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Preface

This volume contains the papers presented at CALDAM 2023 (the 9th International
Conference on Algorithms and Discrete Applied Mathematics) held during February 9–
11, 2023 at DA-IICT,Gandhinagar, Gujarat, India. CALDAM2023was organised by the
Dhirubhai Ambani Institute of Information & Communication Technology (DA-IICT),
Gandhinagar, Gujarat, and the Association for Computer Science and Discrete Math-
ematics (ACSDM), India. The program committee consisted of 30 highly experienced
and active researchers from various countries.

The conference had papers in the areas of algorithms and optimization, computa-
tional geometry, game theory, graph coloring, graph connectivity, graph domination,
graph matching, and graph partition and graph covering. We received 73 submissions
with authors from all over the world. Each paper was extensively reviewed by program
committee members and other expert reviewers. The committee decided to accept 34
papers for presentation. The program included two Google invited talks by Professors
Mark de Berg (of Eindhoven University of Technology) and Ignasi Sau (Université de
Montpellier).

As volume editors, we would like to thank the authors of all submissions for con-
sidering CALDAM 2023 for potential presentation of their works. We are very much
indebted to the program committee members and the external reviewers for providing
serious reviews within a very short period of time. We thank Springer for publishing the
proceedings in the Lecture Notes in Computer Science series. Our sincerest thanks to
the invited speakers Mark de Berg and Ignasi Sau for accepting our invitation to give
a talk. We thank the organizing committee chaired by Sunitha Vadivel Murugan of the
Dhirubhai Ambani Institute of Information & Communication Technology, Gandhina-
gar, for the smooth conduct of CALDAM 2023 and the Dhirubhai Ambani Institute
of Information & Communication Technology, Gandhinagar and the Indian Institute of
Technology, Gandhinagar for providing the necessary facilities. We are very grateful
to the chair of the steering committee, Subir Ghosh, for his active help, support, and
guidance throughout. We thank the previous edition’s chairs R. Inkulu and Niranjan
Balachandran for assistance in various details in the processes. We thank our sponsors
Google Inc. for their financial support. We also thank Springer for its support for the
best paper presentation awards. We thank the EasyChair conference management sys-
tem, which were very effective in handling the entire process. We thank Springer for
detailed guidelines for the process of preparing the proceedings.

February 2023 Amitabha Bagchi
Rahul Muthu
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Stable Approximation Schemes

Mark de Berg

Department of Computer Science, TU Eindhoven, the Netherlands
M.T.d.Berg@tue.nl

In a dynamic optimization problem, the goal is to maintain a solution to an optimization
problem under insertions and deletions. We are interested in trade-offs between the
stability of the solution and its approximation ratio. To formalize this, we introduce the
concept of k-stable algorithms, which are algorithms that apply at most k changes to
the solution upon each insertion and deletion. We are particularly interested in stable
approximation schemes, which are update algorithms that, for any given parameter ε > 0,
are k(ε)-stable andmaintain a solutionwith approximation ratio 1+ ε, where the stability
parameter k(ε) only depends on ε and not on the size of the current input. In this talk I
will discuss stable approximation schemes for two problems: the Range-Assignment
Problem and Maximum Independent Set.

The Range-Assignment Problem is defined as follows. Let P be a set of points
in Rd , where each point p ∈ P has an associated transmission range, denoted ρ(p).
The range assignment ρ induces a directed communication graph Gρ(P) on P, which
contains an edge (p, q) iff |pq| ≤ ρ(p). In the broadcast range-assignment problem,
the goal is to assign the ranges such that Gρ(P) contains an arborescence rooted at a
designated root node and the cost

∑
p∈P ρ(p)2 of the assignment is minimized. For this

problem, the stability of a dynamic algorithm is the number of ranges that are modified
upon the insertion or deletion of a point in P. We will show that the Range-Assignment
Problem admits a stable approximation scheme in R1, but not in R2.

For Maximum Independent Set on a graph G, we consider the dynamic problem
where each insertion adds a single vertex plus all its incident edges to the graph G,
and a deletion removes a vertex and all its incident edges. The stability of a dynamic
algorithm is then defined as the number of vertices that are added to or deleted from the
maintained independent set I upon the insertion or deletion of a vertex into G. We show
that for graphs that admit sublinear clique-based separators—examples of such graphs
are planar graphs and disk graphs—a stable approximation scheme exists, and we show
that for certain expander graphs a stable approximation scheme does not exist.

The talk is based on joint work with Arpan Sadhukhan and Frits Spieksma.

Keywords: Approximation algorithms · Online algorithms · Stable approximation
schemes

Supported by the Dutch Research Council (NWO) through Gravitation-grant NETWORKS-
024.002.003.

https://orcid.org/0000-0001-5770-3784


Graph Modification Problems with Forbidden Minors

Ignasi Sau

LIRMM, Université de Montpellier, CNRS, Montpellier, France

In a generic graph modification problem, given an input graph G, the goal is to apply
some modifications to it, belonging to a prescribed set M (say, vertex deletion or edge
contraction), in order to obtain a graph that belongs to a target graph class C (say, a
planar graph or a 3-regular graph). Different instantiations of M and C yield a number
of well-studied problems such as Vertex Cover or Feedback Vertex Set. A very
active line of research studies the parameterized complexity of this family of problems
for various choices of the parameter. Of particular relevance is the case where the target
graph class C excludes some graph as a minor. The objective of this talk is to survey
recent work in this direction, along with some of the most common techniques used in
the literature, including the strong interplay of this family of problems with logic.
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Efficient Reductions and Algorithms
for Subset Product

Pranjal Dutta1 and Mahesh Sreekumar Rajasree2(B)

1 Chennai Mathematical Institute, Chennai, India
pranjal@cmi.ac.in

2 Indian Institute of Technology, Kanpur, Kanpur, India

mahesr@cse.iitk.ac.in

Abstract. Given positive integers a1, . . . , an and a target integer t, the
Subset Product problem asks to determine whether there exists a subset
S ⊆ [n] such that

∏
i∈S ai = t. It differs from the Subset Sum prob-

lem where the multiplication operation is replaced by addition. There is
a pseudopolynomial-time dynamic programming algorithm which solves
the Subset Product in O(nt) time and Ω(t) space.

In this paper, we present a simple and elegant randomized algorithm for
Subset Product in Õ(n + to(1)) expected-time. Moreover, we also present
a poly(nt) time and O(log2(nt)) space deterministic algorithm.

In fact, we solve a more general problem called the SimulSubsetSum.
This problem was introduced by Kane 2010. Given k instances of Sub-
set Sum, it asks to decide whether there is a ‘common’ solution to all the
instances. Kane gave a logspace algorithm for this problem. We show a
polynomial-time reduction from Subset Product to SimulSubsetSum and
also give efficient algorithm for the latter. Our algorithms use multivari-
ate FFT, power series and number-theoretic techniques, introduced by
Jin and Wu (SOSA 2019) and Kane (2010).

Keywords: simultaneous · power series · subset product · logspace ·
FFT · pseudo-prime-factor

1 Introduction

The Subset Sum problem (in short, SSUM) is a well-known NP-complete prob-
lem [18, p. 226], where given (a1, . . . , an, t) ∈ Z

n+1
≥0 , the problem is to decide

whether there exists S ⊆ [n] such that
∑

i∈S ai = t. In the recent years, this
problem has gained significant attractions due to applications in provable-secure
cryptosystems [10,19] and remarkable algorithmic improvements both in classi-
cal and quantum world [3,5,8,9,12–14]. In this paper, we study a well-known
variant of the subset sum, called Subset Product.

Problem 1 (Subset Product). Given (a1, . . . , an, t) ∈ Z
n+1
≥1 , the Subset Product

problem asks to decide whether there exists an S ⊆ [n] such that
∏

i∈S ai = t.

The full version is available at https://drive.google.com/file/d/1xUX29eVZ 2J1zv062d
H4V8Yc8NhqwV1X/view?usp=share link.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Bagchi and R. Muthu (Eds.): CALDAM 2023, LNCS 13947, pp. 3–14, 2023.
https://doi.org/10.1007/978-3-031-25211-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25211-2_1&domain=pdf
https://drive.google.com/file/d/1xUX29eVZ_2J1zv062dH4V8Yc8NhqwV1X/view?usp=share_link
https://drive.google.com/file/d/1xUX29eVZ_2J1zv062dH4V8Yc8NhqwV1X/view?usp=share_link
https://doi.org/10.1007/978-3-031-25211-2_1


4 P. Dutta and M. S. Rajasree

Subset Product is known to be NP-complete [11, p. 221]. It has a trivial O(nt)
time (pseudo-polynomial time) dynamic programming algorithm which requires
Ω(t) space [2].

Subset Product has been studied and applied in many different forms. For
e.g. 1) constructing a smooth hash (VSH) by Contini et al. [6], 2) attack on the
Naccache-Stern Knapsack (NSK) public key cryptosystem [7]. Similar problem
has also been studied in optimization, in the form of product knapsack prob-
lem [21], multiobjective knapsack problem [1].

Next, we define a seemingly unrelated problem. It asks to decide whether
there is a ‘common’ solution to the given many instances of subset sum. This
was first introduced by [15, Section 3.3] (but no formal name was given).

Problem 2 (SimulSubsetSum). Given subset sum instances (a1j , . . . , anj , tj) ∈
Z

n+1
≥0 , for j ∈ [k], where k is some parameter, the Simultaneous Subset Sum

problem (in short, SimulSubsetSum) asks to decide whether there exists an S ⊆
[n] such that

∑
i∈S aij = tj ,∀j ∈ [k].

Remarks.

1. When k is fixed parameter (independent of n), we call this k −
SimulSubsetSum. There is a trivial O(n(t1 + 1) . . . (tk + 1)) time determin-
istic algorithm for the SimulSubsetSum problem with k subset sum instances
(k not necessarily a constant) by extending the dynamic programming algo-
rithm for SSUM.

2. It suffices to work with tj ≥ 1,∀j ∈ [k]. To argue that, let us assume that tj =
0 for some j ∈ [k] and Ij := {i ∈ [n] | aij = 0}. Observe that if SimulSubsetSum
has a solution set S ⊆ [n], then S ⊆ Ij . Therefore, for every � ∈ [k], instead
of looking at (a1�, . . . , an�, t�), it suffices to work with {ai,� | i ∈ Ij} with the
target t�. Thus, we can trivially ignore the jth SSUM instance.

Hardness Depends on k. Linear algebraically, Problem 2 is asking to solve a
system of k-linear equations, in n-variables with 0/1 constraints on the variables.
If we assume that the set of vectors {(a1j , . . . , anj) | ∀j ∈ [k]} is linearly inde-
pendent; then we can perform Gaussian elimination to find a relation between
the free variables (exactly n − k) and dependent/leading variables. Then, by
enumerating over all possible 2n−k values of the free variables and finding the
corresponding values for leading variables, we can check whether there is a
0/1 solution, hence solving it in poly(n, k) · 2n−k time. This implies that when
k ≥ n − O(log(n)), SimulSubsetSum (with assuming linear independence) has
a polynomial time solution. Whereas, we showed (see [Theorem 6,full version])
that given a subset sum instance, we can convert this into a SimulSubsetSum
instance in polynomial time even with k = O(log(n)).

1.1 Our Contributions

Theorem 1 (Time-efficient algorithm for Subset Product). There exists a
randomized algorithm that solves Subset Product in Õ(n + to(1)) expected-time.
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Remarks.

1. The result in the first part of the above theorem is reminiscent of the Õ(n+t)
time randomized algorithms for the subset sum problem [4,14], although the
time complexity in our case is the expected time, and ours is better.

2. The expected time is because to factor an integer t takes expected
exp(O(

√
log(t) log log(t))) time [17]. If one wants to remove expected time

analysis (and do the worst case analysis), the same problem can be solved in
Õ(n2 + to(1)) randomized-time. For details, see the end of Subsect. 3.1.

3. While it is true that Bellman’s algorithm gives O(nt) time algorithm, the
state-space of this algorithm can be improved to (expected) nto(1)-time for
Subset Product, using a similar dynamic algorithm with a careful analysis.
For details, see [Appendix D,full version].

Theorem 2 (Space-efficient algorithm for Subset Product). Subset Product
can be solved deterministically in O(log2(nt)) space and poly(nt)-time.

Remark. We cannot directly invoke the theorem in [15, Section 3.3] to conclude
Theorem 2 since the reduction from Subset Product to SimulSubsetSum requires
O(n log(nt)) space. Essentially, we use the same identity lemma as [15] and
carefully use the space; for details see [Appendix A,full version].

Using a pseudo-prime-factorization decomposition, we show that given a tar-
get t in Subset Product, it suffices to solve SimulSubsetSumwith at most log t many
instances, where each of the targets is also ‘small’, at most O(log log t) bits.

Theorem 3 (Reducing Subset Product to SimulSubsetSum). There is a deter-
ministic polynomial time reduction from Subset Product to SimulSubsetSum.

Remark. The reduction uses Õ(n log t) space as opposed to the following chain
of reductions: Subset Product ≤P SSUM ≤P SimulSubsetSum. The first reduction
is a natural reduction, from an input (a1, . . . , an, t), which takes log both sides
and adjusts (multiply) a ‘large’ M (it could be O(n log t) bit [16,21]) with log ai,
to reduce this to a SSUM instance with bi := �M log ai�. Therefore, the total
space required could be as large as Õ(n2 log t). The second reduction follows
from [Theorem 6,full version]. Thus, ours is more space efficient. Motivated thus,
we give an efficient randomized algorithm for SimulSubsetSum.

We also show that SimulSubsetSum, even with 2 instances, is as hard as
SSUM. Though the proof is very standard, we sketch this for the completeness.
For details, see [Appendix B,full version].

1.2 Prior Works and Limitation of the Obvious Attempts

There have been a very few attempts to classically solve Subset Product or its
variants. It is known to be NP-complete and the reduction follows from the
Exact Cover by 3-Sets (X3C) problem [11, p. 221]. Though the knapsack and its
approximation versions have been studied [16,21], we do not know many classical
algorithms and attempts to solve this, unlike the recent attention for the subset
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sum problem [4,5,13,14]. In this paper, we start investigating similar questions
in the Subset Product regime.

Why the Obvious Methods Fail. Since subset sum can be solved in ran-
domized Õ(n + t) time [14], as mentioned before, one obvious way to solve
Subset Product would be to work with bi := �M log ai� and a R, a range of tar-
get values t′ which could be as large as M log t such that Subset Product is YES
iff subset sum instance with bi and t′ ∈ R is YES. But M could be as large as
O(n ·(∏i ai)

1/2). Therefore, although there is a randomized near-linear time algo-
rithm for subset sum, when one reduces the instance of Subset Product to a subset
sum instance, the target becomes very large, failing to give an Õ(n+ t) algorithm.

Similarly, Theorem 3 along with the reduction in [Theorem 7,full version],
which reduces the Subset Product to SSUM, actually blows up the target, and
fails to give near-linear time algorithm.

We also mention that it is not clear if non-algebraic techniques, as used
in [4], could be extended for SimulSubsetSum or not. Moreover, the general tech-
niques, used for subset sum [4,13,14] seem to fail to ‘directly’ give algorithms for
Subset Product. This is exactly why, in this work, the efficient algorithms have
been indirect, via solving SimulSubsetSum instances.

2 Preliminaries

Notations. N, Z and Q denotes the set of all natural numbers, integers and
rational numbers respectively. Let a, b be two m-bit integers. Then, a//b denotes
a/be where e is the largest non-negative integer such that be | a. Observe that
a//b is not divisible by b and the time to compute a//b is O(m log(m) · log(e)).
Also, Õ(N) denotes N · poly(log N).

For any positive integer n > 0, [n] denotes the set {1, 2, . . . , n} while [a, b]
denotes the set of integers i s.t. a ≤ i ≤ b. F[x1, . . . , xk] denotes the ring of k-
variate polynomials over field F and F[[x1, . . . , xk]] is the ring of power series in
k-variables over F. We will use the short-hand notation x to denote the collection
of variables (x1, . . . , xk) for some k. For any non-negative integer vector e ∈ Z

k,
xe denotes

∏k
i=1 xei

i . Using these notations, we can write any polynomial f(x) ∈
Z[x] as f(x) =

∑
e∈S fe · xe for some suitable set S. We denote coefxe (f), as

the coefficient of xe in the polynomial f(x) and degxi
(f) as the highest degree

of xi in f(x).

Lemma 1 (Kane’s Identity [15]). Let f(x) =
∑d

i=0 cix
i be a polynomial of

degree at most d with coefficients ci being integers. Let Fq be the finite field of
order q = pk > d + 2. For 0 ≤ t ≤ d, define

rt =
∑

x∈F∗
q

xq−1−tf(x) = −ct ∈ Fq

Then, rt = 0 ⇐⇒ ct is divisible by p.

Theorem 4 ([20]). For n ≥ 25, there is always a prime in [n, 6/5 · n].
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The following is a naive bound, but it is sufficient for our purpose.

Lemma 2. For integers a ≥ b ≥ 1, we have (a/b)b ≤ 22
√

ab.

Proof. Let x =
√

a/b. We need to show that x2b ≤ 22bx, which is trivially true
since x ≤ 2x, for x ≥ 1.

3 Time-Efficient Algorithm for Subset Product

In this section, we give a randomized Õ(n + to(1)) expected time algorithm for
Subset Product. Essentially, we factor all the entries in the instance in Õ(n+to(1))
expected time. Once we have the exponents, it suffices to solve the correspond-
ing SimulSubsetSum instance. Now, we can use the efficient randomized algorithm
for SimulSubsetSum (Theorem 5) to finally solve Subset Product. So, first we give
an efficient algorithm for SimulSubsetSum.

Theorem 5 (Algorithm for SimulSubsetSum). There is a randomized Õ(kn+∏
i∈[k](2ti+1))-time algorithm that solves SimulSubsetSum, with target instances

t1, . . . , tk.

Proof. Let us assume that the input to the SimulSubsetSum problem is k SSUM
instance of the form (a1j , . . . , anj , tj), for j ∈ [k]. Define a k-variate polynomial
f(x), where x = (x1, . . . , xk), as follows:

f(x) =
n∏

i=1

⎛

⎝1 +
k∏

j=1

x
aij

j

⎞

⎠ .

Here is an immediate but important claim. We denote the monomial m :=∏k
i=1 xti

i and coefm (f) as the coefficient of m in the polynomial f(x).

Claim 1. There is a solution to the SimulSubsetSum instance, i.e., ∃S ⊆ [n] such
that

∑
i∈S aij = tj ,∀j ∈ [k] iff coefm (f(x)) �= 0.

Therefore, it is enough to compute the coefficient of f(x). The rest of the proof
focuses on computing f(x) efficiently, to find coefm (f).

Let p be prime such that p ∈ [N + 1, (n + N)3], where N :=
∏k

i=1(2ti + 1).
Define an ideal I, over Z[x] as follows: I := 〈xt1+1

1 , . . . , xtk+1
k , p〉. Since, we are

interested in coefm (f), it suffices to compute f(x) mod 〈xt1+1
1 , . . . , xtk+1

k 〉, and
we do it over a field Fp (which introduces error); for details, see the proof in the
end (Randomness and error probability paragraph).

Using [Lemma 6,full version], we can compute all the coefficients of
ln(f(x)) mod I in time Õ(kn +

∏k
i=1 ti). It is easy to see that the following

equalities hold.

f(x) mod I ≡ exp (ln(f(x))) mod I ≡ exp (ln(f(x)) mod I) mod I .

Since, we have already computed ln(f(x)) mod I, the above equation implies
that it is enough to compute the exponential which can be done using [Lemma
5,full version]. This also takes time Õ(kn +

∏k
i=1(2ti + 1)).
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Randomness and Error Probability. Note that there are Ω(n+N)2 primes in the
interval [N+1, (n+N)3]. Moreover, since coefm (f) ≤ 2n, at most n prime factors
can divide coefm (f(x)). Therefore, we can pick a prime p randomly from this
interval in poly(log(n+N)) time and the probability of p dividing the coefficient
is O(n+N)−1. In other words, the probability that the algorithm fails is bounded
by O

(
(n + N)−1

)
. This concludes the proof. ��

We now compare the above result with some obvious attempts to solve
SimulSubsetSum, before moving into solving Subset Product.

A Detailed Comparison with Time Complexity of [15]. Kane [15,
Section 3.3] showed that the SimulSubsetSum problem can be solved determin-
istically in CO(k) time and O(k log C) space, where C :=

∑
i,j aij +

∑
j tj + 1,

which could be as large as (n+1) · (∑j∈[k] tj)+1, since aij can be as large as tj .
As argued in [13, Corollary 3.4 and Remark 3.5], the constant in the exponent,
inside the order notation, can be as large as 3 (in fact directly using [15] gives
a larger constant; but modified algorithm as used in [13] gives 3). Use AM-GM
inequality to get

⎛

⎝(n + 1) · (
∑

j

tj) + 1

⎞

⎠

3k

>

⎛

⎝2
k

·
∑

j

tj + 1

⎞

⎠

3k

AM-GM≥
k∏

j=1

(2tj + 1)3 .

Assuming N =
∏k

j=1 (2tj + 1), our algorithm is near-linear in N while Kane’s
algorithm [15] takes O(N3) time; thus ours is almost a cubic improvement.

Comparison with the Trivial Algorithm. It is easy to see that a trivial
O(n ·(t1+1)(t2+1) . . . (tk +1)) time deterministic algorithm for SimulSubsetSum
exists. Since, ti ≥ 1, we have

n

2
·

∏

i∈[k]

(1 + ti) ≥ n

2
· 2k ≥ kn , and

n

2
·
∏

(1 + ti) ≥ n

2k+1
·
∏

(2ti + 1) .

Here, we used 2(1 + x) > (2x + 1), for any x ≥ 1. Therefore, n · ∏i∈[k](1 + ti) ≥
kn + n/2k+1 · ∏

(2ti + 1). Thus, when k = o(log n), our complexity is better.

3.1 Proof of Theorem 1

Once we have designed the algorithm for SimulSubsetSum, we design a time-
efficient algorithm for Theorem 1.

Proof. Let (a1, . . . , an, t) ∈ Z
n+1
≥0 be the input for Subset Product problem. With-

out loss of generality, we can assume that all the ai divides t because if some ai

does not divide t, it will never be a part of any solution and we can discard it.
Let us first consider the prime factorization of t and aj , for all j ∈ [n]. We will
discuss about its time complexity in the next paragraph. Let

t =
k∏

j=1

p
tj
j , ai =

k∏

j=1

p
eij

j , ∀ i ∈ [n] ,
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where pj are distinct primes and tj are positive integers and eij ∈ Z≥0. Since,
pi ≥ 2, trivially,

∑k
i=1 ti ≤ log(t), and

∑k
i=1 eij ≤ log(t), j ∈ [n]. Also, the

number of distinct prime factors of t is at most O(log(t)/ log log(t)); therefore,
k = O(log(t)/ log log(t)).

Time Complexity of Factoring. To find all the primes that divide t, we will
use the factoring algorithm given by Lenstra and Pomerance [17] which takes
expected to(1)1 time to completely factor t into prime factors pj (including the
exponents tj). Using the primes pj and the fact that 0 ≤ eij ≤ log(t), computing
eij takes log2(t) log log(t) time, by performing binary search to find the largest
x such that px

j | ai. So, the time to compute all exponents ei,j ,∀i ∈ [n], j ∈ [k] is
O(nk log2(t) log log(t)). Since, k ≤ O(log t/ log log(t)), the total time complexity
is Õ(n + to(1)).

Setting Up. SimulSubsetSum Now suppose that S ⊆ [n] is a solution to the
Subset Product problem, i.e.,

∏
i∈S ai = t. This implies that

∑

i∈S

eij = tj , ∀ j ∈ [k] .

In other words, we have a SimulSubsetSum instance where the jth SSUM instance
is (e1j , e2j , . . . , enj , tj), for j ∈ [k]. The converse is also trivially true. We now
show that there exists an Õ(kn +

∏
i∈[k](2ti + 1)) time algorithm to solve

SimulSubsetSum.

Randomized Algorithm for Subset Product Using Theorem 5, we can decide the
SimulSubsetSum problem with targets t1, . . . , tk in Õ(kn +

∏
i∈[k](2ti + 1)) time

(randomized) while working over Fp for some suitable p (we point out towards the
end). Since k ≤ O(log(t)/ log log(t)), we need to bound the term

∏
i∈[k](2ti +1).

Note that,

∏

i∈[k]

(2ti + 1) =
∑

S⊆[k]

2|S| ·
(

∏

i∈S

ti

)

≤ 22k ·
⎛

⎝
∏

i∈[k]

ti

⎞

⎠ .

