x0 ≤ −1. Where p
is the fist prime such that p > 2 · n · ∑n−1

i=1

∑n
j=i+1 w(ei,j). Additionally, create

the constraint −x0 ≤ 0. 3. For each edge ei,j in G, create the variables yi,j and
zi,j,l for l = 1, . . . , n − 1. Additionally, create the constraint −yi,j ≤ 0. 4. For
each edge ei,j such that i, j ∈ {2, . . . , n}, and each l = 2, . . . , n − 2, create the
constraint −xi −xj +2 ·n ·w(ei,j) ·yi,j +2 ·zi,j,l ≤ 0. 5. For each edge ei,n, create
the constraint −xi −xn +2 ·n ·w(ei,n) · yi,n + zi,n,n−1 ≤ 0. 6. For each edge e1,j ,
create the constraint −x1 − xj + 2 · n · w(e1,j) · y1,j + z1,j,1 ≤ 0. 7. For each pair
of edges ei,j and ej,k that share an endpoint, and each l = 1, . . . , n − 2, create
the constraint −zi,j,l − zj,k,l+1 ≤ 0. This construction forms the function f for
our PTAS reduction.

First, assume that G has a Traveling Salesman Path P of length W from
x1 to xn. Let P traverse the vertices in the order vP (1) through vP (n). We can
construct a tree-like refutation R of length 2 ·n · (W +1) for I as follows: 1. Start
with the constraint x1 + 2 · x2 + 3 · x2 + . . . + 2 · xn−1 + 2 · xn + p · x0 ≤ −1. 2.
Add the constraint −x1 −xP (2) +2 ·n ·w(e1,P (2)) · y1,P (2) + z1,P (2),1 ≤ 0 to R. 3.
For i = 2 . . . n − 2, add the constraint −xP (i) − xP (i+1) + 2 · n · w(eP (i),P (i+1)) ·
yP (i),P (i+1) + 2 · zP (i),P (i+1),i ≤ 0 to R. 4. Add the constraint −xP (n−1) − xn +
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2 · n · w(eP (n−1),n) · yP (n−1),n + zP (n−1),n,n−1 ≤ 0 to R. 5. For i = 2 . . . n − 2,
add 2 · n · w(eP (i),P (i+1)) copies of the constraint −yP (i),P (i+1) ≤ 0 to R. 6.
For i = 1 . . . n − 2, the constraint −zP (i),P (i+1),i − zP (i+1),P (i+2),i+1 ≤ 0 to R.
Observe that summing the constraints in R results in the constraint p ·x0 ≤ −1.
Applying the DIV rule with d = p to this constraint results in the constraint
x0 ≤ −1. Adding the constraint x0 ≤ 0 results in the contradiction 0 ≤ −1.
Note that, R contains a total of 2 · n · (W + 1) inferences. Thus R is a tree-like
refutation of length 2 · n · W for I.

Now assume that I has a tree-like refutation R of length 2 · n · (W + 1). We
can construct a set of edges P as follows: For each edge ei,j if R contains the
constraint −yi,j ≤ 0, add ei,j to P . This forms the function g for our PTAS
reduction. Observe the following:

1. The constraint x1 + 2 · x2 + 3 · x2 + . . . + 2 · xn−1 + 2 · xn + p · x0 ≤ −1, is
the only constraint in the system with a negative defining constant. Thus, it
must be part of R. We will refer to this constraint as C. By construction of
I, p > 2 · n · (W + 1). Thus, if the DIV rule is not applied to C, then the
constraint x0 ≤ 0 will need to be used at least p > 2 · n · (W + 1) times. In
this case, the length of R is more than 2 · n · (W + 1). Thus, the DIV rule
must be applied to C. Due to the value chosen for p, this can only happen
after everything else is canceled from C.

2. To cancel x1 from C, R must include a constraint of the form −x1 − xj +
2 · n · w(e1,j) · y1,j + z1,j,1 ≤ 0. Let P (2) = j. Note that this constraint also
cancels a copy of xP (2) from C.

3. To cancel the other copy of xP (2) from C, R must include a constraint of the
form −xP (2) − xj + 2 · n · w(eP (2),j) · yP (2),j + 2 · zP (2),j,1 ≤ 0. Let P (3) = j.
Note that this constraint also cancels a copy of xP (3) from C.

4. We can continue this process until P (h) = n for some h ≤ n. Due to the
structure of C, the vertices v1, vP (2), vP (3), . . ., vP (h) are all distinct.

