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Abstract. The Weak (2, 2)-Conjecture is a graph labelling problem ask-
ing whether all connected graphs of at least three vertices can have their
edges assigned red labels 1 and 2 and blue labels 1 and 2 so that any two
adjacent vertices are distinguished either by their sums of incident red
labels, or by their sums of incident blue labels. This problem emerged
in a recent work aiming at proposing a general framework encapsulating
several distinguishing labelling problems and notions, such as the well-
known 1-2-3 Conjecture and so-called locally irregular decompositions.

In this work, we prove that the Weak (2, 2)-Conjecture holds for two
classes of graphs defined in terms of forbidden induced structures, namely
claw-free graphs and graphs with no pair of independent edges. One main
point of interest for focusing on such classes of graphs is that the 1-2-
3 Conjecture is not known to hold for them. Also, these two classes of
graphs have unbounded chromatic number, while the 1-2-3 Conjecture is
mostly understood for classes with bounded and low chromatic number.

Keywords: Distinguishing labelling · 1-2-3 Conjecture · Sum
distinction

1 Introduction

This work deals with several distinguishing labelling problems, taking part
to a wide and vast area of research, as reported in several dedicated surveys on
the topic, such as e.g. [7,10]. More particularly, we focus on a subset of these
problems revolving around the so-called 1-2-3 Conjecture, which can all be
defined through the following unified terminology, introduced recently in [3].

Let G be a graph, and α, β ≥ 1 be two positive integers. An (α, β)-labelling
of G is an assignment � of labels from {1, . . . , α} × {1, . . . , β} to the edges of G,
where each edge e gets assigned a label �(e) = (x, y) with colour x ∈ {1, . . . , α}
and value y ∈ {1, . . . , β}. Now, for every vertex v of G and any i ∈ {1, . . . , α}, we
denote by σi(v) the sum of the values of the labels with colour i assigned to the
edges incident to v, which we call the i-sum of v. We say that � is distinguishing
if for every two adjacent vertices u and v of G, there is an i ∈ {1, . . . , α} such
that the i-sums of u and v differ, that is, if σi(u) ≠ σi(v).
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Fig. 1. The current knowledge we have on whether all graphs admit distinguishing
(α, β)-labellings, for fixed α, β ≥ 1. For a pair (α, β), the associated box is green if all
graphs were proved to admit the corresponding labellings, the box is red if it is known
that not all graphs admit the corresponding labellings, while the box is blue if the
status is unknown. Arrows indicate existential implications. (Color figure online)

Regarding these notions, it can be noted that if G is K2, the complete graph
of order 2, then there are no α, β ≥ 1 such that G admits distinguishing (α, β)-
labellings. Apart from this peculiar case, it is not too complicated to prove that,
for any fixed α ≥ 1, there is a β ≥ 1 such that distinguishing (α, β)-labellings of
any graph G exist. For these reasons, in the context of distinguishing labellings,
we generally focus on nice graphs, which are those graphs with no (connected)
component isomorphic to K2. Therefore, throughout this work, every graph we
consider is thus implicitly assumed nice.

A natural question, now, is whether, for some fixed α, β ≥ 1, every graph
admits distinguishing (α, β)-labellings. It turns out, as mentioned earlier, that
the literature actually provides answers for several values of α and β (see Fig. 1).

– Note that if α, β and α′, β′ are such that α′
≥ α, β′

≥ β, and (α, β) ≠ (α′, β′),
then any distinguishing (α, β)-labelling is a distinguishing (α′, β′)-labelling.

– Distinguishing (1, β)-labellings are labellings where all labels are of the same
colour, and all adjacent vertices should be distinguished according to their
sums of incident labels. Such labellings are exactly those behind the so-
called 1-2-3 Conjecture [9] of Karoński, �Luczak, and Thomason, which asks
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whether all graphs admit distinguishing (1, 3)-labellings. To date, the best
result towards this is that they all admit distinguishing (1, 5)-labellings [8].

