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Abstract. In this paper, we prove that the G-generalized join of com-
plete or totally disconnected graphs is perfect if and only if G is per-
fect. As a result, we deduce some results proved in (Saeid et al. Rocky
Mountain J. Math. 48(3) (2018), 729-751) and (Nilesh et al. arXiv (2022),
arXiv:2205.04916). We also characterize rings, posets and reduced semi-
groups whose zero-divisor graphs and ideal based zero-divisor graphs are
perfect. As a consequence, we characterize distributive lattices with 0,
reduced semirings and boolean rings whose zero divisor graphs are perfect,
which are proved in (Patil et al. in Discrete Math. 340: 740-745, 2017).
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1 Introduction

All the graphs considered in the paper are finite, simple and undirected. Let
G = (V(G),E(G)) beagraph. Forv € V(G) and S C V(G), let Ng(v) denote the
open neighborhood of v in G and (S) denote the subgraph induced by S. Let G
denote the complement of a graph G. A proper k-coloring of a graph G is a func-
tion from V(G) into a set of k colors such that no two adjacent vertices receive
the same color. The chromatic number of a graph G, denoted by x(G), is the least
positive integer k such that there exists a proper k-coloring of G. A clique in a
graph G is a complete subgraph of G. The clique number of G is the largest size of
a clique in G and it is denoted by w(G). Let G be a graph with V(G) = {uy,
U, ..., Upt and Hy, Ha, ..., H, be pairwise disjoint graphs. The G-generalized
join graph, denoted by G[Hi,Has,...,H,|, of Hy,Hs,...,H, is the graph
obtained by replacing each vertex u; of G by H; and joining each vertex of H; to
each vertex of H; by an edge if u; is adjacent tow; in G. If H; =2 H,for 1 <7 < n,
then G[Hy, Ha, . .., Hy] becomes the standard lexicographic product G[H].

For a graph G, we define arelation ~¢g on V(G) as follows: For any z,y € V(G),
define z~¢ y if and only if Ng(x) = Ng(y). Clearly, ~¢ is an equivalence relation
on V(G). Let [z] be the equivalence class which contains « and S be the set of all
equivalence classes of this relation ~¢. Based on this equivalence classes we define
the reduced graph G, of a graph G as follows. The reduced graph G, of G (defined
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in [13]) is the graph with vertex set V(G,) = S and two distinct vertices [x] and
[y] are adjacent in G, if and only if z and y are adjacent in G.

Note that if V/(G,) = {[z1], [z2], ..., [#k]}, then G is the G,-generalized join
of {[za]) () ... {lzal), that is, G = G, [ (). (fz2)) ... ({zal) ] and each
[#;] is an independent subset of G (that is, ([x;]) has no edge). Clearly, G, is
isomorphic to an induced subgraph of G. It is easy to observe the following
observation.

Observation 1. If G, is the reduced graph of G with w(G,) = x(G,), then
(@) = w(Gy).

Let G be a graph with w(G) = k, and let Ai(G) be the set of all the vertices
of a graph GG which lie in some clique of size k of G. A connected graph G is
called a generalized complete k-partite graph (see [13]) if the vertex set V(G) of
G is a disjoint union of A and H satisfying the following conditions:

(1) A = Ag(G) and the subgraph induced by A is a complete k-partite graph
with parts, say, 4;,1 =1,2,...,k.

(2) For any h € H and i € {1,2,...,k}, h is adjacent to some vertex of A; if
and only if h is adjacent to any vertex of A;.
Set W(h)={1<i<k|N(h)NnA; #0} for any h € H.

(3) For any hi,he € H, hy is adjacent to hs if and ounly if W (hy) U W (hg) =
{1,2,...,k}.

A graph G is called a compact graph (see [13]) if G contains no isolated vertices
and for each pair z, y of non-adjacent vertices of GG, there is a vertex z in G with
N(z) UN(y) C N(z). A graph G is said to be k-compact if it is compact and
w(G) = k.

Throughout this paper, rings are finite non-zero commutative rings with
unity. Let R be a ring. A non-zero element x of R is said to be a zero-divisor
if there exists a non-zero element y of R such that xy = 0. A non-zero element
u of R is unit in R if there exists v in R such that uv = 1. For x € R, the
annihilator of x is the set Ann(z) = {y € R | xy = 0}. A ring R is said to
be local if it has unique maximal ideal M. The nilradical of a ring R is the set
J={x € R:a' =0, for some positive integer t}. The index of nilpotency of J is
the least positive integer m for which J™ = {0}, where J™ = JJ ... J (m-times).
A ring R is said to be reduced if J = {0}. A ring is said to be indecomposable
if it can not be written as a direct product of two rings. Let Z,, be the ring of
integer modulo n.

