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Abstract. In this paper, we prove that the G-generalized join of com-
plete or totally disconnected graphs is perfect if and only if G is per-
fect. As a result, we deduce some results proved in (Saeid et al. Rocky
Mountain J. Math. 48(3) (2018), 729–751) and (Nilesh et al. arXiv (2022),
arXiv:2205.04916). We also characterize rings, posets and reduced semi-
groups whose zero-divisor graphs and ideal based zero-divisor graphs are
perfect. As a consequence, we characterize distributive lattices with 0,
reduced semirings and boolean rings whose zero divisor graphs are perfect,
which are proved in (Patil et al. in Discrete Math. 340: 740–745, 2017).
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1 Introduction

All the graphs considered in the paper are finite, simple and undirected. Let
G = (V (G), E(G)) be a graph. For v ∈ V (G) and S ⊆ V (G), let NG(v) denote the
open neighborhood of v in G and 〈S〉 denote the subgraph induced by S. Let G
denote the complement of a graph G. A proper k-coloring of a graph G is a func-
tion from V (G) into a set of k colors such that no two adjacent vertices receive
the same color. The chromatic number of a graph G, denoted by χ(G), is the least
positive integer k such that there exists a proper k-coloring of G. A clique in a
graph G is a complete subgraph of G. The clique number of G is the largest size of
a clique in G and it is denoted by ω(G). Let G be a graph with V (G) = {u1,
u2, . . . , un} and H1,H2, . . . , Hn be pairwise disjoint graphs. The G-generalized
join graph, denoted by G[H1,H2, . . . , Hn], of H1,H2, . . . , Hn is the graph
obtained by replacing each vertex ui of G by Hi and joining each vertex of Hi to
each vertex of Hj by an edge if ui is adjacent to uj in G. If Hi

∼= H, for 1 ≤ i ≤ n,
then G[H1,H2, . . . , Hn] becomes the standard lexicographic product G[H].

For a graph G, we define a relation ∼G on V (G) as follows: For any x, y ∈ V (G),
define x∼G y if and only if NG(x) = NG(y). Clearly, ∼G is an equivalence relation
on V (G). Let [x] be the equivalence class which contains x and S be the set of all
equivalence classes of this relation ∼G. Based on this equivalence classes we define
the reduced graph Gr of a graph G as follows. The reduced graph Gr of G (defined
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in [13]) is the graph with vertex set V (Gr) = S and two distinct vertices [x] and
[y] are adjacent in Gr if and only if x and y are adjacent in G.

Note that if V (Gr) =
{
[x1], [x2], . . . , [xk]

}
, then G is the Gr-generalized join

of 〈[x1]〉 , 〈[x2]〉 , . . . , 〈[xk]〉, that is, G = Gr

[ 〈[x1]〉 , 〈[x2]〉 , . . . , 〈[xk]〉 ]
and each

[xi] is an independent subset of G (that is, 〈[xi]〉 has no edge). Clearly, Gr is
isomorphic to an induced subgraph of G. It is easy to observe the following
observation.
Observation 1. If Gr is the reduced graph of G with ω(Gr) = χ(Gr), then
χ(G) = ω(Gr).

Let G be a graph with ω(G) = k, and let Δk(G) be the set of all the vertices
of a graph G which lie in some clique of size k of G. A connected graph G is
called a generalized complete k-partite graph (see [13]) if the vertex set V (G) of
G is a disjoint union of A and H satisfying the following conditions:

(1) A = Δk(G) and the subgraph induced by A is a complete k-partite graph
with parts, say, Ai, i = 1, 2, . . . , k.

(2) For any h ∈ H and i ∈ {1, 2, . . . , k}, h is adjacent to some vertex of Ai if
and only if h is adjacent to any vertex of Ai.
Set W (h) = {1 ≤ i ≤ k |N(h) ∩ Ai 	= ∅} for any h ∈ H.

(3) For any h1, h2 ∈ H,h1 is adjacent to h2 if and only if W (h1) ∪ W (h2) =
{1, 2, . . . , k}.

A graph G is called a compact graph (see [13]) if G contains no isolated vertices
and for each pair x, y of non-adjacent vertices of G, there is a vertex z in G with
N(x) ∪ N(y) ⊆ N(z). A graph G is said to be k-compact if it is compact and
ω(G) = k.