– Distinguishing (α, 1)-labellings can be seen as edge-colourings where, for every
two adjacent vertices, there must be a colour that is not assigned the same
number of times to their incident edges. These labellings are those of the
multiset version of the 1-2-3 Conjecture [1], which asks whether graphs admit
distinguishing (3, 1)-labellings. This conjecture was proved in [11].

– In [3], the authors noticed that, given a distinguishing (1, 5)-labelling of some
graph, by modifying the label colours and values in a particular way, we can
derive a distinguishing (2, 3)-labelling of the same graph. Similarly, we can
derive a distinguishing (3, 2)-labelling from a distinguishing (1, 5)-labelling.

– It is not too complicated to see that, in regular graphs, distinguishing (1, 2)-
labellings and distinguishing (2, 1)-labellings are equivalent notions. In [2], it
was proved that determining whether a cubic graph admits a distinguishing
(1, 2)-labelling is NP-hard. Thus, there are infinitely many graphs that admit
neither distinguishing (1, 2)-labellings nor distinguishing (2, 1)-labellings.

– Graphs admitting distinguishing (1, 1)-labellings are precisely the so-called
locally irregular graphs, which are those graphs with no two adjacent vertices
having the same degree. These graphs have been appearing frequently in the
field, and have even been receiving dedicated attention, see e.g. [4].

From this all, there are thus only three pairs (α, β) for which we are still
not sure whether all graphs admit distinguishing (α, β)-labellings: (1, 3), which
corresponds to the original 1-2-3 Conjecture; (1, 4), which is weaker than the
1-2-3 Conjecture since more label values are available (while, similarly, all labels
are of the same colour); and (2, 2), which is the only pair for which we have two
label colours to deal with. The latter pair leads to the following conjecture [3].

Weak (2, 2)-Conjecture. Every graph admits a distinguishing (2, 2)-labelling.

At first glance, the 1-2-3 Conjecture and the Weak (2, 2)-Conjecture might
seem a bit distant. It is worth emphasising, however, that the former conjecture,
if true, would imply the latter [5]. For this reason, the Weak (2, 2)-Conjecture can
be perceived as a weaker version of the 1-2-3 Conjecture. Also, to get progress
towards these conjectures, one can thus investigate the Weak (2, 2)-Conjecture
for classes of graphs for which the 1-2-3 Conjecture is not known to hold. To
date, the 1-2-3 Conjecture was mainly proved for 3-colourable graphs [10]. The
weaker conjecture was mainly proved for 4-colourable graphs [5].

Theorem 1 ([5]). The Weak (2, 2)-Conjecture holds for 4-colourable graphs.

Both conjectures were also proved for other classes of graphs, but not as
significant. One reason why the chromatic number parameter appears naturally
in this context is that having a proper vertex-colouring φ in hand can be helpful
to design a distinguishing labelling, since φ informs on sets of vertices that are not
required to be distinguished. One downside, however, is that making a labelling
match φ somehow, might require lots of labels if φ itself contains lots of parts.
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Here, we prove the Weak (2, 2)-Conjecture for two classes of graphs for which
the 1-2-3 Conjecture (and thus the Weak (2, 2)-Conjecture, recall [5]) has not
been proved. Besides, these classes have unbounded chromatic number, which,
recall, is significant. Precisely, we prove the Weak (2, 2)-Conjecture for K1,3-free
graphs (with no induced claw) and 2K2-free graphs (with no pair of independent
edges). Each result is proved by first dealing with the 5-colourable graphs of the
class, before focusing on those with chromatic number at least 6.

Due to space limitation, in what follows we only present our result for 2K2-
free graphs, its proof being a lighter, less technical version of that for K1,3-free
graphs, which require more involved arguments. We start in Sect. 2 with some
preliminaries, before proving the Weak (2, 2)-Conjecture for 2K2-free graphs in
Sect. 3. In concluding Sect. 4, we explain how to go from 2K2-free graphs to
K1,3-free graphs, summarising the arguments from our full-length paper [6].

