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Abstract. A proper coloring of a graph G is said to be locally identifying
coloring (lid-coloring for short), if for every pair of adjacent vertices u
and v with distinct closed neighborhood, the sets of colors assigned in
the closed neighborhood of u and v are distinct. The minimum number of
colors required in any lid-coloring of a graph G is called the lid-chromatic
number of G, denoted by χlid(G).

In this paper, we give a characterization of graphs whose lid-chromatic
number equals the number of vertices. Next, we study lid-coloring on
several restricted graph classes. We show that for any block graph G,
χlid(G) ≤ 2χ(G), where χ(G) denotes the chromatic number of G. We
show that the lid-chromatic number of a biconvex bipartite graph can be
computed in polynomial time. Finally, we find the lid-chromatic number
of the Cartesian and Lexicographic products of paths and cycles.

1 Introduction

All graphs considered in this paper are finite, undirected and simple (without
loops and multiple edges). For a graph G = (V,E), we use V (G) and E(G) to
denote the vertex set and edge set of G respectively. The open neighborhood
of a vertex v, denoted N(v), is the set of vertices adjacent to v and the set
N [v] = N(v) ∪ {v} denote the closed neighborhood of v. Let f : V (G) → N be
a vertex coloring of G. For a subset X ⊆ V (G), f(X) = {f(v) | v ∈ X} denotes
the set of colors that appear in X.

A vertex coloring f of a graph G is called locally identifying coloring (lid-
coloring for short) if (i) f is a proper coloring of G (no two adjacent vertices have
the same color) and (ii) for each pair of adjacent vertices u, v with N [u] �= N [v],
we have f(N [u]) �= f(N [v]). The smallest integer k for which G admits a lid-
coloring is called the lid-chromatic number of G, denoted by χlid(G). Note that
the lid-chromatic number of a graph G is the maximum of the lid-chromatic num-
bers of its connected components. Therefore, throughout this paper we restrict
ourselves to connected graphs.

Locally identifying coloring was introduced by Esperet et al. [2]. They showed
that the decision version of the lid-coloring is NP-complete on bipartite graphs
but polynomial time solvable on trees. They also proved that χlid(G) ≤ 2χ(G) for
interval graphs, split graphs and cographs and conjectured the same bound for
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chordal graphs. They also showed that for an outerplanar graph G, χlid(G) ≤ 20.
Foucaud et al. [4] showed that any graph G with maximum degree Δ has a locally
identifying coloring with at most 2Δ2 − 3Δ+3 colors, by answering positively a
question raised in the paper [2]. Goncalves [6] showed that for any planar graph
G, χlid(G) ≤ 1280. They also proved that for any graph class of bounded expan-
sion, the lid-chromatic number is bounded. Martins and Sampaio [7] obtained a
linear time algorithms to calculate the lid-chromatic number for some classes of
graphs having few P4’s.

Our Contributions: It is easy to see that χ(G) = n if and only if G = Kn. In
Sect. 3, we investigate the graphs for which the lid-chromatic number equals n
and give a complete characterization of graphs having lid-chromatic number n.

Esperet et al. [2] conjectured that, for any chordal graph G, χlid(G) ≤ 2χ(G).
They verified the conjecture for subclasses of chordal graphs such as interval
graphs, split graphs and cographs. In Sect. 4, we show that the conjecture holds
for block graphs, which are a subclass of chordal graphs.

Esperet et al. [2] showed that, if G is bipartite then χlid(G) ≤ 4. They
also proved that deciding whether a bipartite graph G has χlid(G) ∈ {3, 4} is
NP-complete. As lid-coloring is NP-complete on bipartite graphs, we focus on
biconvex bipartite graphs, which is a subclass of bipartite graphs. In Sect. 5, we
show that lid-chromatic number of biconvex bipartite graphs can be computed
in polynomial time.

Finally, we investigate lid-coloring on Cartesian product and Lexicographic
product of graphs. Proper coloring of various graph products has been well
studied [3,5,8,9]. For example, the chromatic number of the Cartesian product
of two graphs G and H [8] is equal to max{χ(G), χ(H)}. The chromatic number
of a lexicographic product of two graphs G and H is equal to the b-fold chromatic
number [5] of G, where b = χ(G). In Sects. 6 and 7, we give exact values of the
lid-chromatic number of Cartesian and Lexicographic products of paths and
cycles.