Throughout this paper, rings are finite non-zero commutative rings with
unity. Let R be a ring. A non-zero element x of R is said to be a zero-divisor
if there exists a non-zero element y of R such that xy = 0. A non-zero element
u of R is unit in R if there exists v in R such that uv = 1. For x ∈ R, the
annihilator of x is the set Ann(x) = {y ∈ R | xy = 0}. A ring R is said to
be local if it has unique maximal ideal M . The nilradical of a ring R is the set
J = {x ∈ R : xt = 0, for some positive integer t}. The index of nilpotency of J is
the least positive integer m for which Jm = {0}, where Jm = JJ . . . J (m-times).
A ring R is said to be reduced if J = {0}. A ring is said to be indecomposable
if it can not be written as a direct product of two rings. Let Zn be the ring of
integer modulo n.

For any ring R, in [6], Beck associated a simple graph with R whose vertices
are the elements of R and any two distinct vertices x and y are adjacent if and
only if xy = 0 in R. Beck conjectured that (see [6]) the chromatic number and
clique number of this graph are the same and this was disproved by Anderson and
Naseer in [2] (also, see [10]). It can be observed that for the graph associated
with the ring, the vertex 0 is adjacent to every other vertex. Anderson and
Livingston in [5] slightly modified the definition of the graph associated with a
ring by considering the zero-divisors as the vertices and any two distinct vertices
x and y are adjacent if and only if xy = 0 in R. They called this zero-divisor
graph of the ring R and it is denoted by Γ (R). Zero-divisor graphs have been
extensively studied in the past. This can be seen in [1,3,4,11,20].
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The following definitions and results can be found in [4,20]. For x, y ∈ R,
define x∼R y if and only if Ann(x) = Ann(y). It is proved in [4] that the relation
∼R is an equivalence relation on R. For x ∈ R, let Dx = {r ∈ R | x∼R r}
be the equivalence class of x. Let RE = {Dx1 ,Dx2 , . . . , Dxk

} be the set of all
equivalence classes of the relation ∼R. The compressed zero-divisor graph ΓE(R)
of R (defined in [20]) is a simple graph with vertex set RE\{D0,D1} and two
distinct vertices Dx and Dy are adjacent if and only if xy = 0. The following
result can be found in [18].

Theorem 1 [18]. If R is a ring, then

(i) Γ (R) ∼= ΓE(R)[〈Dx1〉, 〈Dx2〉, . . . , 〈Dxk−2〉], where Dxi
	= D0,D1, for 1 ≤

i ≤ k − 2,
(ii) 〈Dxi

〉 is complete if and only if x2
i = 0, and

(iii) 〈Dxi
〉 is totally disconnected (that is, 〈Dxi

〉 has no edge) if and only if
x2

i 	= 0.

The following result is proved in [3].

Theorem 2 [3]. If R is a non-zero reduced ring, then there exists a positive
integer k such that the compressed zero-divisor graph ΓE(R) ∼= Γ (Zk

2), where
Z

k
2 = Z2 × Z2 × . . . × Z2 (k-times).

In [9], Hala and Jukl introduced the concept of the zero-divisor graph of a
poset. Let (P,≤) be a finite poset with the least element 0. For any a, b ∈ P ,
denote L(a, b) = {c ∈ P | c ≤ a and c ≤ b}. A non-zero element a ∈ P is said to
be a zero-divisor if L(a, b) = {0} for some 0 	= b ∈ P . We say a non-zero element
a ∈ P is an atom (primitive) if for any 0 	= b ∈ P, b ≤ a implies a = b. The zero-
divisor graph Γ (P ) of a poset P is a graph whose vertex set V (Γ (P )) consists
of the zero-divisors of P , in which a is adjacent to b if and only if L(a, b) = {0}.
It is shown in [9] that for any poset P , the clique number and the chromatic
number of Γ (P ) are the same.

By a semigroup, we mean a finite commutative semigroup with the zero
element 0. A semigroup S is said to be reduced if for any a ∈ S and any positive
integer n, an = 0 implies a = 0. A semigroup S is said to be idempotent (it is a
so-called semilattice, see [13]) if for each a ∈ S, a2 = a.

We define a zero-divisor graph of a semigroup in a similar manner in the
definition of zero-divisor graph of a ring.