2 Preliminaries

Let G be a graph, and � be an (α, β)-labelling of G. If α=1, then we will sometimes
call � a β-labelling for simplicity. Also, in such cases, instead of denoting the 1-
sum of a vertex v by σ1(v), we will simply denote it as σ(v), or as σ�(v) in
case we want to emphasise that we refer to the labels assigned by �. Now, when
considering the Weak (2, 2)-Conjecture and, thus, (α, β) = (2, 2), it will be more
convenient to see the labels with colour 1 as red labels, and similarly those with
colour 2 as blue labels. We will thus refer, for any vertex v, to the red sum σr(v)
of v (being σ1(v)), and to the blue sum σb(v) of v (being σ2(v)).

We now point out a situation where, assuming a partial labelling of a graph
is given, we can extend it to some edges so that some properties are preserved.

Lemma 1. Let G be a graph, H be a connected bipartite subgraph of G, and �
be a partial 2-labelling of G such that only the edges of H are not labelled. For
any vertex w of H, there is a 2-labelling �′ of H such that, for every two adjacent
vertices u and v of H with w ∉ {u, v}, we have

σ�(u) + σ�′(u) ≠ σ�(v) + σ�′(v).

Proof. Let (U, V ) denote the bipartition of H. We produce a 2-labelling �′ such
that, for every vertex u ≠w of H, we have σ�(u) + σ�′(u) ≡ 0 mod 2 if u ∈ U , and
σ�(u) + σ�′(u) ≡ 1 mod 2 otherwise. This implies what we want to prove.

Start from all edges of H being assigned label 2 by �′. Now, consider any
vertex u of H for which σ�(u) + σ�′(u) does not satisfy the required condition
above. Since H is connected, there is a path P from u to w that uses edges of H
only. Now turn all 1’s assigned by �′ to the edges of P into 2’s, and conversely
turn all 2’s into 1’s. As a result, note that σ�(v) + σ�′(v) is not altered for every
vertex v of H with v ∉ {u,w}, while both σ�(u) + σ�′(u) and σ�(w) + σ�′(w) had
their parity altered. So σ�(u) + σ�′(u) now verifies the desired condition.

Repeating those arguments until all vertices u ≠ w of H have σ�(u) + σ�′(u)
verifying the desired condition, we end up with �′ being as desired. ��
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Fig. 2. Terminology used in the proof of Theorem 3, and the red sums and blue sums
we aim at getting for the vertices by the designed (2, 2)-labelling. In the depicted
situation, it is assumed that an upward edge of R is assigned red label 1

We also recall a nice tool that proved to be very useful towards proving the
multiset version of the 1-2-3 Conjecture from [1]. Let G be a graph. A balanced
tripartition of G is a partition V0, V1, V2 of V (G) fulfilling, for every vertex v ∈Vi

with i∈{0, 1, 2}, that dVi+1(v)≥max{1, dVi
(v)} (all operations over the subscripts

are modulo 3). That is, v has at least one neighbour in the next part Vi+1, and
it actually has more neighbours in Vi+1 than in Vi. It turns out that graphs with
large chromatic number admit such balanced tripartitions.

Theorem 2 ([1]). Every graph G with χ(G) > 3 admits a balanced tripartition.

3 Graphs with No Induced Pair of Independent Edges

As mentioned earlier, we prove the Weak (2, 2)-Conjecture for 2K2-free graphs by
treating the 5-chromatic ones first, and then those with large chromatic number.

Theorem 3. Every 2K2-free graph with chromatic number 5 admits a distin-
guishing (2, 2)-labelling.

Proof. Let G be a 2K2-free graph with chromatic number 5. We construct a
distinguishing (2, 2)-labelling of G assigning red labels 1 and 2 and blue labels 1
and 2. We can assume G is connected, since its 5-chromatic components can be
handled through what follows, while Theorem 1 applies for its 4-colourable ones.