2 Preliminaries

We denote the set {1, 2, . . . , k} with [k]. Let c : V (G) → [k] be a coloring of
the vertices of G using k colors. Let S ⊆ V (G), then c(S) = {c(v) | v ∈ S}.
We say an edge uv ∈ E(G) respects lid-coloring if either (i) N [u] = N [v], or (ii)
c(N [u]) �= c(N [v]). We associate a distinguishing color for each edge satisfying
the condition (ii) in the above sentence. We define a distinguishing color for
the edge uv to be a color from (c(N [u]) \ c(N [v])) ∪ (c(N [v]) \ c(N [u])). That
is, a color that is seen in the closed neighborhood of u and not in the closed
neighborhood of v or vice-versa. The minimum degree of the graph G is denoted
by δ(G). For more details on graph theoretic notation or terminology, we refer
the reader to the textbook [1]. The lid-chromatic numbers of paths and cycles
are stated below.

Due to space constraints, the proofs of the results marked (�) are presented
in the full version of the paper.
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Lemma 1 ([4]). For a positive integer n, where n ≥ 2, we have

χlid(Pn) =

⎧
⎪⎨

⎪⎩

2 if n = 2;
3 if n is odd
4 if n is even and n �= 2;

Lemma 2 ([4]). For a positive integer n, where n ≥ 4, we have

χlid(Cn) =

⎧
⎪⎨

⎪⎩

3 if n ≡ 0 mod 4;
5 if n = 5 or 7;
4 otherwise;

3 Graphs with χlid(G) = |V (G)|
Let G = (V,E) be a graph on n vertices. It is known that χ(G) = n if and only if
G = Kn. In this section, we investigate graphs for which the lid-chromatic num-
ber equals n. We first show the characteristics of graphs G whose lid-chromatic
number is at most n − 1. Using this, we conclude with the structure of graphs
that require n colors.

Theorem 1. Let G = (V,E) be a graph on n vertices. Then χlid(G) ≤ n − 1 if
and only if there exist two non-adjacent vertices x, y ∈ V (G) such that for every
edge uv ∈ E(G) at least one of the following conditions is satisfied.

(1) if either u or v belong to {x, y}
(a) N [u] = N [v], or
(b) N [u] \ {x, y} �= N [v] \ {x, y}.

(2) Both u and v does not belong to {x, y}.
(a) N [u] = N [v], or
(b) N [u] \ {x, y} �= N [v] \ {x, y}, or
(c) N [u] \ {x, y} = N [v] \ {x, y} and

(i) if N(u) ∩ {x, y} �= ∅, then N(v) ∩ {x, y} = ∅, or
(ii) if N(u) ∩ {x, y} = ∅, then N(v) ∩ {x, y} �= ∅.

Proof. (=⇒) There exists a lid-coloring of G using at most n − 1 colors. We need
to show that there exist two non-adjacent vertices x, y ∈ V (G) such that for every
edge uv ∈ E(G) at least one of the given two conditions is satisfied. Without loss
of generality, let χlid(G) = n − 1. Otherwise, if χlid(G) < n − 1, we can always
replace the repeated colors in the lid-coloring of G with new colors to get a lid-
coloring of G that uses n − 1 colors. Let c : V (G) → [n − 1] be a lid-coloring of G.
There exists two non-adjacent vertices x and y in G such that c(x) = c(y).

Consider an arbitrary edge uv of G.

Case 1: Either u or v belong to {x, y}.
Without loss of generality, let u = x. Suppose the edge xv does not satisfy

the conditions 1(a) and 1(b). That is, we have

N [x] �= N [v], and (1)
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N [x] \ {x, y} = N [v] \ {x, y}. (2)

From Eqs. (1), (2) and the fact that c(x) = c(y), it is clear that c(N [x]) =
c(N [v]), which is a contradiction to the fact that c is a lid-coloring of G.

Case 2: Both u and v does not belong to {x, y}.
Suppose that the edge uv does not satisfy any of the three conditions 2(a),

2(b) and 2(c), we have
N [u] �= N [v], (3)

N [u] \ {x, y} = N [v] \ {x, y}, and (4)

N(u) ∩ {x, y} �= ∅, N(v) ∩ {x, y} �= ∅. (5)

If N(u) ∩ {x, y} = N(v) ∩ {x, y}, then using (4) we get N [u] = N [v], which
is a contradiction to (3). Therefore, using (3),(4) and (5), we get that

N(u) ∩ {x, y} �= N(v) ∩ {x, y}. (6)

Using Eq. (4), we have c(N [u] \ {x, y}) = c(N [v] \ {x, y}). From Eq. (5),
we know that u and v have some neighbor in {x, y}. Since, c(x) = c(y) the set
of colors assigned to vertices in N [u] and N [v] are the same in G even though
N [u] �= N [v]. This is a contradiction to the assumption that c is a lid-coloring
of G.