1 Expected time complexity is exp(O(
√

log t log log t)), which is smaller than

tO(1/
√
log log t) = to(1), which will be the time taken in the next step. Moreover,

we are interested in randomized algorithms, hence expected run-time is.
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We now focus on bounding the term
∏

i∈[k] ti. By AM-GM,

∏

i∈[k]

ti ≤
(∑

i∈[k] ti

k

)k

≤
(

log(t)
k

)k

≤ 2O
(√

k log(t)
)

[Lemma 2]

≤ 2O
(√

log(t)2/ log log(t)
)

≤ tO(1/
√

log log(t)) = to(1)

Note that the prime p in the Theorem 5 was p ∈ [N+1, (n+N)3], where N :=
∏k

i=1(2ti + 1) − 1. As shown above, we can bound N = to(1). Thus, p ≤ O((n +
to(1))3), as desired. Therefore, the total time complexity is Õ(n log(t)/ log log(t)+
to(1)) = Õ(n + to(1)). This finishes the proof. ��
Removing the Expected-Time. If one wants to understand the worst-case
analysis, we can use the polynomial time reduction from Subset Product to
SimulSubsetSum in Sect. .4. Of course, we will not get prime factorization; but
the pseudo-prime factors will also be good enough to set up the SimulSubsetSum
with similar parameters as above, and the SimulSubsetSum instance can be sim-
ilarly solved in Õ(n + to(1) time. Since the reduction takes n2poly(log t) time,
the total time complexity becomes Õ(n2 + to(1)).

4 An Efficient Reduction from Subset Product
to SimulSubsetSum

In this section, we will present a deterministic polynomial time reduction from
Subset Product to SimulSubsetSum. In Sect. 3, we have given a pseudo-polynomial
time reduction from Subset Product to SimulSubsetSum by performing prime-
factorization of the input (a1, . . . , an, t). The polynomial time reduction also
requires to factorize the input, but the factors are not necessarily prime. To be
precise, we define pseudo-prime-factorization which can be achieved in polyno-
mial time.

Definition 1 (Pseudo-prime-factorization). A set of integers P ⊂ N is
said to be pseudo-prime-factor set of (a1, . . . , an) ∈ N

n if

1. the elements of P are pair-wise coprime, i.e., ∀p1, p2 ∈ P, gcd(p1, p2) = 1,
2. there are only non-trivial factors of ai’s in P, i.e., ∀p ∈ P,∃i ∈ [n] such that

p | ai,
3. every ai’s can be uniquely expressed as product of powers of elements of P,

i.e., ∀i ∈ [n], ai =
∏

p∈P pep ,∀i ∈ [n] where ep ≥ 0.

For a given (a1, . . . , an), P may not be unique. A trivial example of a pseudo-
prime-factor set of P for (a1, . . . , an) is the set of all distinct prime factors
of

∏n
i=1 ai. The following is an important claim which will be used to give a

polynomial time reduction from Subset Product to SimulSubsetSum.
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Claim 2. For any pseudo-prime-factor set P of (a1, . . . , an), we have |P| ≤ k
where k is the number of distinct prime factors of

∏n
i=1 ai.

Proof. The proof uses a simple pigeonhole principle argument. Let g1, . . . , gk

be the distinct prime factors of
∏n

i=1 ai. From the definition of P, we know
that g1, . . . , gk are the only distinct prime factors of

∏
p∈P p. Therefore, if there

are more than k numbers in P, then there must exist p1, p2 ∈ P such that
gcd(p1, p2) �= 1 which violates pair-wise coprime property of P. ��

Constructing P suffices. We now show that having a pseudo-prime-factor set P
for (a1, . . . , an, t) helps us to reduce a Subset Product instance (a1, . . . , an, t) to
SimulSubsetSum with number of instances |P|, in polynomial time. Wlog, we can
assume that ai | t and ai, t ≤ 2m,∀i ∈ [n] for some m. Trivially, m ≤ log t. So,
using Claim 2, we have |P| ≤ (n + 1) · m = poly(n log t).

From Definition 1, we have unique non-negative integers eij and tj such that
t =

∏
j∈|P| p

tj
j and ai =

∏
j∈|P| p

eij

j ,∀i ∈ [n]. Since, ai | t, we have eij ≤ tj ≤
m,∀i ∈ [n], j ∈ [|P|] and they can be computed in poly(m,n) time.

Let us consider the |P| − SimulSubsetSum instance where the ith SSUM
instance is (e1i, e2i, . . . , eni, ti). Then, due to factorization property (the third
property in Definition 1) of P, the Subset Product instance is YES, i.e., ∃S ∈ [n]
such that

∏
i∈S ai = t iff the SimulSubsetSum instance with number of instances

|P|, is a YES.

4.1 Polynomial Time Algorithm for Computing Pseudo-Prime-
Factors

We will now present a deterministic polynomial time algorithm for computing a
pseudo-prime-factor set P for (a1, . . . , an). We will use the notation P(a1, . . . , an)
to denote a pseudo-prime-factor set for (a1, . . . , an). Also, let S(a1, . . . , an) be
the set of all pseudo-prime-factor sets; this is a finite set.

The following lemma is a crucial component in algorithm 1. We use a//b to
denote a/be such that be+1

� a.

Lemma 3. Let (a1, . . . , an) be n integers. Then,

1. If a1 is coprime with ai,∀i > 1, then for any P(a2, . . . , an) ∈ S(a2, . . . , an),
P(a2, . . . , an) ∪ {a1} ∈ S(a1, . . . , an).

2. P(g, a1//g, a2//g, . . . , an//g) ∈ S(a1, . . . , an), for given ai, i ∈ [n] and any
factor g of some ai.

Proof. The first part of the lemma is trivial. For the second part, let g be a
non-trivial factor of some ai and

P := {p1, . . . , pk} ∈ S(g, a1//g, a2//g, . . . , an//g) ,

be any pseudo-prime-factor set. Then, pi’s are pair-wise coprime and since each
pi divides either g or ai//g for some i ∈ [n], it also divides some ai because g is
a factor of some ai. Also, we have unique non-negative integers eip, egp s.t.
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ai//g =
∏

p∈P
peip ,∀i ∈ [n] and g =

∏

p∈P
pegp .

Combining these equation, we get ai = ai//g ∗ gfig =
∏

p∈P peip+egp∗fig . Here
fig is the maximum power of g that divides ai. Therefore, {p1, . . . , pk} is also a
pseudo-prime-factor set for (a1, . . . , an). ��
Pre-processing. Using Lemma 3, Algorithm 1 performs a divide-and-conquer
approach to find P(a1, . . . , an). Observe that we can always remove duplicate
elements and 1’s from the input since it does not change the pseudo-prime-
factors. Also, we can assume without loss of generality that ai//a1 =: ai,∀i > 1
because of the second part in Lemma 3, with g = a1, since it gives us
P(a1, a2//g, . . . , an//g) and we know it suffices to work with these inputs.

If a1 is coprime to the rest of the ai’s, then the algorithm will recursively call
itself on (a2, . . . , an) and combine P(a2, . . . , an) with {a1}. Else, there exists an
i > 1 such that gcd(a1, ai) �= 1. So, the algorithm finds a factor g of a1 using
Euclid’s GCD algorithm and computes P(g, a1//g, . . . , an//g). At every step we
remove duplicates and 1’s. Hence, the correctness of Algorithm 1 is immediate
assuming it terminates.

To show the termination and time complexity of Algorithm 1, we will use the
‘potential function’ P(I) :=

∏
a∈I a, where I is the input and show that at each

recursive call, the value of the potential function is halved. Initially, the value
of the potential function is

∏n
i=1 ai. We also remark that since the algorithm

removes duplicates and 1’s; the potential function can never increase by the
removal step and so it never matters in showing the decreasing nature of P.

1. a1 is coprime to the rest of the ai’s: In this case, the recursive call has input
(a2, . . . , an). Since, a1 ≥ 2, the value of potential function is

P(a2, . . . , an) =
n∏

i=2

ai < (
n∏

i=1

ai)/2 = P(a1, . . . , an)/2 .

2. a1 shares a common factor with some ai. Let g = gcd(a1, ai) �= 1. Since, we
have assumed ai//a1 = ai, this implies that ai is not a multiple of a1. This
implies that 2 ≤ g ≤ a1/2. Therefore, the new value of potential function is

P(g, a1//g, . . . , an//g)

= g

n∏

j=1

aj//g

≤ (a1//g) × ((ai//g) × g) ×
∏

j∈[n]\{1,i}
aj

≤ a1

g
·

n∏

j=2

aj

≤ (
n∏

j=1

aj)/2 = P(a1, . . . , an)/2 .
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We used the fact that since, 2 ≤ g | ai, therefore, g × (ai//g) ≤ ai.

Time Complexity. In both the cases, the value of the potential function is
halved. So, the depth of the recursion tree (in-fact, it is just a line) is at most
log(

∏n
i=1 ai) ≤ m · n. Also, in each recursive call, the input size is increased at

most by one but the integers are still bounded by 2m. This implies that input
size, for any recurrence call, can be at most (m+1) ·n. Since there is no branch-
ing, the total number of operations is (m+1) ·n×m ·n = O((mn)2). Therefore,
the total time complexity is n2 · poly(m).

Algorithm 1: Algorithm for Pseudo-prime-factor set

Input: (a1, a2 . . . , an) ∈ N
n where each ai is an m-bit integer such that

ai//a1 = ai > 1,∀i > 1
Output: Pseudo-prime-factor set P for (a1, a2, . . . , an)

1 if n == 0 then
2 return ∅;
3 end
4 if ∃i > 1 such that gcd(a1, ai) �= 1 then
5 g = gcd(a1, ai);
6 I = {g};
7 for i ∈ [n] do
8 a′

i = ai//g;
9 if a′

i /∈ I and a′
i �= 1 then

10 I = I ∪ {a′
i}

11 end
12 end
13 return P(I);
14 end
15 else
16 return P(a2, . . . , an) ∪ {a1};
17 end

5 Conclusion

In this paper, we give efficient algorithms for Problem 1-2 which are variants of
SSUM problem. We also present an efficient reduction from Subset Product to
SimulSubsetSum. Here are some immediate questions to investigate.

1. Can we improve the complexity of Theorem 5 to Õ(n +
∑k

i=1 ti)?
2. What can we say about the hardness of SimulSubsetSum with k subset sum

instances where k = ω(log(n))?
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Abstract. In this paper, we discuss the computational complexities of
determining optimal length refutations of infeasible integer programs
(IPs). We focus on three different types of refutations, namely read-
once refutations, tree-like refutations, and dag-like refutations. For each
refutation type, we are interested in finding the length of the short-
est possible refutation of that type. For our purposes, the length of a
refutation is equal to the number of inferences in that refutation. The
refutations in this paper are also defined by the types of inferences that
can be used to derive new constraints. We are interested in refutations
with two inference rules. The first rule corresponds to the summation
of two constraints and is called the ADD rule. The second rule is the
DIV rule which divides a constraint by a positive integer. For integer
programs, we study the complexity of approximating the length of the
shortest refutation of each type (read-once, tree-like, and dag-like). In
this paper, we show that the problem of finding the shortest read-once
refutation is NPO PB-complete. Additionally, we show that the prob-
lem of finding the shortest tree-like refutation is NPO-hard for IPs. We
also show that the problem of finding the shortest dag-like refutation is
NPO-hard for IPs. Finally, we show that the problems of finding the
shortest tree-like and dag-like refutations are in FPSPACE.

1 Introduction

This paper examines the problems of finding optimal length refutations of infea-
sible integer programs (IPs). We study three different types of refutations, each
of which is characterized by how the reuse of constraints is permitted.

The first type of refutation examined in this paper is read-once refutation. In
a read-once refutation, for the most part, constraints cannot be reused. However,
if a constraint can be rederived without reusing constraints from the original
system, then it can be used as many times as it can be derived.

The second type of refutation examined is tree-like refutation. In a tree-
like refutation, constraints from the original system can be reused, and derived
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constraints cannot. As with read-once refutations, constraints can be rederived.
However, for tree-like refutations, these rederivations can reuse constraints from
the original system.

The third type of refutation examined is dag-like refutation. In a dag-like
refutation, both constraints in the original system and derived constraints can
be reused. This means that constraints do not need to be rederived.

For each refutation type, we are interested in finding the length of the short-
est possible refutation of that type. For our purposes, the length of a refutation
is equal to the number of inferences in that refutation. For both read-once refu-
tations and tree-like refutations, the rederivation of a constraint increases the
length of the refutation. This does not matter in the case of dag-like refutations,
since rederivation is unnecessary. Each refutation system is associated with a
set of inference rules that can be used to produce refutations of a given type of
constraint system. For integer programs, we examine refutations that allow for
two types of inferences.

The first rule corresponds to the summation of two constraints and is called
the ADD rule. The second rule is the DIV rule which divides a constraint by a
positive integer. For IPs, we study the complexity of approximating the length
of the shortest refutation of each type (read-once, tree-like, and dag-like). In this
paper, we show that the problem of finding the shortest read-once refutation is
NPO PB-complete. Additionally, we show that the problem of finding the
shortest tree-like refutation and the problem of finding the shortest dag-like
refutation are both NPO-hard. Finally, we show that the problems of finding
the shortest tree-like and dag-like refutations are in FPSPACE.

2 Statement of Problems

In this section, we introduce the concepts examined in this paper and define the
problems under consideration.

Definition 1. A polyhedral constraint system is a conjunction of con-
straints in which each constraint in C is an inequality of the form aj · x ≤ bj

where aj ∈ Qn and bj ∈ Q.

Note that C can be represented in matrix form as A · x ≤ b. In the constraint
aj · x ≤ bj , bj is referred to as the defining constant.

Definition 2. An integer polyhedral constraint system is a polyhedral con-
straint system in which for each variable xi, the corresponding domain Di = Z.

Such a constraint system is known as an integer program (IP).

Example 1. System (1) is an integer program.

3 · x1 + 5 · x2 − 4 · x3 ≤ −2 − 2 · x2 + 7 · x3 ≤ 4 (1)
x1 ∈ {0, 1} x2 ∈ {−1, 0, 1} x3 ∈ {0, 1, 2}
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Refutations are defined by the inference rules that can be used to deduce a
contradiction. Refutations of integer programs can use two inference rules.

The first rule corresponds to the summation of two constraints and is defined
as follows:

ADD :
∑n

i=1 ai · xi ≤ b1
∑n

i=1 a′
i · xi ≤ b2∑n

i=1(ai + a′
i) · xi ≤ b1 + b2

(2)

We refer to Rule (2) as the ADD rule.

Example 2. Consider the constraints 3 · x1 + 5 · x2 − 4 · x3 ≤ −2 and −2 · x2 +
7 · x3 ≤ 4. Applying the ADD rule to these constraints results in the constraint
3 · x1 + 3 · x2 + 3 · x3 ≤ 2.

It is easy to see that Rule (2) is sound in that any assignment satisfying the
hypotheses must satisfy the consequent.

Refutations of integer programs also use an additional rule. This is referred
to as the DIV rule and is defined as follows:

DIV :
∑n

i=1 ai · xi ≤ b k ∈ Z+ : ai

k ∈ Z
∑n

i=1
ai

k · xi ≤ ⌊
b
k

⌋ (3)

Example 3. Consider the constraint 3 ·x1 +3 ·x2 +3 ·x3 ≤ 2. Applying the DIV
rule to this constraint with k = 3 results in the constraint x1 + x2 + x3 ≤ 0.

Rule (3) corresponds to dividing a constraint by a common divisor of the
left-hand coefficients and then rounding the right-hand side. Since each ai

k is an
integer. This inference preserves integer solutions but does necessarily preserve
linear solutions. A constraint derived using the DIV rule is also known as a
Chvátal-Gomory cut [10].

Definition 3. An integer refutation is a sequence of applications of the ADD
and DIV rules that results in a contradiction of the form 0 ≤ b, b < 0.

In this paper, we study several types of refutations. These are read-once
refutations, tree-like refutations, and dag-like refutations. Our focus is on deter-
mining the optimal number of inferences in a refutation. Note that both the
ADD rule and the DIV rule contribute to the length of the refutation.

Definition 4. A read-once refutation is a refutation in which each constraint
C can be used in only one inference. This applies to constraints present in the
original formula and those derived as a result of previous inferences.

Note that in a read-once refutation, a constraint can be reused if it can be
rederived. However, it must be rederived from a different set of input constraints.

Definition 5. A tree-like refutation is a refutation in which each derived con-
straint can be used at most once.
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Note that in tree-like refutations, the input constraints can be used multiple
times. Thus any derived constraint can be derived multiple times as long as it is
rederived each time it is used. This rederivation can reuse derived constraints.
However, those constraints also need to be rederived. Tree-like refutation is a
complete refutation system [5].

Definition 6. A dag-like refutation is a refutation in which each constraint
can be used multiple times.

It follows that dag-like refutations procedures are complete as well.
We now define the notion of length of a refutation.

Definition 7. The length of a refutation R of a constraint system is the num-
ber of inferences (both ADD and DIV) made in R.

For each type of refutation, there are two associated problems. These are
the decision problem, asking if a system has the desired type of refutation, and
the optimization problem, asking for the length of the shortest refutation of
the desired type. Note that every infeasible constraint system has a tree-like
refutation and a dag-like refutation. Thus, the decision problems for these two
refutation types are trivial. Furthermore, we have shown that the problem of
determining if an IP has a read-once refutation is NP-hard even when the
constraints are UTVPI (Unit Two Variable Per Inequality) constraints [26,27].

In this paper, we examine the following optimization problems:

1. The Integer Programming Optimal Length Read-once Refutation
(IP-OLRR) problem: Given an infeasible IP I, what is the length of the
shortest read-once refutation of I?

2. The Integer Programming Optimal Length Tree-like Refutation (IP-
OLTR) problem: Given an infeasible IP I, what is the length of the shortest
tree-like refutation of I?

3. The Integer Programming Optimal Length Dag-like Refutation (IP-
OLDR) problem: Given an infeasible IP I, what is the length of the shortest
dag-like refutation of I?

Note that the problem of determining if an IP has a refutation is only interest-
ing if the IP is infeasible. Thus, the problems studied in this paper are promise
problems [17]. That is, the problems are only defined on a subset of possible
inputs. Observe that the IP-OLRR, IP-OLTR, and IP-OLDR problems are only
defined on infeasible IPs. Additionally, the problem of determining if an integer
program is infeasible is coNP-complete. The reductions used in this paper are
guaranteed to generate infeasible IPs. Thus, the complexity results we obtain
only apply to the set of infeasible IPs. Note that a feasible IP trivially lacks any
refutation. Since the set of infeasible IPs is a subset of all IPs, our results can
easily be generalized to all IPs. Thus, we can consider the non-promise versions
of each problem.
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3 Motivation and Related Work

In this section, we motivate our work and describe existing work for related
problems.

Constraint systems are heavily used in the field of software verification
[11,12]. Corresponding to a piece of software, a constraint system can be derived
and then combined with constraints corresponding to the negation of the spec-
ifications. If the resultant system of constraints is infeasible, then the software
is consistent with its specifications. Although this approach is intuitive and
straightforward, it may become impractical because of the large number of con-
straints that are generated. A constraint-based approach to program verification
has also been attempted for rule-based programming [6]. Rule-based program-
ming has gained interest in the software industry over the past years, because of
the growing use of Business Rules Management Systems. Hence, a demand for
the verification of rule programs has emerged. Also, in [19] it is shown how the
constraint-based approach can be used to model a wide spectrum of program
analysis using disjunctions and conjunctions of linear inequalities. Linear pro-
grams have also been used as a finer grained abstraction for sequential programs
offering an effective model checking procedure [2].

For integer programs, we are interested in cutting plane based refutations.
Cutting planes are often used to refute integer programs constructed from CNF
formulas [14]. When applied to such systems, cutting plane based refutations can
be exponentially more compact than resolution based refutations [7,15,20,25].
Several restricted versions of cutting planes have been examined [28]. These
restrictions included limiting addition to cases where a variable is canceled,
and replacing the division rule with a saturation rule. It was shown that these
restricted versions of cutting planes can be simulated by resolution when the
coefficients are small [28]. Every infeasible integer program with m constraints
over n variables has a cutting plane refutation of length O(n3·n) that can be
computed using polynomial workspace [13]. Workspace is defined as the amount
of space used to store the intermediate constraints. Once an intermediate con-
straint is no longer necessary, it is removed from the workspace [13]. Recently,
Cheung et al. discussed the verification of integer programming results using
cutting plane refutations, but from an empirical perspective [9]. To the best
of our knowledge, our paper is the first of its kind to focus on approximation
complexity for the problem of determining optimal length refutations.

Closely related to the problem of finding the length of the shortest refutation
of a system S under a proof system P , is the problem of automatizability [1]. A
proof system P is automatizable if there exists a deterministic algorithm that,
when given an infeasible system S, generates a refutation of S in time polynomial
in the length of shortest refutation of S [3]. It was shown that resolution as a
proof system is not automatizable, unless P = NP [4]. In the case of integer
programming, cutting planes are not automatizable, unless P = NP [18]. In
[18] it is also shown that it is NP-hard to approximate the minimum length of
a dag-like cutting plane proof length to within 2nε

. In this paper, we show that
this problem is NPO-hard for a different proof system.
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4 Optimal Length Read-Once Refutations

In this section, we show that the problem of finding the shortest read-once refu-
tation of an IP is NPO PB-complete.

Theorem 1. The IP-OLRR problem is NPO PB-complete.

Proof. A read-once refutation R of an integer program I is polynomially sized
in terms of the size of I. Additionally, the length of a read-once refutation can
be computed in polynomial time. Finally, since each constraint in I is used at
most once, the length of the read-once refutation is linear in terms of the size
of I. Thus, the IP-OLRR problem is in NPO PB. Now we need to show NPO
PB-hardness.

This is accomplished by a reduction from the Minimum 0-1 Programming
problem. This problem is formulated as follows:

Given an integer program A · x ≥ b, x ∈ {0, 1}n, find the minimum value of
c · x for some integer valued vector c ≥ 0.

In the general case, this problem is known to be NPO-complete [24].
However, for this reduction, we are only interested in the case where c = 1.
This specific form of Minimum 0-1 Programming is known to be NPO PB-
complete [22].

Consider the following instance of the Minimum 0-1 programming problem:
min

∑n
i=1 xi A · x = b x ∈ {0, 1}n. Even in this form, the Minimum 0-1

programming problem is NPO PB-complete [22].
Corresponding to this system, we can construct the following linear

program L:
y · A ≤ 0 −y · b ≤ −1.
From L, we can construct the IP I as follows:
1. For each variable yi in L, add the variable yi to I. Additionally, add the

new variable x0 to I. 2. Add all of the constraints in L to I. 3. Let p, be the first
prime larger than maxi=1...n(

∑m
i=1 |aij |) where aij is an element of the matrix

A. 4. Add the term p · x0 to the constraint in I with defining constant −1.
By construction, there is exactly one such constraint. We will refer to this new
constraint as I1. 5. Add the constraint −x0 ≤ 0 to I.

We will now show that I has a read-once integer refutation of length (k + 2)
if and only if L has a read-once linear refutation of length k.

First, assume that L has a read-once linear refutation of length k. By con-
struction, any read-once refutation of L corresponds to a read-once derivation of
the constraint p · x0 ≤ −1. We can then divide this constraint by p and sum the
result with the constraint −x0 ≤ 0 to obtain a contradiction. Since the original
refutation had length k, the new refutation has length (k + 2).

Now assume that I has a read-once integer refutation of length (k + 2). As
mentioned above, we can assume without loss of generality that the constraint
I1 is the only constraint in I with negative defining constant. Thus, it must be
used in any refutation of I.
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The only other constraint in I with the variable x0 is −x0 ≤ 0. Thus, this
constraint must be used to cancel the variable x0. Since the refutation is read-
once, we must first apply the DIV rule to the constraint derived from I1. By
construction, the DIV rule must be applied to this constraint with coefficient
p. However, by construction, p is larger than any coefficient in any constraint
derived from I1. Thus, the DIV rule cannot be applied until all other variables
are eliminated from I1. Thus, we must derive the constraint p · x0 ≤ −1. This
derivation takes k steps and corresponds to a read-once linear refutation of I.
This means that I has a read-once linear refutation of length k. Thus, the IP-
OLRR problem is NPO PB-complete. ��

Since the IP-OLRR problem is NPO PB-complete, there exists an ε > 0
such that the IP-OLRR cannot be approximated to within a factor of O(nε),
unless P = NP [21]. Thus, the IP-OLRR cannot be approximated to within a
polylogarithmic factor, unless P = NP.

5 Optimal Length Tree-Like and Dag-Like Refutations

In this section, we show that the IP-OLTR and IP-OLDR are NPO-hard. Note
that for these problems, we are not guaranteed polynomial length refutations.
Thus we do not have NPO-completeness.

Theorem 2. The IP-OLTR problem is NPO-hard.

Proof. This will be accomplished by a reduction from the Traveling Salesman
Path Problem. This problem is NPO-complete [24].