Let D be a maximal independent set of G, and set R=G−D. Note that every
vertex v in R is incident to at least one upward edge vu, i.e., going to D (so,
u ∈D). We say that a component of R is empty if it contains no edges, while it is
non-empty otherwise. Since G is 2K2-free, note that R contains at most one non-
empty component. Actually, R must contain exactly one non-empty component



The Weak (2; 2)-Labelling Problem for Graphs with Forbidden Structures 209

R as otherwise G would be bipartite, contradicting that its chromatic number
is 5. Let now I denote the vertices from the empty components of R, and let H
be the subgraph of G induced by the edges incident to the vertices of I. Then
H is bipartite, and because G is 2K2-free, H consists of only one component.

Since G is 5-chromatic, note that R is 4-chromatic; let thus V0,0, V0,1, V1,0, V1,1

be parts forming a proper 4-vertex-colouring φ of R. We modify φ, if needed, so
that if v is a vertex of R with dR(v)=1, then v belongs to V0,0 or V0,1 (note that
this is clearly possible, since v has exactly one neighbour in R). Now order the
vertices v1, . . . , vn in any way satisfying that, for every i∈{1, . . . , n−1}, vertex vi

is incident to at least one forward edge vivj (i.e., with j > i, which is a backward
edge from vj ’s point of view). Such an ordering can be obtained e.g. by reversing
the ordering in which vertices are encountered while performing a breadth-first
search algorithm from any vertex (standing as the last vertex vn).

We are now ready to start labelling the edges of G. We begin with all edges
incident to the vertices of R. We consider the vi’s one by one, following the
ordering above, and for every vertex vi considered in that course, we assign a
label to all upward edges (assigning them blue labels, except in one peculiar
case) and forward edges (assigning them red labels only) incident to vi so that
some desired red sum and blue sum are realised at vi. When proceeding that
way, note that, whenever considering a new vertex as vi, only its backward edges
can be assumed to be labelled, with red labels. The procedure goes as follows:

– If i ≠ n, then vi is incident to forward edges. We start by assigning blue
label 2 to all upward edges incident to vi, and red label 2 to all forward
edges incident to vi. Assume vi ∈ Vα,β . If σb(vi) ≢ β mod 2, then we change
to blue label 1 the label assigned to any one upward edge incident to vi.
Likewise, if σr(vi)≢α mod 2, then we change to red label 1 the label assigned
to any one forward edge incident to vi. This way, we get σr(vi)≡α mod 2 and
σb(vi) ≡ β mod 2. In particular, by how we modified φ earlier, note that we
must have σr(vi) ≥ 2 (either dR(vi) ≥ 2 in which case this condition clearly
holds; or dR(vi) = 1, in which case α = 0 and thus the only inner edge incident
to vi is assigned red label 2, implying the condition).

– If i = n, then the only edges incident to vn that remain to be labelled are
upward edges. Recall, in particular, that all backward edges incident to vn

are assigned red labels. We consider two cases, assuming vn ∈ Vα,β :
• If σr(vn)≡α mod 2, then we assign blue labels to all upward edges incident

to vn, their values being chosen so that σb(vn) ≡ β mod 2. In that case,
we thus have σr(vn) ≡ α mod 2 and σb(vn) ≡ β mod 2. Again, by how φ
was modified earlier, we must have σr(vn) ≥ 2.

• If σr(vn) ≢ α mod 2, then we assign red label 1 to any one upward edge
incident to vn, while we assign blue labels to the other upward edges
(if any) so that σb(vn) ≡ β mod 2. Here, either σb(vn) ≠ 0 in which case
σr(vn) ≡ α mod 2 and σb(vn) ≡ β mod 2; or σb(vn) = 0 in which case all
edges incident to vn are assigned red labels (implying that σr(vn) ≥ 2).