For any ring R, in [6], Beck associated a simple graph with R whose vertices
are the elements of R and any two distinct vertices  and y are adjacent if and
only if zy = 0 in R. Beck conjectured that (see [6]) the chromatic number and
clique number of this graph are the same and this was disproved by Anderson and
Naseer in [2] (also, see [10]). It can be observed that for the graph associated
with the ring, the vertex 0 is adjacent to every other vertex. Anderson and
Livingston in [5] slightly modified the definition of the graph associated with a
ring by considering the zero-divisors as the vertices and any two distinct vertices
z and y are adjacent if and only if xy = 0 in R. They called this zero-divisor
graph of the ring R and it is denoted by I'(R). Zero-divisor graphs have been
extensively studied in the past. This can be seen in [1,3,4,11,20].
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The following definitions and results can be found in [4,20]. For z,y € R,
define x~p y if and only if Ann(z) = Ann(y). It is proved in [4] that the relation
~p is an equivalence relation on R. For z € R, let D, = {r € R | z~p 1}
be the equivalence class of x. Let Ry = {Dy,, Dy,,..., Dy, } be the set of all
equivalence classes of the relation ~g. The compressed zero-divisor graph I'g(R)
of R (defined in [20]) is a simple graph with vertex set Rg\{Dg, D1} and two
distinct vertices D, and D, are adjacent if and only if zy = 0. The following
result can be found in [18].

Theorem 1 [18]. If R is a ring, then

(i) T'(R) = I'g(R)[(Dz,)s{(Day)y- - {Da,_,)], where Dy, # Do, Dy, for 1 <
i<k—2,
(ii) (D,,) is complete if and only if x? =0, and
(11i) (D,,) is totally disconnected (that is, (D.,) has no edge) if and only if
x? #0.

The following result is proved in [3].

Theorem 2 [3]. If R is a non-zero reduced ring, then there exists a positive
integer k such that the compressed zero-divisor graph I'y(R) = I'(Z%), where
ZS = ZQ X ZQ X ... X ZQ (k-times).

In [9], Hala and Jukl introduced the concept of the zero-divisor graph of a
poset. Let (P, <) be a finite poset with the least element 0. For any a,b € P,
denote L(a,b) = {c€ P | ¢ <a and ¢ < b}. A non-zero element a € P is said to
be a zero-divisor if L(a,b) = {0} for some 0 # b € P. We say a non-zero element
a € P is an atom (primitive) if for any 0 # b € P, b < a implies a = b. The zero-
divisor graph I'(P) of a poset P is a graph whose vertex set V(I'(P)) consists
of the zero-divisors of P, in which a is adjacent to b if and only if L(a,b) = {0}.
It is shown in [9] that for any poset P, the clique number and the chromatic
number of I'(P) are the same.

By a semigroup, we mean a finite commutative semigroup with the zero
element 0. A semigroup S is said to be reduced if for any a € S and any positive
integer n, a™ = 0 implies a = 0. A semigroup S is said to be idempotent (it is a
so-called semilattice, see [13]) if for each a € S, a® = a.

We define a zero-divisor graph of a semigroup in a similar manner in the
definition of zero-divisor graph of a ring.

Let R = Z&. Clearly, it is a Boolean ring and it becomes a poset by defining
a < biff ab = a for any a,b € R. Note that, the zero-divisor graphs of R as a
ring (or a semigroup) and as a poset coincide. Let H be a subgraph of I'(Z5).
We say that H is minimal (see [13]) if H is an induced subgraph of I"(Z%) which
contains all the atoms of the poset Z§, and we say H is minimal closed (see [13])
if H is minimal and V (H) U {0} is a sub-semigroup of Z&. The following results
can be found in [13].

Theorem 3 [13]. Let G be a simple graph with w(G) = k. Then the following
statements are equivalent:
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(i) G is the zero-divisor graph of a poset.
(ii) G is a k-compact graph.
(iti) G is a generalized complete k-partite graph.
(iv) The reduced graph G, of G is isomorphic to a minimal subgraph of T'(Z5).