Let R = Z
k
2 . Clearly, it is a Boolean ring and it becomes a poset by defining

a ≤ b iff ab = a for any a, b ∈ R. Note that, the zero-divisor graphs of R as a
ring (or a semigroup) and as a poset coincide. Let H be a subgraph of Γ (Zk

2).
We say that H is minimal (see [13]) if H is an induced subgraph of Γ (Zk

2) which
contains all the atoms of the poset Zk

2 , and we say H is minimal closed (see [13])
if H is minimal and V (H) ∪ {0} is a sub-semigroup of Zk

2 . The following results
can be found in [13].

Theorem 3 [13]. Let G be a simple graph with ω(G) = k. Then the following
statements are equivalent:
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(i) G is the zero-divisor graph of a poset.
(ii) G is a k-compact graph.
(iii) G is a generalized complete k-partite graph.
(iv) The reduced graph Gr of G is isomorphic to a minimal subgraph of Γ (Zk

2).

Theorem 4 [13]. Let G be a simple graph with ω(G) = k. Then the following
statements are equivalent:

(i) G is the zero-divisor graph of a reduced semigroup with 0.
(ii) G is a generalized complete k-partite graph such that for any non-adjacent

vertices a, b ∈ V (G), there is a vertex c ∈ V (G) with W (c) = W (a)∪W (b).
(iii) The reduced graph Gr of G is isomorphic to a minimal closed subgraph of

Γ (Zk
2).

(iv) G is the zero-divisor graph of a semilattice (or equivalently, idempotent
semigroup) with 0.

A graph G is perfect if ω(H) = χ(H) for every induced subgraph H of G.
The following result was proved by Lovasz, see [12].

Theorem 5 [12]. The complement of every perfect graph is perfect.

In [7], Berge conjectured the following and it was proved by Chudnovsky et
al., see [8].

Theorem 6 (Strong Perfect Graph Theorem [8]). A graph G is perfect if
and only if it does not contain an induced subgraph which is either an odd cycle
of length at least 5 or the complement of such a cycle.

The paper mainly deals with the results on perfect graph using the Strong Perfect
Graph Theorem. As a result, we deduced many known results in the literature.
This is precisely as follows.

In Sect. 2, we prove that the G-generalized join of complete graphs and totally
disconnected graphs is perfect if and only if G is perfect. As a consequence,
we deduce the results proved in [14] and [17] and prove that the lexicographic
product of a perfect graph and a complete graph and the lexicographic product
of a perfect graph and a complement of a complete graph are perfect.

In Sect. 3, we characterize rings, posets and reduced semigroups whose zero-
divisor graphs and ideal based zero-divisors are perfect. As a result, we char-
acterize distributive lattices with 0, reduced semirings and boolean rings whose
zero divisor graphs are perfect, which are proved in [15]. Further, we completely
characterize rings the ideal based zero-divisor graph of the ring Zn is perfect.

2 When a G-generalized Join of Complete and Totally
Disconnected Graphs is Perfect

In this section, we prove the following result on perfect graphs.
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Theorem 7. If G is a graph with vertex set V (G) = {v1, v2, . . . , vn} and H1,H2,
. . . ,Hn are graphs such that each Hi is either complete or a totally disconnected
graph, then G is perfect if and only if G[H1,H2, . . . , Hn] is perfect.

Proof. Let G′ = G[H1,H2, . . . , Hn]. It is enough to prove if G is perfect, then
G′ is perfect. Suppose G′ is not perfect, then by Theorem 6, G′ contains either
an odd cycle of length at least 5 as an induced subgraph or the complement of
an odd cycle of length at least 5 as an induced subgraph.

Case 1. G′ contains an odd cycle C2k+1 as an induced subgraph, where k ≥ 2.
Let V (C2k+1) = {x0, x1, . . . , x2k} such that xi is adjacent to xi+1 (where the

addition in subscript is taken modulo 2k+1) and xi is not adjacent to xj , where
j 	= i−1, i+1. Suppose there exists 1 ≤ t ≤ n such that |V (C2k+1)∩V (Ht)| ≥ 2.