Note that, in all cases above, for all vertices vi ∈Vα,β , we guarantee 2≤σr(vi)≡
α mod 2. Also, except maybe for vn, we also guarantee 0 < σb(vi) ≡ β mod 2.
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Regarding vn, either σb(vn) = 0, in which case vn is distinguished from all its
neighbours in R through its blue sum, or 0 < σb(vn) ≡ β mod 2, in which case
vn is distinguished from its neighbours in R through its red sum and/or blue
sum. Regarding the vertices of D, only one of them can be incident to an edge
being assigned a red label, 1. So, for every u ∈ D, we have σr(u) ≤ 1, while
σr(v) ≥ 2 for every v ∈ R. Thus, currently, vertices of R are distinguished from
their neighbours in D. If H has no edges, then all edges of G are labelled, and
we have a distinguishing (2, 2)-labelling. So, below, we can assume H has edges.

We are now left with labelling the edges of H, which, recall, consists of exactly
one component. We consider two main cases:

– Assume there is some vertex w ∈H with σr(w) = 1 (Fig. 2). Recall that there
can be only one such vertex, which belongs to D and must be a neighbour of
vn. Recall also that the vertices of D ∩ V (H) can be incident to edges being
currently assigned blue labels (being upward edges incident to vertices of R).
Taking these labels into account, by Lemma 1 we can assign blue labels 1
and 2 to the edges of H so that any two of its adjacent vertices u and v with
w ∉ {u, v} are distinguished by their blue sums.
Since we did not modify labels assigned to edges incident to the vertices in
R, and the edges of H are assigned blue labels only, the vertices of R remain
distinguished from their neighbours due to arguments above. Regarding adja-
cent vertices of H, they are either distinguished by their blue sums (if w is
not involved), or because one of them has red sum 1 (if w is involved). So,
here as well, we do not have conflicts.

– Assume no vertex of H currently has red sum at least 1. In this case, let w be
any vertex of I. By Lemma 1, we can assign blue labels 1 and 2 to the edges
of H so that, taking into account the other edges of G that are currently
already assigned blue labels, and omitting w, any two adjacent vertices of H
are distinguished by their blue sums. In case w has d≥2 neighbours x1, . . . , xd

(which lie in D), then we further modify the labelling by changing to red
label 1 the label assigned to wx1, . . . , wxd.
Again, we did not modify the red sums and blue sums of the vertices in
R. Also, the only vertex of D ∪ I that might have red sum at least 2 is w
(note that the xi’s, if they exist, have red sum 1), which lies in I, the set of
isolated vertices of R and thus cannot be adjacent to the vertices of R. Since
the vertices of R have red sum at least 2, they thus cannot be involved in
conflicts. Now, if dG(w) = 1, then, because G is not just an edge, the unique
neighbour of w must have degree at least 2, meaning that w is necessarily
distinguished from its unique neighbour. Otherwise, i.e., w has d≥2 neighbours
x1, . . . , xd ∈D, then σr(w) = d ≥ 2 while the xi’s have red sum 1, and thus w
cannot be involved in conflicts. Regarding the xi’s, they have red sum 1, so
they cannot be in conflict with their neighbours of H different from w, since
they have red sum 0. Finally, for every vertex of H not in {w, x1, . . . , xd},
note that we did not modify its blue sum when introducing red labels. So we
still have that any two such adjacent vertices are distinguished by their blue
sums, by how we applied Lemma 1. So, no conflicts exist in G.
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Fig. 3. Terminology used in the proof of Theorem 4, and the red sums and blue sums
we aim at getting for the vertices by the designed (2, 2)-labelling.

The resulting (2, 2)-labelling of G is thus distinguishing, as desired. ��

Theorem 4. Every 2K2-free graph with chromatic number at least 6 admits a
distinguishing (2, 2)-labelling.

Proof. Let G be a 2K2-free graph with chromatic number at least 6. We construct
a distinguishing labelling of G assigning red labels 1 and 2 and blue labels 1 and 2.
Again, we may assume that G is connected.