(⇐=) Let G be a graph with two non-adjacent vertices x and y such that for
every edge uv ∈ E(G), at least one of the given conditions is satisfied. We need
to show that χlid(G) ≤ n − 1.

Let f : V (G) → [n − 1] be a coloring of G constructed as follows. Assign
f(x) = f(y) = 1. Each of the vertices in V (G) \ {x, y} are assigned distinct
colors from [n − 1] \ {1}. We now argue that f is a lid-coloring of G.

Since every vertex in V (G)\{x, y} is assigned a distinct color and xy /∈ E(G),
we have that f is a proper coloring. Consider an arbitrary edge uv ∈ E(G).

Case 1: Either u or v belongs to {x, y}.
Without loss of generality we assume that u = x. If N [x] = N [v] then there

is nothing to prove.
If N [x] \ {x, y} �= N [v] \ {x, y}, then as no two vertices in V (G) \ {x, y} are

colored with the same color by f . Therefore f(N [x]) �= f(N [v]).

Case 2: Both u and v does not belong to {x, y}.
We assume that the edge uv does not satisfy condition 2(a), otherwise there

is nothing to prove.
If N [u] \ {x, y} �= N [v] \ {x, y}, then as no two vertices in V (G) \ {x, y} are

colored with the same color by f . Therefore, f(N [u]) �= f(N [v]).
Lastly, for any edge uv ∈ E(G), if N [u] \ {x, y} = N [v] \ {x, y}, then set of

colors (say S) used in N [u]\{x, y} is same as the set of colors used in N [v]\{x, y}.
If N(u) ∩ {x, y} = ∅, then set of colors in N [u] is S. Since N(v) ∩ {x, y} �= ∅,
set of colors used in N [v] is S ∪ {1}. Therefore, set of colors used in N [u] is not
same as set of colors used in N [v]. Similarly, if N(u) ∩ {x, y} �= ∅, then set of
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colors in N [u] is S ∪ {1}. Since, N(v) ∩ {x, y} = ∅, set of colors in N [v] is S.
Therefore, set of colors used in N [u] is not same as set of colors used in N [v].

Hence, f is a lid-coloring that uses n − 1 colors. ��
Given a graph G, if G does not satisfy the conditions mentioned in Theorem

1, then the lid-chromatic number of G is equal to |V (G)| = n.
Thus, as a consequence of Theorem 1, we have the following corollary.

Corollary 1. Given a graph G, we can decide in polynomial time if χlid(G) = n,
where n is the number of vertices of the graph G.

4 Block Graphs

This section is devoted to block graphs. We prove that every block graph has
lid-chromatic number at most 2ω(G), where ω(G) is the size of a largest clique
in G.

Definition 1 (Block Graphs [1]). A vertex u of a connected graph G is called
a cut vertex if G−u is disconnected. A block of a graph G is a maximal connected
induced subgraph of G that has no cut vertex. A block graph is a graph in which
every block is a clique.

To prove the result, we use the notion of block decomposition of graphs. Let
G = (V,E) be a block graph with q blocks B1, . . . , Bq. The block decomposition
of G is a tree denoted by TB = (VB , EB) where VB = {B1, . . . , Bq} and EB =
{BiBj | Bi ∩ Bj �= ∅}. We root the tree TB at a node BR having at least
two cut vertices. For example, the block decomposition of P4 (the path on four
vertices) contains three blocks {B1, B2, B3} where every block is a K2 with B2

being adjacent to both B1 and B3. The level of a block B denoted by �(B) is
the distance of B from the root block BR in TB . Clearly �(BR) = 0. We also
define level of a vertex v as �(v) = min{�(B) | v ∈ V (B)}. For each block B at
level p ≥ 1, we call the vertex v ∈ B as the distinguishing ancestor vertex of B,
denoted by dav(B), if and only if �(v) < �(B). We call B′ as the parent block of
B if B′ is the parent of B in TB .