First, if there exists 0 ≤ i ≤ 2k such that xi, xi+1 ∈ V (Ht). Then Ht is
complete and hence xi−1 /∈ V (Ht) (otherwise, C2k+1 would not be induced in
G′). Thus there exists 1 ≤ s ≤ n with s 	= t such that xi−1 ∈ V (Hs) and hence
xi−1 is adjacent to xi+1, which is a contradiction.

Next, if there exist 0 ≤ i, j ≤ 2n such that j 	= i−1, i, i+1 and xi, xj ∈ V (Ht).
Then Ht has no edge in G′ and xi+1, xi−1 /∈ V (Ht). Suppose if j 	= i + 2, then
there exists 1 ≤ s ≤ n such that s 	= t and xi+1 ∈ V (Hs) and hence xj is adjacent
to xi+1, (because of xixi+1 ∈ E(C2k+1)) which is a contradiction. Therefore, if
j = i + 2, then there exists 1 ≤ s ≤ n such that s 	= t and xi−1 ∈ V (Hs) and
therefore xi−1 is adjacent to xj , which is again a contradiction.

Hence |V (C2k+1)∩V (Hi)| = 1, for 0 ≤ i ≤ 2k which implies that G contains
an odd cycle of length at least 5 as an induced subgraph, which is a contradiction.

Case 2. G′ contains a complement of an odd cycle of length at least 5 as an
induced subgraph.

Let C2k+1 be the complement of the odd cycle C2k+1 as an induced subgraph
of G′, where k ≥ 2 with V (C2k+1) = {x0, x1, . . . , x2k} such that xi is not adjacent
to xj for j = i − 1, i + 1 and xi is adjacent to xj , for j 	= i− 1, i, i + 1 (where the
addition in subscripts is taken modulo 2k + 1). Suppose there exists 1 ≤ t ≤ n
such that |V (C2k+1) ∩ V (Ht)| ≥ 2.

First, if there exists 0 ≤ i ≤ 2k such that xi, xi+1 ∈ V (Ht). Then Ht has
no edge and xi−1 /∈ Ht and hence there exists 1 ≤ s ≤ n with s 	= t such that
xi−1 ∈ V (Hs). But xi+1 is adjacent to xi−1 and hence xi is adjacent to xi−1,
which is a contradiction.

Next, if there exist 0 ≤ i, j ≤ 2n such that j 	= i−1, i, i+1 and xi, xj ∈ V (Ht).
Then Ht is complete and xi−1, xi+1 /∈ V (Ht). Suppose if j 	= i + 2, then there
exists 1 ≤ s ≤ n such that s 	= t and xi+1 ∈ V (Hs). But xj is adjacent to xi+1

and therefore xi is adjacent to xi+1, which is impossible. Hence, if j = i + 2,
then there exists 1 ≤ s ≤ n such that s 	= t and xi−1 ∈ V (Hs) and therefore
xi−1 is adjacent xi, which is again a contradiction.

Thus |V (C2k+1) ∩ V (Hi)| = 1, for 0 ≤ i ≤ 2k, which implies that G contains
a complement of an odd cycle of length at least 5 as an induced, which is a
contradiction.

The following corollary is an immediate consequence of Theorem 7.
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Corollary 1. If G is perfect and n is a positive integer, then G[Kn] and G[Kc
n]

are perfect.

Proof. As G[Kn] ∼= G[Kn,Kn, . . . ,Kn] and G[Kc
n] ∼= G[Kc

n,Kc
n, . . . ,Kc

n], the
result follows from Theorem 7.

The following result proved in [17] is deduced from Theorem 7.

Corollary 2 (Corollary 3.2, [17]). A graph G is perfect if and only if it’s
reduced graph Gr is perfect.

The following relation is defined on a graph G in [14]. For x, y ∈ V (G), define
x ≈ y if and only if either x = y or xy ∈ E(G) and N(x)\{y} = N(y)\{x}.
Clearly, it is an equivalence relation. Let [x] be the equivalence class of x, and
S = {[x1], [x2], . . . , [xr]} be the set of all equivalence classes of the relation ≈.
Based on these equivalence classes of the relation ≈, we defined (This can be seen
in [14]) the graph Gred with vertex set V (Gred) = S and two distinct vertices
[x] and [y] are adjacent in Gred if and only if x and y are adjacent in G. Clearly,
for any graph G, G = Gred[〈[x1]〉, 〈[x2]〉, . . . , 〈[xr]〉] and 〈[xi]〉 is complete, for
1 ≤ i ≤ r.