Let D1 be a maximal independent set of G. Note that every vertex of G−D1

has at least one neighbour in D1. Now let D2 be a maximal independent set of
G−D1. Similarly, every vertex of G−D1 −D2 has at least one neighbour in D2.
Since χ(G) ≥ 6, note that χ(G −D1 −D2) ≥ 4. According to Theorem 2, there is
thus a balanced tripartition V0, V1, V2 of G−D1 −D2 (see Fig. 3). Note that D1,
D2, V0, V1, and V2 form a partition of V (G). An upward edge of G is an edge
with one end in V0 ∪ V1 ∪ V2 and the other in D1 ∪ V2. An inner edge of G is an
edge with both ends in some Vi. If u ∈Vi and u′

∈Vi+1 (where the operations over
the subscripts of the Vi’s are modulo 3) are adjacent for some i ∈ {0, 1, 2}, then
uu′ is a forward edge from u’s perspective, and a backward edge from that of u′.
Because G is 2K2-free, note that all three of G[V0], G[V1], and G[V2] contain at
most one component with edges each.

We denote by H the set of the components of G[D1 ∪D2]. Since every vertex
of D2 has neighbours in D1, note that H has edges. Since G is 2K2-free, there
is exactly one component H of H that is non-empty, i.e., contains edges. H can
also contain empty components, which consist in a single vertex of D1.
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We design the desired (2, 2)-labelling of G following four steps. First, we label
all inner, upward, and forward edges incident to the vertices of V0 so that they
fulfil certain properties on σr and σb. Second and third, we then achieve the
same for the vertices of V1 and V2. Last, we label the edges of H.

Step 1: Labelling the inner, upward, and forward edges of V0.

We start by labelling the following edges of G:

1. We first assign blue label 2 to all inner edges incident to vertices of V0.
2. We then consider every vertex u of V0 in turn, assign red label 2 to all upward

edges incident to u, and eventually change to red label 1 one of these red labels
so that the red sum of u becomes odd.

3. We now distinguish two cases, through which we get to defining a special
vertex w ∈D2 that will be useful later on, by the last step of the proof.

– |V0| = 1, i.e., G[V0] is a single vertex u. Here, we assign blue label 2 to
all forward edges incident to u. We also modify the labelling further as
follows. Set w as any neighbour of u in D2. Note that, by swapping the
red labels assigned to uw and another upward edge incident to u, we can,
if necessary, assume uw is assigned red label 2. We then change the label
assigned to uw to blue label 1.

– Otherwise, i.e. |V0| ≥ 2. Here, let u1, . . . , un be an arbitrary ordering over
the vertices of V0, and consider the ui’s one by one in order. Since extra
modifications must be made around u1, let us consider that vertex specif-
ically before describing the general case. Just as in the previous case, let
w be any neighbour of u1 in D2. Again, we can swap labels assigned to
upward edges, if necessary, so that u1w is assigned red label 2. Then we
change the label assigned to u1w to blue label 1, before assigning blue
label 2 to all forward edges incident to u1. Now, for every subsequent ui

with i ≥ 2, denote by ui1 , . . . , uid the d ≥ 0 neighbours of ui in V0 that
precede ui in the ordering. If d = 0, then assign blue label 2 to all for-
ward edges incident to ui. Now, if d ≥ 1, then recall that ui is incident to
dV1(ui)≥d forward edges. By assigning red label 2 to none, one, two, etc.,
or all of these edges, and blue label 2 to all others, we can increase the
red sum of ui by any amount in {0, 2, . . . , 2dV1(ui)}, which set contains
dV1(ui)+1≥d+1 elements. There is thus a way to assign red label 2 to at
most d forward edges incident to ui, and blue label 2 to the rest, so that
the red sum of ui is different from the red sums of ui1 , . . . , uid .