For a vertex v ∈ V (G), let

D1(v) = {B | �(B) = �(v) + 1 and dav(B) = v}, and
D2(v) = {B | �(B) = �(v) + 2, and distG(dav(B), v) = 1},

where distG(w,w′) is the length of a shortest path from w to w′ in G.
Notice that if v is not a cut-vertex in G, then D1(v) = D2(v) = ∅. An

illustration of a block decomposition is shown in Fig. 1.
We first present the overall idea of the algorithm. We consider the blocks

level by level (starting with level 0) and in each level we process the blocks from
left to the right in some arbitrary order. First, all the vertices in the root block
are assigned colors. When a non-root block B is considered for coloring as in the
above ordering, all vertices at level at most �(B) − 1 are assigned colors.
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Fig. 1. An illustration of a block decomposition of G where each Bi represents a block.
Considering �(B1) = p, we have �(B2) = �(B3) = �(B4) = �(B5) = p+1, �(B6) = p+2
and �(B7) = �(B8) = p+3. Also dav(B1) = x, dav(B2) = dav(B3) = v, and dav(B6) =
a. For the vertex x, we have D1(x) = {B1} and D2(x) = {B2, B3, B4, B5}. For the
vertex a, we have D1(a) = {B6} and for the vertex b, we have D1(b) = {B7}.

We color each block B in two phases. In its first phase, exactly two vertices
of B are colored while coloring its parent block. After the first phase, we find a
set of forbidden colors for B. In its second phase, we arbitrarily assign colors to
the remaining uncolored vertices of B from the set [2k] excluding its forbidden
colors.

Theorem 2. If G is a block graph, then χlid(G) ≤ 2ω(G).

Proof. Given a block graph G and its block decomposition, we show that
χlid(G) ≤ 2k, where k = ω(G). To prove the result, we present a lid-coloring
c : V (G) → [2k] of G using at most 2k colors.

Coloring Procedure: Let N(B) be the set of colors that are forbidden to be
used in the block B. Initially N(B) = ∅, for each block B. We consider the
blocks level by level and from left to right in each level.

At each block B, for each cut vertex v ∈ V (B) \ {dav(B)}, we identify two
colors W (v) and A(v). For each edge vw, where w ∈ V (B) \ {dav(B)}, the color
W (v) serves as a distinguishing color for the edge vw. Similarly, A(v) serves as a
distinguishing color for the edges vw where w /∈ V (B). The intuition is that the
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edge vw respects lid-coloring because of the colors W (v) and A(v) depending on
whether or not w ∈ V (B).

Coloring the Root Block BR: Let {v1, v2, . . . , vk′}, where k′ ≤ k, be the ver-
tices of BR. Each vertex in V (BR) is assigned a distinct color from {1, 2, . . . , 2k}.
WLOG, let two vertices v1, v2 from BR be assigned the colors c1 and c2 respec-
tively. For each cut vertex v of BR, we do the following:

1. (a) If v �= v1 set A(v) = c1, else set A(v) = c2.
(b) Forbid the color A(v) to be used in all the blocks from D1(v) ∪ D2(v).

That is, for all B ∈ D1(v) ∪ D2(v), update N(B) = N(B) ∪ {A(v)}.
2. Choose W (v) to be a color from [2k] \ (c(BR) ∪ N(B′)) such that for any

two cut vertices u, u′ of BR, W (u) �= W (u′), where B′ is some block in
D1(v). Here c(BR) represents the colors assigned to the vertices in V (BR),
i.e., c(BR) = {c(w) | w ∈ V (BR)}, and N(B′) is the set of colors forbidden
to be used in V (B′).
Let S(BR) be the set of associated colors for the cut vertices of BR. That
is, S(BR) = {W (v) | v is a cut vertex of BR}. We now color a vertex in each
block of D1(v) in the following manner. For each B′ ∈ D1(v), choose an
arbitrary uncolored vertex v′ ∈ V (B′) and assign c(v′) = W (v). Then update
N(B′) = N(B′) ∪ (S(BR) \ {c(v′)}).

Notice that after processing all the cut vertices of BR, exactly two vertices in
each of the blocks at level 1 are colored.

Coloring a Non-Root Block B: In the first phase coloring of B, exactly two
vertices of B are colored. Let the two colored vertices be dav(B) and v′. In the
second phase coloring of B, we arbitrarily assign colors to the uncolored vertices
in V (B) from [2k] \ (N(B) ∪ {c(dav(B)), c(v′)}).