Theorem 4 [13]. Let G be a simple graph with w(G) = k. Then the following
statements are equivalent:

(i) G is the zero-divisor graph of a reduced semigroup with 0.
(ii) G is a generalized complete k-partite graph such that for any non-adjacent
vertices a,b € V(Q), there is a vertex ¢ € V(G) with W (c) = W (a) UW (b).
(i) The reduced graph G, of G is isomorphic to a minimal closed subgraph of
r(zk).
(iv) G is the zero-divisor graph of a semilattice (or equivalently, idempotent
semigroup) with 0.

A graph G is perfect if w(H) = x(H) for every induced subgraph H of G.
The following result was proved by Lovasz, see [12].

Theorem 5 [12]. The complement of every perfect graph is perfect.

In [7], Berge conjectured the following and it was proved by Chudnovsky et
al., see [8].

Theorem 6 (Strong Perfect Graph Theorem [8]). A graph G is perfect if
and only if it does not contain an induced subgraph which is either an odd cycle
of length at least 5 or the complement of such a cycle.

The paper mainly deals with the results on perfect graph using the Strong Perfect
Graph Theorem. As a result, we deduced many known results in the literature.
This is precisely as follows.

In Sect. 2, we prove that the G-generalized join of complete graphs and totally
disconnected graphs is perfect if and only if G is perfect. As a consequence,
we deduce the results proved in [14] and [17] and prove that the lexicographic
product of a perfect graph and a complete graph and the lexicographic product
of a perfect graph and a complement of a complete graph are perfect.

In Sect. 3, we characterize rings, posets and reduced semigroups whose zero-
divisor graphs and ideal based zero-divisors are perfect. As a result, we char-
acterize distributive lattices with 0, reduced semirings and boolean rings whose
zero divisor graphs are perfect, which are proved in [15]. Further, we completely
characterize rings the ideal based zero-divisor graph of the ring Z,, is perfect.

2  When a G-generalized Join of Complete and Totally
Disconnected Graphs is Perfect

In this section, we prove the following result on perfect graphs.
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Theorem 7. If G is a graph with vertex set V(G) = {v1,va,...,v,} and Hy, Ha,
..., H, are graphs such that each H; is either complete or a totally disconnected
graph, then G is perfect if and only if G[H1, Ha, ..., Hy,] is perfect.

Proof. Let G’ = G[H1, Ha, ..., H,]. It is enough to prove if G is perfect, then
G’ is perfect. Suppose G’ is not perfect, then by Theorem 6, G’ contains either
an odd cycle of length at least 5 as an induced subgraph or the complement of
an odd cycle of length at least 5 as an induced subgraph.

Case 1. G’ contains an odd cycle Co11 as an induced subgraph, where k > 2.

Let V(Cak+1) = {x0,x1, ..., 22k} such that x; is adjacent to ;41 (where the
addition in subscript is taken modulo 2k+1) and z; is not adjacent to x;, where
Jj #i—1,i+1. Suppose there exists 1 < ¢t < n such that |V (Car11) NV (Hy)| > 2.

First, if there exists 0 < ¢ < 2k such that z;,z;41 € V(H;). Then H; is
complete and hence x;_; ¢ V(H;) (otherwise, Caxy1; would not be induced in
G’"). Thus there exists 1 < s < n with s # ¢ such that z;,_; € V(H,) and hence
x;—1 is adjacent to x;y1, which is a contradiction.

Next, if there exist 0 < 4,j < 2n such that j # i—1,¢,i4+1 and z;, z; € V(Hy).
Then H; has no edge in G’ and x;41,x;—1 ¢ V(H:). Suppose if j # i + 2, then
there exists 1 < s < nsuch that s # ¢t and z;41 € V(H;) and hence z; is adjacent
to x;y1, (because of z;x;+1 € E(Cars1)) which is a contradiction. Therefore, if
Jj = i+ 2, then there exists 1 < s < n such that s # ¢ and z;_; € V(H,) and
therefore x;_; is adjacent to z;, which is again a contradiction.

Hence |V (Car+1) NV (H;)| = 1, for 0 < i < 2k which implies that G contains
an odd cycle of length at least 5 as an induced subgraph, which is a contradiction.

Case 2. G’ contains a complement of an odd cycle of length at least 5 as an
induced subgraph.