Let G be a complete undirected graph with n vertices. From G we create an
IP I as follows: 1. For each vertex vi in G, create the variable xi. 2. Create the
constraint x1 + 2 · x2 + 2 · x3 + . . . + 2 · xn−1 + 2 · xn + p · x0 ≤ −1. Where p
is the fist prime such that p > 2 · n · ∑n−1

i=1

∑n
j=i+1 w(ei,j). Additionally, create

the constraint −x0 ≤ 0. 3. For each edge ei,j in G, create the variables yi,j and
zi,j,l for l = 1, . . . , n − 1. Additionally, create the constraint −yi,j ≤ 0. 4. For
each edge ei,j such that i, j ∈ {2, . . . , n}, and each l = 2, . . . , n − 2, create the
constraint −xi −xj +2 ·n ·w(ei,j) ·yi,j +2 ·zi,j,l ≤ 0. 5. For each edge ei,n, create
the constraint −xi −xn +2 ·n ·w(ei,n) · yi,n + zi,n,n−1 ≤ 0. 6. For each edge e1,j ,
create the constraint −x1 − xj + 2 · n · w(e1,j) · y1,j + z1,j,1 ≤ 0. 7. For each pair
of edges ei,j and ej,k that share an endpoint, and each l = 1, . . . , n − 2, create
the constraint −zi,j,l − zj,k,l+1 ≤ 0. This construction forms the function f for
our PTAS reduction.

First, assume that G has a Traveling Salesman Path P of length W from
x1 to xn. Let P traverse the vertices in the order vP (1) through vP (n). We can
construct a tree-like refutation R of length 2 ·n · (W +1) for I as follows: 1. Start
with the constraint x1 + 2 · x2 + 3 · x2 + . . . + 2 · xn−1 + 2 · xn + p · x0 ≤ −1. 2.
Add the constraint −x1 −xP (2) +2 ·n ·w(e1,P (2)) · y1,P (2) + z1,P (2),1 ≤ 0 to R. 3.
For i = 2 . . . n − 2, add the constraint −xP (i) − xP (i+1) + 2 · n · w(eP (i),P (i+1)) ·
yP (i),P (i+1) + 2 · zP (i),P (i+1),i ≤ 0 to R. 4. Add the constraint −xP (n−1) − xn +
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2 · n · w(eP (n−1),n) · yP (n−1),n + zP (n−1),n,n−1 ≤ 0 to R. 5. For i = 2 . . . n − 2,
add 2 · n · w(eP (i),P (i+1)) copies of the constraint −yP (i),P (i+1) ≤ 0 to R. 6.
For i = 1 . . . n − 2, the constraint −zP (i),P (i+1),i − zP (i+1),P (i+2),i+1 ≤ 0 to R.
Observe that summing the constraints in R results in the constraint p ·x0 ≤ −1.
Applying the DIV rule with d = p to this constraint results in the constraint
x0 ≤ −1. Adding the constraint x0 ≤ 0 results in the contradiction 0 ≤ −1.
Note that, R contains a total of 2 · n · (W + 1) inferences. Thus R is a tree-like
refutation of length 2 · n · W for I.

Now assume that I has a tree-like refutation R of length 2 · n · (W + 1). We
can construct a set of edges P as follows: For each edge ei,j if R contains the
constraint −yi,j ≤ 0, add ei,j to P . This forms the function g for our PTAS
reduction. Observe the following:

1. The constraint x1 + 2 · x2 + 3 · x2 + . . . + 2 · xn−1 + 2 · xn + p · x0 ≤ −1, is
the only constraint in the system with a negative defining constant. Thus, it
must be part of R. We will refer to this constraint as C. By construction of
I, p > 2 · n · (W + 1). Thus, if the DIV rule is not applied to C, then the
constraint x0 ≤ 0 will need to be used at least p > 2 · n · (W + 1) times. In
this case, the length of R is more than 2 · n · (W + 1). Thus, the DIV rule
must be applied to C. Due to the value chosen for p, this can only happen
after everything else is canceled from C.

2. To cancel x1 from C, R must include a constraint of the form −x1 − xj +
2 · n · w(e1,j) · y1,j + z1,j,1 ≤ 0. Let P (2) = j. Note that this constraint also
cancels a copy of xP (2) from C.

3. To cancel the other copy of xP (2) from C, R must include a constraint of the
form −xP (2) − xj + 2 · n · w(eP (2),j) · yP (2),j + 2 · zP (2),j,1 ≤ 0. Let P (3) = j.
Note that this constraint also cancels a copy of xP (3) from C.

4. We can continue this process until P (h) = n for some h ≤ n. Due to the
structure of C, the vertices v1, vP (2), vP (3), . . ., vP (h) are all distinct.

5. Consider the constraint −xP (h−1)−xP (h)+2·n·w(eP (h−1),P (h))·yP (h−1),P (h)+
zP (h−1),P (h),1 ≤ 0 in R. Since P (h) = n, by construction of I, this con-
straint must be −xP (h−1) − xP (h) + 2 · n · w(eP (h−1),P (h)) · yP (h−1),P (h) +
zP (h−1),P (h),n−1 ≤ 0. Note that this constraint introduces the variable
zP (h−1),P (h),n−1 to R

6. Consider the constraint −xP (h−2) − xP (h−1) + 2 · n · w(eP (h−2),P (h−1)) ·
yP (h−2),P (h−1) + 2 · zP (h−2),P (h−1),1 ≤ 0 in R. Recall that R contains the
variable zP (h−1),P (h),n−1. To cancel this variable, R must contain a con-
straint of the form −zj,P (h−1),n−2 − zP (h−1),P (h),n−1 ≤ 0. By construction,
zP (h−2),P (h−1),1 = zj,P (h−1),n−2. Thus, l = n − 2.

7. Continuing this process, we see that 1 = n − (h − 1). Thus, h = n. As
shown previously, the vertices v1, vP (2), vP (3), . . ., vP (n) are all distinct. Thus
P is a Traveling Salesman Path in G. For each edge eP (i),P (i+1) in P , R
contains 2 · nw(eP (i),P (i+1)) copies of the constraint −yP (i),P (i+1) ≤ 0. From
the observations above, R contains an additional 2 · n constraints. Thus, R
contains a total of 2 · n · (W ′ + 1) constraints where W ′ is the total length of
P . Since R has length 2 · n · (W + 1), P has length W .
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All that remains is to establish that a PTAS reduction exists from the Min-
imum 0-1 Programming problem to the IP-OLTR problem. This will be done by
establishing the existence of the functions f , g, and α.

1. The function f : We provided a method for constructing an integer program I
from a graph G. This forms the function f required for the PTAS reduction.

2. The function g: We provided a method to take a tree-like refutation of I and
construct a Traveling Salesman Path in G. This forms the function g required
for the PTAS reduction.

3. The function α: Let W ∗ be the shortest Traveling Salesman Path in G. I has
a tree-like refutation of length 2 ·n · (W ∗ +1). Additionally, if I had a shorter
tree-like refutation, then G would have a shorter path. Thus, the IP-OLTR
of I has length 2 · n · (W ∗ + 1). Let α(ε) = ε−1

2 .
Let R be a tree-like refutation of I of length 2 · n · (W + 1). The function g

produces a Traveling Salesman Path of length W . If 2·n·(W+1)
2·n·(W ∗+1) ≤ 1 + α(ε) =

ε+1
2 , then

W

W ∗ ≤ 2 · W

2 · W ∗ ≤ 2 · (W + 1)
W ∗ + 1

≤ 2 · (ε + 1)
2

= 1 + ε.

Thus, the IP-OLTR problem for linear programs is NPO-hard. ��
Since the IP-OLTR problem is NPO-hard, there exists an ε > 0 such that

the IP-OLTR cannot be approximated to within a factor of O(2nε

), unless P =
NP [21]. Thus, the IP-OLTR cannot be approximated to within a polynomial
factor, unless P = NP.

Theorem 3. The IP-OLDR problem is NPO-hard.

Proof. This will be accomplished by a reduction from the Minimum Integer
Programming problem.

Consider the following instance of the Minimum 0-1 programming problem:

min
n∑

i=1

(2 · log ci + 1) · xi A · x = b x ∈ {0, 1}n.

Assume without loss of generality that c ≥ 1.
While in general Minimum 0-1 programming is NPO-complete, the values

of the coefficients in the optimization function are polynomial in the size of the
input. Thus, the final value of the objective function is polynomial in the size of
the input. Consequently, this problem is NPO PB-complete [22,24].

Let D be the n × n matrix such that di,i = ci − 1 and di,j = 0 for i �= j.
Corresponding to the Minimum 0-1 programming instance, we can construct the
following linear program L:

y · A + z · D ≤ 0 − z ≤ 0 −y · b ≤ −1

From L, we can construct the IP I as follows:
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1. For each variable yi in L, add the variable yi to I. Additionally, add the
variable x0 to I. 2. Add all of the constraints in L to I. 3. Let p, be the first
prime larger than maxi=1...n(

∑m
i=1 |aij |). 4. Add the term p ·x0 to the constraint

L1 in L with defining constant −1. By construction, there is exactly one such
constraint. We will refer to this new constraint as I1. 5. Add the constraint
−x0 ≤ 0 to I.

We will now show that I has a dag-like integer refutation of length (k + 2) if
and only if L has a dag-like linear refutation of length k.

First, assume that L has a dag-like linear refutation of length k. By con-
struction, any dag-like refutation of L corresponds to a dag-like derivation of
the constraint cL · p · x0 ≤ −cL where cL is the number of times constraint L1

was used in the dag-like refutation. We can then divide this constraint by cL · p
and sum the result with the constraint −x0 ≤ 0 to obtain a contradiction. Since
the original refutation had length k, the new refutation has length (k + 2).

Now assume that I has a dag-like integer refutation of length (k+2). As men-
tioned previously, we can assume without loss of generality that the constraint
I1 is the only constraint in I with negative defining constant. Thus, it must be
used in any refutation of I.

The only other constraint in I with the variable x0 is −x0 ≤ 0. Thus, this
constraint must be used to cancel the variable x0. We want to avoid using the
constraint −x0 ≤ 0 p times. Thus, we must first apply the DIV rule to the
constraint derived from I1. By construction, the DIV rule must be applied to this
constraint with a coefficient divisible by p. However, by construction, p is larger
than any coefficient in any constraint derived from I1 by a dag-like derivation
of length k. Thus, the DIV rule cannot be applied until all other variables are
eliminated from I1. Thus, we must derive the constraint cL · p · x0 ≤ −cL. This
derivation takes k steps and corresponds to a dag-like linear refutation of I. This
means that I has a dag-like linear refutation of length k. Thus, the IP-OLDR
problem is NPO-hard. ��

Since the IP-OLDR problem is NPO-hard, there exists an ε > 0 such that
the IP-OLDR cannot be approximated to within a factor of O(2nε

), unless P =
NP [21]. Thus, the IP-OLDR cannot be approximated to within a polynomial
factor, unless P = NP.

Note that in general, tree-like and dag-like cutting plane based refutations
can be exponentially long [7]. Thus, these problems do not belong to the class
NPO. However, we can show that both the IP-OLDR problem and the IP-OLTR
problem belong to the class FPSPACE.

Theorem 4. The IP-OLTR problem is in FPSPACE.

Proof. Let I be an infeasible integer program with m constraints over n variables.
We will show that a tree-like integer refutation of I can be constructed by a non-
deterministic Turing Machine using working space polynomial in the size of I.
We know that any integer program has a tree-like integer refutation of length at
most O(n3·n) [13]. Additionally, this refutation only needs to store polynomially
many constraints at a time. Thus, each inference in a tree-like integer refutation
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can be identified using a number of bits polynomial in the size of the input
integer program.

For each inference in a possible refutation R, we can non-deterministically
guess the following:

1. The constraints used by the inference – Note that we can assume without loss
of generality that the coefficients in these constraints have an absolute value
of at most (n · C1 + C2) where C1 is the largest coefficient of any constraint
in I and C2 is the largest defining constant [16]. Thus, each constraint can be
represented using space polynomial in the size of I.

2. The constraint produced by the inference.
3. The source of each constraint used by the inference – This is either the infer-

ence used to derive the constraint or the original integer program I.
4. The inference that will use the derived constraint – Note that since the refu-

tation is tree-like, there is at most one such inference.

Thus, each inference can be generated in polynomial space. Once each infer-
ence is generated, the space can then be reused to generate the next inference.
Thus, the entire refutation can be generated using at most polynomial space.

The correctness of R can similarly be verified in polynomial space as follows:

1. Non-deterministically guess an inference in the refutation.
2. Verify that the derived constraint is correct for the given input constraints.
3. Verify that the input constraints come from the specified sources.
4. Verify that each source is either I or a previous inference.
5. For each constraint derived by a previous inference, verify that inference lists

the current inference as using its derived constraint. Note that this ensures
that derived constraints are not repeated.

This can be easily done in space polynomial in the size of I. Once every
inference in the refutation is verified, we know that the constraint derived by
the last inference is derivable from the constraints in I. If the last inference
of R derives a contradiction, then R is a tree-like integer refutation of I. By
performing both the construction and verification procedures for each possible
refutation length, the first tree-like integer refutation generated in this way is
IP-OLTR of I. ��

Note that the refutations generated in the proof of Theorem 4 are tree-like
because we ensure that each derived constraint is used by at most one future
inference. If we remove this restriction, then the procedure instead generates
dag-like integer refutations. This gives us the following corollary.

Corollary 1. The IP-OLDR problem is in FPSPACE.
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6 Conclusion

In this paper, we studied the problems of finding optimal length refutations of
infeasible integer programs (IPs). We looked at three different types of refuta-
tions, namely read-once refutations, tree-like refutations, and dag-like refuta-
tions.

Constraint systems are heavily used in the field of software verification [8,
12]. Refutations of these constraint systems provide evidence that the system is
infeasible. Thus, refutations, especially short refutations, are also very useful in
this field. As a result, the contributions in this paper will provide insights useful
in software verification.

Specifically, we showed that the IP-OLRR problem is NPO PB-complete
while the IP-OLTR and IP-OLDR problems are NPO-hard and in FPSPACE.

This paper only examined general forms of integer programs. However,
restricting the form of the program can change the complexity of the prob-
lems examined. For example, in systems of difference constraints, the OLRR,
OLTR, and OLDR problems for integer feasibility can be solved in polynomial
time. Thus, future work can examine the complexity of these problems for other
restricted IPs.
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Abstract. We consider the mobile robot dispersion problem in the presence of
faulty robots (crash-fault). Mobile robot dispersion consists of k ≤ n robots in
an n-node anonymous graph. The goal is to ensure that regardless of the initial
placement of the robots over the nodes, the final configuration consists of hav-
ing at most one robot at each node. In a crash-fault setting, up to f ≤ k robots
may fail by crashing arbitrarily and subsequently lose all the information stored
at the robots, rendering them unable to communicate. In this paper, we solve the
dispersion problem in a crash-fault setting by considering two different initial
configurations: i) the rooted configuration, and ii) the arbitrary configuration. In
the rooted case, all robots are placed together at a single node at the start. The
arbitrary configuration is a general configuration (a.k.a. arbitrary configuration
in the literature) where the robots are placed in some l < k clusters arbitrarily
across the graph. For the first case, we develop an algorithm solving dispersion
in the presence of faulty robots in O(k2) rounds, which improves over the previ-
ous O(f · min(m, kΔ))-round result by [23]. For the arbitrary configuration, we
present an algorithm solving dispersion in O((f + l) · min(m, kΔ, k2)) rounds,
when the number of edges m and the maximum degree Δ of the graph is known
to the robots.

Keywords: Distributed algorithm · Mobile robot · Dispersion · Fault-tolerant
algorithm · Crash-fault · Round complexity · Memory complexity

1 Introduction

The dispersion of autonomous mobile robots to spread them out evenly in a region is a
problem of significant interest in distributed robotics, e.g. [9,10]. Initially, this problem
was formulated by Augustine and Moses Jr. [2] in the context of graphs. They defined
the problem as follows: Given any arbitrary initial configuration of k ≤ n robots posi-
tioned on the nodes of an n-node anonymous graph, the robots reposition autonomously
to reach a configuration where each robot is positioned on a distinct node of the graph.
Mobile robot dispersion has various real-world and practical applications, such as the
relocation of self-driving electric cars (robots) to recharge stations (nodes). Assuming
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that the cars have smart devices to communicate with each other, the process to find a
free or empty charging station, coordination including exploration (to visit each node
of the graph in minimum possible time), scattering (spread out in an equidistant man-
ner in symmetric graphs like rings), load balancing (nodes send or receives loads, and
distributes them evenly among the nodes), covering, and self-deployment can all be
explored as mobile robot dispersion problems [11,13–15].

The problem has been extensively studied in different graphs with varying assump-
tions since its conceptualization [11–16,19–22]. In this paper, we continue the study
about the trade-off of memory requirement and time to solve the dispersion problem.
Recently, Pattanayak et al. [23] explored the problem of dispersion in a set-up where
some of these mobile robots are prone to crash faults. Whenever a robot crashes, it
loses all its information immediately, as if the robot has vanished from the network.
This makes the problem more challenging and also makes it more realistic in terms of
real-world scenarios, where faulty robots can crash at any moment. In this paper, we
have continued to study the efficacy of the problem in the same faulty environment. We
studied the dispersion problem with both the rooted and arbitrary configuration of the
robots in a faulty setup. Both algorithms maintain the optimal level of memory require-
ment for each robot.

The following table (Table 1) lists up the major notations used throughout the paper.

Table 1. List of major notations

Symbols Meaning

G The arbitrary graph acting as the underlying network for the robots

n The number of nodes (vertices) in G

m The number of edges in G

Δ The highest degree of the nodes in G

k Number of robots

f Number of faulty robots among the k robots

l Number of initial clusters of robots in the arbitrary configuration

ri A robot with ID i

Rc root node in the rooted configuration

1.1 Our Results

We consider a team of k ≤ n mobile robots placed on an arbitrary, undirected sim-
ple graph, consisting of n anonymous, memory-less nodes and m edges. The ports at
each node are labelled. The robots have unique IDs and a restricted amount of memory
(measured in the number of bits). These robots have some computing capability and
can communicate with the other robots, only when they are at the same node. We con-
sider two different starting scenarios, based on the initial configuration of the robots.
When the robots start from a single node, we call the configuration as rooted, other-
wise, we call it an arbitrary configuration. We further assume that f ≤ k faulty robots
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in the network are prone to crash at any point of time. Our first algorithm for the rooted
configuration crucially uses depth first search (DFS) traversal and improves the round
complexity from O(f · min(m, kΔ)) [23] rounds to O(k2). The second algorithm for
the arbitrary configuration is an entirely new result whose complexity depends upon
the factors: the number of faulty robots (f), number of robot clusters (l), total number
of edges in the graph (m), number of robots (k) and the highest degree of the graph
(Δ). In this case, the round complexity is O((f + l) ·min(m, kΔ, k2)). The results are
summarized in the following two theorems:

Theorem 1 (Crash Fault with Rooted Initial Configuration). Consider any rooted
initial configuration of k ≤ n mobile robots, out of which f ≤ k may crash, posi-
tioned on a single node of an arbitrary, anonymous n-node graph G having m edges,
in synchronous setting DISPERSION can be solved deterministically in O(k2) rounds
with O(log(k + Δ)) bits memory at each robot, where Δ is the highest degree of the
graph.

Theorem 1 improves over the previously known algorithm (in the worst case,
improvement is from cubic to quadratic) that takes O(f · min(m, kΔ)) rounds
for f faulty robots [23]. The theorem also matches the optimal memory bound
(Ω(log(max(k,Δ))) [13]) with O(log(k+Δ)) bit memory and can handle any number
of crashes.

Theorem 2 (Crash Fault with arbitrary Initial Configuration). Consider any arbi-
trary initial configuration of k ≤ n mobile robots, out of which f ≤ k may crash and
positioned on l ≤ k/2 nodes of an arbitrary and anonymous n-node graph G hav-
ing m edges, in synchronous setting DISPERSION can be solved deterministically in
O((f + l) · min(m, kΔ, k2)) time with O(log(k + Δ)) bits memory at each robot.

Theorem 2 solves the dispersion for arbitrary configuration with optimal memory
per robot. The time complexity matches the one conjectured by Pattanayak et al. [23].
When f, l and Δ are constants, the time complexity matches the lower bound of Ω(k).
Moreover, the algorithm can handle any number of faulty robots. The results are sum-
marized in the Table 2.

2 Related Work

The problem of dispersion was first introduced in [2] by Moses Jr. et al., where
they solved the problem for different types of graphs. They had given a lower
bound of Ω(log n) on the memory of each robot (later, made more specific with
Ω(log(max(k,Δ))) in [13]) and of Ω(D) on the time complexity, for any deterministic
algorithm on arbitrary graphs. They also proposed two algorithms on arbitrary graphs,
one requiring O(log n) memory and running for O(mn) time while the other needing
a O(n log n) memory and having a time complexity of O(m) .

Kshemkalyani and Ali [11] provided several algorithms for both synchronous and
asynchronous models. In the synchronous model, they solved the dispersion problem
in O(min(m, kΔ)) rounds with O(k logΔ) memory. For the asynchronous cases, they
proposed several algorithms, one particularly requiringO(ΔD) rounds andO(D logΔ)
memory, while another requiring O(max(log k, logΔ)) memory and having a time
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complexity of O((m − n)k). In a later work, Kshemkalyani et al., in [13] improved
the time complexity to O(min(m, kΔ) log k) keeping the memory requirement to
O(log n), while requiring that the robots know the parameters m,n, k,Δ beforehand.
In a subsequent work, [24] kept the time and memory complexity of [13] intact while
dropping the requirement of the robots having to know m, k,Δ beforehand. Recently,
Kshemkalyani and Sharma [16] improved the time complexity to O(min(m, kΔ)).
Works of [6,22] used randomization, which helped to reduce the memory requirement
for each robot.

In [12], Kshemkalyani et al., studied the problem in the Global Communication
Model, in which the robots can communicate with each other irrespective of their posi-
tions in the graph1. The authors obtained a time complexity of O(kΔ) rounds when
O(log(k+Δ)) bits of memory were allowed at each robot. Whereas, when robots were
allowed O(Δ + log k)) bits, the number of rounds reduced to O(min(m, kΔ)). Both
were for arbitrary initial configuration of robots. They also used BFS traversal tech-
niques for investigating the dispersion problem. The BFS traversal technique yielded a
time of O((D+k)Δ(D+Δ)) rounds with O(logD+Δ log k) bits of memory at each
robot, using global communication, for arbitrary starting configuration of robots. Here
D denotes the diameter of the graph. The problem was also studied on dynamic graphs
in [1,15,17]. Graph Exploration, which is a related problem, has also been intensively
studied in literature [3,5,7,8]

The dispersion problem has also been recently studied for configurations with faulty
robots. In [18], Molla et al., considered the problem for anonymous rings, tolerating
weak Byzantine faults (robots that behave arbitrarily but cannot change their IDs). They
gave three algorithms (i) the first one being memory optimized, requiring O(log n) bits
of memory, O(n2) rounds and tolerating up-to n − 1 faults.(ii) the second one is time
optimized with O(n) rounds, but require O(n log n) bits of memory, tolerating up-to
n − 1 faults. (iii) the third one runs in O(n) time and O(log n) memory but cannot
tolerate more than [n−4

17 ] faulty robots. In [20], the authors proposed several algorithms
for dispersion with some of them tolerating strong Byzantine robots (robots that behave
arbitrarily and can tweak their IDs as well). Their algorithms are mainly based on the
idea of gathering the robots at a root vertex, using them to construct an isomorphic map
of G and finally dispersing them over G according to a specific protocol. However, their
algorithms take exponential rounds for strong Byzantine robots starting from an arbi-
trary configuration. For the rooted configuration, their algorithm takes O(n3) rounds,
but tolerates no more than [n/4 − 1] strong Byzantine robots. Dispersion under crash
faults has been dealt with in [23]. In [23], Pattanayak et al., have considered the prob-
lem for a team of robots starting at a rooted configuration, with some robots being crash
prone. Their algorithm handles an arbitrary number of crashes, with each robot requir-
ing O(log(k + Δ)) bits of memory. The algorithm completes in O(f · min(m, kΔ))
rounds. In our paper, we improve this time complexity while keeping the memory
requirement to optimal and also extend the problem for the robots starting in arbitrary
configuration. A comparison between our results and the most aligned works is shown
in Table 2.

1 In the Local Communication Model robots can communicate with each other only when they
are at the same node.
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Table 2. Results on Dispersion of k ≤ n robots with f ≤ k faulty robots on n-node arbitrary
anonymous graphs having m edges such that Δ is the highest degree of the graph in the local
communication model. Each uses an optimal memory of O(log(k + Δ)) bits on each robot.

Algorithm Initial Config. Crash handling Time

Kshemkalyani et al. [16]* Arbitrary No O(min(m, kΔ))

Pattanayak et al. [23] Rooted Yes O(f · min(m, kΔ))

Algorithm in Sect. 4 Rooted Yes O(k2)

Algorithm in Sect. 5 Arbitrary Yes O((f + l) · min(m, kΔ, k2))
∗The best known result as of now for fault-free dispersion.

3 Model

We now elaborate our model in detail.