5. Consider the constraint −xP (h−1)−xP (h)+2·n·w(eP (h−1),P (h))·yP (h−1),P (h)+
zP (h−1),P (h),1 ≤ 0 in R. Since P (h) = n, by construction of I, this con-
straint must be −xP (h−1) − xP (h) + 2 · n · w(eP (h−1),P (h)) · yP (h−1),P (h) +
zP (h−1),P (h),n−1 ≤ 0. Note that this constraint introduces the variable
zP (h−1),P (h),n−1 to R

6. Consider the constraint −xP (h−2) − xP (h−1) + 2 · n · w(eP (h−2),P (h−1)) ·
yP (h−2),P (h−1) + 2 · zP (h−2),P (h−1),1 ≤ 0 in R. Recall that R contains the
variable zP (h−1),P (h),n−1. To cancel this variable, R must contain a con-
straint of the form −zj,P (h−1),n−2 − zP (h−1),P (h),n−1 ≤ 0. By construction,
zP (h−2),P (h−1),1 = zj,P (h−1),n−2. Thus, l = n − 2.

7. Continuing this process, we see that 1 = n − (h − 1). Thus, h = n. As
shown previously, the vertices v1, vP (2), vP (3), . . ., vP (n) are all distinct. Thus
P is a Traveling Salesman Path in G. For each edge eP (i),P (i+1) in P , R
contains 2 · nw(eP (i),P (i+1)) copies of the constraint −yP (i),P (i+1) ≤ 0. From
the observations above, R contains an additional 2 · n constraints. Thus, R
contains a total of 2 · n · (W ′ + 1) constraints where W ′ is the total length of
P . Since R has length 2 · n · (W + 1), P has length W .
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All that remains is to establish that a PTAS reduction exists from the Min-
imum 0-1 Programming problem to the IP-OLTR problem. This will be done by
establishing the existence of the functions f , g, and α.

1. The function f : We provided a method for constructing an integer program I
from a graph G. This forms the function f required for the PTAS reduction.

2. The function g: We provided a method to take a tree-like refutation of I and
construct a Traveling Salesman Path in G. This forms the function g required
for the PTAS reduction.

3. The function α: Let W ∗ be the shortest Traveling Salesman Path in G. I has
a tree-like refutation of length 2 ·n · (W ∗ +1). Additionally, if I had a shorter
tree-like refutation, then G would have a shorter path. Thus, the IP-OLTR
of I has length 2 · n · (W ∗ + 1). Let α(ε) = ε−1

2 .
Let R be a tree-like refutation of I of length 2 · n · (W + 1). The function g

produces a Traveling Salesman Path of length W . If 2·n·(W+1)
2·n·(W ∗+1) ≤ 1 + α(ε) =

ε+1
2 , then

W

W ∗ ≤ 2 · W

2 · W ∗ ≤ 2 · (W + 1)
W ∗ + 1

≤ 2 · (ε + 1)
2

= 1 + ε.

Thus, the IP-OLTR problem for linear programs is NPO-hard. ��
Since the IP-OLTR problem is NPO-hard, there exists an ε > 0 such that

the IP-OLTR cannot be approximated to within a factor of O(2nε

), unless P =
NP [21]. Thus, the IP-OLTR cannot be approximated to within a polynomial
factor, unless P = NP.

Theorem 3. The IP-OLDR problem is NPO-hard.

Proof. This will be accomplished by a reduction from the Minimum Integer
Programming problem.

Consider the following instance of the Minimum 0-1 programming problem:

min
n∑

i=1

(2 · log ci + 1) · xi A · x = b x ∈ {0, 1}n.

Assume without loss of generality that c ≥ 1.
While in general Minimum 0-1 programming is NPO-complete, the values

of the coefficients in the optimization function are polynomial in the size of the
input. Thus, the final value of the objective function is polynomial in the size of
the input. Consequently, this problem is NPO PB-complete [22,24].

Let D be the n × n matrix such that di,i = ci − 1 and di,j = 0 for i �= j.
Corresponding to the Minimum 0-1 programming instance, we can construct the
following linear program L:

y · A + z · D ≤ 0 − z ≤ 0 −y · b ≤ −1

From L, we can construct the IP I as follows:
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1. For each variable yi in L, add the variable yi to I. Additionally, add the
variable x0 to I. 2. Add all of the constraints in L to I. 3. Let p, be the first
prime larger than maxi=1...n(

∑m
i=1 |aij |). 4. Add the term p ·x0 to the constraint

L1 in L with defining constant −1. By construction, there is exactly one such
constraint. We will refer to this new constraint as I1. 5. Add the constraint
−x0 ≤ 0 to I.

We will now show that I has a dag-like integer refutation of length (k + 2) if
and only if L has a dag-like linear refutation of length k.

First, assume that L has a dag-like linear refutation of length k. By con-
struction, any dag-like refutation of L corresponds to a dag-like derivation of
the constraint cL · p · x0 ≤ −cL where cL is the number of times constraint L1

was used in the dag-like refutation. We can then divide this constraint by cL · p
and sum the result with the constraint −x0 ≤ 0 to obtain a contradiction. Since
the original refutation had length k, the new refutation has length (k + 2).