Let Cx41 be the complement of the odd cycle Cap1 as an induced subgraph
of G’, where k > 2 with V(Cap41) = {0, 1, . .., zax } such that z; is not adjacent
tox; for j =i—1,i+1 and x; is adjacent to z;, for j # i —1,4,4+ 1 (where the
addition in subscripts is taken modulo 2k + 1). Suppose there exists 1 <t <mn
such that |V (Caopt1) NV (Hy)| > 2.

First, if there exists 0 < ¢ < 2k such that x;,2;41 € V(H;). Then H; has
no edge and x;_1 ¢ H; and hence there exists 1 < s < n with s # ¢ such that
xi—1 € V(Hy). But x;4; is adjacent to z;_; and hence z; is adjacent to x;_1,
which is a contradiction.

Next, if there exist 0 < 4, j < 2nsuch that j # i—1,4,i+1 and @;,2; € V(Hy).
Then H; is complete and z;_1, 2,11 ¢ V(H;). Suppose if j # i + 2, then there
exists 1 < s < n such that s # t and x;41 € V(H,). But z; is adjacent to ;41
and therefore z; is adjacent to x;41, which is impossible. Hence, if j = i + 2,
then there exists 1 < s < n such that s # ¢ and z;_; € V(H,) and therefore
x;_1 is adjacent x;, which is again a contradiction.

Thus |V (Cogt1) NV (H;)| = 1, for 0 < i < 2k, which implies that G contains
a complement of an odd cycle of length at least 5 as an induced, which is a
contradiction.

The following corollary is an immediate consequence of Theorem 7.
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Corollary 1. If G is perfect and n is a positive integer, then G[K,] and G[K£]
are perfect.

Proof. As G[K,] = G[K,, K,,...,K,] and G[KS] & G[K;

7L7Kfl,7 A 7K$L]7 the
result follows from Theorem 7.

The following result proved in [17] is deduced from Theorem 7.

Corollary 2 (Corollary 3.2, [17]). A graph G is perfect if and only if it’s
reduced graph G, is perfect.

The following relation is defined on a graph G in [14]. For z,y € V(G), define
x ~ y if and only if either x = y or zy € E(G) and N(z)\{y} = N(y)\{z}.
Clearly, it is an equivalence relation. Let [x] be the equivalence class of z, and
S = {[x1],[z2],- .., [x,+]} be the set of all equivalence classes of the relation .
Based on these equivalence classes of the relation =2, we defined (This can be seen
n [14]) the graph G,.q with vertex set V(G,eq) = S and two distinct vertices
[x] and [y] are adjacent in G,eq if and only if 2 and y are adjacent in G. Clearly,
for any graph G, G = Grea[([z1]), ([22]), ..., {[z,])] and ([z;]) is complete, for
1< <.

By Theorem 7, we deduce the following result proved in [14].

Corollary 3 (Theorem 4.4, [14]). A graph is perfect if and only if Greq is
perfect.

3 Perfect Zero-Divisor Graph of a Ring

In this section, we ask the following interesting question. When does the zero-
divisor graph of a ring R perfect? To answer this question, we provide a necessary
and sufficient condition for which the zero-divisor graph of a ring is perfect.

Theorem 8. If R is a ring, then I'(R) is perfect if and only if its compressed
zero-divisor graph I'g(R) of R is perfect.

Proof. The result follows from Theorems 1 and 7.

Let Ri, Ry, ..., Ry be rings. For x; € Ry X Ry X ... X Ry, there exists a unique
zj(i) € R;, for 1 < i <k, such that z; = (z;(1),2;(2),...,2;(k)).

Note that there are several rings satisfying Beck’s conjecture; see [2,4,6,9, 10,
20]. One of them is a finite reduced ring. Using Observation 1, we give a shorter
proof of this result as follows.

Corollary 4 [6,20]. If R is a non-zero reduced ring, then x(I'(R)) = w(I'(R)).

Proof. By Observation 1 and Theorem 2, it is enough to prove w(I'(Z§)) =
xX(I(Z)). Clearly {e; | 1 < i < k}, where ¢; = (0,...,0,1,0,...,0), induces a
clique. Color first e; by i, for 1 <1i < k.

For any z = (2(1),2(2),...,2(k)) € V(I'(Z5))\{e; | 1 <i < k}, there exists
a least j with 1 < j < k, such that (i) =0 for 1 <7 < j—1and z(j) = 1.
Color z by 7, then the resulting coloring is a proper k-coloring of I'(Z5).
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The following result gives a necessary condition for a product of rings whose
zero-divisor graphs are perfect.