Graph: The underline graph G is connected, undirected, unweighted and anonymous
with n vertices and m edges. The vertices of G (also called nodes) do not have any
distinguishing identifiers or labels. The nodes do not possess any memory and hence
cannot store any information. The degree of a node i ∈ V is denoted by δi and the max-
imum degree of G by Δ. Edges incident on i are locally labelled using a port number
in the range [1, δi]. A single edge connecting two nodes receives two independent port
numbers at either end. The edges of the graph serve as routes through which the robots
can commute. Any number of robots can travel through an edge at any given time.

Robots: We have a collection of k ≤ n robots R = {r1, r2, ..., rk} residing on the
nodes of the graph. Each robot has a unique ID and has some memory to store informa-
tion. The robots cannot stay on an edge, but one or more robots can be present at a node
at any point of time. A group of such robots at a node is called co − located robots.
Each robot knows the port number through which it has entered and exited a node.

Crash Faults: The robots are not fault-proof and a faulty robot can crash at any time
during the execution of the algorithm. Such crashes are not recoverable and once a
robot crashes it immediately loses all the information stored in itself, as if it was not
present at all. Further, a crashed robot is not visible or sensible to other robots. We
assume there are f faulty robots such that f ≤ k.

Communication Model: Our paper considers a local communication model where
only the co-located robots can communicate among themselves.

Time Cycle: Each robot ri, on activation, performs a Communicate − Compute −
Move (CCM) cycle as follows.

– Communicate: ri reads its own memory along with the memory of other robots co-
located at a node vi.
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– Compute: Based on the gathered information and subsequent computations, ri
decides on several parameters. This includes, deciding whether to settle at vi or
otherwise determine an appropriate exit port, choosing the information to pass/store
at the settled robot and the information to carry along-with, if, exiting vi.

– Move: ri moves to the neighbouring node using the computed exit port.

We consider a synchronous system, where every robot is synchronized to a common
clock and becomes active at each time cycle or round.

Time and Memory Complexity: We evaluate the time in terms of the number of dis-
crete rounds or cycles before achieving DISPERSION. Memory is the number of bits
of storage required by each robot to successfully execute DISPERSION. Our goal is to
solve DISPERSION using optimal time and memory.

Let us now formally state the problem of fault-tolerant dispersion below.

Definition 1 (Fault-Tolerant Dispersion). Given k ≤ n robots, up to f of which
are faulty (which may fail by crashing), initially placed arbitrarily on a graph of n
nodes, the non-faulty robots, i.e., the robots which are not yet crashed must re-position
themselves autonomously to reach a configuration where each node has at most one
(non-faulty) robot on it and subsequently terminate.

4 Crash-Fault Dispersion for Rooted Configuration

In this section, we present a deterministic algorithm that disperses the robots with
single-source (rooted configuration) in adaptive crash fault. Our goal is to minimize the
round complexity as well as keep the memory of the robots low. The pseudocode and a
pictorial description of the algorithm can be found in the full version of the paper [4].

4.1 Algorithm

In the absence of faulty nodes, one can run the DFS (depth first search) algorithm to
solve the robot dispersion problem in O(min(m, kΔ)) rounds. But in the presence of
crash faults, due to crashes, it becomes challenging to explore the graph. Classic disper-
sion algorithms rely on the robots themselves to keep track of the paths during explo-
ration. The presence of a crashed robot in this instance may lead to an endless cycle.
Therefore, our goal is to ensure the dispersion of mobile robots despite the presence of
faulty robots.

In the rooted configuration, to manage the presence of faults, we avoid exploring the
graph together with all the robots. That is, the graph is explored sequentially such that
each robot ri (1 ≤ i ≤ k) does not begin exploring the graph, until the previous robot
ri−1 is guaranteed to have settled. During exploration, whenever a robot ri finds an
empty node it settles down at that spot. Let us call this algorithm as ROOTED-CRASH-
FAULT-DISPERSION. Below, we explain the algorithm in detail.

Functionality: For simplicity, let us assume that the robot’s ID lies in the range of
[1, k]. Otherwise, the robots can map their IDs from the actual range to the range [1, k],
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since the IDs are distinct. We denote the rooted configuration by Rc. We slightly abuse
notation and use Rc to indicate both the root and the initial gathering of robots. Robots
at Rc traverse the graph via the DFS (Depth First Search) approach, where the decision
of which edge to traverse first is based on the port numbers. The process proceeds in
increasing order of IDs, starting with the robot with the minimum ID at Rc. Rc then
sends each robot to explore the graph via DFS.

Let the robot with the current minimum ID be ri. Then ri begins to explore the
graph via DFS (starting with the minimum port number at Rc). Once it leaves Rc, it
has 3i rounds within which it can either i) settle at the first empty node it finds or ii)
return to Rc if it does not find an empty node to settle within 2i rounds. If ri reports
to Rc within 3i rounds, then Rc ensures that it does not release the robot with the next
lowest ID, say ri+1. This can be guaranteed as ri needs to traverse at most (i−1) edges
to explore the sub-graph traversed by ri−1. ri requires at most i rounds to return to the
base Rc since the next traversed edge might lead to the already visited node which is
not empty. As ri requires i rounds to report at the Rc, therefore, ri explores the graph
for only 2i rounds. Notice that a robot will not traverse the distance of more than (i+1),
before that, there will be an empty edge at a distance (distance from the root) of (i+1)
and the robot will settle down there. If ri did not find the empty node within 2i rounds
then it starts to traverse towards Rc. In this way, ri reports to Rc within 3i rounds so
that Rc does not send another robot to explore the graph. Rc re-sends ri to explore the
graph. In this way, any ri traverses the graph until it finds an empty node. Note that in
our process, we ensure that there are no two robots that are exploring the graph at the
same time.

To maintain the protocol, each ri maintains the following fields. Its ID (ri), a par-
ent pointer (ri.parent) that represents the edge it traversed, a current direction pointer
(ri.cdr) which indicates the direction it is required to follow. And finally, a backward
traversal value (ri.B) which is initially 0, and is set to 1 once the backward traversal is
complete. Here, our procedure performs the traditional DFS protocol but one-by-one,
that is, the robots do not explore the graph simultaneously. A detailed account of the
DFS traversal is provided in the full version [4].

Note that we have not addressed the case where a robot finds an empty node when
returning to Rc (because the previously settled robot has crashed). In such an instance,
the newly settled robot has a ri.parent and ri.cdr that point in the inappropriate direc-
tion. We address this condition below.

Decision: If ri encounters an unexpected child, ru i.e., a child whose parent and cur-
rent pointer direction are set in the inappropriate direction w.r.t the perspective of ri, it
considers (correctly) that ru replaced a robot that has previously crashed. In such a sit-
uation, ri changes the parent of ru appropriately, i.e., minimum available port number
other than ru.parent.

Lemma 1. In the non-faulty setup, round complexity is O(k2).

Proof. In a non-faulty setup, each robot behaves robustly and there are no crashes.
Therefore, after the backtracking flag is set on a node, an edge is not traversed again
during the DFS traversal. In traversing a graph from Rc, two kinds of situations may
arise, either a robot ri reaches an empty node after O(i) edge traversals, or it traverses
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O(i2) edges. In the first case, there is an empty node at a distance of O(i). Therefore, ri
settles at the empty node after O(i) rounds. If such kind of situation arises repeatedly,
then the algorithm takes O(1) + O(2) + · · · + O(k) = O(k2) rounds. In the second
case, there might be a situation such that ri traverses O(i2) edges to find the empty
node and only encounters previously settled nodes (at most i(i − 1)/2 edges). More
preciously, i/2 new edges are traversed in 3i rounds. Notice that a robot will traverse
only earlier traversed nodes at the distance (i + 1), if not, then there will be an empty
edge at a distance (distance from the root) of (i + 1) and the robot will settle down
there. Therefore, ri covers O(i2) edges in O(i2) rounds and future robots (i.e., robots
having ID rj ; ∀ j > i) will not traverse these edges again. Hence, we can conclude that
the non-faulty setup takes O(k2) rounds in the given model. ��
Lemma 2. In the faulty setting, a crashed robot may bring about an extra cost of O(k)
rounds in comparison to the non-faulty setting.

Proof. In the faulty setup, a robot might crash at any time and the respective node
becomes empty, say node vi. As a consequence, the information held by that robot (at
the node vi) is also lost. Accordingly, the next robot that discovers vi, say ri, settles
down at vi. A robot possesses the information of current direction, parent node and
backtracking status apart from its own ID. For that reason, the current direction pointer
is pointing towards the edge based on its least labelled edge. But there might be the case
(in the worst case) that the last crashed node has traversed up to (i − 2) edges which
should be traversed again by the ri+1. This takes extra O(i) rounds. Also, in the worst
case, this value can be O(k) since the number of robots is k. Hence, the lemma. ��
Lemma 3. There is (at most) one robot moving (neither settled at its respective node,
nor at rooted configuration Rc) at any instance.

Proof. Proof by contradiction, let us suppose there exist two robots in moving condi-
tion, say ri and ri+1. Also, assume ri started before, ri+1. Now, as ri has not settled, ri
reports to Rc every 3i rounds. But if ri reports every 3i rounds then Rc does not release
the next robot which is contradictory to our assumption. ��
Lemma 4. A loop or cycle may be formed by the current direction pointer (cdr
pointer). The algorithm ROOTED-CRASH-FAULT-DISPERSION successfully avoids
any loop during dispersion.

Proof. During the execution of the algorithm, a loop or cycle may be formed if a robot
ri crashes at a node ni then the current direction pointer (cdr pointer) is set by the
upcoming robot ri+1 with the lowest port. That lowest port might have been traversed
earlier. Therefore, a loop is formed. From Lemma 3, we know that only one robot
is moving at any instance, say ri+1. Therefore, ri+2 (the next robot) starts after ri+1

settles. If ri+2 encounters any robot with an unexpected cdr pointer then ri+1 changes
the cdr pointer appropriately. Thus, loops are avoided in the network. ��
Lemma 5. The algorithm ROOTED-CRASH-FAULT-DISPERSION takes at most 7k2

rounds and O(log(k + Δ)) bits memory.
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Proof. In case of round complexity, a non-faulty set-up from Lemma 1, the total number
of rounds are 3(1 + 2+ · · ·+ k) < 3k2 (in the best case where ri finds the empty node
within 3i rounds). Additionally, a robot can traverse at most i/2 new edges in 3i rounds
(in a particular phase) without settling down on an empty node (in the worst case).
Therefore, round complexity for k(k − 1)/2 edges in the non-faulty setup is < 3k2.
Moreover, from Lemma 2, we know that the extra cost incurred for f robot’s crashing
is at most fk. Hence, overall round complexity is at most 3k2 + 3k2 + k2 = 7k2.

In case of memory complexity, each robot stores its ID which takes O(log k) bit
space. Along with that parent pointer and current direction pointer takes O(logΔ) bit
memory each. While the backward pointer takes a single bit. Therefore, the memory
complexity is O(log(k + Δ)). ��

From the above discussion, we conclude the following result.

Theorem 1. Consider any rooted initial configuration of k ≤ n mobile robots, out
of which f ≤ k may crash, positioned on a single node of an arbitrary, anonymous
n-node graph G having m edges, in synchronous setting DISPERSION can be solved
deterministically in O(k2) time with O(log(k + Δ)) bits memory at each robot, where
Δ is the highest degree of the graph.

5 Crash-Fault Dispersion for Arbitrary Configurations

In this configuration setting, the robots are distributed across the graph in clusters such
that there are C = {C1, . . . , Cl} groups of robots at l different nodes at the start such
that

∑
i Ci = k. The goal of the dispersion is to ensure that the robots are dispersed

among the graph vertices such that each node has at most one robot. In this setting, we
assume that the robots are aware of k, f,Δ, l and m.

Procedure: Our protocol runs in phases, in which each phase consists of
min(m, kΔ, k2) rounds. At the start of each phase, each cluster begins a counter that
counts down from min(m, kΔ, k2). Each cluster Ci then begins exploring the network
simultaneously via the traditional DFS algorithm (in the trivial case of a singleton clus-
ter consisting of only one robot, it considers itself dispersed). Unlike the rooted config-
uration, individual robots do not explore and return, the entire cluster moves together.
Whenever a cluster encounters a new (empty) node in the network, the robot with the
current highest ID in the cluster settles, and sets its pointers appropriately. At the end of
each round, the counter is decreased by 1. When the counter becomes zero, it signals the
end of the phase, and all flags are reset. That is all pointers become null, including the
pointers of already settled robots. After that, each cluster starts exploring the network
with its current node as a point of origin. This continues until all robots in the cluster
settle. The pseudocode and a pictorial description of the algorithm can be found in the
full version of the paper [4].

Detailed Procedure. There are two main parts to the protocol, i) exploration, ii)
encounter. Exploration deals with the general procedure involved in exploring the
graph, while encounter deals with the details involved when robots from different clus-
ters meet.
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Let’s begin with all the information stored at a robot. Each robot r in a cluster Ci

consists of the following pointers cid, parent, cdr, priority, and B (backtrack). The
pointer cid denotes the ID of the cluster it belonged to when a robot settles. cid of a
cluster Ci is determined at the start of the phase, and it is the ID of the robot with the
highest ID. When a robot decides to settle at a node, the parent pointer keeps track
of the port through which it entered the node. Similarly, the cdr pointer is used to
keep track of the port through which a cluster leaves the node in which it is settled.
The priority pointer of a settled robot keeps track of its priority in various clusters,
originally this is simply the cid of the cluster it was part of, that is the priority of a
cluster is simply its cid. However, a robot’s priority may change if a higher priority
cluster discovers it and updates its priority pointer. In our work, priority is decided by
the cluster’s ID, that is, between two clusters, the cluster with the higher cid has higher
precedence. And of course, the backtrack pointer B keeps track of the backtrack status
of its DFS. In addition to all of these, each robot also has a field called counter, which
is set to min(m, kΔ, k2) at the beginning of each phase. Note that since all robots set
the counter at the beginning of the phase simultaneously, the counter has the same value
across all robots.

Exploration. As mentioned before, as long as a cluster is non-empty, at the beginning
of each phase, each cluster begins exploring the graph via the traditional DFS until
the cluster is empty or it encounters a robot from a higher priority cluster (more on
this in the encounter section). In each phase, each robot in any cluster Ci sets its cid
and priority to the highest ID in the cluster, and its counter to min(m, kΔ, k2). We
consider the node in which Ci is at the start of the phase, to be its root. Ci then follows
the traditional DFS format for exploration. It leaves the node via the smallest unexplored
port. If the node is empty, the robot with the current minimum ID, say r, sets its parent
and cdr pointers and settles at the node.

The update function for the cdr pointer is exactly the same as the one in the rooted
case, i.e., it follows the traditional DFS procedure, except that all the robots in the
cluster move through the exit port. All robots in Ci decrease their counter by one and
Ci leaves through the port in r.cdr. If a cluster ever finds itself returning to a node
with a robot r from its own cluster and it has exhausted all of the ports in which r has
settled, then it sets r’s backtrack flag. Once a phase has finished, if the cluster is non-
empty it resets all flags and counter and begins DFS once again. During exploration,
if the cluster Ci reaches a node u whose degree is k, then they use BFS to explore the
neighbourhood of u and settle the robots of Ci in at most O(k) rounds. However, here
we have not explored what happens if a robot from a cluster Ci meets a robot from Cj .
That brings us to the next important part of the protocol, the encounters.

Encounter. This section contains the explanation of the encounter part of the protocol.
When a robot (or cluster) meets, that is encounters a robot from a different cluster, the
next step in exploration is decided based on priority. Simply put, the robot with higher
priority always takes precedence as follows. There are two distinct scenarios, i) a cluster
finds an already settled node or ii) multiple clusters meet on the same node. In the first
case, if a cluster with a higher priority (say Ci) finds a robot rp from a lower priority
cluster (say Cj) on a node, it sets rp’s priority to its own priority, resets rp’s parent and
cid to its own, and finally sets rp’s cdr (to the minimum unexplored port the higher
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priority cluster has not explored so far) and continues its DFS. If on the other hand, a
lower priority cluster finds a robot rp with a higher priority, it stops its exploration and
just continues decreasing its counter at every round till the end of the phase, and begins
the exploration in the next phase. Note, if a cluster finds a settled robot whose flags have
been reset (i.e., set to null), then it’s the same scenario as that of finding a robot from
a lower priority cluster. The settled robot takes the priority and ID of the newly arrived
cluster.

In the second scenario, if two (or more) clusters meet, the clusters merge and take
on the priority of the cluster with the highest priority among them. They stop and count-
down and begin exploration as a merged cluster in the next phase.

Note that the number of clusters is non-increasing between two consecutive phases.
At any phase, a cluster may either (i) disperse over the nodes completely, or (ii) survive
to explore in the next phase, or (iii) merge with a higher priority cluster. Thus, the
number of clusters either remains the same or decreases at the end of every phase. Now
we show that after (l + f ) phases, dispersion is achieved.

Lemma 6. The effects of a robot crash, that is time delay caused by the presence of a
crash are limited to the phase it occurs in. After that, it ceases to have effect.

Proof. Since at the end of every phase, all robots reset their flags, including the parent
and cdr pointers, previously explored paths are equivalent to new unexplored paths in
the current phase, as their pointers are set by the currently exploring clusters. Hence,
previous phases do not have any impact on the DFS running in the current phase. ��
Lemma 7. Let Ci be the cluster with the highest priority in Phase j. Ci is guaranteed
dispersion by the end of j if j is fault-free.

Proof. From Lemma 6 we know that crashes in previous rounds do not have an effect on
exploration in the current phase. And, in the absence of faults during the phase itself,
we see that Ci exploration is equivalent to a rooted single cluster exploration of the
network. Thus it is able to complete its dispersion using DFS without any delays or
interference from other clusters, which takes less than O(min(m, kΔ, k2)) rounds to
complete. ��
Lemma 8. Each cluster Ci ∈ C is guaranteed to have at least a single fault-free phase
in which it has the highest priority.

Proof. Quite trivially, since there are (l + f) phases, each cluster is guaranteed at least
one phase in which no faults occur, and in which they are the highest priority. ��
Lemma 9. At the end of (l + f) phases, all clusters are guaranteed to have dispersed.

Proof. This follows directly from Lemmas 7 and 8. Each cluster is guaranteed to have
at least one fault-free phase in which it has the highest priority. From 6 we know, in that
phase, there is guaranteed dispersion. Hence, in (l + f) phases, we are guaranteed to
have complete dispersion of all clusters. ��
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Thus, we have the following theorem.

Theorem 2. In the synchronous setting, the crash-tolerant algorithm for the arbitrary
configuration (algorithm ARBITRARY-CRASH-FAULT-DISPERSION) ensures disper-
sion of mobile robots in an arbitrary graph from an arbitrary initial configuration in
O((f + l) · min(m, kΔ, k2)) rounds with each robot requiring O(log(k + Δ)) bits of
memory.

Remark 1. If only the number of robots (k) is known and all other factors are unknown
to the network then the algorithm for arbitrary configuration takes O(k3) rounds.

6 Conclusion and Future Work

In this paper, we studied Dispersion for distinguishable mobile robots on anonymous
port-labelled arbitrary graphs under crash faults. We presented a deterministic algorithm
that solves robot dispersion in two different settings, i) a rooted configuration of robots
and ii) an arbitrary configuration of robots. We achieved the O(k2) round complexity
in rooted configuration while O((f + l)min(m, kΔ, k2)) round complexity in arbitrary
setting. In both cases, we usedO(log(k+Δ)) bits of memory. Some open questions that
are raised by our work: i) What is the non-trivial lower bound for the round complexity
in both the setting by keeping the memory to O(log(k+Δ)). ii) If it is possible to give a
similar round complexity for the case of arbitrary configuration as we achieved in rooted
configuration. iii) If it is possible to get the same bound in the arbitrary configuration
without the knowledge of f, l,Δ and m. iv) Finally, whether similar bounds hold in the
presence of Byzantine failures.
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Abstract. We study the spectrum sharing in device-to-device (D2D)
communications in an underlay cellular network.Ourmodelmaximizes the
total sum rate such that i) at most one sub-channel is used for each D2D
pair, and ii) the total interference is at most the required maximum. Our
model can also minimize the interference subject to a guaranteed total sum
rate. We give a branch-n-cut algorithm. We provide an iterative rounding
algorithm that achieves at least a quarter of the optimal sum rate and no
more than the required maximum of the total interference when the objec-
tive is to maximize the sum rate. Our experiments establish the effective-
ness of the branch-n-cut approach for resource management.

Keywords: Device-to-Device communication · Iterative rounding
algorithm · Branch and cut

1 Introduction

Device-to-device (D2D) communication occurs when neighbouring cellular
devices communicate directly, typically over a shared spectrum. D2D communi-
cation improves the transmission rate and frequency reuse and reduces the hop
count. But can lead to interference with a cellular user and even more substan-
tial interference with another D2D pair in a neighbouring cell. Therefore new
approaches are needed for radio resource allocation [7]. The new methods should
increase the system sum rate without too much deterioration in the signal, and
the total interference should be limited.

In this paper, we study the knapsack-based model for resource allocation
first proposed in [12]. Given a set of cellular users and a set of D2D pairs (from
the cellular users), the model allows for the radio resource of a cellular user to
be used by at most one D2D pair (1–1 resource). If used, this radio allocation
will generate some quantifiable interference given the system model and provide
some sum rate. The model seeks to find those allocations which simultaneously
meet the sum rate and the interference requirements from the systems. For a
cellular user and a D2D receiver pair, the model specifies the signal interference
noise ratio (SINR) at a cellular use when the base station transmits and the
SINR at the D2D receiver. The SINR at the cellular user and D2D receiver is
considered the minimum level of detail needed to examine interference [15].
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We can also model the resource allocation problem as a minimum knapsack
problem with side constraints. If a target sum rate is required, then the objec-
tive is to minimize the total interference. The knapsack constraint models the
requirement that the target sum rate is met, and the side constraints model the
1–1 resource requirement; this model was first studied in [14].

Our contributions: We give the first branch and cut method to maxi-
mize the sum rate while limiting the total interference for D2D communications.
Extensive experiments are performed on hard instances arising from knapsack
[23]. We give an approximation algorithm based on iterative rounding in Theo-
rem 1.

We describe the system model briefly in Sect. 2. Section 3 presents the work
that is directly related. The branch-n-cut algorithm is described in Sect. 4. An
iterative rounding algorithm for the maximization of the sum rate objective
and the proof of the quality of the approximation is in Sect. 5. The results of
the empirical study of the branch and cut algorithm are in Sect. 6. Finally, we
conclude with a discussion and some open problems in Sect. 7.

2 System Model

The system model below is from [8,12]. Let D be the set of D2D pairs and C
the group of all cellular users. Gbc is the channel gain between the base station b
and cellular user c ∈ C. Gdc is the channel gain between a transmitter for a D2D
pair d ∈ D and the cellular user c ∈ C. Gtr denotes the channel gain between
D2D transmitter t and D2D receiver r (for D2D pair). Gbd is the channel gain
between the base station b and d’s receiver. The transmission power of cellular
user c and D2D pair d are P c and P d, respectively. If x(c,d) ∈ {0, 1} indicates
whether a D2D pair (d) accepts resources from a cellular user (c), and s(c,d)

represents the sum rate, then the total sum rate of the cellular users which share
resources with some D2D pair is given by,

S =
∑

c∈C

∑

d∈D

x(c,d)s(c,d)

The sum rate for a pair (c, d) is given by Shannon’s formula.

s(c,d) = B log2 (1 + γ(c,d)) + B log2 (1 + γ(d,b))

where B is the bandwidth of the channel in Hz, γ(c,d) is the SINR at cellular
user with signal transmitting from the base station and γ(d,b) is the SINR at the
D2D receiver end. γ(c,d) and γ(d,b) are given by,

γ(c,d) =
P cGbc

T + P dGdc
and γ(d,b) =

P dGtr

T + P cGbd

T above is the thermal noise at the receiver end, also known as the energy of
Additive White Gaussian Noise (AWGN). The interference for pair (c, d) is given
by,

I(c,d) = P dGdc + P cGbd.
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In this model, each cellular user and D2D pair can share resources with at
most one D2D pair (and one cellular user). Therefore,

∑
c∈C x(c,d) ≤ 1,∀d ∈ D.

Similarly,
∑

d∈D x(c,d) ≤ 1,∀c ∈ C. Let I be the total interference allowed then∑
c∈C

∑
d∈D x(c,d)I(c,d) ≤ I. The model can now be written as

max
∑

c∈C

∑

d∈D

x(c,d)s(c,d) (1)

∑

c∈C

∑

d∈D

x(c,d)I(c,d) ≤ I (2)

∑

c∈C

x(c,d) ≤ 1 ∀d ∈ D (3)

∑

d∈D

x(c,d) ≤ 1 ∀c ∈ C (4)

x(c,d) ∈ {0, 1} ∀c ∈ C, ∀d ∈ D (5)

The objective function (1) maximizes the total sum rate. Constraint (2) ensures
that the interference is less than the target interference. Finally constraints (3)
and (4) indicates that each D2D and the user cellular can share resources with
at most one user cellular and D2D, respectively. We can think of cellular users
and D2D pairs as two sides of a complete bipartite graph (V = C ∪ D,E) and
(c, d) as an edge in this graph. Let M be the set of matchings in the bipartite
graph. Then, by a simple change of variable (c, d) = e, we can write the above
model as:

max
∑

e∈E

xese (6)

∑

e∈E

xeIe ≤ I (7)

x ∈ M (8)

where constraint (8) states that the set of edges in {e : xe = 1} form a matching
and constraint (7) is the knapsack constraint. Therefore, we say that model is a
knapsack with a matching side constraint. We write constraint (8) as

∑

e∈δ(v)

xe ≤ 1 ∀v ∈ V

at times where δ(v) is the set of edges incident on v (either cellular user or a
D2D pair).