For each cut vertex v ∈ V (B) \ {dav(B)}, we do the following:

1. (a) Set A(v) = c(dav(B)).
(b) Forbid the color A(v) to be used in all blocks from D1(v) ∪ D2(v). That

is, for all B ∈ D1(v) ∪ D2(v), update N(B) = N(B) ∪ {A(v)}.
2. This step is similar to the Step 2 of the root block case where each instance

of BR is to be replaced by B. Also whenever we talk about the cut vertices
of BR, we replace it with the the cut vertices in V (B) \ {dav(B)}.

We recursively apply the above coloring procedure on the blocks in order and
complete the coloring. We now show that the coloring obtained is a lid-coloring
of G. Before we prove the correctness, we will look at the following claim.

Claim. For any non-root block B, we have |N(B)| ≤ k + 2.

Proof. Recall that, the set N(B) represents the set of colors that are forbidden in
B. Let B′ and B′′ be the parent and the grand-parent of B in TB respectively.
From the description of the algorithm, the colors of the vertices dav(B) and
dav(B′) are forbidden in B. In the worst case, B′ contains at most k cut vertices.



154 S. Bhyravarapu et al.

For each cut vertex v ∈ V (B′), we assigned a color W (v) which is forbidden to
be used in B′. Therefore by combining all, at most k + 2 colors are forbidden
in B.

Correctness: We first need to show why it is possible to color the uncolored
vertices of each block B in its second phase of coloring. From the above claim,
we have that |N(B)| ≤ k + 2. Since B has exactly two colored vertices after its
first phase of coloring, the number of uncolored vertices in B is at most k − 2.
We have the budget to color the remaining with [2k] \ N(B).

It is easy to see that the coloring yields a proper coloring. We now show that
each edge respects lid-coloring. Let uv be an edge. We have the following cases.

• �(u) = �(v) Let u, v ∈ V (B). If none of them are cut vertices of B, then
N [u] = N [v]. If exactly one of them is a cut vertex, say u. Then by the
coloring procedure, there exists a color W (u) ∈ c(N [u]) and W (u) /∈ c(N [v]).
Else both u and v are cut vertices. Then W (u) ∈ c(N [u]) and W (u) /∈ c(N [v]).
Also W (v) /∈ c(N [u]) and W (v) ∈ c(N [v]).

• �(u) �= �(v)
Let u, v ∈ V (B) for some block B. Then it follows that exactly one of v or
u is dav(B). WLOG let dav(B) = u and B� be the parent block of B where
u ∈ V (B�). While coloring the block B�, we had chosen the color of a vertex
in B� to be the A(u) and forbid the color A(u) in D1(u)∪ D2(u). This forces
none of the neighbors of v in D1(v) to be assigned the color A(u). Hence the
edge uv respects lid-coloring.

The edge uv respects lid-coloring in all the above cases. This completes the
proof of Theorem 2. ��
Remark: Consider the graph P4. From Lemma 1, we have that χlid(P4) = 4. It
is easy to see that P4 is a block graph and the bound in Theorem 2 is tight.

5 Biconvex Bipartite Graphs

Definition 2 (Biconvex Bipartite Graph). A bipartite graph G = (X∪Y,E)
is called convex bipartite graph over the vertex set X if X can be enumerated
such that for all y ∈ Y the vertices adjacent to y are consecutive with respect to
the ordering on X. If G is convex over both X and Y , it is said to be biconvex
bipartite graph.

Theorem 3. If G = (X ∪ Y,E) is a connected biconvex bipartite graph having
at least three vertices, then

χlid(G) =

{
4, if Z ∩ X �= ∅ and Z ∩ Y �= ∅
3, otherwise

where Z = {u ∈ X ∪ Y | deg(u) = 1}.
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Proof. Let G = (X ∪Y,E) be a biconvex bipartite graph. Let σ = x1, x2, . . . , xp

be an enumeration of vertices of X and π = y1, y2, . . . , yq be an enumeration
of vertices of Y . Let Z represent the set of degree one vertices in G. We will
divide the proof into the following cases depending on the existence of degree
one vertices in X and Y .