Theorem 9. Let R = Ry X Ry X ... X Ry, where R;’s are indecomposable rings.
If I'(R) is perfect, then k < 4.

Proof. Suppose k > 5. Then the set of vertices {(1,1,0,0,0,0,...,0),(0,0,1,1,0,
o,...,0), (1,0,0,0,1,0,...,0),(0,1,0,1,0,0,...,0),(0,0,1,0,1,0,...,0)} forms
an induced cycle of length 5. By Theorem 6, we get a contradiction.

Next, let us prove the following result.
Theorem 10. If R =75 (= Zy X Ly X Ly X o), then I'(R) is perfect.

Proof. Suppose I'(R) is not perfect. Then, by Theorem 6, we consider the fol-
lowing cases.

Case 1. I'(R) contains an odd cycle of length at least 5 as an induced subgraph.

Let Cy.41 be an induced cycle in I'(R) of length 2r 4+ 1 with the vertex
set {xg,x1,...,%2.}, where r > 2. If exactly one co-ordinate of x; is non-zero,
for 0 <4 < 2r, then 2r + 1 < 4, a contradiction. Therefore there exists an x;
containing at least two non-zero co-ordinates. WLOG, z; = (1,1, z;(3), z;(4)),
for some i, 0 < i < 2r. Then the 1% two coordinates of z;_1,x;41 are zeros,
that is, z;-1(1) = z;—1(2) = z;4+1(1) = 2;41(2) = 0. Since z;_1 and z;y; are
not adjacent, either the third coordinate or forth coordinate of x;_1 and x;41
are non-zero. WLOG, z;-1(3) = z;41(3) = 1. If 2;,_1(4) = 1, then x;11(4) = 0,
as x;_1 # x;4+1 and hence x;_; = (0,0,1,1) and x;11 = (0,0,1,0). Since x;_o is
adjacent to x;_1, we have z;_o = (z;—2(1),z;—2(2),0,0). Thus z;_» is adjacent to
Zi+1, which is a contradiction. Hence x;_1(4) = 0, which implies that x;11(4) = 1
and thus z;41 = (0,0,1,1) and ;1 = (0,0, 1,0). Since x;12 is adjacent z;41,
we have x; 12 = (2;12(1), 2;42(2),0,0) and hence x; 5 is adjacent to x;_1, which
is a contradiction.

Case 2. I'(R) contains the complement of an odd cycle of length at least 5 as
an induced subgraph.

Let Co,41 be an induced subgraph of I'(R) with vertex set {xg,z1, ..., 22},
where r > 2. If no x; contains exactly two coordinates that are non-zeros, then
there exists j, 1 < j < k such that z; contains exactly three that coordinates
that are non-zero (otherwise 2r + 1 < 4), which is impossible. Thus there exists
i, 1 <1 < k such that x; contains exactly two coordinates that are non-zeros.
WLOG, z; = (1,1,2;(3),z;(4)). Since z; is adjacent to 2r — 2 vertices in Ca, 1,
namely Z;y2,Tit+3,...,Titor—1 (where the addition in subscripts taken modulo
2r + 1), we have the 1°! two coordinates of x; 2, Ti13,...,T;tor—1 are zero’s and
hence Tig42, L3y, LTiyor—1 € {(0, 0, 1, 1), (O7 0, 1, O), (O, O7 0, 1)} Thus 2r —2 <
3, which implies 2r+1 < 6. As it is an odd number and r > 2, we have 2r+1 = 5.
Therefore C5 = C5. By Case 1, which is impossible.

The following result in [14] is a consequence of Theorems 9 and 10.
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Corollary 5 [14]. If R = Z%, then I'(R) is perfect if and only if k < 4.

Proof. By Theorems 9 and 10, it is enough to prove that I'(R) is perfect if k < 3.
In this case we have |V(I'(R))| < 6, and hence I'(R) does not contain a cycle of
length 5 as an induced subgraph of I'(R) and, thus the result follows.

It is well-known that any finite non-zero reduced commutative ring R is
isomorphic to a finite direct product of finite fields, say Fp?l,Fp;z,...,szw,
where p;’s are prime numbers and «;’s are positive integers, that is R & Fp?l X
Fpgz X ... X]szve.

By Theorem 2, the compressed zero-divisor graph of a reduced ring R is
isomorphic to the zero-divisor graph of Z&, for some k& > 1, that is I'g(R) =
I'(Z%). So, the following result is a consequence of Theorem 9 and Corollary 5.