Once the steps above have been performed fully, note that all inner, upward,
and forward edges incident to the vertices of V0 are assigned a label. Also, for
every vertex u ∈ V0, we currently have σr(u) ≡ 1 mod 2, and it can be checked
that also σb(u)≥2. Furthermore, every two adjacent vertices of V0 currently have
their red sums being different. Remark last that all upward edges incident to the
vertices of V0 are assigned red labels, except for exactly one edge incident to w,
which is assigned blue label 1.
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Step 2: Labelling the inner, upward, and forward edges of V1.

Due to the previous step, note also that all backward edges incident to the
vertices in V1 are labelled with red label 2 and blue label 2. So, one should keep
in mind that, currently, σr(u) is even for every u ∈ V1.

We now label more edges as follows:

1. First, we assign blue label 2 to all inner edges incident to vertices of V1.
2. Second, we consider every vertex u of V1 in turn. Recall that u is incident

to at least two upward edges. We assign red label 2 to all these edges. If
necessary, we change the label assigned to two of these edges to red label 1,
so that σr(u) ≡ 2 mod 4.

3. Third, let u1, . . . , un be an arbitrary ordering over the vertices of V1, and
consider the ui’s one by one in turn. For every ui considered that way, denote
by ui1 , . . . , uid the d≥0 neighbours of ui in V1 that precede ui in the ordering.
If d = 0, then assign blue label 2 to all forward edges incident to ui. Now,
if d ≥ 1, then recall that ui is incident to dV2(ui) ≥ d forward edges. Thus,
through assigning blue labels to these edges, we can make the blue sum of
ui vary by any amount in the set {dV2(ui), . . . , 2dV2(ui)}, which contains
dV2(ui) + 1 ≥ d + 1 elements. Thus, it is possible to assign blue labels to the
forward edges incident to ui so that its resulting blue sum is different from
that of ui1 , . . . , uid .

After completing the previous steps, all edges incident to the vertices in V1

are labelled. For every vertex u ∈ V1, we get σr(u) ≡ 2 mod 4, and also σb(u) ≥ 2,
because either dV1(u) = 0 and at least one forward edge incident to u is assigned
blue label 2, or dV1(u) > 0 and at least one inner edge incident to u is assigned
blue label 2. Also, adjacent vertices of V1 are distinguished by their blue sums,
and all upward edges incident to the vertices of V1 are assigned red labels.

Step 3: Labelling the inner, upward, and forward edges of V2.

Note that after performing the previous step, all backward edges incident to
the vertices of V2 are assigned blue labels; so, their red sum is currently 0.

We now perform the following:

1. We assign blue label 2 to all inner edges incident to vertices in V2.
2. We then consider every vertex u of V2 in turn, which, recall, is incident to

at least two upward edges. We assign red label 2 to all these edges before, if
necessary, changing the label assigned to two of these edges to red label 1, so
that σr(u) ≡ 0 mod 4.

3. We finish off this step similarly as the previous one. Let u1, . . . , un be any
ordering over the vertices of V2, and consider the ui’s one after the other. For
every ui, let ui1 , . . . , uid be the d ≥ 0 neighbours of ui in V2 that precede ui

in the ordering. If d = 0, then assign blue label 2 to all forward edges incident
to ui. Otherwise, if d ≥ 1, then recall that ui is incident to dV0(ui) ≥ d forward
edges. Via assigning blue labels to these edges, we can thus make the blue
sum of ui increase by any value in {dV0(ui), . . . , 2dV0(ui)}, which set contains
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dV0(ui) + 1 ≥ d + 1 elements. Thus, we can assign blue labels to the forward
edges incident to ui so that its blue sum is different from that of ui1 , . . . , uid .

Once this step achieves, all edges incident to vertices in V0 ∪ V1 ∪ V2 are
labelled. For every vertex u ∈ V2, we have σr(u) ≡ 0 mod 4 and σb(u) ≥ 2. Every
two adjacent vertices of V2 are distinguished by their blue sums, while all upward
edges incident to the vertices in V2 are assigned red labels. It is important to
emphasise also that assigning blue labels to the edges joining vertices of V2

and V0 altered the blue sums of the vertices in V0, which is not an issue since
the adjacent vertices of V0 are distinguished by their red sums, which were not
altered. So, any two adjacent vertices in V0 remain distinguished, and similarly
for any two adjacent vertices in V1. Finally, note that any two adjacent vertices in
distinct Vi’s are distinguished by their red sums having different values modulo 4.