Case 1: |Z| = 0. That is δ(G) ≥ 2.
Let c : V (G) → {1, 2, 3} be a coloring of G defined as follows: c(xi) = 1 for

each i ∈ [p], c(yj) = 2 when j is even and c(yj) = 3 otherwise for each j ∈ [q].
Clearly c is a proper coloring. Next, we show that c is a lid-coloring of G.

Consider two adjacent vertices u ∈ X and v ∈ Y . Clearly N [u] �= N [v],
otherwise G = K2, contradicting the assumption that G is connected and has at
least three vertices. Hence, we have N [u] �= N [v] for any pair of adjacent vertices
of G. As deg(u) ≥ 2, we have c(N [u]) = {1, 2, 3} and c(N [v]) = {1, c(v)}. That
is c(N [u]) �= c(N [v]) for any pair of adjacent vertices u and v of G. Therefore, c
is a lid coloring of G.

Case 2: Either Z ∩ X �= ∅ or Z ∩ Y �= ∅ but not both.
Without loss of generality we assume that Z ∩ X = ∅ and Z ∩ Y �= ∅. It

is easy to see that the coloring c : V (G) → {1, 2, 3} defined in Case 1 is also a
lid-coloring of G in this case.

Case 3: Both Z ∩ X �= ∅ and Z ∩ Y �= ∅.
Suppose χlid(G) = 3 and let f : V (G) → [3] be a lid-coloring of G. Let

x ∈ Z ∩ X and y be the neighbor of x. Without loss of generality, assume that
f(x) = 1, f(y) = 2 and f(N [x]) = {1, 2}. Then f(N [y]) = {1, 2, 3}, since G is
connected and has at least three vertices. If z ∈ N(y), then f(N [z]) �= {1, 2, 3},
otherwise f(N [y]) = f(N [z]) and N [y] �= N [z]. Thus, f(N [z]) = {2, f(z)} for
every z ∈ N(y). Note that z is at even distance from x and y is at odd distance
from x. Thus for any vertex w, |f(N [w])| = 3 if w is at odd distance from x and
|f(N [w])| = 2 if w is at even distance from x. Every vertex v in the set Z ∩ Y
is at odd distance from x, that is |f(N [v])| = 3, which is a contradiction to the
fact that the degree of v is one in G. Therefore χlid(G) ≥ 4. It was shown in [2]
that χlid(G) ≤ 4 when G is bipartite. Hence, we conclude that χlid(G) = 4. ��
Corollary 2. Given a biconvex bipartite graph G, the lid-chromatic number of
G can be computed in polynomial time.

Proof. Given a biconvex bipartite graph G = (X ∪ Y,E), from Theorem 3 we
only need to determine whether both X and Y contain degree one vertices or not
which can be done in polynomial time. Based on this we decide the lid-chromatic
number of G. ��

6 Cartesian Product

Definition 3 (Cartesian product). Cartesian product G�H of graphs G and
H is a graph such that V (G�H) = V (G) × V (H), where × represents cartesian
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product and two vertices (u1, v1) and (u2, v2) in G�H are adjacent if and only if
either u1 = u2 and v1 is adjacent to v2 in H, or v1 = v2 and u1 is adjacent to u2

in G.

Theorem 4 ([2]). If G and H are bipartite graphs without isolated vertices,
then χlid(G�H) = 3.

As a corollary, we obtain the lid-chromatic number of Cartesian product of paths.

Corollary 3. For every pair of integers m and n, where 2 ≤ m ≤ n, we have
χlid(Pm�Pn) = 3.

Taking the work forward, we study lid-coloring of Cartesian product of a
path and a cycle, and Cartesian product of two cycles.

6.1 Cartesian Product of a Cycle and a Path

Theorem 5. For every pair of integers m and n, where m ≥ 3, n ≥ 2, we have

χlid(Cm�Pn) =

⎧
⎪⎨

⎪⎩

5 m = 3 and n ≥ 2
4 m is odd, m > 3 and n ≥ 2
3 m is even and n ≥ 2

Proof. Let G = Cm�Pn and let V (C3) = {u1, u2, u3}, V (Pn) = {v1, v2, · · · , vn}
and V (C3�Pn) = {(u1, vi), (u2, vi), (u3, vi) | i ∈ [n]}.
Case 1: When m = 3 and n ≥ 2. A 5-lid-coloring of C3�Pn is given in the
Fig. 2a. Hence, we have χlid(C3�Pn) ≤ 5.