3 Related Work

With the emergence of 4G and 5G networks, resource allocation for D2D commu-
nication underlaying cellular networks has been studied extensively. The focus



44 L. Karimi et al.

has been on the minimization of interference, maximization of sum rate, fair dis-
tribution of resources, and restricted allocation of resources. We describe some
of the results that are immediately relevant to this study.

One of the early papers in the area is due to Doppler et al. [4], which pro-
posed a mechanism for session setup and management for D2D communications
in LTE-A networks. They showed that D2D communication increases the total
throughput. Janis et al. [16] gave the scheme to monitor interference between cel-
lular users and D2D pairs and use it to minimize interference. Their simulations
demonstrate substantial gains in the sum rate.

Islam et al. [13] proposed a minimum knapsack-based resource allocation
model and algorithm for D2D communication (MIKIRA) underlaying cellular
networks. This algorithm which takes O(n2log(n) time, is a knapsack-based app-
roach to maintain a target sum rate while minimizing interference. This approach
is unfair as the algorithm ceases to assign resources when the target sum rate is
met. Islam et al. [14] addressed this fairness issue with a two-phase auction-based
resource allocation algorithm (TAFIRA). The algorithm starts with a solution
with minimum interference and tries to obtain a better sum rate via an auction.
A subsequent study by Hassan et al. [8] showed that MIKIRA doesn’t provide a
feasible solution in most cases and that TAFIRA has an unbounded integrality
gap. To overcome these limitations, the authors present a two-phase algorithm.
A maximum weight matching is found in the first phase using the Hungarian
method, and a local search algorithm is used to find another matching with
reduced interference and at least the target sum rate in phase two.

Hussain et al. [11] extended the resource-sharing model where many D2D
pairs may share the radio resource of many cellular users. A graph-based app-
roach for resource allocation was proposed in Zhang et al. [29]. Zhang et al.
[30] formulated the interference relationships among different D2D and cellular
communication links into a novel interference graph and proposed an algorithm
(InGRA) that can compute near-optimal solutions with low computational com-
plexity in practice.

Xu et al. [28] developed a second price auction for allocating spectrum
resources where the D2D pairs bid in sequence. Their method shows improved
sum rate and fairness in simulations. A reverse iterative combinatorial auction
in which spectrum resources are auctioned off as goods were proposed by Xu et
al. [27]. They prove that the auction is cheat-proof and converges. Simulations
show that the method yields a reasonable sum rate.

An admissibility-based approach was developed by Feng et al. [6]. The scheme
has three phases. Admissible D2D pairs are identified based on the distance from
the base station in the first phase. This ensures that the sum-rate requirement is
not violated. In the second stage, power is allocated to each D2D pair and cellular
user. The third stage identifies the resource allocation by solving a weighted
matching problem.

A two-stage semi-distributed framework for managing D2D communications
was given by Lee et al. [19]. Energy efficient resource allocation was studied by
Hoang et al. [9] where the objective is to maximize the weighted energy efficiency
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while guaranteeing a minimum sum rate. The authors gave a dual decomposition
algorithm.

A semi-centralized control method for selecting cellular relays is due to Li and
Cai [22]. The interference is modelled using stochastic geometry, and two traffic
models are analyzed. Lee and Lee [20] is a theoretical study that determines the
analytic forms for outage probability for a cellular user and the achievable rate for
a D2D pair. Using this analytical form, they determine the optimal spectrum and
power allocation to maximize the average rate. Li et al. [21] studies the resource
allocation, which has minimum energy consumption that obeys both service
qualities and transmission rate requirements. They use the statistical information
about the channels, give a non-convex mixed integer non-linear programming
model, and propose heuristic methods.

Hoang et al. [10] consider the channel allocation for each D2D pair to max-
imize the sum rate while guaranteeing the desired sum rate for each D2D pair.
Their model leads to a three-dimensional matching problem which is solved using
a branch-n-bound algorithm and iterative rounding. The work in [10] is method-
ologically the closest to our work. However, there are key differences. First, the
underlying graph problem that is solved is different. We use a knapsack model
instead of a three-dimensional matching in [10]. Therefore, a direct experimental
comparison of our results with them is not fair. Secondly, we augment the branch-
n-bound method with a branch-n-cut algorithm. Thirdly, iterative rounding is
used as a tool in both papers. However, the proof of the approximation ratio of
the iterative rounding method in [10] uses the local ratio technique, whereas our
guarantee relies on the structure of the extreme point solution to the LP and
uses the Rank Lemma.

The constant/uniform interference case was first studied by Saha et al. [24].
They proposed a two-phase polynomial-time algorithm when interferences are
uniform when the objective is to minimize the interferences while satisfying a
target sum rate. Phase one is similar to the first phase in [8], and phase two
improves on phase one by iteratively finding unique triples. For recent in-depth
reviews of the device to device communications in underlay cellular networks see
[3,25].

4 Branch-n-Cut

Branch and bound is a tree search method to solve integer programs. If we add
linear inequalities known as cuts at every search node, then the method is called
branch-n-cut [2]. All feasible solutions satisfy the cuts and reduce the search
space. We use linear inequalities known as cover-cuts [17] that are generated
from Eq. (7) and the current LP solution as explained next.



46 L. Karimi et al.

4.1 Cover Cuts

A cover S is a set of pairs (c, d) where c ∈ C, d ∈ D such that the total interfer-
ence on the pairs in S is larger than the allowed interference, i.e.,

∑

(c,d)∈S

I(c,d) > I (9)

S is a minimal cover if no proper subset of S is also a cover. Any feasible
solution can contain only at most |S| − 1 elements from a minimal cover S.
Therefore, for any feasible solution x,

∑

(c,d)∈S

x(c,d) ≤ |S| − 1 (10)

Equivalently, for a minimal cover S and a feasible solution x∗

∑

(c,d)∈S

(1 − x∗
(c,d)) ≥ 1 (11)

Therefore, if there is an S such that the following equations hold,
∑

(c,d)∈S

(1 − x∗
(c,d)) < 1 (12)

∑

(c,d)∈S

I(c,d) > I (13)

Then inequality (10) can be added to the node in the search tree during branch
and bound. The existence of a minimal cover S that satisfies inequality (12) is
determined by solving the following knapsack problem.

max
∑

c∈C

∑

d∈D

y(c,d)I(c,d) (14)

∑

c∈C

∑

d∈D

y(c,d)(1 − x∗
(c,d)) < 1 (15)

Where yc,d ∈ {0, 1} is the decision variable in the knapsack problem. We use
JuMP v 0.21 [5] library in Julia [1] to implement branch and cut. The cuts are
discovered by solving an integer program. Gurobi 9.1.2 is used as the solver for
JuMP. The experimental results are reported in Sect. 6.

5 Approximation Algorithm

Saha et al. [24] studied the problem of interference minimization when the sum
rates were arbitrary, and the interference was uniform and gave a polynomial
time algorithm. In this section, we give an iterative rounding algorithm that, in
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each round, will solve an LP and set the value of one of the variables. At most,
the number of rounds is the number of edges, and the work done in each round is
polynomial. The algorithm will work with extreme point solutions of the LP. We
will show that a variable with a value in a prescribed set exists in each round.
We will prove a bound on the approximation ratio.

The input is a bipartite graph B = (V,E) and an interference limit I. V (E)
is the set of vertices (edges). The two sides of the partition are the D2D pairs on
one side and the cellular users on the other. Each edge, e, has an interference Ie

and a sum rate se. The set of edges incident on v ∈ V is denoted δ(v). The goal is
to find a maximum weight matching such that the total sum of the interference
on the edges in the matching is at most I. We have the following integer program
(IP).

IP = max
∑

e ∈ E

sexe (16)

∑

e∈δ(v)

xe ≤ 1 ∀v ∈ V (17)

∑

e ∈ E

Iexe ≤ I (18)

xe ∈ {0, 1} ∀e ∈ E. (19)

The linear programming relaxation (LP) is:

LP = max
∑

e ∈ E

sexe (20)

∑

e∈δ(v)

xe ≤ 1 ∀v ∈ V (21)

∑

e ∈ E

Iexe ≤ I (22)

xe ≥ 0 ∀e ∈ E. (23)

5.1 Algorithm

We give a procedure (Algorithm 1) that will construct in polynomial time
(depends on the time needed to solve a linear program) an integer solution
such that

– the interference is no more than interference capacity I,
– the sum rate is at least a quarter the maximum sum rate in an optimal

solution to the LP.

Algorithm 1 relies on an optimal solution to the LP relaxation and is iterative.
Given an optimal solution, x∗ to the LP, one of the two things happens: in each
step, a reduced problem (smaller in size) is obtained, which is solved iteratively.
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Algorithm 1
1: F = {}.
2: Solve the LP relaxation for graph B. If the optimal LP solution value is 0, then

GOTO END.
3: If there is e such that xe = 0 then remove edge e from B. GOTO 2.
4: If there is e such that xe = 1 then add e to F and remove edge e and edges incident

on e from B and I = I − Ie. GOTO 2.
5: If 0 < xe < 1 for all the edges, decompose the graph into two matchings and select

the matching with a larger total sum rate.
6: Use the Greedy Algorithm 2 on the selected matching, add edges determined by

the greedy algorithm to F. GOTO 7.
7: END

1. An edge e exists such that x∗
e = 0. Edge e is removed from the graph B. This

gives a reduced problem B′.
2. If an edge e exists such that x∗

e = 1 then e is added to the solution. The
edge e and any edges incident on e are removed from B to obtain a reduced
problem B′ with interference bound I ′ = I − Ie.

3. For all edges 0 < x∗
e < 1. In this case, the graph induced by edges in {e | x∗

e >
0} is a “near” cycle. We decompose this graph into two matchings, select the
matching with the larger total sum rate, and return the edges selected from
Algorithm 2, which is a greedy algorithm for the knapsack problem, as the
solution.

Note that when we remove an edge, we delete its endpoints and any edge
incident on the endpoints. We prove the following.

Theorem 1. Algorithm 1 computes a solution with the sum rate at least a quar-
ter of the sum rate of the optimal LP solution and the total interference less than
equal to the target interference.

Proof of Theorem 1 relies on the following Lemmas 2, 3, and 4. The proof of
Lemma 2 relies on the structure of the extreme point solutions captured by the
following Lemma.

Lemma 1 (Rank Lemma). Let P = {x | Ax ≥ b, x ≥ 0} and let x be an
extreme point solution to P such that each component xi > 0. If C is any maxi-
mal set of linearly independent tight constraints (A[i, :]x = c[i]) then |C| = |X|,
where |X| is the number of variables.

The intuition behind the rank lemma can be summarized as follows: because
x is an extreme point solution, the columns of A are linearly independent. Also,
the column rank of A equals its row rank. Therefore any maximal set of linearly
independent tight constraints equals the number of variables. See [18, Chapter
2] for proof of the Rank Lemma. First, we note that in any optimal solution
(extreme point or not) to the LP, Constraint (7) is satisfied at equality in any
optimal solution. As a direct application of the rank lemma, we get Lemma 2.
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Lemma 2. Let x∗ be a basic feasible solution to the LP such that 0 < x∗
e for

all e ∈ E and W = V1 ∪ V2 be the set of vertices such that
∑

e∈δ(v) x∗
e = 1 and∑

e∈E Iex
∗
e ≤ I, then |W | + 1 ≥ |E|.

Note that if constraint (7) is in the maximal set of linearly independent tight
constraints, then |W |+1 = |E|. In the other case |W | = |E|. We now prove that
if 0 < x∗

e < 1 for every edge, the bipartite graph is near a cycle. One example
of an optimal solution to LP that is a “near cycle” is shown in Fig. 1. Next,
lemma is used to characterize the structure of the extreme point solution when
all variables have fractional values.

Lemma 3 (Structure). Let x∗ be an optimal solution to the LP defined by
the graph B′ = (V ′, E′) such that 0 < x∗

e < 1 for all e ∈ E′. Then, the number
of vertices of degree ≥ 3 is at most 2.

Proof. Given an optimal solution x∗, call a constraint in the LP tight if it is
satisfied with equality.

If W is the set of vertices at which the matching constraint is tight
(
∑

e∈δ(v) xe = 1) then by Lemma 2, |W | + 1 ≥ |E|. Let the number of ver-
tices in W with a degree of at least 3 be k. We know

2W | + 2 ≥ 2|E| ≥
∑

v∈W

δ(v) ≥ 3k + (|W | − k)2 = (2W | + k). (24)

The first inequality in Eq. (24) follows from Lemma 2. The second inequality
follows as W ⊆ V. The third inequality is due to the assumption that δ(v) ≥ 3
for k vertices ∈ W. We infer, k ≤ 2, i.e. there are |W | − 2 vertices with degree
≤ 2.

As xe < 1 for all e ∈ E, every vertex in W has a degree at least 2. Therefore
there are |W |−2 vertices with degree 2. There are at most two vertices of degree
more than 2. Suppose there are only degree three vertices (either 0, 1 or 2). Then
the graph is either a cycle, a cycle plus one edge, or a cycle plus two edges. The
set of edges E is nearly a cycle, and We call such a graph a “near cycle.” We
assume that the sum rates are low enough compared to the optimal LP solution
value, so we ignore these extra edges in the analysis in the next part. There
cannot be any vertex of degree four in W else Eq. (24) is not satisfied. �	

We focus only on the even cycle in the rest of the section. An example of the
structure and then how this structure is used in Algorithm 1 is addressed next.
The edges in the cycles can be partitioned into two sets M1,M2, each of which
is a matching such that for any e ∈ M1, the value in the optimal solution to LP,
x∗

e < 1/2.

5.2 Structure

As a consequence of Lemmas 2 and 3, we have seen that the edges in any optimal
solution x∗ in which every variable takes on a fractional value form a near cycle.
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Even Cycle
Matching

Fig. 1. Decomposition of “near” cycle

In each iteration, we ensure that the interference at each edge in the current
solution at most the remaining interference capacity Ir. This is achieved by
removing edges e for which Ie > Ir after step 4 of Algorithm 1.

Figure 1 shows an example of such a cycle in an optimal solution of the LP.
The values associated with every edge are of the form (xe, Se,Ie). M1,M2 are
two matchings that this cycle is decomposed to. The edges in M1 take value x,
and the edges in M2 take value 1 − x as shown in Fig. 1. now prove Theorem 1.

5.3 Proof of Theorem 1

Proof (Proof of Theorem 1). Let B be the graph at the start of Algorithm 1
and B′ the reduced graph obtained after steps 3/4/5/6. Let x∗ be the optimal
solution to LP for graph B. If x′ is the optimal solution to the LP for B′. We
use induction on the number of iterations.

Base Case: If there is only a single iteration, then three possibilities arise.
The subproblem B′ is empty in each case.

– An edge x∗
e = 0 is removed. The value of the objective function does not

change. The LHS in the sum-rate constraint does not change.
– An edge x∗

e = 1 is added to the solution, I = I − Ie.
– For all the edges 0 < x∗

e < 1. By Lemma 3 the graph is a near cycle. We
decompose the cycle into two matchings. Select the matching with the larger
total sum rate and use Algorithm (2). This gives the total sum rate at least
a quarter of the optimal LP solution, which is proved in Eq. (33) next, and
the total interference is less than equal to the target interference.
Let S∗ be the optimal value to LP problem with the variable values x∗

e. Let
M1 be the matching that x∗

e < 1
2 for all e ∈ M1 and, M2 be the matching

that x∗
e ≥ 1

2 for all e ∈ M2. If S∗ is the optimal solution of LP-relaxation
(16). By definition, we have:

S∗ =
2∑

i=1

S∗(Mi)
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We select the matching with the larger total sum rate between S∗(M1) and
S∗(M2). If the matching Mi, i ∈ {1, 2} has the highest total sum-rate, then
S∗(Mi) ≥ S∗

2 .
We can select a subset of edges from Mi in the solution. This is modelled as
the following knapsack problem:

KS − IP = max
∑

e∈M1

sexe (25)

∑

e∈M1

Iexe ≤ Ir (26)

xe ∈ {0, 1} ∀e ∈ Mi (27)

The LP relaxation of the KS is:

KS − LP = max
∑

e∈M1

sexe (28)

∑

e∈M1

Iexe ≤ Ir (29)

xe ≥ 0 ∀e ∈ Mi (30)

Let S∗
o be the optimal value of KS − LP , therefore S∗

o ≥ S∗(Mi) as the
optimal solution for matching Mi is a feasible solution for LP of knapsack.
Therefore,

S∗
o ≥ S∗(Mi) ≥ S∗

2
(31)

We use Algorithm 2 which computes an integer solution SOI to maximum
knapsack that is the least half in value of the optimal solution to the LP
relaxation (KS-LP). By Lemma 4,

SOI ≥ S∗
o

2
(32)

From Eqs. (31) and (32), we get:

SOI ≥ S∗
o

2
≥ S∗(Mi)

2
≥ S∗

4
. (33)

Inductive step: The restriction of x∗ to B′ is denoted xr. By induction
hypothesis B′ has a solution x′ which is integral and satisfies i)

∑
e∈E′ sex

′
e ≥

1/4
∑

e∈E sex
r
e and ii)

∑
e∈E xeIe ≤ I ′ where I ′ is the interference in B′. We use

I(x) to mean
∑

e∈E Iexe and s(x) to mean
∑

e∈E xe. We examine the two cases.

– If some e : xe = 0 was removed in B then I ′ = I and xr = x∗ − {x∗
e}. Note

that by induction hypothesis I(x′) ≤ I ′ = I, s(x′) ≥ s(x∗)/4 and x′ is a
solution to B.

– If some e : xe = 1 and edges incident on e was removed in B then I ′ = I − Ie.
The sum-rate for the solution to B is s(x′) + se ≥ 1/4s(x∗). The knapsack
constraint is I(x′) + Ie ≤ I ′ + Ie ≤ I.

�	
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5.4 Density Ordered Greedy for KS

We provide a density-ordered greedy algorithm and the proof that it is a two
approximation which is from [26].

Algorithm 2. Density ordered Greedy
G ← ∅
while I(G ∪ argmaxi/∈G{ si

Ii
}) ≤ Ic do

G ← G ∪ argmaxi/∈G { si
Ii

}
end while
a ← argmaxi/∈G{ si

Ii
}

G ← argmax{S(G), sa}
return G

Lemma 4. Algorithm 2 computes a solution with the sum rate at least half the
sum rate of the optimal LP solution [26].

6 Experiments and Results

We study the efficacy of the cover cuts described in Sect. 4 on computationally
hard instances. Cuts are added at each node in the branch and bound search
tree. The algorithm uses cover cuts and default cuts that are part of the Gurobi
solver, notably mixed-integer rounding cuts, generalized upper bounds cover
cuts, Chvatal-Gomory strong cuts, and minimal cover cuts.

6.1 Instance Generation

Profit-ceiling instances from [23] are used to model the knapsack constraint. The
instances are known to be computationally hard for Knapsack. The interferences
are randomly generated between 1 and 50. The sum-rate is generated by the
formula, se = 3
ce/3� for every D2D and CU pair e.

6.2 Methodology

We use the JuMP library [5] in Julia [1] to program branch and cut algorithms.
We use Gurobi as the backend, which can be replaced with any other open-
source or commercial solver. To evaluate the benefits of adding cover-cuts (from
Sect. 4). We initialize the Gurobi solver with the pre-solve reductions turned off.
The number of threads is one, no internal cuts are used (MIR, GUC, strong
CG), heuristics, and the generation of equivalent models is also turned off at the
start.

Some of the models we solve are large (10,000 or more variables). The basic
branch and bound can take hours on these instances, so we use CEDAR, the
Compute Canada cluster, with a limit of 30 h on each solve and a maximum
memory requirement of 12GB. There are no time outs with this limit and all the
instances reported are solved optimally (see Table 1).
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6.3 Results

Table 1. Branch and cut result (Hard Instances)

Number of Gurobi Cover cuts Nodes Cutting planes

variables configuration explored

2500 1 thread 325 371 User 25

Optimized 1966 3262 User
MIR
GUB

316
1
1

3600 1 thread 160 209 User 4

optimized 2362 4239 User
CC
MIR
GUB

111
1
4
2

4900 1 thread 327 1570 User 6

Optimized 3773 6940 User
MIR

290
1

6400 1 thread 4763 5816 User 573

Optimized 4241 7992 User
MIR
StrongCG

233
2
1

8100 1 thread 5927 6712 User 668

Optimized 4104 5596 User
MIR

32
1

10000 1 thread 507 712 User 11

Optimized 5617 11492 User
GUB

397
1

The branch and cut algorithm gives us an exact optimal solution. We examine the
total number of cuts added during the branch and bound process. The number
of cuts added for hard cases is in Table 1. Not all the cover cuts that the solver
discovers are added to the nodes due to design implementation issues in JuMP
and Gurobi. The fourth column, labelled cover cuts, lists the total number of
cover cuts discovered during the entire search process, whereas the last column,
called Cutting Planes, lists the number of cuts the solver used.

7 Conclusion and Future Work

This paper studied the D2D resource allocation model, which maximizes the
sum rate while capping the interference. We gave a branch and cut algorithm
for computing optimal solutions. Our technique works for the case when the
objective is to minimize the interference subject to a guaranteed sum rate for
D2D communications (not shown here). We performed a detailed empirical eval-
uation of the branch and cut algorithm on instances that are computationally
hard. Although it takes time to solve hard instances using the branch and cut,
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we can have the optimal solution for the model. We give an iterative round-
ing algorithm with constant factor approximation bound. We prove that the
iterative rounding method provides a near-optimal feasible solution that is four
approximate.
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Abstract. In this paper, we consider the following k-dispersion prob-
lem. Given a set S of n points placed in the plane in convex position and
an integer k (0 < k < n), the objective is to compute a subset S′ ⊂ S such
that |S′| = k and the minimum distance between a pair of points in S′

is maximized. Based on the bounded search tree method, we propose an
exact fixed-parameter algorithm in O(2kn2 log2 n) time for this problem,
where k is the parameter. The proposed exact algorithm improves on the

algorithm of Akagi et al. (2018), which requires time nO(
√

k), whenever
k < c log2 n for some constant c. We then give an exact polynomial-time
(O(n4k2)) algorithm, for any k > 0, thus answering the open question
about the complexity of this restricted dispersion problem. For k = 3,
there is an O(n2)-time algorithm by Kobayashi et al. (2021).

Keywords: Obnoxious facility location · Max-min dispersion · Fixed
parameter tractable · Delaunay triangulation · Dynamic programming

1 Introduction

In many variants of the facility location problems that are studied in the liter-
ature [6,7], we are given a set of n points, and, among them, we need to locate
k facilities such that some objective function is minimized. In contrast, in the
obnoxious facility location problems, we need to maximize an objective func-
tion. In the literature, this wider class of facility location problems that aim to
maximize some diversity measures are called dispersion problems. In the case of
the max-min k-dispersion problem, we need to maximize the minimum distance
between the selected k facilities. The applications of k-dispersion problems arise
in many areas. Consider a specific application where the k-dispersion problem
can be used in which the given points are in convex position, as discussed below.
For example, consider a convex island where some oil storage plants are to be
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established on the shore for transport using ships. Moreover, these plants should
be kept as far away from each other as possible so that any accident in one plant
should not affect the other plant. We can model this problem as the k-dispersion
problem, in which the plants are placed on the island’s boundary to maximize
the distance between any pair of plants. We define the problem formally below.
Discrete k-dispersion on a Convex Polygon (DkConP): Given a set S of n
points in convex position, assume that the points in S are ordered in a clock-
wise order around the centroid of S, forming a convex polygon P. Then, observe
that the k-dispersion problem on the set S can be equally stated as packing k
congruent disks of maximum radius, with their centers lying at the vertices of
the convex polygon P.

1.1 Literature Survey

The discrete k-dispersion problem for k ≥ 3 is known to be NP-complete even
when the triangle inequality is satisfied [8]. The Euclidean k-dispersion problem
is proved NP-hard by Wang and Kuo [16]. Akagi et al. [1] gave an algorithm to
solve the k-dispersion problem in the Euclidean plane exactly in nO(

√
k) time.

They also gave an O(n)-time algorithm to solve the special cases of the problem
in which the given points appear in order on a line or on the boundary of a circle.
Later, Araki and Nakano [2] improved the running time of [1] to O(log n) for the
line case. Ravi et al. [14] proved that for the max-min k-dispersion problem on
an arbitrary weighted graph, we cannot give any constant factor approximation
algorithm within polynomial time unless P=NP. If the triangle inequality is satis-
fied by the edge weights, then we cannot approximate the problem with a better
factor than 1

2 in polynomial time unless P=NP. They also gave a polynomial time
1
2 -approximation algorithm for the problem in graph metric.