Step 4: Labelling the edges of H.

Recall that, at this point, we have σb(v)=0 for every vertex v ∈D1∪D2∖{w}
and σb(w) = 1, while σb(u) ≥ 2 for every vertex u ∈ V0 ∪ V1 ∪ V2. In particular,
if v ∈D1 belongs to an empty component of H, then all edges incident to v are
already labelled, and v is distinguished from its neighbours due to its blue sum.

Recall that H denotes the unique non-empty component of H, and that H
actually contains all edges of G that remain to be labelled. Recall also that H
contains w, a special vertex we defined in the first labelling step, which is the
only vertex of H having non-zero blue sum. According to Lemma 1, we can assign
red labels 1 and 2 to the edges of H so that, even when taking into account the
red labels assigned to the upward edges incident to the vertices in V0 ∪ V1 ∪ V2,
any two adjacent vertices of H different from w are distinguished by their red
sums. Since σb(w) = 1 while σb(v) = 0 for every v ∈ V (H) ∖ {w}, vertex w is also
distinguished from its neighbours in H. These conditions guarantee we have not
introduced any conflicts involving vertices of D1∪D2 and vertices of V0∪V1∪V2.

Thus, the resulting (2, 2)-labelling of G is distinguishing. ��

4 From 2K2-free Graphs to K1,3-free Graphs, and Beyond

As mentioned earlier, we also proved the Weak (2, 2)-Conjecture for claw-free
graphs in the full paper [6], in a way that is quite reminiscent of how we proved
Theorems 3 and 4. The structure of 2K2-free graphs being much more con-
strained than that of K1,3-free graphs, this required involved refinements over
our arguments; in particular:

– The main issue in order to adapt Theorem 3 to K1,3-free graphs, is that
R can now have several non-empty components, and similarly for H. Then,
by leading the proof the exact same way for every non-empty component of
R, multiple upward edges can now be assigned red label 1. Fortunately, the
fact that G is claw-free implies that every u ∈D neighbours vertices from at
most two components of R, meaning that σr(u) ≤ 2. So there can be conflicts
between vertices of R and D, but we can get rid of those by altering the
labelling around very local structures of G.



The Weak (2; 2)-Labelling Problem for Graphs with Forbidden Structures 215

– Regarding adapting Theorem 4 to K1,3-free graphs, the main issue is that H
can now have several non-empty components, the most troublesome of which
can consist of a single edge v1v2 with v1 ∈D1 and v2 ∈D2. The problem is that
distinguishing v1 and v2 has nothing to do with the label assigned to v1v2;
in particular, v1 and v2 might get in conflict because of how we labelled the
upward edges, when dealing with the vertices of V0 ∪ V1 ∪ V2. We deal with
this issue through being extra cautious when labelling upward edges, to make
sure such situations do not occur. This requires us to also modify our sum
rules by a bit. For instance, we allow vertices of V0 to have a red sum that is
not odd, provided their neighbourhood satisfies some conditions.

In both cases, the final step of labelling the edges of H is also slightly trickier,
due to the fact that we have less control over the labels assigned to upward edges.
Fortunately, when G is claw-free, H is actually a bipartite graph with maximum
degree at most 2, a structure which is quite favourable, and which we manage
to deal with using algebraic tools (such as the Combinatorial Nullstellensatz).

To go farther on this topic, it could be interesting to investigate the Weak
(2, 2)-Conjecture for more classes of graphs defined in terms of forbidden struc-
tures, such as triangle-free graphs, or graphs with large girth in general. One
could wonder also about graphs in which many short cycles are present, such as
chordal graphs. Another class could be that of P4-free graphs (cographs).
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