By Theorem 7, we deduce the following result proved in [14].

Corollary 3 (Theorem 4.4, [14]). A graph is perfect if and only if Gred is
perfect.

3 Perfect Zero-Divisor Graph of a Ring

In this section, we ask the following interesting question. When does the zero-
divisor graph of a ring R perfect? To answer this question, we provide a necessary
and sufficient condition for which the zero-divisor graph of a ring is perfect.

Theorem 8. If R is a ring, then Γ (R) is perfect if and only if its compressed
zero-divisor graph ΓE(R) of R is perfect.

Proof. The result follows from Theorems 1 and 7.

Let R1, R2, . . . , Rk be rings. For xj ∈ R1 × R2 × . . . × Rk, there exists a unique
xj(i) ∈ Ri, for 1 ≤ i ≤ k, such that xj = (xj(1), xj(2), . . . , xj(k)).

Note that there are several rings satisfying Beck’s conjecture; see [2,4,6,9,10,
20]. One of them is a finite reduced ring. Using Observation 1, we give a shorter
proof of this result as follows.

Corollary 4 [6,20]. If R is a non-zero reduced ring, then χ(Γ (R)) = ω(Γ (R)).

Proof. By Observation 1 and Theorem 2, it is enough to prove ω(Γ (Zk
2)) =

χ(Γ (Zk
2)). Clearly {ei | 1 ≤ i ≤ k}, where ei = (0, . . . , 0, 1, 0, . . . , 0), induces a

clique. Color first ei by i, for 1 ≤ i ≤ k.
For any x = (x(1), x(2), . . . , x(k)) ∈ V (Γ (Zk

2))\{ei | 1 ≤ i ≤ k}, there exists
a least j with 1 ≤ j ≤ k, such that x(i) = 0 for 1 ≤ i ≤ j − 1 and x(j) = 1.
Color x by j, then the resulting coloring is a proper k-coloring of Γ (Zk

2).
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The following result gives a necessary condition for a product of rings whose
zero-divisor graphs are perfect.

Theorem 9. Let R = R1 ×R2 × . . .×Rk, where Ri’s are indecomposable rings.
If Γ (R) is perfect, then k ≤ 4.

Proof. Suppose k ≥ 5. Then the set of vertices {(1, 1, 0, 0, 0, 0, . . . , 0), (0, 0, 1, 1, 0,
0, . . . , 0), (1, 0, 0, 0, 1, 0, . . . , 0), (0, 1, 0, 1, 0, 0, . . . , 0), (0, 0, 1, 0, 1, 0, . . . , 0)} forms
an induced cycle of length 5. By Theorem 6, we get a contradiction.

Next, let us prove the following result.

Theorem 10. If R = Z
4
2 (= Z2 × Z2 × Z2 × Z2), then Γ (R) is perfect.

Proof. Suppose Γ (R) is not perfect. Then, by Theorem 6, we consider the fol-
lowing cases.

Case 1. Γ (R) contains an odd cycle of length at least 5 as an induced subgraph.
Let C2r+1 be an induced cycle in Γ (R) of length 2r + 1 with the vertex

set {x0, x1, . . . , x2r}, where r ≥ 2. If exactly one co-ordinate of xi is non-zero,
for 0 ≤ i ≤ 2r, then 2r + 1 ≤ 4, a contradiction. Therefore there exists an xi

containing at least two non-zero co-ordinates. WLOG, xi = (1, 1, xi(3), xi(4)),
for some i, 0 ≤ i ≤ 2r. Then the 1st two coordinates of xi−1, xi+1 are zeros,
that is, xi−1(1) = xi−1(2) = xi+1(1) = xi+1(2) = 0. Since xi−1 and xi+1 are
not adjacent, either the third coordinate or forth coordinate of xi−1 and xi+1

are non-zero. WLOG, xi−1(3) = xi+1(3) = 1. If xi−1(4) = 1, then xi+1(4) = 0,
as xi−1 	= xi+1 and hence xi−1 = (0, 0, 1, 1) and xi+1 = (0, 0, 1, 0). Since xi−2 is
adjacent to xi−1, we have xi−2 = (xi−2(1), xi−2(2), 0, 0). Thus xi−2 is adjacent to
xi+1, which is a contradiction. Hence xi−1(4) = 0, which implies that xi+1(4) = 1
and thus xi+1 = (0, 0, 1, 1) and xi−1 = (0, 0, 1, 0). Since xi+2 is adjacent xi+1,
we have xi+2 = (xi+2(1), xi+2(2), 0, 0) and hence xi+2 is adjacent to xi−1, which
is a contradiction.