Horiyama et al. [10] solved the max-min 3-dispersion problem in O(n) time
in both L1 and L∞ metrics when the given points are in 2-dimensional plane.
They also designed an O(n2 log n) time algorithm for the 3-dispersion problem
in L2 metric. The 1-dispersion problem is trivial when the points are in a convex
position, and we can solve the 2-dispersion problem in O(n log n) time by com-
puting the diameter of the convex polygon formed by these points [15]. Recently,
Kobayashi et al. [11] gave O(n2)-time algorithm for the 3-dispersion problem on
a convex polygon. In the literature, to the best of our knowledge, the k-dispersion
problem on a convex polygon for any k > 3 has remained open; it is resolved in
our work here. When the points are arbitrarily placed in the Euclidean plane,
the current best approximation algorithm is still the 1

2 -approximation algorithm
proposed by Ravi et al. [14] for the metric case. Hence, also from the point
of designing ρ-approximation algorithm for ρ > 1

2 , the problem is open. Other
related results in the literature are the following. Baur and Fekete [4] studied the
problem of maximizing the rectilinear distance between a selected set of n points
within a polygon and they showed that this problem cannot be approximated
with the factor 13

14 unless P = NP. Fekete and Meijer [9] studied the discrete
k-dispersion problem with a constraint of maximizing the average rectilinear
distance between k facilities in d-dimensional space. They solved the problem in



Algorithms for k-Dispersion for Points in Convex Position in the Plane 61

linear time when k is fixed and gave a polynomial-time approximation scheme
when k is part of the input.

2 Preliminaries

This section introduces some terminologies and observations useful in discussing
our solution for the DkConP problem.

Let us use vivj to denote the line segment connecting the points vi and vj .
We use |.| (i) to denote the length |vivj | of the line segment vivj , (ii) to denote
the absolute value |x| of a real number x ∈ R, and also, (iii) to denote the
cardinality |S| of any set S. The center of any disk d is denoted by C(d), and
the diameter of any convex polygon P is denoted by D(P). Let rmax be the
(maximum) radius of the disks in an optimal solution to the DkConP problem.
Let vivj be a chord of P corresponding to the pair (vi, vj) of vertices of P, where
1 < |i − j| < n − 1 and i, j ∈ {1, 2, . . . , n}. Let C = {vivj : 1 < |i − j| < n − 1,
i, j ∈ {1, 2, . . . , n}} ∪ {v1v2, v2v3, . . . , vnv1} be the set of chords and edges of
P, where vivi+1, for i = 1, 2, . . . , n − 1, are the edges of P and vnvn+1 = vnv1.
Clearly, |C| = n(n−1)

2 . Now, let C ′ = {|vivj | | i, j = 1, 2, . . . , n and vivj ∈ C} be
the set of all distinct distances between pairs of vertices of P.

Observation 1. 2rmax ∈ C ′ and |C ′| = O(n2).

Due to Observation 1, we can find rmax in at most �2log n� stages of the
binary search, provided that for any given r we can decide whether r > rmax

or r ≤ rmax. Based on a bounded search tree, we propose a fixed-parameter
algorithm to answer this decision question, where k is the parameter.

3 An Exact Fixed-Parameter Algorithm

For the DkConP problem, here we aim to develop a fixed-parameter algorithm
using the bounded search tree method. To do this, we first consider the following
decision problem:

Decision(P, k, r): Given a convex polygon P with n vertices and a positive
integer k < n and a radius r, is it possible to pack k (non-overlapping)
congruent disks of radius r, with centers lying at the vertices of P?

Observe that the answer to Decision(P, k, r) is yes if the radius r is less than
or equal to the radius rmax of the disks in an optimal solution of the DkConP
problem. Now, we shall design an algorithm that solves Decision(P, k, r) in
O(f(k) · nO(1)) time and returns a set of k disks of radius r packed on the
boundary of P if the answer is yes, and returns no otherwise, where f(k) is an
arbitrary exponential function in k.
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3.1 Decision Algorithm

The outline of the algorithm is as follows. First, we align the polygon P such
that its leftmost vertex v1 is placed at the origin. Then, we place the disk d1
of radius r centered at v1. From the vertex v1 in clockwise direction along the
boundary of P, we find the first vertex u at which we can center a r-radius disk
d2 that does not overlap with any previously placed disks. Now, we again have
two ways to place the next disk d3, namely, moving in clockwise direction from
the center of d2 or moving in counter-clockwise direction from the center of d1.
Similarly, from the vertex v1 in counter-clockwise direction along the boundary
of P, we find the first vertex u′ at which we could center the disk d2. In this
way, our search for finding all k − 1 vertices of P (as the centers) to pack the
disks proceeds like a 2-way search tree. The depth of the search tree is k because
we stop after placing k disks and return the disks. At any point along a path
of the 2-way search tree, if we can not place a disk, we backtrack to placing a
disk in the other direction. Thus, the branching factor of every node is at most
2, resulting in O(2k) nodes in total. We repeat the above procedure by placing
the disk d1 at each of the n vertices of P. Note that the disks corresponding to
the vertices of any path of length ≥ k in the 2-way search tree together form a
feasible solution for the DkConP problem.

Now, we shall describe how to pack the next disk dj+1 after having packed
the disks d1, d2, . . . , dj . In the above 2-way search tree procedure, for the value
of j = 1, 2, . . . , k − 1, after packing the disk dj centered at some vertex of P,
the candidate vertices u and u′ for the center of the disk dj+1 can be computed
as follows: let u be the first vertex at a distance of at least 2r from the center
of the most recently packed disk (dj or dj−1) clockwise from the center of d1.
Similarly, let u′ be the first vertex at a distance at least 2r from the center of
the most recently packed disk (dj or dj−1) counter-clockwise from the center of
d1. Note that u and u′ are the two candidate vertices for packing the next disk
dj+1, which will be centered at one of them. However, it is required to ensure
that the distance between the candidate center vertex u or u′ and each of the
vertices at which the already-packed disks d1, d2, . . . , dj are centered is at least
2r. Observe that for a convex polygon P, the distances between a fixed vertex
and the remaining vertices of P form a multi-modal function. Therefore, we can
not directly employ binary search to find the center vertices u and u′ for packing
the next disk dj+1, j = 1, 2, . . . , k − 1. For a vertex vi of P, there are γ vertices
that are the modes or local maxima [3], where γ ≤ n/2. We will exploit this
property to identify all the candidate center vertices and to quickly locate the
one among them for centering the disk dj+1. Hence, given a candidate radius r,
we do some preprocessing before we shall call the decision algorithm.

3.2 The Optimization Scheme

To solve the optimization problem, i.e., to find the maximum value rmax of r,
we solve Decision(P, k, r) repeatedly while performing a binary search on C ′.
In each stage of the binary search, the radius r will be the median element of
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C ′ divided by 2. The median will be found using a linear-time median finding
algorithm [5]. We then perform the above 2-way search tree-based procedure to
find an answer to Decision(P, k, r). If the answer is yes, then we update C ′ by
removing all the elements of it that are smaller than 2r. Otherwise, we update
by removing all the elements that are at least 2r. In either case, the size of the
updated C ′ will be half of the previous C ′. The main routine of the algorithm
is outlined in Algorithm 1.

Preprocessing: Here we describe how to precompute all the candidate center
vertices for the next disk dj+1 (j = 1, 2, . . . , k − 1) once an element 2r ∈ C ′

is fixed, where a candidate center vertex is a vertex of P at which a disk is
likely to be centered in the packing computed by Algorithm 1. We also see how
to use this precomputed information in every (j + 1)th step of the decision
algorithm given that the disks {d1, d2, . . . , dj} are packed on ∂P with centers
C(d1) = vα1 , C(d2) = vα2 , . . . , C(dj) = vαj

, where j = 1, 2, . . . , k − 1, and ∂P is
the boundary of P.

In Algorithm 1, we initially set X1 = C ′, the set of all distances between
the points in S. In the ith stage of the binary search (while loop in Algorithm
1), we have that |Xi| ≤ |Xi−1|

2 , where the set Xi always contains the element
2rmax along with possibly some other candidate radii for i = 2, 3, . . . , �2 log n�.
Now, consider a straight line �s (with any orientation) through any vertex vs

of P, that splits P into two parts, each with at least one vertex other than vs.
Given a median 2r ∈ Xi, for each vertex vs of P the candidate center vertices
us1 , us2 , . . . , usγ

lying above any straight line �s through vs (and us′
1
, us′

2
, . . . , us′

γ′

lying below �s) are such that for 1 ≤ β ≤ γ we have that |vsusβ−1| < 2r,
|vsusβ+1| > 2r and |vsusβ

| ≥ 2r or |vsusβ−1| > 2r, |vsusβ+1| < 2r and |vsusβ
| ≥

2r, where max(γ, γ′) ≤ n
2 . These candidate vertices can be pre-computed by

doing the distance checks while linearly scanning through ∂P both in clockwise
and counter-clockwise from every vertex vi. Hence, this pre-computation at the
beginning of each stage (line 4) will take O(n2) time. The overall time across
all stages of the binary search for these pre-computations will be O(n2 log n).
These candidate center vertices are stored in the array Ai for each vertex vi

(see line 4 of Algorithm 1). Let vαup
be the vertex in clockwise order from vα1

(= C(d1)), at which the recently packed disk is centered (see Fig. 1). Let vαlow

be the vertex in counter-clockwise from vα1 , at which the recently packed disk is
centered. Let ui1 , ui2 , . . . , uiγ

be the candidate center vertices in clockwise order
from vαup

for packing the next disk dj+1. Similarly, the vertices ui′
1
, ui′

2
, . . . , ui′

γ′
are the candidate center vertices in counter-clockwise order from vαlow

.

Computation of a Center Vertex for dj+1 by the Decision Algorithm:
Now consider the (j + 1)th iteration in the ith stage of the binary search. Let
us denote the right most disks in the packing {d1, d2, . . . , dj} on both upper and
lower boundaries of ∂P by dαup

and dαlow
centered respectively at vαup

and vαlow

(see Fig. 1). The candidate center vertices from the center of dαup
in clockwise

order are ui1 , ui2 , . . . , uiγ
and from the center of dαlow

in counter-clockwise order
are ui′

1
, ui′

2
, . . . , ui′

γ′ . Merge these two lists into one single list in convex position
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Algorithm 1: Exact-fixed-parameter
Input: A convex polygon P with V vertices and an integer k
Output: Radius rmax of k disks packed
X1 ← C′, i ← 1
while |Xi| ≥ 2 do

r ← median(Xi)/2 // invoke the linear-time median finding algorithm [5]
Based on the value of 2r, precompute the candidate center vertices for each
vs ∈ V and store in a global array As, s = 1, 2, . . . , n.
if Decision(P, k, r) then

Xi+1 ← Xi \ {e ∈ Xi|e ≤ 2r}
else

Xi+1 ← Xi \ {e ∈ Xi|e ≥ 2r}
i ← i+ 1

r = min(Xi)/2
return r

order (i.e., respecting the initial given order in S) by discarding the candidate
centers lying to the left of the line �low,up through vαlow

and vαup
(see Fig. 1).

This merging will take γ + γ′ − 1 = O(n) time (as we need to check at most
n vertices in the order of S). Observe that due to the convexity of P each of
the vertices C(d1), C(d2), . . . , C(dj) lie either on �low,up or to the left of �low,up.
Assume that the vertices (in clockwise order) between ui1 and ui′

γ′−1
all have

distances at least 2r from both vαlow
and vαup

, and that ui′
γ′ appears before ui1

in clockwise order from vαup
. For each p = i1, i1 + 1, . . . , i′γ′−1 consider the line

�p,up through vαup
and vp, and the line �p,low through vp and vαlow

, respectively.
Note that the distances from the line �p,up to the vertices C(d1), C(d2), . . . , C(dj)
satisfy unimodality because P is in convex position. Similarly the distances from
�p,low to C(d1), C(d2), . . . , C(dj) satisfy unimodality property. Hence, we can use
binary search to discard a vertex vp if it is of distance strictly less than 2r from
one of C(d1), C(d2), . . . , C(dj), as follows: Let C(d1), C(d2), . . . , C(dj) be in convex
position order (in clockwise along ∂P), find contiguous subsequences (if exists)
of these points that have distance strictly less than 2r from the lines �p,up and
�p,low, by doing a binary search over the latter ordered list. Then check if there
is a point in any of these sequences that is of distance strictly less than 2r from
vp, by using binary search again. Discard vp if so. Also we linearly search the
contiguous subsequence ui1 , ui1+1, . . . , ui′

γ′−1
to find the first vertex vp clockwise

from vαup
such that C(dj+1) = vp. This process takes O(n + n log j) amortized

time, where O(n) is for merging and O(n log j) for finding the center for the disk
dj+1 by doing binary search on C(d1), C(d2), . . . , C(dj). Similarly, we spend the
same time if we are packing dj+1 in the counter-clockwise direction from vαlow

.
Then we have the following claim.
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Fig. 1. Preprocessing and computation of a center vertex for dj+1

Claim. If Decision(P, k, r) =yes then there exists a vertex vα1 of P with vα1 =
C(d1) that results in the following: there is a root-leaf path of a 2-way search
tree with the root corresponding to vα1 such that at every node along the path
we are able to pack the next disk dj+1 centered at one of the candidate vertices.

Proof. Suppose the disk dj+1 in the optimal packing is not centered at one of
the candidate vertices in the (j + 1)th iteration. Also, consider that previous j
disks in the optimal packing are centered at the candidate vertices (let us call
them optimal centers). Then it must be the case that the optimal center ver-
tex at which dj+1 is centered (in the optimal packing) appears strictly between
the first candidate vertices vp and vp′ (with distance at least 2r from each of
C(d1), C(d2), . . . , C(dj)) respectively from vαup

and vαlow
. Otherwise, it should be

one of the candidate vertices as the first vertices vp and vp′ are at the distance 2r
from the centers of previously packed disks in clockwise and counter-clockwise
directions, respectively. Now, we can perturb C(dj+1) to center dj+1 at the near-
est candidate center without violating the packing property, and it also creates
more space on ∂P (on the other side) for packing the following disks. Therefore,
the claim follows by induction on j due to the above discussion (see Fig. 1). �	
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Lemma 1. We can answer the decision question Decision(P, k, r) in
O(2kn2 log n) time.

Proof. The correctness of our decision algorithm follows due to the following
facts:

1. Fix some vertex v of P and a center of the disk d1 at v. In the search space
corresponding to the vertex v, along any (root-leaf) path (of the search tree)
after the disk dj is centered, by the claim above if r ≤ rmax there is always a
candidate center vertex u in at least one direction along the boundary of P in
order to pack the next disk dj+1, for j = 2, 3, . . . , k − 1. We argued that the
amortized time for finding this candidate vertex is O(n+n log j) (by accessing
the array As (for a vertex s) computed in step 4 of Algorithm 1). Hence, the
branching factor of every node of the search space is at most 2. Therefore,
after the disk d1 is centered at some vertex v of P, the resulting search space
for the remaining k − 1 disks is a 2-way search tree, and its depth is O(k).

2. Consider an element 2r ∈ C ′ such that r ≥ rmax. Now, for this radius r
let k′ be the maximum number of disks that can be packed in the optimal
packing OPT and k ≥ k′. We can determine a vertex that is the center for
the disk dOPT

1 in OPT, in O(n) time by exploring the search space rooted
corresponding to each vertex of the polygon P. Then, by walking along ∂P
from the point C(dOPT

1 ), we can charge each disk dOPT
j′ with at least one disk

dj centered by Algorithm 1 if (dj ∩ dOPT
j′ ) �= ∅ for j′ = 1, 2, . . . , k′. Therefore,

C(dOPT
1 ) = C(d1), i.e., dOPT

1 gets charged with d1 itself. Suppose there is some
optimal disk dOPT

j′ that does not get charged with any disk dj centered by
Algorithm 1. Then this will contradict with the termination of Algorithm 1.
This implies that k = k′.

3. In the 2-way search tree, there are at most 2j nodes at level j. Since we
invest O(n + n log j) time at every node of the level j, the total time will be
k−1∑

j=1

(2j(n + n log j)) = O(2k(n + n log k)).

If the radius r ≤ rmax, then we can answer Decision(P, k, r) correctly in time
n · (2k(n+n log k)) = O(2k(n2 +n2 log k)) = O(2kn2 log n) since we exhaustively
search all n 2-way search trees and k ≤ n. �	
Theorem 1. We have an exact fixed-parameter algorithm for the DkConP
problem in O(2kn2 log2 n) time.

Proof. Follows from Lemma 1 and by doing a binary search on the set C ′, since
the total size of the search tree is bounded by a function of the parameter k
alone, and every step takes polynomial time, and there are at most �2 log n�
calls to Decision(P, k, r). �	

4 An Exact Polynomial Time Algorithm

In this section, we discuss an exact polynomial time algorithm, based on dynamic
programming, that solves the DkConP problem in O(n4k2) time for any k > 0.
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In order to accomplish this, we first let S′ ⊆ S be a subset of k points that are
the center vertices of disks in OPT. Consider a Delaunay triangulation DT (S′)
of these optimal k centers. Obviously, all edges of DT (S′) must lie within the
convex hull P of S and also within the convex polygon Δ with S′ as its vertices
inscribed in P. Additionally, the triangles and edges of a Delaunay triangulation
of any set of points have some nice properties. As the Delaunay triangulation
maximizes the minimum angle and follows the empty circle property [13], we
have the following standard observation.

Observation 2. The shortest diagonal or edge of Δ is always a Delaunay edge
of DT (S′).

By Observation 2, another alternative way of viewing the DkConP problem
is to solve the problem of computing a subset S′′(⊆ S) with k points such that
the shortest edge of DT (S′′) is as long as possible.

We know that the dual graph of a DT (S′) is a Voronoi diagram VD(S′).
Since the k points that are in S′ are in a convex position, VD(S′) is a tree (see
Fig. 2). This allows us to design a dynamic programming algorithm to solve the
above optimization problem as follows:

Fig. 2. OPT using Delaunay triangulation when k = 6

Let e1 be an edge in VD(S′) corresponding to the bisector of the pair pi, pj ∈
S′ (see Fig. 3). Now, assume that we know the three points pi, pj , p� are in the
optimal solution S′ such that the triangle Δ(pi, pj , p�) formed by these points is
a Delaunay triangle in DT (S′). Let the segment (pi, pj) be oriented from pi to
pj . Let K ∈ Z+ be the budget (i.e., the number of facility centers remaining to
be selected) and Ec(pi, pj , p�) be a circle circumscribing the points pi, pj , p�. We
define a subproblem φ(i, j, �;K), which returns the length of the smallest edge or
diagonal of the optimal solution S′′ (to DkConP with k = K + 3) in which the
centers pi, pj , p� are already present, forming the Delaunay triangle in DT (S′′)
and K is the number of remaining centers to be selected. To solve φ(i, j, �;K),



68 V. R. Singireddy et al.

we need to find the best p�′ ∈ S that lies to the left of line through −−→pipj (this
region is the left half-plane of −−→pipj , denoted as L−−−→pipj

), outside of Ec(i, j, �) such
that it partitions K into two sub-parts K′ and K − K′ − 1 optimally, where K′ is
a positive integer. Now, recursively solve the subproblems φ(pi, p�′ , pj ;K′) and
φ(p�′ , pj , pi;K−1−K′) lying to the left of −−→pip�′ and to the left of −−→p�′pj respectively
(see Fig. 3). These two subproblems are invoked on only those points in S that
lie to the left of the line through −−→pip�′ and to the left of the line through −−→p�′pj ,
and that do not lie in the interior of Ec(p�′ , pi, pj). Hence we have the following
recurrence:

φ(pi, pj , p�;K) = max
K′≤K−1,

p�′ :p�′ /∈Ec(pi,pj ,p�),

p�′∈L−−−−→pipj
, p�′ ∈S

⎧
⎨

⎩
min

⎧
⎨

⎩

|pip�′ |, |p�′pj |,
φ(pi, p�′ , pj ;K′),

φ(p�′ , pj , pi;K − 1 − K′)

⎫
⎬

⎭

⎫
⎬

⎭

The base cases are the following:

– φ(pi, pj , p�; 1) = min
p�′ :p�′ /∈Ec(pi,pj ,p�),

p�′ ∈L−−−−→pipj
, p�′∈S

{|pip�′ |, |p�′pj |}, when we have only one

facility left to select.
– φ(pi, pj , ∗; 1) = min

p�′ :p�′ /∈Ec(pi,pj ,p�),

p�′ ∈L−−−−→pipj
, p�′ ∈S

{|pip�′ |, |p�′pj |}, where ∗ indicates that there

is no point p� on the right of −−→pipj (i.e., pipj maybe an edge of convex hull of
S′).

– φ(pi, pj , p�; 0) = |pipj |, when all k facilities are already located.

Fig. 3. Extending Voronoi diagram to next Voronoi center v′ by picking vertex p�′

In the above recurrence, there is no cyclic dependency between subproblems
as the budget is partitioned into sub-parts for subproblems (i.e., the budget gets
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smaller and smaller for the subproblems). The optimal solution corresponds to
a cell in the two-dimensional array of φ(pi, pj , ∗; k − 2) of the four-dimensional
DP table.

Correctness of the Above Dynamic Programming Algorithm: The cor-
rectness follows from the fact that the dual to the Delaunay triangulation
DT OPT of an optimal solution is a tree VDOPT . Here, assume that we have one
vertex v of VDOPT . Let Δv be the corresponding Delaunay triangle in DT OPT

(see Fig. 3). We know there are three edges e1, e2 and e3 incident on v. We cor-
rectly determine the other endpoint v′ of one of these three edges e1, e2 and
e3 by finding a Δv′ that satisfies the empty circle property and maximizes the
minimum Delaunay edge length with the best partitioning of the budget. From
v′, the Voronoi diagram will be extended recursively until the budget cannot be
further divided. Since we reached v′ from v, at v′ we have two possible ways to
find the next vertex of the tree VDOPT . The vertex v corresponds to any triple
pi, pj , p�′ that forms a Delaunay triangle, where pi, pj forms an edge of the con-
vex hull of any feasible solution S′′. As we are checking all possible combinations
of optimal Delaunay triangulations that maximizes the minimum edge length of
DT , the above dynamic programming will return the optimal solution, and the
optimal value can be obtained from one of the O(n2) cells φ(pi, pj , ∗; k − 2) in
the DP table, where pi, pj corresponds to an edge of the convex hull of S′.
To construct S′, we will backtrack from the cell φ(pi, pj , ∗; k − 2) that has the
maximum value.

Theorem 2. We can solve the DkConP problem in O(n4k2) time using
dynamic programming.

Proof. Note that there are O(n3k) subproblems. In each subproblem, we have
O(n) choices to select p�′ and O(k) choices to partition K. So, we spend O(nk)
time to combine optimal solutions to subproblems into an optimal solution to the
bigger subproblem. Hence, the total running time of the dynamic programming
algorithm for the DkConp problem for any k > 0 is O(n4k2). �	

5 Concluding Remarks

In this paper, we studied the k-dispersion problem on a convex polygon and
proposed: (i) an exact fixed-parameter algorithm with runtime O(2kn2 log2 n),
(ii) an exact polynomial time algorithm with runtime O(n4k2) for any k > 0.
For practical purposes, one may prefer (i) for small values of k and (ii) for
large values of k as the polynomial dependency on n is smaller for the fixed-
parameter algorithm than the polynomial time algorithm. Finally, we mention
that the general Euclidean k-dispersion problem is still open from the point of
polynomial time approximation algorithm with a better factor than 1

2 and also
from the point of designing an exact fixed-parameter algorithm.
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Abstract. Given a set of colored geometric objects, a color spanning
region of a desired shape is a region (of that shape) that contains at
least one object of each color. Here, the objective is to optimize a specific
parameter of the region as mentioned in the problem definition. In this
paper, we study the optimal color spanning region recognition problem of
different shapes for a given set L of n colored line segment objects in R2,
where each segment is associated with any one of the m colors, namely
{1, 2, . . . , m}, where 3 ≤ m < n. These are (i) an arbitrary-oriented
color spanning strip of minimum width, (ii) two congruent arbitrary-
oriented minimum width color spanning strips which contain disjoint
subset of the members in L, (iii) two congruent arbitrary-oriented strips
of minimum width, such that their union is color spanning, and (iv)
an arbitrary-oriented color spanning rectangle of minimum area. The
time complexities of the proposed algorithms for these problems are: (i)
O(n2 log n), (ii) O(n4 logn) , (iii) O(n4m logm), and (iv) O(n3m). Better
algorithm with reduced time complexities can be achieved for problems
(ii) and (iii) if some restrictions are imposed on the relative orientation
of the outputs. Each of these problems needs linear space.