Now assume that I has a dag-like integer refutation of length (k+2). As men-
tioned previously, we can assume without loss of generality that the constraint
I1 is the only constraint in I with negative defining constant. Thus, it must be
used in any refutation of I.

The only other constraint in I with the variable x0 is −x0 ≤ 0. Thus, this
constraint must be used to cancel the variable x0. We want to avoid using the
constraint −x0 ≤ 0 p times. Thus, we must first apply the DIV rule to the
constraint derived from I1. By construction, the DIV rule must be applied to this
constraint with a coefficient divisible by p. However, by construction, p is larger
than any coefficient in any constraint derived from I1 by a dag-like derivation
of length k. Thus, the DIV rule cannot be applied until all other variables are
eliminated from I1. Thus, we must derive the constraint cL · p · x0 ≤ −cL. This
derivation takes k steps and corresponds to a dag-like linear refutation of I. This
means that I has a dag-like linear refutation of length k. Thus, the IP-OLDR
problem is NPO-hard. ��

Since the IP-OLDR problem is NPO-hard, there exists an ε > 0 such that
the IP-OLDR cannot be approximated to within a factor of O(2nε

), unless P =
NP [21]. Thus, the IP-OLDR cannot be approximated to within a polynomial
factor, unless P = NP.

Note that in general, tree-like and dag-like cutting plane based refutations
can be exponentially long [7]. Thus, these problems do not belong to the class
NPO. However, we can show that both the IP-OLDR problem and the IP-OLTR
problem belong to the class FPSPACE.

Theorem 4. The IP-OLTR problem is in FPSPACE.

Proof. Let I be an infeasible integer program with m constraints over n variables.
We will show that a tree-like integer refutation of I can be constructed by a non-
deterministic Turing Machine using working space polynomial in the size of I.
We know that any integer program has a tree-like integer refutation of length at
most O(n3·n) [13]. Additionally, this refutation only needs to store polynomially
many constraints at a time. Thus, each inference in a tree-like integer refutation
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can be identified using a number of bits polynomial in the size of the input
integer program.

For each inference in a possible refutation R, we can non-deterministically
guess the following:

1. The constraints used by the inference – Note that we can assume without loss
of generality that the coefficients in these constraints have an absolute value
of at most (n · C1 + C2) where C1 is the largest coefficient of any constraint
in I and C2 is the largest defining constant [16]. Thus, each constraint can be
represented using space polynomial in the size of I.

2. The constraint produced by the inference.
3. The source of each constraint used by the inference – This is either the infer-

ence used to derive the constraint or the original integer program I.
4. The inference that will use the derived constraint – Note that since the refu-

tation is tree-like, there is at most one such inference.

Thus, each inference can be generated in polynomial space. Once each infer-
ence is generated, the space can then be reused to generate the next inference.
Thus, the entire refutation can be generated using at most polynomial space.

The correctness of R can similarly be verified in polynomial space as follows:

1. Non-deterministically guess an inference in the refutation.
2. Verify that the derived constraint is correct for the given input constraints.
3. Verify that the input constraints come from the specified sources.
4. Verify that each source is either I or a previous inference.
5. For each constraint derived by a previous inference, verify that inference lists

the current inference as using its derived constraint. Note that this ensures
that derived constraints are not repeated.

This can be easily done in space polynomial in the size of I. Once every
inference in the refutation is verified, we know that the constraint derived by
the last inference is derivable from the constraints in I. If the last inference
of R derives a contradiction, then R is a tree-like integer refutation of I. By
performing both the construction and verification procedures for each possible
refutation length, the first tree-like integer refutation generated in this way is
IP-OLTR of I. ��

Note that the refutations generated in the proof of Theorem 4 are tree-like
because we ensure that each derived constraint is used by at most one future
inference. If we remove this restriction, then the procedure instead generates
dag-like integer refutations. This gives us the following corollary.

Corollary 1. The IP-OLDR problem is in FPSPACE.
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6 Conclusion

In this paper, we studied the problems of finding optimal length refutations of
infeasible integer programs (IPs). We looked at three different types of refuta-
tions, namely read-once refutations, tree-like refutations, and dag-like refuta-
tions.

Constraint systems are heavily used in the field of software verification [8,
12]. Refutations of these constraint systems provide evidence that the system is
infeasible. Thus, refutations, especially short refutations, are also very useful in
this field. As a result, the contributions in this paper will provide insights useful
in software verification.

Specifically, we showed that the IP-OLRR problem is NPO PB-complete
while the IP-OLTR and IP-OLDR problems are NPO-hard and in FPSPACE.

This paper only examined general forms of integer programs. However,
restricting the form of the program can change the complexity of the prob-
lems examined. For example, in systems of difference constraints, the OLRR,
OLTR, and OLDR problems for integer feasibility can be solved in polynomial
time. Thus, future work can examine the complexity of these problems for other
restricted IPs.
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