Case 2. Γ (R) contains the complement of an odd cycle of length at least 5 as
an induced subgraph.

Let C2r+1 be an induced subgraph of Γ (R) with vertex set {x0, x1, . . . , x2r},
where r ≥ 2. If no xi contains exactly two coordinates that are non-zeros, then
there exists j, 1 ≤ j ≤ k such that xj contains exactly three that coordinates
that are non-zero (otherwise 2r + 1 ≤ 4), which is impossible. Thus there exists
i, 1 ≤ i ≤ k such that xi contains exactly two coordinates that are non-zeros.
WLOG, xi = (1, 1, xi(3), xi(4)). Since xi is adjacent to 2r − 2 vertices in C2r+1,
namely xi+2, xi+3, . . . , xi+2r−1 (where the addition in subscripts taken modulo
2r+1), we have the 1st two coordinates of xi+2, xi+3, . . . , xi+2r−1 are zero’s and
hence xi+2, xi+3, . . . , xi+2r−1 ∈ {(0, 0, 1, 1), (0, 0, 1, 0), (0, 0, 0, 1)}. Thus 2r − 2 ≤
3, which implies 2r+1 ≤ 6. As it is an odd number and r ≥ 2, we have 2r+1 = 5.
Therefore C5

∼= C5. By Case 1, which is impossible.

The following result in [14] is a consequence of Theorems 9 and 10.
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Corollary 5 [14]. If R = Z
k
2 , then Γ (R) is perfect if and only if k ≤ 4.

Proof. By Theorems 9 and 10, it is enough to prove that Γ (R) is perfect if k ≤ 3.
In this case we have |V (Γ (R))| ≤ 6, and hence Γ (R) does not contain a cycle of
length 5 as an induced subgraph of Γ (R) and, thus the result follows.

It is well-known that any finite non-zero reduced commutative ring R is
isomorphic to a finite direct product of finite fields, say Fp

α1
1

,Fp
α2
2

, . . . ,Fp
α�
�

,
where pi’s are prime numbers and αi’s are positive integers, that is R ∼= Fp

α1
1

×
Fp

α2
2

× . . . × Fp
α�
�

.
By Theorem 2, the compressed zero-divisor graph of a reduced ring R is

isomorphic to the zero-divisor graph of Z
k
2 , for some k ≥ 1, that is ΓE(R) ∼=

Γ (Zk
2). So, the following result is a consequence of Theorem 9 and Corollary 5.

Theorem 11. If R ∼= Fp
α1
1

×Fp
α2
2

× . . .×Fp
α�
�

is a non-zero reduced ring, where
Fp

αi
i
’s are finite fields, then Γ (R) is perfect if and only if � ≤ 4.

Proof. The first part is clear from Theorem 9. For the second part, let us assume
that � ≤ 4. Then ω(Γ (R)) ≤ 4. By the above discussion, ΓE(R) ∼= Γ (Zk

2) for
some k ≥ 1. Suppose k ≥ 5, then Γ (Zk

2) contains a clique 〈{ei : 1 ≤ i ≤ k}〉 of
size at least 5 (where ei’s are defined in Corollary 4) and hence ω(Γ (R)) ≥ 5,
which is impossible. Thus k ≤ 4 and therefore, by Corollary 5 Γ (Zk

2) is perfect,
and hence Γ (R) is perfect by Theorem 8.

The following result in [15] is an immediate consequence of Corollary 5,
because every finite Boolean ring R is isomorphic to Z

k
2 , for some k ≥ 1.

Corollary 6 [15]. Let R be a finite Boolean ring. Then the following are equiv-
alent,

(1) Γ (R) is perfect.
(2) Γ (R) does not contain K5 as a subgraph.
(3) |R| ≤ 24.