Keywords: Color spanning region recognition · Geometric duality ·
Line sweep

1 Introduction

Given a set L of n line segments, each segment is attached with one of the
m colors (3 ≤ m < n), the objective of this paper is to study the problem
of recognizing color spanning region of different shapes minimizing a specified
parameter of the region depending on the problem requirement. Here the objects
in L may be viewed as the facilities (e.g. hospitals, post-offices, schools etc.),
available in a city, and the objective is to locate a region of minimum area
where at least one facility of each type is available. The facilities may be points,
line segments, convex polygons, etc. The desired region may be a strip, disk,
rectangle, etc. The problem is well studied in the literature starting from the
work of [1], and has found a lot of applications in facility location problem [1],
pattern recognition [3], database queries [12], etc.
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Related Work: The color spanning problem was studied by Abellanas et al. [1],
where they computed a color spanning axis-parallel rectangle among a set of n
colored points with m colors in O(n(n − m) log2 m). Huttenlocher et al. [9] pro-
posed algorithm for computing the smallest color spanning circle for a given set
of n points with m colors in O(mn log n) time. The smallest color spanning strip
and rectangle of arbitrary orientation for a given set of points can be computed
in O(n2 log n) and O(n3 logm) time [6], respectively. The color spanning axis-
parallel square and equilateral triangle can be determined in time O(n log2 n) [10]
and O(n log n) [8], respectively. Acharyya et al. [2] identified the smallest color
spanning axis-parallel square, rectangle and circle for a colored point set around
a given query point. Bae [4] computed the minimum width color spanning axis-
parallel rectangular annulus for a set of points in O((n − m)3n log n).

Most of the research works on color spanning problem deals with the input
facilities as a point set. However, in real application, it is not always reason-
able to represent each facility by point only. This leads to studying the problem
of recognizing a color spanning region of optimum size among a set of convex
objects. For simplicity, we start research in this direction with colored line seg-
ments as the facilities. Note that, the method of solving color spanning region
with point set facilities cannot be extended in a straightforward manner to han-
dle this problem with line segment facilities. Huttenlocher et al. [9] computed
the smallest color spanning axis-parallel square and disk with the line segments
as facilities, in O(n2 log n) and O(n2α(n) log n) time, respectively.

Another related problem is the k-center problem, where a given set of geo-
metric objects need to be covered by k congruent disks or squares of minimum
size. The corresponding color spanning version is finding k congruent color span-
ning regions among a set of colored objects as facilities to place k demand points.
Here, the concept is that the ith facility, denoted by ri, can support at most f(ri)
demand points (centers of the color spanning regions, each of equal size). We
start studying this variation of the problem with k = 2 and f(ri) = 1 for each
facility in {r1, r2, . . . , rn}.

Depending on the problem instance, sometimes a single color spanning region
may be more costly (measured in terms of width or area of the region) than the
k congruent regions whose union is a color spanning. This motivates us to study
further the union color spanning strips problem for a set of line segments L. For
simplicity, we have considered k = 2 strips in this paper.

Our Contributions: Given a set of n colored line segment objects with m
different colors (3 ≤ m < n) in R2, we propose algorithms for computing color
spanning (CS) arbitrary-oriented (i) a pair of strips of minimum width, and (ii) a
rectangle of minimum area. The specific problems that are studied in this paper,
are listed below in the Table 1 along with the time complexities of the proposed
algorithms. The space complexity of all these problems is O(n).
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Table 1. The result of arbitrarily oriented color spanning object(s)

Problems on color spanning regions
for a set L of line segments in R2

Segments covered (L′, L′′ ⊆ L)
by strip(s)/rectangle

Minimizes Time
complexity

A single strip L′ is color spanning (CS) Strip width O(n2 logn)

Two congruent strips L′ and L′′ are CS (L′ ∩ L′′ = φ) Strip width O(n4 logn)

Two congruent parallel strips L′ and L′′ are CS (L′ ∩ L′′ = φ) Strip width O(n3)

Union color spanning by two strips L′ ∪ L′′ is CS (L′ ∩ L′′ = φ) Strip width O(n4m logm)

Union color spanning by two parallel strips L′ ∪ L′′ is CS (L′ ∩ L′′ = φ) Strip width O(n3 logm)

A rectangle (R) L′ is CS Area of R O(n3m)

2 Preliminaries and Notations

We use L = {�1, �2, . . . , �n} to denote the n input line segment facilities. The
subset of the segments in L with color i ∈ {1, 2, . . . ,m} is denoted by Li. We use
x(p) and y(p) to denote the x- and y-coordinate of the point p, respectively. A
line passing through any two points p and q is denoted by �(p, q). A line segment
� in R2 is said to be covered by a region if every point on � lies inside or on the
boundary of that region. A segment with its two endpoints p and q is denoted
by [p, q].

Definition 1 (Color spanning). A region R in R2 is said to be color span-
ning if it contains at least one member of L having color i for all i = 1, 2, . . . ,m.

A strip V is an unbounded region enclosed by two parallel lines which are called
the boundaries of V. The width of a strip V is determined by the perpendicular
distance between its two boundaries. We use CSS to denote any color spanning
strip.

Definition 2 (Minimal and minimum-CSS). A CSS is said to be a
minimal-CSS if it cannot be shrunk further without violating the definition
1 of the color spanning region. There may exist more than one minimal-CSS
for L. The one having minimum width among all minimal-CSSs is said to be
minimum width color spanning strip, and will be denoted by minimum-CSS.

2.1 A Single Color Spanning Strip of Arbitrary Orientation

Problem 1 (Single color spanning strip). Given a set L = {�1, �2, . . . , �n}
of (possibly intersecting) line segments in R2; each segment �i ∈ L is attached
with one of m distinct colors (3 ≤ m < n), compute a minimum-CSS V of
arbitrary orientation.

We use geometric duality [5] to solve this problem. Here, a point p = (a, b)
in the primal plane is represented by a line p∗ : y = ax − b in the dual plane,
and a line l : y = mx + c in the primal plane is represented by a point l∗ =
(m,−c) in the dual plane. Note that, V may be vertical or non-vertical. We can
compute the vertical strip V by sweeping a pair of vertical lines to locate all
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possible minimal − CSSs’. The one having minimum width is preserved as the
minimum − CSS as the initialization of this algorithm. This needs O(n log n)
time, maintaining an array of size m for storing the number of segments of each
color i (1 ≤ i ≤ m) lying in the present position of the strip defined by the pair of
sweep lines. We now concentrate on computing the smallest width non-vertical
CSS. Since the point-line duality cannot handle any vertical line, if there exists
any vertical line in L, we rotate the entire set L by a small angle to make each
segment non-vertical.

An arbitrary-oriented strip V is defined by its two boundaries, namely the
upper boundary ub(V) and the lower boundary lb(V), that are mutually parallel
lines; the point of intersection of ub(V) with any vertical line lies above that of
lb(V) with the same vertical line. A strip V in the primal plane is mapped to a
vertical line segment V∗ = [lb∗(V), ub∗(V)] in dual plane1. In duality transfor-
mation, a line segment �i = [p, q] ∈ L in primal plane is mapped to a double
wedge �∗

i in dual plane [5], which is closure of the symmetric difference of the two
half planes delimited by the lines p∗ and q∗, and it does not contain any vertical
line. The point of intersection of p∗ and q∗ is known as the center-point of the
double wedge �∗

i and is denoted by cp(�∗
i ). Let Lv be the vertical line passing

through cp(�∗
i ); �mid be the line passing through �∗

i with slope 1
2 (slope of p∗ +

slope of q∗). Each double wedge �∗
i can be viewed as four rays, namely left-top

�t(�∗
i ), left-bottom �b(�∗

i ), right-top rt(�∗
i ) and right-bottom rb(�∗

i ) emanating
from cp(�∗

i ). The ray �t(�∗
i ) (resp. �b(�∗

i )) lies above (resp. below) �mid to the left
of Lv, and the ray rt(�∗

i ) (resp. rb(�∗
i )) lies above (resp. below) �mid to the right

of Lv (see Fig. 1). We refer to the union of �t(�∗
i ) and rt(�∗

i ) as UT (�∗
i ) (upper

trace of �∗
i ), and the union of �b(�∗

i ) and rb(�∗
i ) as LT (�∗

i ) (lower trace of �∗
i ).

While transforming a segment in primal plane to a double wedge using duality,
the color associated with that segment remains same. The color of the double
wedge (resp. line segment) �∗ (resp. �) is denoted by col(�∗) (resp. col(�)). The
following result states the property of minimum width CSS for line segments.

Theorem 1. A minimal-CSS V is defined by three segments, say �i, �j , �k ∈ L
lie inside V, and one of its boundaries (lb(V) or ub(V)) contains an endpoint of
two segments ∈ {�i, �j , �k}, and the other boundary contains an endpoint of a
segment ∈ {�i, �j , �k}. It may happen that both the boundaries of V may touch
the two endpoints of a single segment ∈ {�i, �j , �k}. The color of the segments
defining V are different and none of their colors repeat inside the V.

1 Due to the fact that that both the boundaries of V have same gradient.
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Lv

cp(�∗
i )

�∗
i
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i )
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∗
i
)
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∗
i
)

rb(� ∗
i )

Lower trace LT (�∗
i )

Upper trace

�i

Primal P lane Dual P lane

UT (�∗
i )

Fig. 1. Line segment �i in primal plane and its corresponding double wedge �∗
i in dual

plane

A segment s is said to be intersected by a double wedge �∗ if both UT (�∗) and
LT (�∗) intersect with s. If a vertical segment in the dual plane (corresponding
to a strip in the primal plane) is color spanning, it will be referred to as a
CS_segment. The dual CS_segment V∗ of a minimal-CSS V defined by three
segments �i, �j and �k is shown in the Fig. 2. Due to the Theorem 1, we observe
the following.

a
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V∗

�∗
i

u
b(

V)

lb
(V
)

lb∗(V)

ub∗(V)

Fig. 2. Dual of strip V defined by three line segments �i, �j and �k.

Observation 1. A strip V whose upper (resp. lower) boundary is defined by �i
and �j, and lower (resp. upper) boundary is defined by �k in the primal plane,
corresponds to the vertical segment V∗ = [u, v] in the dual plane, where u is the
point of intersection between the lower (resp. upper) traces of �∗

i and �∗
j , and v

lies on the upper (resp. lower) trace of �∗
k vertically above (resp. below) the point

u (see Fig. 2). The width of this strip V is given by |y(u)−y(v)|√
1+(x(u))2

.
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Observation 2. The dual V∗ of a strip V is color spanning if at least one (left
or right) wedge or the center-point of dual �∗ of � of each color intersects with
V∗.

Let L∗ = {�∗
i | �i ∈ L} be the set of double wedges in the dual plane correspond-

ing to the segments of L in the primal plane. We associate a vector color[1..m] of
length m with each CS_segment. Its ith entry indicates the number of double
wedges of color i are intersected by the CS_segment. We sweep a vertical line
λ from left to right among the members in L∗ to identify a CS_segment of
minimum (dual) length.

Data Structure: We use five pointers for the four rays of each double wedge
�∗ ∈ L∗; the value of these pointers corresponding to a double wedge �∗ depend
on the position (i.e. the x-coordinate) of the vertical sweep line λ. These five
pointers of all the double wedges in L∗ are initialized to NULL. We now describe
the significance of these pointers of a double wedge �∗ at a particular position,
say x=α, of the sweep line λ.

Self : This pointer, associated with the ray �t(�∗) (resp. �b(�∗)) points to �b(�∗)
(resp. �t(�∗)), and the same associated with rt(�∗) (resp. rb(�∗)) points to
rb(�∗) (resp. rt(�∗)). From an upper trace of a double wedge, we can access
its lower trace through this pointer, and vice versa.

CS_up: It is associated with the rays in the lower trace LT (�∗), and it points
to the upper trace UT (t∗) of a double wedge t∗ (say), vertically above it,
such that a vertical segment at the present position (x = α) of the sweep line
λ lying between the LT (�∗) and UT (t∗) is color spanning (See Observation
2). Note that, for the upper trace of all the members in L∗, this pointer is
always set to NULL.

CS_dwn: It is associated with the two rays in the upper trace UT (�∗), which
points to the lower trace LT (t∗) of a double wedge t∗ (say), vertically below
it, such that a vertical segment at the present position (x = α) of the sweep
line λ lying between the LT (t∗) and UT (�∗), is color spanning (See the
Observation 2). This pointer is NULL for the rays �b(�∗) and rb(�∗).

Same_col_up: It is associated with the two rays in the lower trace LT (�∗) of
each double wedge �∗. It points to the upper trace of a double wedge t∗

(�= �∗), that lies vertically above �∗ and is closest one to �∗ among all the
double wedges having the color same as that of �∗ at the present position of
the sweep line λ, provided such a double wedge t∗ exists for �∗; otherwise it is
set to NULL. Also, this pointer is NULL for the rays in UT (�∗), ∀�∗ ∈ L∗.

Same_col_dwn: It is associated with the two rays in the upper trace UT (�∗)
of each double wedge �∗. It points to the lower trace of a double wedge, say
t∗ (�= �∗), if t∗ lies vertically below �∗ and is closest one to �∗ among all
double wedges having the color same as that of �∗ at the present position of
the sweep line λ, provided such a double wedge t∗ exists for �∗; otherwise it
is set to NULL. Also, this pointer is set to NULL for the rays in LT (�∗),
∀�∗ ∈ L∗.
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Algorithm: The event points of the vertical sweep line λ are the points of
intersection of the dual of the endpoints of the input segments in L (see Obser-
vation 1) in sorted order with respect to their x-coordinates. These event points
are created in O(n2) time [11], and are stored in an array A. We initialize the
aforesaid pointers for each ray of the double wedges in L∗ with their respective
values at the first event position of the sweep line λ in the array A. During the
sweep, we compute the CS_segment at each event point e ∈ A, and finally
report the minimum length CS_segment observed.

During the sweep, the status of the sweep line λ is maintained as a list of the
dual lines of L∗ that appear on the sweep line λ in top to bottom order. The
status of the sweep line is updated after processing each event point e ∈ A as
follows:

Case (i) The event point e ∈ A corresponds to cp(�∗
i ), �i ∈ L :

We do the following updates:
Assign Same_col_dwn(rt(�∗

i )) = Same _col_dwn(�t(�∗
i )),

Same_col_up(rb(�∗
i )) = Same_col_up(�b(�∗

i )),
CS_up(rb(�∗

i )) = CS_up(�b(�∗
i )), and CS_dwn(rt(�∗

i )) = CS_dwn(�t(�∗
i )).

Case (ii) The event point e ∈ A corresponds to the intersection of the
upper (resp. lower) traces of two double wedges �∗

i and �∗
j of same

color:
Let e be the point of intersection of upper traces of �∗

i and �∗
j , where UT (�∗

i )
lies below UT (�∗

j ) at the small distance ε > 0 to the left of e. If at the left
of e, the Same_col_dwn of UT (�∗

i ) points to the lower trace LT (�∗
k) of a

double wedge �∗
k, then at the event point e, the Same_col_dwn of UT (�∗

i )
needs to be updated to LT (�∗

j ) provided LT (�∗
j ) lies above LT (�∗

k).
Similarly, if the Same_col_dwn pointer of UT (�∗

j ) points to LT (�∗
i ) just

before the event e, then at the event point e, the Same_col_dwn pointer of
UT (�∗

j ) will be updated to point to the old values (i.e. just before the event e)
of Same_col_dwn of UT (�∗

i ); otherwise Same_col_dwn pointer of UT (�∗
j )

remains unaltered. However, the value of CS_dwn (resp. CS_up) pointer
of the upper (resp. lower) trace remains unchanged at the event e.

Case (iii) The event point e ∈ A of λ corresponds to the intersection
of the upper (resp. lower) traces of the different colored double
wedges �∗

i and �∗
j :

Suppose the upper trace of �∗
i lies below that of �∗

j at the ε > 0 distance to
the left of the event e. Without loss of generality, we assume that at x = e,
the UT (�∗

i ) and UT (�∗
j ) are �t(�∗

i ) and �t(�∗
j ), respectively. At the event point

e of λ, the CS_dwn pointers of �t(�∗
i ) and �t(�∗

j ) needs to be updated as
follows.
Update of CS_dwn(�t(�∗

j )): If at ε > 0 distance to the left of the event
e, the �∗

i is essential2 in the color spanning vertical segment CS_segment
that spans from �t(�∗

j ) to CS_dwn(�t(�∗
j )), then at the event e, we update

the CS_dwn(�t(�∗
j )) pointer to point to Same_col_dwn(�t(�∗

i )), otherwise
the pointer CS_dwn(�t(�∗

j )) remains unaltered.
2 color[col(�∗

i )] is 1 for an essential segment �∗
i in the CS_segment.
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Update of CS_dwn(�t(�∗
i )): At the event point e, the CS_dwn(�t(�∗

i ))
will be updated to point old value (i.e. just before the event e) of
CS_dwn(�t(�∗

j )), provided the lower trace of �∗
i lies above that of double

wedge pointed by old CS_dwn(�t(�∗
j )) and the lower trace of the double

wedge pointed by CS_dwn(�t(�∗
j )) lies above that of �t(�∗

i ) before the event
e.

Case (iv) The event point e ∈ A of λ corresponds to the intersection of
the lower (resp. upper) and upper (resp. lower) trace of the double
wedges �∗

i and �∗
j , respectively:

In this case, only the status of the sweep line λ is changed.

All such aforesaid events take O(1) time. For each types (i.e. aforesaid cases) of
event e, if the pointer Same_col_dwn (resp. Same_col_up) associated with
a double wedge, say �∗

i , is updated to point to a double wedge �∗
k, then the

pointer Same_col_up (resp. Same_col_dwn) of the double wedge �∗
k is also

updated to point to �∗
i . As the sweep line λ passes through each of its event

point e, we update the CS_dwn (resp. CS_up) pointers of the ray involved in
the upper (resp. lower) trace associated with the event point e. Also we need
to update the CS_dwn (resp. CS_up) pointers of those rays whose CS_dwn
(resp. CS_up) pointed to the rays associated with the event e. So this update
may take linear amount of time to search for the rays whose CS_dwn (resp.
CS_up) pointers need to be updated. This time can be expedited, if we use the
idea of the following lemma and create two height balanced trees T1 and T2.
These two trees are updated as the λ moves forward.

Lemma 1. At a position, say x = α, of the sweep line λ, if the CS_up
(resp.CS_dwn) pointers of lower (resp. upper) traces of a pair of double wedges
�∗
i and �∗

j point to the upper (resp. lower) trace of the same double wedge �∗
k with

col(�i) �= col(�j) �= col(�k), then the CS_up (resp. CS_dwn) pointers for the
double wedges �∗

i+1, �∗
i+2, . . ., �∗

j−1 lying between �∗
i and �∗

j also point to �∗
k.

In T1 (resp. T2), we store the triple (i, j, k) where the CS_up (resp. CS_dwn)
pointer for the double wedges �∗

i , �∗
i+1, . . ., �∗

j points to the same double wedge
�∗
k (see the Lemma 1). The nodes in T1 (resp. T2) are mutually exclusive and

exhaustive. These nodes are stored in T1 (resp. T2) with respect to the status of
the λ (i.e. the ordered intersection of the double wedges with λ). We can create
this T1 (resp. T2) in linear amount of time. We can update the CS_up pointers
of the double wedges having the same value of CS_up pointers in O(log n) time
using T1 (or T2). Hence each event needs O(log n) processing time and since
there are total O(n2) events, we compute the minimal strips at each event point
by checking the appropriate pointer (CS_up or CS_dwn) and report the one
having minimum length among all the minimal strips obtained at each event
points. The data structure of the sweep line λ at its current event point depends
on the data structure of λ at its previous event point. As the sweep line λ
moves forward through its event points, we need to compute CS_segment at
the current event point e of λ using the data structure stored at e which can be
obtained only from the information of the data structure at its previous event
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point. Hence as the sweep line moves through its event points e, we need to store
the linear sized data structures of the previous event point of e instead of storing
all the event points of λ altogether, and the same space can be reused as the λ
moves forward to its next event point. Thus we obtain the following result.

Theorem 2. The minimum width color spanning strip of arbitrary orientation
for a given set of n colored line segments in R2 can be determined in O(n2 log n)
time and O(n) space.

2.2 Two Congruent Strips of Arbitrary Orientation

Problem 2 (Two congruent color spanning strips). Given a set L =
{�1, �2, . . . , �n} of (possibly intersecting) line segments in R2; each segment �i ∈ L
is attached with one of m distinct colors (3 ≤ m ≤ n), the objective is to compute
arbitrary-oriented two congruent color spanning strips V1 and V2 of minimum
width such that the set of segments covered by V1 and V2 are disjoint.

In the context of Problem 2, note that if a segment lies inside V1 ∩ V2, then it
is suitably considered to lie completely inside one of V1 and V2. This problem
is equivalent to compute a pair of minimal-CSS (V1, V2), so that the width of
its larger strip is minimized among all possible pair of minimal-CSSs. We solve
this problem by considering all possible minimal-CSS V1, and for each of them
we choose a minimum-CSS V2 which covers the segments that are not covered
by V1.

Fact 1. If the two intersecting color spanning strips Vi and Vj are disjoint with
respect to the segments (∈ L) covered by them, then there exists no double wedges
in L∗, that intersect with both the corresponding CS_segments V∗

i and V∗
j ,

respectively.

First we compute the minimal length CS_segment V∗
i at each event point e

of a sweep line λ1 using the procedure described in the Sect. 2.1. For each such
V∗
i , we compute all the V∗

j which are disjoint with V∗
i (see the Fact 1) using

another sweep line λ2 that lies to the right of λ1. Among all these V∗
j , we choose

the one with minimum length. We check whether V∗
j is disjoint with V∗

i or not,
as follows.

After computing the CS_segment V∗
i at the event point e of λ1, we deter-

mine the set of double wedges, say D∗
i ⊆ L∗, that completely intersect with V∗

i

in the sorted order using the status of the sweep line λ1. We consider the sweep
line λ2 at one of its event point, say e′ which occurs to the right of e, and let,
V∗
i′ be the CS_segment at e′ and the another endpoint of V∗

i′ be p′. If e′ is
due to the intersection of any of its double wedge in D∗

i , then we only update
D∗

i by swapping the corresponding two intersecting double wedges and move to
the next event of λ2. However, if e′ is not due to the intersection of any of its
double wedge in D∗

i , then we compute the double wedge d ∈ D∗
i (resp. d′ ∈ D∗

i )
immediately below e′ (resp. p′). This can be determined in O(log n) time from
D∗

i . The strips V∗
i′ and V∗

i will be disjoint in the following two cases:
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(i) The d and d′ exist, and they are same, (ii) both of the d and d′ do not
exist.

In all other cases, V∗
i′ and V∗

i will be overlapping. As mentioned earlier in the
Sect. 2.1, all the event points of the sweep lines need not to be stored altogether
and the space complexity is also linear for the Problem 2. Since there are O(n2)
such event points for both λ1 and λ2, we obtain the following result.

Theorem 3. For a given set of n line segments in R2, we can compute two
congruent disjoint (with respect to the segments covered) color spanning strips of
the minimum width, if such a pair exists, otherwise we report that no such pair
exists in O(n4 log n) time and O(n) space.

Problem 3 (Restricted version of the Two congruent color spanning
strip). For the same inputs as in the Problem 2, compute two congruent, min-
imum width color spanning disjoint strips which are parallel to each other.

The Theorem 1 leads to the following observation.

Observation 3. If CSSs V1 and V2 are parallel to each other, then at least
one boundary of one of the two strips V1 and V2 must contain an endpoint of
two different colored segments in L that are covered by the corresponding strip.
However, if V1 and V2 are not parallel, then one boundary of each of the strips
must contain two endpoints of two different colored segments in L. Note that,
both the endpoints of the same segment may also define a boundary.

If the two disjoint CSSs Vi and Vj are mutually parallel, then their corre-
sponding dual V∗

i and V∗
j , are two disjoint vertical segments, one lying vertically

above the other.
Consider a minimal CS_segment V∗

i at an event point ei ∈ A, determined by
the procedure described in Sect. 2.1. Now, we will determine all possible minimal
CS_segments V∗

j lying vertically above as well as below V∗
i in amortized O(n)

time. We explain the method of computing all the CS_segments below V∗
i .

Suppose �∗
i be a double wedge lying immediately below V∗

i . Take two pointers
top and bottom, where top points to �∗

i and bottom points to a double wedge, say
�∗
j , below �∗

i , such that the vertical segment from UT (�∗
i ) to LT (�∗

j ) at x = x(e)
is a CS_segment, say V∗

j . It can be determined from the sweep line status.
The next CS_segment below V∗

j , starting from double wedge that is just below
�∗
i , can be determined by shifting both the pointers top and bottom downwards

through the list of double wedges in the current sweep line status array. In this
way, we compute all the CS_segments lying below V∗

i in linear amount of time.
Similarly, we compute all possible minimal CS_segments that lie vertically
above V∗

i . Finally, we choose the one having minimum length as V∗
j that pairs

with V∗
i . The entire task is done in O(n) time.