Theorem 11. I[f R=F, o1 X F, o2 XX F o is a non-zero reduced ring, where
F i ’s are finite fields, then I'(R ) is perfect zf and only if £ < 4.

Proof. The first part is clear from Theorem 9. For the second part, let us assume
that ¢ < 4. Then w(I'(R)) < 4. By the above discussion, I'g(R) = I'(Z§) for
some k > 1. Suppose k > 5, then I'(Z%) contains a clique ({e; : 1 < i < k}) of
size at least 5 (where e;’s are defined in Corollary 4) and hence w(I'(R)) > 5,
which is impossible. Thus & < 4 and therefore, by Corollary 5 I'(Z5) is perfect,
and hence I'(R) is perfect by Theorem 8.

The following result in [15] is an immediate consequence of Corollary 5,
because every finite Boolean ring R is isomorphic to Z5, for some & > 1.

Corollary 6 [15]. Let R be a finite Boolean ring. Then the following are equiv-
alent,

(1) T'(R) is perfect.
(2) T'(R) does not contain Ky as a subgraph.
(3) |R| < 2%

3.1 Perfect Ideal Based Zero-Divisor Graph of Rings

In this subsection, we characterize rings whose ideal based zero-divisor graphs
are perfect. In particular, under what values of n, the ideal based zero divisor
graph of the ring Z,, of integers modulo n is perfect.

The following observation is observed in [16] and [21].

(i) If I is an ideal of R and x1 + I,z9 + I,...,2 + I are the distinct co-
sets of I, which are zero-divisors of the quotient ring ?, then I't(R) is a

I(£)-generalized join of (z1 + I), (x2 + 1), ..., (z; + I), that is,

E) (@1 + 1), (w2 + 1), (2 + 1)),

I'i(R) :F(I

(ii) (z; + I) is a complete subgraph of I';(R) if and only if 22 € I,
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(iii) (z; + I) is a totally disconnected subgraph of I't(R) if and only if 27 ¢ I.
Hence, by Theorems 7 and 8, we have

Theorem 12. Let I be an ideal of R, then the following are equivalent,

(i) I'1(R) is perfect;
(ii) IT'(#) is perfect;
(iti) I'p(%) is perfect.

We recall the following result proved in [19].

Theorem 13 [19]. The zero divisor graph I'(Z,) of a ring Z, is perfect if and
only if n = p®, p*q®, pqr, or pqrs, where p,q,r and s are distinct primes and a
and b are positive integers.

It is well known that if I is an ideal of Z,, generated by m, then ZT" 2 Zim- SO,
we have

Corollary 7. If I is an ideal of Z,, generated by m, then I'1(Z,) is perfect if
and only if m = p®, p%q®, p%qr, or pqrs, where p,q,r and s are distinct primes
and a and b are positive integers.

Proof. By Theorems 12 and 13, I';(Z,,) is perfect if and only if I'(Z,,) is perfect
if and only if m = p?, p®¢®, p®qr, or pqrs.

3.2 Zero-Divisor Graph of Rings, Reduced Semigroups and Posets

In [13], it is shown that the chromatic number is equal to the clique number
of zero-divisor graphs of poset, reduced semiring with 0 and reduced semigroup
with 0. So it is interesting to consider the following problem.

Problem. Characterize the posets, reduced rings and reduced semigroups whose
zero-divisor graphs are perfect.

Now we characterize posets whose zero-divisor graphs are perfect using The-
orem 3.

Theorem 14. Let G be a zero-divisor graph of a poset with 0 and w(G) = k.
Then the following are equivalent,

(i) G is perfect.
(ii) The reduced graph G, of G is perfect.
(iti) The reduced graph H, of H (where H is in the Definition of generalized
complete k-partite graph) is perfect.

Proof. (i) < (i7) It follows from Corollary 2.
(ii) = (447) It follows from the definition of perfect.
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(iii) = (i1) Suppose G, is not perfect graph, then by the Theorem 6, G, contains
an odd cycle of length at least 5 as an induced subgraph or the complement
of an odd cycle of length at least 5 as an induced subgraph.

Let ey, ea, ..., e, be the atoms of G.

Case 1. G, contains an odd cycle of length at least 5 as an induced subgraph.