3.1 Perfect Ideal Based Zero-Divisor Graph of Rings

In this subsection, we characterize rings whose ideal based zero-divisor graphs
are perfect. In particular, under what values of n, the ideal based zero divisor
graph of the ring Zn of integers modulo n is perfect.

The following observation is observed in [16] and [21].

(i) If I is an ideal of R and x1 + I, x2 + I, . . . , xk + I are the distinct co-
sets of I, which are zero-divisors of the quotient ring R

I , then ΓI(R) is a
Γ (R

I )-generalized join of 〈x1 + I〉, 〈x2 + I〉, . . . , 〈xk + I〉, that is,

ΓI(R) = Γ
(R

I

)[〈x1 + I〉, 〈x2 + I〉, . . . , 〈xk + I〉],

(ii) 〈xi + I〉 is a complete subgraph of ΓI(R) if and only if x2
i ∈ I,
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(iii) 〈xi + I〉 is a totally disconnected subgraph of ΓI(R) if and only if x2
i /∈ I.

Hence, by Theorems 7 and 8, we have

Theorem 12. Let I be an ideal of R, then the following are equivalent,

(i) ΓI(R) is perfect;
(ii) Γ (R

I ) is perfect;
(iii) ΓE(R

I ) is perfect.

We recall the following result proved in [19].

Theorem 13 [19]. The zero divisor graph Γ (Zn) of a ring Zn is perfect if and
only if n = pa, paqb, paqr, or pqrs, where p, q, r and s are distinct primes and a
and b are positive integers.

It is well known that if I is an ideal of Zn generated by m, then Zn

I
∼= Zm. So,

we have

Corollary 7. If I is an ideal of Zn generated by m, then ΓI(Zn) is perfect if
and only if m = pa, paqb, paqr, or pqrs, where p, q, r and s are distinct primes
and a and b are positive integers.

Proof. By Theorems 12 and 13, ΓI(Zn) is perfect if and only if Γ (Zm) is perfect
if and only if m = pa, paqb, paqr, or pqrs.

3.2 Zero-Divisor Graph of Rings, Reduced Semigroups and Posets

In [13], it is shown that the chromatic number is equal to the clique number
of zero-divisor graphs of poset, reduced semiring with 0 and reduced semigroup
with 0. So it is interesting to consider the following problem.

Problem. Characterize the posets, reduced rings and reduced semigroups whose
zero-divisor graphs are perfect.

Now we characterize posets whose zero-divisor graphs are perfect using The-
orem 3.

Theorem 14. Let G be a zero-divisor graph of a poset with 0 and ω(G) = k.
Then the following are equivalent,

(i) G is perfect.
(ii) The reduced graph Gr of G is perfect.
(iii) The reduced graph Hr of H (where H is in the Definition of generalized

complete k-partite graph) is perfect.

Proof. (i) ⇔ (ii) It follows from Corollary 2.
(ii) ⇒ (iii) It follows from the definition of perfect.
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(iii) ⇒ (ii) Suppose Gr is not perfect graph, then by the Theorem 6, Gr contains
an odd cycle of length at least 5 as an induced subgraph or the complement
of an odd cycle of length at least 5 as an induced subgraph.

Let e1, e2, . . . , ek be the atoms of G.

Case 1. Gr contains an odd cycle of length at least 5 as an induced subgraph.
Let C2s+1 be an odd cycle of Gr as an induced subgraph with vertex set

V (C2s+1) = {a0, a1 . . . , a2s}, where s ≥ 2. Then V (C2s+1) is not a subset of
V (Hr). As the atoms forms a clique, we have |V (C2s+1) ∩ {e1, e2, . . . , ek}| ≤ 2.
First if |V (C2s+1) ∩ {e1, e2, . . . , ek}| = 2, then there exist i, j ∈ {1, 2, . . . , k} and
� ∈ {0, 1, 2, . . . , 2s} such that a� = ei and a�+1 = ej . Since a�+2 and a�+3 are
not adjacent to a� = ei, we have i /∈ W (a�+2) ∪ W (a�+3) and hence W (a�+2) ∪
W (a�+3) 	= {1, 2, . . . , k}, which is a contradiction to the definition of generalized
complete k-partite graph. Next if |V (C2s+1) ∩ {e1, e2, . . . , ek}| = 1, then we get
a contradiction in a similar way as above. Thus V (C2s+1) ∩ {e1, e2, . . . , ek} = ∅
and hence C2s+1 is an induced odd cycle of Hr, which is a contradiction.