Next, we show that χlid(C3�Pn) ≥ 5. Let X = {(u1, v1), (u2, v1), (u3, v1)}.
Clearly the graph G[X] ∼= C3. Hence χlid(G[X]) = 3. Observe that (a) every pair
of vertices inX have distinct closed neighborhoods and (b) all the three colors used
in X in any lid-coloring of C3�Pn appear in the neighborhood of any vertex of X.
In order to maintain distinct colors in their closed neighborhood, we must use at
least two new colors in {(u1, v2), (u2, v2), (u3, v2)}. Therefore, any lid-coloring of
C3�Pn must use at least 5 colors. Hence, we have χlid(C3�Pn) = 5.

Case 2: m > 3 and m is odd, n ≥ 2.
Let V (Cm) = {u1, u2, · · · , um} and V (Pn) = {v1, v2, · · · , vn}, and

V (Cm�Pn) = {(ui, vj) | i ∈ [m], j ∈ [n]}. A 4-lid-coloring of Cm�Pn is given in
the Fig. 2b. Hence, we have χlid(Cm�Pn) ≤ 4.

Next, we show that χlid(Cm�Pn) ≥ 4. Let X = {(ui, v1) | i ∈ [m]}. As the
graph G[X] induced by the vertices of X is an odd cycle, we have χlid(G) ≥
χ(G[X]) ≥ 3. Observe that in any proper coloring f : V (G[X]) → {1, 2, 3}
there exists two adjacent vertices (ui, v1) and (uj , v1) such that f(N [(ui, v1)]) =
f(N [(uj , v1)]) = {1, 2, 3} in G[X]. As N [(ui, v1)] �= N [(uj , v1)], in any lid-
coloring of G at least one new color must be used to color a vertex of
either N [(ui, v1)] or N [(uj , v1)]. Hence χlid(Cm�Pn) ≥ 4. Altogether we have
χlid(Cm�Pn) = 4.
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Case 3: m is even and n ≥ 2,
In this case both Cm and Pn are bipartite and hence from Theorem 4 we

have χlid(Cm�Pn) = 3. ��
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Fig. 2. (a) A 5-lid-coloring of C3�Pn for n ≥ 2, and (b) A 4-lid-coloring of Cm�Pn,
when m is odd, m > 3 and n ≥ 2.

6.2 Cartesian Product of Two Cycles

Theorem 6 (�). For every pair of integers m and n, where m ≥ 3, n ≥ 3, we
have

χlid(Cm�Cn) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

5 m = 3 and n ≥ 3
3 m is even and n is even
4 m is odd, m > 3 and n is even
≤ 5 m is odd, m > 3 and n is odd, n > 3

7 Lexicographic Product

Definition 4 (Lexicographic product). Lexicographic product G[H] of
graphs G and H is a graph such that V (G[H]) = V (G)× V (H), where × repre-
sents cartesian product and two vertices (u1, v1) and (u2, v2) in G[H] are adjacent
if and only if either u1 is adjacent to u2 in G, or u1 = u2 and v1 is adjacent to
v2 in H.

Definition 5. A lid coloring f : V (H) → [k] of a graph H is called ‘bad’ if there
exists a vertex v in H such that f(N [v]) = [k]. Otherwise, we call f as a ‘good’
lid-coloring of H.
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Theorem 7 (�). Let H be a graph on n vertices with χlid(H) = k. For any
integer m ≥ 3, we have

χlid(Pm[H]) =

⎧
⎪⎨

⎪⎩

2k + 1 if m is odd and every k-lid-colring of H is bad ;
2k + 2 if m is even and every k-lid-colring of H is bad ;
2k otherwise;

8 Conclusion

In this paper, we have studied the lid-coloring of graphs. We have given the
characterization of graphs having lid-chromatic number equals to the number
of vertices. We have shown that, for any block graph G, χlid(G) ≤ 2χ(G). We
have proved that lid-coloring is solvable in polynomial time on biconvex bipartite
graphs. We have given the exact values of lid-chromatic number for the Cartesian
and Lexicographic products of paths and cycles.

We conclude the paper with the following open problems.

1. If χlid(H) = k and every k-lid-coloring of H is ‘bad’ then what is the lid-
chromatic number of (a) P2[H] (b) C3[H]?

2. When both m and n are odd, we have showed that 4 ≤ χlid(Cm�Cn) ≤ 5.
We do not know the exact value of the lid-chromatic number of Cm�Cn.
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