Let Cos41 be an odd cycle of G, as an induced subgraph with vertex set
V(Cas41) = {ap,a1...,a2s}, where s > 2. Then V(Cqs41) is not a subset of
V(H,). As the atoms forms a clique, we have |V (Cas41) N{e1,e2,... e} < 2.
First if |V (Caos41) N{e1,e2,...,ex}| =2, then there exist ¢,j € {1,2,...,k} and
¢ €{0,1,2,...,2s} such that a; = e; and asy1 = e;. Since azyo and apq3 are
not adjacent to ay = e;, we have i ¢ W(ap42) U W (aps3) and hence W(agy2) U
W(aes+3) #{1,2,...,k}, which is a contradiction to the definition of generalized
complete k-partite graph. Next if |V (Cosy1) N{e1,ea,...,ex}| =1, then we get
a contradiction in a similar way as above. Thus V(Casy1) N{e1, ea,...,ex} =0
and hence Cos41 is an induced odd cycle of H,., which is a contradiction.

Case 2. (G, contains the complement of an odd cycle of length at least 5 as an
induced subgraph.

Let Cy541 be the complement of the odd cycle Casy1 in G, with vertex set
V(Cast1) = {ao,a1,...,a2s}, where s > 2. If V(Casy1) N{er,ea,...,ex} # 0,
then there exists i € {1,2,...,k} such that e; = ay, for some £ € {0,1,2,...,2s}.
Then ay—1,ap41 ¢ {e1,e2,...,ex} and they are not adjacent to e; and hence i ¢
W(ag—1) U W (aps1), which is impossible. Thus, V(Casy1) N{e1,e2,...,ex} =0
and therefore Cos11 lies in H,., which is a contradiction.

Next, we present equivalent conditions for a zero-divisor graph of a reduced
semigroup to be perfect using Theorem 4.

Theorem 15. Let G be a zero-divisor graph of a reduced semigroup with w(G) =
k. Then the following are equivalent,

(i) G is perfect.
(ii) The reduced graph G, of G is perfect.
(1ii) The reduced graph H, of H (where H is given in the definition of generalized
complete k-partite graph) is perfect.

Proof. The proof is similar to that of Theorem 14.

A lattice L = (L, A, V) with 0 is distributive if for x,y,z2 € L, t A (y V 2) =
(x Ay) V (x A z). As every lattice is a poset, we have the following result proved
in [15].

Corollary 8 [15]. Let L be a distributive lattice with 0. Then the following are

equivalent,

(i) T'(L) is perfect.
(ii) (L) contains no induced cycle of length 5.
(iti) w(I'(L)) <4, (equivalently, the number of atoms of I'(L) is at most 4).
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Proof. (1) = (ii) It is trivial from the definition of perfect graph.

(il) = (iil) If ({a1,az,...,as}) isacliquein I'(L), where s > 5, then the subgraph
induced by {a1Vaz,asVas, a1 Vas,asVas,asVas} is an induced cycle of length
5 (as L is distributive) which is a contradiction.

(iii) = (i) Suppose I'(L) is not perfect. Then by Theorem 14, the reduced sub-
graph H, of H, defined in Theorem 14, is not perfect. By Theorem 6, H, con-
tains an odd cycle of length at least 5 as an induced subgraph or its complement
of an odd cycle of length at least 5 as an induced subgraph. If H, contains
an induced odd cycle Cos41 with vertex set V(Cosy1) = {a1,a2,...,a2541},
where s > 2. Then a; A a;41 = 0, for 1 < i < 2s, agsy1 Aap = 0 and
a; Na; # 0, for j # ¢ —1,7,7 + 1 and hence the subgraph induced by
{a1 Nag,a1 A ag,az A ag,as A as,az A agst1} is a clique in I'(L) of size 5, which
is a contradiction. Similarly if H, contains the complement Cas41 of an induced
odd cycle Ca41 with vertex set V(Cas41) = {a1,a9,...,a2s41}, where s > 2,
then the subgraph induced by {a; Aas, as Aas,asAag,aqs Nas, a5 Aay}is a clique
in I'(L) of size 5, which is again a contradiction.

As every semiring is a semigroup and by Theorem 15, we have the following
result proved in [15].

Corollary 9 [15]. Let R be a reduced semiring with 0. Then the following are
equivalent,

(i) T'(R) is perfect.
(i) T'(R) contains no induced cycle of length 5.
(i1i) w(I'(R)) <4, (equivalently, the number of atoms of I'(R) is at most 4).

Proof. The proof is similar to that of Corollary 8 by replacing V and A by
addition and multiplication, respectively.
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