Case 2. Gr contains the complement of an odd cycle of length at least 5 as an
induced subgraph.

Let C2s+1 be the complement of the odd cycle C2s+1 in Gr with vertex set
V (C2s+1) = {a0, a1, . . . , a2s}, where s ≥ 2. If V (C2s+1) ∩ {e1, e2, . . . , ek} 	= ∅,
then there exists i ∈ {1, 2, . . . , k} such that ei = a�, for some � ∈ {0, 1, 2, . . . , 2s}.
Then a�−1, a�+1 /∈ {e1, e2, . . . , ek} and they are not adjacent to ei and hence i /∈
W (a�−1) ∪ W (a�+1), which is impossible. Thus, V (C2s+1) ∩ {e1, e2, . . . , ek} = ∅
and therefore C2s+1 lies in Hr, which is a contradiction.

Next, we present equivalent conditions for a zero-divisor graph of a reduced
semigroup to be perfect using Theorem 4.

Theorem 15. Let G be a zero-divisor graph of a reduced semigroup with ω(G) =
k. Then the following are equivalent,

(i) G is perfect.
(ii) The reduced graph Gr of G is perfect.
(iii) The reduced graph Hr of H (where H is given in the definition of generalized

complete k-partite graph) is perfect.

Proof. The proof is similar to that of Theorem 14.

A lattice L = (L,∧,∨) with 0 is distributive if for x, y, z ∈ L, x ∧ (y ∨ z) =
(x ∧ y) ∨ (x ∧ z). As every lattice is a poset, we have the following result proved
in [15].

Corollary 8 [15]. Let L be a distributive lattice with 0. Then the following are
equivalent,

(i) Γ (L) is perfect.
(ii) Γ (L) contains no induced cycle of length 5.
(iii) ω(Γ (L)) ≤ 4, (equivalently, the number of atoms of Γ (L) is at most 4).
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Proof. (i) ⇒ (ii) It is trivial from the definition of perfect graph.
(ii) ⇒ (iii) If 〈{a1, a2, . . . , as}〉 is a clique in Γ (L), where s ≥ 5, then the subgraph
induced by {a1 ∨a2, a3 ∨a4, a1 ∨a5, a2 ∨a3, a4 ∨a5} is an induced cycle of length
5 (as L is distributive) which is a contradiction.
(iii) ⇒ (i) Suppose Γ (L) is not perfect. Then by Theorem 14, the reduced sub-
graph Hr of H, defined in Theorem 14, is not perfect. By Theorem 6, Hr con-
tains an odd cycle of length at least 5 as an induced subgraph or its complement
of an odd cycle of length at least 5 as an induced subgraph. If Hr contains
an induced odd cycle C2s+1 with vertex set V (C2s+1) = {a1, a2, . . . , a2s+1},
where s ≥ 2. Then ai ∧ ai+1 = 0, for 1 ≤ i ≤ 2s, a2s+1 ∧ a1 = 0 and
ai ∧ aj 	= 0, for j 	= i − 1, i, i + 1 and hence the subgraph induced by
{a1 ∧ a3, a1 ∧ a4, a2 ∧ a4, a2 ∧ a5, a3 ∧ a2s+1} is a clique in Γ (L) of size 5, which
is a contradiction. Similarly if Hr contains the complement C2s+1 of an induced
odd cycle C2s+1 with vertex set V (C2s+1) = {a1, a2, . . . , a2s+1}, where s ≥ 2,
then the subgraph induced by {a1∧a2, a2∧a3, a3∧a4, a4∧a5, a5∧a1} is a clique
in Γ (L) of size 5, which is again a contradiction.

As every semiring is a semigroup and by Theorem 15, we have the following
result proved in [15].

Corollary 9 [15]. Let R be a reduced semiring with 0. Then the following are
equivalent,

(i) Γ (R) is perfect.
(ii) Γ (R) contains no induced cycle of length 5.
(iii) ω(Γ (R)) ≤ 4, (equivalently, the number of atoms of Γ (R) is at most 4).

Proof. The proof is similar to that of Corollary 8 by replacing ∨ and ∧ by
addition and multiplication, respectively.
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