We repeat the above steps to compute all possible pairs (V∗
i ,V∗

j ) at each
event point ei ∈ A by sweeping the line λ. It may happen that there exists only
one CS_segment in the entire floor. In that case, only one color spanning strip
will be reported. Similar to the Problem 1 in the Sect. 2.1, we need not store
all the events for this Problem 3 and hence, it needs O(n) space. As there are
O(n2) event points in the worst case, we have the following result.
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Theorem 4. For a given set of n colored line segments in R2, we can compute
two congruent disjoint parallel color spanning strips of the minimum width in
O(n3) time and O(n) space.

2.3 Two Congruent Strips of Arbitrary Orientation Whose Union is
Color Spanning

Problem 4 (Union color spanning problem). Given a set L =
{�1, �2, . . . , �n} of (not necessarily disjoint) line segments in R2; each segment
�i ∈ L is associated with one of m distinct colors (3 ≤ m ≤ n), the objective is
to compute arbitrary-oriented two congruent (i) disjoint (ii) non-disjoint strips
V1 and V2 of minimum width, whose union is color spanning.

We first compute two arbitrary-oriented disjoint strips V1 and V2. It is obvious
that V1 and V2 are parallel. We use the line sweeping technique over the set of
double wedges L∗. For each color ci (1 ≤ i ≤ m), we maintain two sorted lists
of all the double wedges with respect to their lower traces and upper traces
respectively, at each position x = x(e), where e is the event point of the sweep
line λ. These two lists are updated in constant time at each event point e as
the line λ sweeps rightward. From these lists containing lower (resp. upper)
traces of each color, we also compute a sorted array first_col_LT [1..m] (resp.
first_col_UT [1..m]) of size m at each event point e of λ, that keeps the first
occurring lower (resp. upper) traces of each distinct colored double wedge that
lies completely below (resp. above) the point e. These two arrays are sorted with
respect to the point of intersections of the sweep line λ with the members of the
array. Our algorithm executes the following tasks at each event point e of λ.

We take V∗
i with one of its endpoints starting at the event point e. Without

loss of generality, we assume that the event point e is the intersection of two
upper traces of two different colored double wedges. The other endpoint of V∗

i

lie on the lower trace (lying vertically below e) of any one of the double wedges
from the sorted array “first_col_LT ” and suppose this V∗

i intersects with the
double wedges of k different colors. We use a color array C which keeps track of
the color of wedges that completely intersect with V∗

i and it can be computed in
O(k) time. For each V∗

i , we compute corresponding V∗
j which covers the double

wedges of remaining (m − k) colors. The two endpoints of the dual segment V∗
i

(resp. V∗
j ) of the strip Vi (resp. Vj) are denoted by top1 (resp. top2) and bot1

(resp. bot2). The color of the double wedges pointed by the top1, top2, bot1 and
bot2 will be of different colors. Once we compute such a V∗

j , we measure the
length of V∗

j . Next, we shift top2 downward to the next upper trace below it
and recompute V∗

j . In this way we compute all possible V∗
j that lie below V∗

i .
Similarly we can compute all possible V∗

j lying above V∗
i in O(n) time. We choose

the V∗
j with minimum length. Now we increase the length of V∗

i by moving bot1
pointer to next entry of the array “first_col_LT ” so that V∗

i covers now one
extra color and we compute the corresponding minimum length V∗

j . To obtain
the optimal pair V∗

i and V∗
j at the event point e, we need not to compute all

possible V∗
i due to the following lemma.
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Lemma 2. The function max{width(Vi), width(Vj)} is a convex function.

Proof. If we increase the width of V1, the width of V2 either remains same or
decreased, as the union of V1 and V2 is color spanning. 	


Since, the length of V∗
i is increased by shifting bot1 through the mem-

bers of the sorted array “first_col_LT ” (of size m), to minimize the
max{width(Vi), width(Vj)} we need to iterate the above procedure at most logm
times (see Lemma 2) at each event point e of λ. Finally we repeat the same pro-
cedure at each event point e of λ to find the optimal solution of the Problem 4.
Similar to the Problem 2, we need linear space to solve the Problem 4. Thus we
obtain the following result.

Theorem 5. For the set L of n line segments in R2, we can compute two congru-
ent disjoint parallel strips of the minimum width, whose union is color spanning
in O(n3 logm) time and O(n) space.

Now, we determine two arbitrary-oriented non-disjoint strips V1 and V2,
whose union is color spanning. We apply almost the same technique as well
as the data structures that are used to compute two disjoint strips (first part of
the Problem 4). In this case, the two vertical CS_segments V∗

1 and V∗
2 will lie at

two different event positions of two different sweep lines λ1 and λ2, respectively.
Both V∗

1 and V∗
2 will be defined by three segments (see Observation 3). We first

consider a CS_segment at an event point e of the sweep line λ1 covering, say
k colors (see the algorithm described for disjoint case). Then we compute the
V∗
j (which covers the remaining (m − k) colors) at each event e′ of the sweep

line λ2 lying to the right of λ1. We can compute the two sorted arrays (defined
earlier) first_col_LT [1..m] (resp. first_col_UT [1..m]) at the event point e′

in O(m) time. For a fixed length CS_segment V∗
i at e, we can determine mini-

mum V∗
j at e′ in O(m) time. Now, the Lemma 2 says that in O(m logm) time,

we can compute the optimum pair (V∗
i ,V∗

j ) with one of their endpoints at e and
e′, respectively. Now, there are O(n2) different possible positions for each of the
event points e and e′. Thus we obtain the following result.

Theorem 6. For a given set of n line segments in R2, we can compute two con-
gruent non-disjoint strips of the minimum width, whose union is color spanning
in O(n4m logm) time and O(n) space.

2.4 Color Spanning Rectangle (CSR) of Arbitrary Orientation

Problem 5. Given a set L = {�1, �2, . . . , �n} of (possibly intersecting) n line
segments in R2; each segment �i ∈ L is attached with one of m distinct colors
(3 ≤ m ≤ n), the objective is to compute an arbitrary-oriented color spanning
rectangle (CSR) R of minimum area.

Fact 2. A color spanning rectangle (CSR) R is the intersection of two color
spanning strips, say V1 and V2, which are perpendicular to each other and bound-
aries of V1 and V2 pass through the opposite parallel sides of R (Fig. 3).
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R

Fig. 3. Color spanning rectangle R in primal is represented by a pair (V∗
1 , V∗

2 ) in dual.
(Color figure online)

Lemma 3. One side of the minimum area CSR R for L must contain exactly
two endpoints of any two segments (one endpoint of each) in L and each of the
remaining sides of R must contain one endpoint of a segment in L. Also the
same colored endpoints can occur at most twice on the boundary of R, and the
color of the segments whose endpoint lie on the boundary of R, will be distinct
from remaining segments that lie completely inside R.

Proof. Suppose, R be the minimum area CSR and E be the set of segments
enclosed by it. Since the area of R is minimum among all CSR of L, the color
of the segments in L whose endpoints lie on the boundary of R must be distinct
from the others lying on or inside R, otherwise we can rotate and/or shrink R
to obtain another CSR with smaller area than R, contradicting the assumption
that R is minimum area CSR. Note that, the same colored endpoints may occur
at most twice on the boundary of R, if both the endpoints of a segment occur at
the boundary of the R. Let P be the convex hull of E. Two vertices of P must
lie on a side of minimum area rectangle R, if it encloses P [7]. 	


Since the adjacent sides of a rectangle are perpendicular to each other, we observe
the following.

Observation 4. A CSR which is the intersection of two perpendicular strips
V1 and V2 in the primal plane (Fact 2), can be represented by two color spanning
vertical segments (CS_segment) V∗

1 and V∗
2 in the dual plane such that if the

V∗
1 is at x = x1, then the V∗

2 will be at x = −1
x1

, and the set of double wedges
intersecting both V∗

1 and V∗
2 must be color spanning.

Let Ra,b be the color spanning rectangle with one side defined by two points
a and b of the two segments �a and �b, respectively. The four sides of Ra,b are
numbered sequentially 1 to 4 in counter clockwise direction where the side 1
contains the points a and b. We first generate all possible CSR Ra,b with side
2 being defined by all possible segments with same (say blue) color only, and
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then we compute the minimum area rectangle among them. Similarly, we use
the remaining colors for side 2 to generate all possible Ra,b. Finally, we do this
for all pairs of �a(∈ L) and �b(∈ L) to compute the overall minimum area CSR
for L. This entire process is done through the duality transformations of the
segments in L and line sweeping technique.

Two vertical lines λ1 and λ2 sweep from left to right through the set of
event points ξ generated by the intersections of the members in L∗ as defined in
Problem 1. The λ1 and λ2 have the same set of event points; however, if the λ1

reaches at its event point e ∈ ξ, then we move λ2 to its event point e′ ∈ ξ whose
position is at x = −1

x(e) (see the Observation 4). However, if no such event point
exists at x = −1

x(e) , then we choose e′ ∈ ξ that occurs immediately to the left of
x = −1

x(e) .
Consider a minimal width CSS V1 with its lower boundary passing through

the endpoints a and b of the segments �a and �b, respectively. Let c, the endpoint
of a segment �c, lies on the upper boundary of V1, so that col(�a) �= col(�b) �=
col(�c) (see the Lemma 3). The double wedges �∗

a, �∗
b and �∗

c represent the duals
of �a, �b and �c, respectively. In dual, the point of intersection of UT (�∗

a) and
UT (�∗

b) is the top endpoint of the CS_segment V∗
1 , and its bottom endpoint

will lie vertically below its top endpoint and on the LT (�∗
c). Let L∗

1 ⊆ L∗ be
the set of double wedges intersecting with V∗

1 and L∗
2 ⊂ L∗ be the set of double

wedges lying completely below V∗
1 . At each event point e of sweep line λ1, we

compute the CS_segments V∗
1 . For each such segment V∗

1 , we determine the
corresponding V∗

2 at x = −1
x(e) which lies immediately after the event point, say

e′ of the sweep line λ2. The order of the double wedges of L∗
1 at x = −1

x(e) , can
be obtained from the status of the sweep line λ2 at x = x(e′) in linear time.
The V∗

2 to be determined, must intersect with �∗
a, �∗

b and �∗
c in order to obtain a

CSR made by the intersection of V1 and V2. We take two pointers top1 (resp.
top2) and bot1 (resp. bot2) that are initialized to point to double wedges having
top endpoint and bottom endpoint of V∗

1 (resp. V∗
2 ), respectively. At x = −1

x(e) ,
suppose L∗

up ⊂ L∗
1 be the set of double wedges with their upper trace lying

above both UT (�∗
a) and UT (�∗

b). We choose a distinct colored (say blue) double
wedge w∗ ∈ L∗

up at x = −1
x(e) which is closest to and above both the UT (�∗

a) and
UT (�∗

b), and compute the CS_segment V∗
2 (with top endpoint on UT (w∗)) for

the double wedges in L∗
1 by maintaining a color array in linear time. Actually

this w defines the side 2 of CSR (discussed above). The bottom endpoint of V∗
2

will lie on the lower trace of a double wedge, say t∗ and bot2 will point to t∗.
Note that w∗ and t∗ must be the essential3 double wedges in V∗

2 . We determine
the area of the rectangle whose sides are given by V∗

1 and V∗
2 in dual plane. Next

we process each double wedge d∗
i ∈ L∗

2 lying below �∗
c at x = x(e), as follows.

col(d∗
i ) = col(w∗): Here,
• if UT (d∗

i ) lies below UT (�∗
a) or UT (�∗

b) and above LT (�∗
a) or LT (�∗

b) at
x = − 1

x(e) , then we stop, since no CSR Ra,b with col(w∗) in side 2 is
possible with such d∗

i .
3 Essential color occurs exactly once inside the color spanning region.
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• if UT (d∗
i ) lies above both UT (�∗

a) and UT (�∗
b) at x = −1

x(e) , and below
the double wedge pointed by top2 pointer, then we reject all the double
wedges lying above d∗

i (since same colored segment w as that of di cannot
occur in CSR Ra,b) by updating color array. We also update the top2
pointer to point to d∗

i .
• if d∗

i lies below LT (�∗
a) and LT (�∗

b) at x = − 1
x(e) , and above bot2, then

CSR Ra,b cannot include d∗
i and hence we move the bot2 pointer to the

double wedge lying immediately above d∗
i . Note that, now the vertical

segment defined by the top2 and bot2 may not be the color spanning, and
we should compute the CSR Ra,b whenever we get a V∗

2 .
• if d∗

i lies above top2 at x = − 1
x(e) , then we reject d∗

i (since col(d∗
i ) and

col(w∗) are same).
col(d∗

i ) �= col(w∗): If d∗
i lies between the double wedges pointed by top2 and

bot2, then we insert d∗
i in V∗

2 and update the color array for V∗
2 . If the color

of the double wedge pointed by bot2 is same as that of d∗
i then we move bot2

upwards to point to an essential wedge. If V∗
2 becomes color spanning after

insertion of d∗
i , then we update the bot1 pointer to point to d∗

i and compute
V∗
2 and the corresponding CSR. Otherwise we reject d∗

i .

Since each segment is inserted and/or deleted in V∗
2 at most once, the above

procedure needs amortized linear time. We repeat this procedure for each distinct
colored double wedge w∗ to obtain the minimum area CSR Ra,b. Finally, we
execute this process at each event point of λ1 to determine the overall minimum
area CSR for L. There are O(n2) event points for λ1. Similar to the Problem 2,
we also need the linear space to solve this problem. Since there are at most m
distinct colors, and at each event point of λ1, it takes amortized linear amount
of time to compute all possible CSS V∗

2 with each distinct color of the upper
trace, we have the following result.

Theorem 7. The minimum sized (area) color spanning rectangle of arbitrary
orientation for a given set of n colored line segments in R2 can be determined
in O(n3m) time and O(n) space.
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Abstract. We study two player single round rectilinear Voronoi games
in the plane for a finite set of clients where service paths are obstructed
by a rectilinear polygon. The players wish to maximize the net number of
their clients where a client is served by the nearest facility of players in L1

metric. We prove the tight bounds for the payoffs of both the players for
the class of games with simple, convex and orthogonal convex polygons.
We also generalize the results for L∞ metric in the plane.

1 Introduction

Motivation. A Voronoi game is a competitive facility location problem where
the goal is to maximize a service in the Voronoi cells of the players. Rectilinear
versions of such problems naturally arise in several applications that deal with
rectilinear paths, such as those related to city maps, electronic circuits, raster
graphics, warehousing, architecture, civil engineering, network flows, etc. The
motivation for the problem comes from real-life situations where an impassable
zone restricts every player in a competitive facility location problem. We prove
lower and upper bounds on the payoffs of such games in L1 and L∞.
Previous Results. The concept of Voronoi games was introduced by Ahn
et al. [1] for line segments and circles. Several variants of Voronoi games are
available in the literature [2–15]. Ahn et al. [1], Cheong et al. [10] and, Fekete
and Meijer [13] studied the versions where they tried to maximize the Voronoi
cells themselves. Briefly, they proved that Bob is guaranteed at least half of the
total payoff for their versions of Voronoi games. They also game suitable strate-
gies for both the players. Durr and Thang [12], Teramoto et al. [15], Bandy-
opadhyay et al. [2] and Sun et al. [14] studied intractability of Voronoi games
in graphs. Banik et al. [3] described a discrete vesion of the problem for line
segments. Banik et al. [4,5] and, later, Berg et al. [9] solved the single round
where two players can place a fixed number of facilities in a single round. Banik
et al. [8] introduced Voronoi games in the interior of simple polygons and devised
polynomial time optimal strategies for both Alice and Bob.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Bagchi and R. Muthu (Eds.): CALDAM 2023, LNCS 13947, pp. 89–100, 2023.
https://doi.org/10.1007/978-3-031-25211-2_7
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Banik et al. [6,7] described the version of the problem that we study in this
paper. Banik et al. [6] and Das et al. [11] extended, generalized and improved
the solutions of the problem. They also proved several tight lower and upper
bounds on the payoffs of a similar nature as in this paper.
New Results. In this paper, we study the rectilinear Voronoi games with recti-
linear polygonal obstacles for players similar to the games mentioned in [6,7,11].
A notable difference is that we restrict the players outside of a fixed polygon.
We formally describe the rectilinear Voronoi game in Sect. 2.

We prove that the optimal payoff of Alice ≥ �n/3� and ≤ n/2 and that the
optimal payoff of Bob ≥ n/2 and ≤ �2n/3�, where the net number of served clients
is n. These bounds are tight. We also prove that these bounds hold irrespective
of whether we fix the class of polygonal obstacles as simple polygons, convex
polygons, or orthogonal convex polygons in contrast with the results of [6,7,11].
We then generalize these results for L∞ metric.
Organization. We present some preliminary definitions, concepts and observa-
tions in Sect. 2. In Sect. 3, we prove the bounds for rectilinear Voronoi games for
simple, convex and orthogonal convex polygonal obstacles. We show in Sect. 4
that the same bounds hold for extensions to L∞.

2 Preliminaries

B+(A)

P
∂(P)

Clients c ∈ C

Vorb(A, B+(A))

S+b (B) = 24

A
S+a (A) = 12

Vora(A, B+(A))

Fig. 1. A two player single round recti-
linear Voronoi game with an orthogonal
convex polygon obstacle in L1 metric in
R2. Alice is at A and Bob wins with a
payoff of 24 by playing at B+(A).

P

(+-)

(--) (-+)

(++)

xy -monotonic path

Boundary ∂(P)

Fig. 2. An illustration for orthogonal
convex polygon with explanation of some
notation for quadrants.

We present some definitions, notations and conventions first. A Voronoi game is
a competitive game in which players compete to serve a set of clients by placing
their facilities. A facility serves the clients in its Voronoi cell and shares the
clients on its Voronoi cell boundary. The payoff of each player is determined by
the net number of clients they serve. The two players single round rectilinear
Voronoi game with a polygon obstacle P, denoted by GP,L1(C,P), is a single
round Voronoi game played between two players, conveniently named Alice and
Bob. They place a single facility each in a region containing a finite set of point
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clients C ⊂ R2 with the open simple polygonal obstacle P in the L1 plane. Alice
places her facility first, followed by Bob. The facility locations of Alice and Bob
are denoted by A ∈ R2 and B ∈ R2, respectively. Effectively, A ∈ R2 \ P and
B ∈ R2 \ P, since A ∈ P and B ∈ P fetch exactly zero payoffs for Alice and Bob
respectively. The distance from a facility f to a client c, denoted by dP

L1
(f, c) is

measured as the L1-length of any shortest path from f to c that avoids interior of
P. The payoffs of Alice and Bob, denoted by Sa(A,B) and Sb(A,B), respectively,
are the net count of clients they serve. See Fig. 1 for an example. We note that
neither the shortest paths nor the best locations for Alice and Bob have to be
unique. Moreover, we allow overlapping of clients and facilities, and in some
cases, we also permit degenerate simple polygonal obstacles. Two problems arise
naturally for these Voronoi games that we describe subsequently.

Problem 1. Let Alice and Bob play a two player single round rectilinear Voronoi
game with a polygonal obstacle P. What is an optimal location of Alice that
maximizes her minimum payoff? What is an optimal location of Bob that max-
imizes his payoff for a fixed Alice’s facility location? �

An optimal location of Bob for a fixed location A for Alice’s facility is denoted
by B+(A) and the optimal payoff S+

b(A). The corresponding payoff of Alice is
denoted by S+

a(A). Then,

S+
a(A) = min

B∈R2
Sa(A,B) = Sa(A,B+(A))

S+
b(A) = max

B∈R2
Sb(A,B) = Sb(A,B+(A))

We can compute B+(A) by solving any one of the above equations. An optimal
locations of Alice and Bob are denoted by A* and B*, respectively, and the
optimal payoffs by S*

a and S*
b, respectively. B* = B+(A*). Then,

S*
a = max

A∈R2
min
B∈R2

Sa(A,B) = S+
a(A*) = Sa(A*,B*)

S*
b = min

A∈R2
max
B∈R2

Sb(A,B) = S+
b(A*) = Sb(A*,B*)

We can compute A* and then B* by solving for minA∈R2 maxB∈R2 Sb(A,B) =
maxB∈R2 Sb(A*,B) = Sb(A*,B*).

Next, we propose the problem of determining the upper and lower bounds of
Alice’s and Bob’s payoffs.

Problem 2. Let Alice and Bob play a two player single round rectilinear Voronoi
game with polygonal obstacle P. What are the upper and lower bounds on the
payoffs of Alice and Bob? �

The lower and upper bounds of Alice’s payoffs are mathematically deter-
mined by expressions minGP,L1 (C,P) S*

a and maxGP,L1 (C,P) S*
a respectively. Sim-

ilarly, the lower and upper bounds of Bob’s payoffs are minGP,L1 (C,P) S*
b and

maxGP,L1 (C,P) S*
b mathematically.

We can prove that the Voronoi game is a constant sum game. Hence
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Theorem 1. Sa(A,B) + Sb(A,B) = S+
a(A) + S+

b(A) = S*
a + S*

b = | C \ P |
Proof. We note that P is open, and any client in the (strict) interior of P is not
served. Other clients are either fully served by Alice or Bob or equally shared
by them. Thus the net total of the payoffs in any Voronoi game is always equal
to | C \ P |. 
�

We study the class of the rectilinear Voronoi games when the obstacles are
simple, convex or orthogonal convex polygons. We can also extend the Voronoi
games and related problems described above to L∞ metric. Instead of orthogonal
convex polygons, we look at polygons that are oblique orthogonal convex poly-
gons described later in Sect. 4.

We represent a simple polygon, and likewise, a simple polygonal region, P
by its boundary ∂(P) and assume that the polygon contains its open interiors.
The boundary ∂(P) is assumed to be represented by a non-crossing counter-
clockwise sequence of edges such that the interior of P is on the left. The simple
polygons are open and bounded. Likewise, both the interiors and exteriors are
open. Though simply connected, they may possibly be degenerate. An orthog-
onal convex polygon is an open rectilinear polygon such that every horizon-
tal and vertical line intersects the polygon no more than once in an interval.
See Fig. 2 for an example. Let S be any finite or infinite bounded set of points.
An orthogonal convex hull of S, possibly non-unique, is a minimal open orthogo-
nal convex polygon that contains S and is denoted by OCHull(S). The smallest
containing box of S is denoted by Box(S), i.e., Box(S) = { (qx, qy) | xmin(S) <
qx < xmax(S), ymin(S) < qy < ymax(S) } where xmin(S), xmax(S), ymin(S) and
ymax(S) are respectively the left, right, bottom and top extremes of the set S.

We implicitly use the Voronoi regions of Alice and Bob in the discussion. The
Voronoi regions of Alice and Bob are denoted by Vora(A,B) and Vorb(A,B)
respectively for their facility locations A and B respectively.

Vora(A,B) = { p ∈ R2 \ P | dP
L1

(A, p) ≤ dP
L1

(B, p) },

Vorb(A,B) = { p ∈ R2 \ P | dP
L1

(A, p) ≥ dP
L1

(B, p) }.

The clients c ∈ C for which dP
L1

(A, c) = dP
L1

(B, c) are shared equally between
Alice and Bob and contribute 1/2 to each of the payoffs.

3 Bounds for Rectilinear Voronoi Games with Polygonal
Obstacles

3.1 Unrestricted

Let S be a finite set of points in the polygonal region R. We define xy-median
of S in R to be a point cm, such that, any open horizontal and vertical chord of
R that avoids cm contain ≤ �|S|/2� points of S on the other side of cm. We can
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Fig. 3. Lemma 2: The lower bound of
Alice’s payoff for the unrestricted recti-
linear Voronoi game in plane.

Fig. 4. Theorem 3: An unrestricted
rectilinear Voronoi game proving tight
bounds for non-overlapping clients.

argue that it is always possible to compute xy-median for any set of clients S in
any bounded or unbounded simply connected region R. See Fig. 5.

Let GL1(C) be an unrestricted rectilinear Voronoi game with a finite set of
clients C in plane, where the service paths are not restricted by any obstacle.
Let | C | be n. We show that in an unrestricted rectilinear Voronoi game, Alice
and Bob have an optimal strategy so that the other player does not have an
advantage in their payoff. This is similar to the original result of [1].

Lemma 2. S*
a ≥ n/2 and S*

b ≥ n/2.

Proof. To prove Alice’s bound, we put Alice’s facility at the xy-median of C.
Then Alice is guaranteed a payoff of n/2. See Fig. 3 for the sketch of the proof.
In the figure, �n/2� − (n(0+) + n(0-) + n(00)) ≤ (n(++) + n(+-) + n(+0)) < �n/2�,
etc. where n(++), etc., denotes the number of clients in the (++) quadrant, etc.
We can show that Sa(A,B) > n/2 by formulating it is an integer linear program
while optimizing for the max-min payoff. To prove Bob’s bound, we put Bob’s
facility overlapping Alice’s facility. Bob is guaranteed a payoff of n/2 there. 
�

Moreover, as an immediate consequence of Lemma 2, we can show that the
lower and upper bounds of S*

a = S*
b = n/2 are indeed same, invariably constant,

and hence, tight for unrestricted case.

Theorem 3. Let GL1(C) be an unrestricted rectilinear Voronoi game in R2 with
n clients. Then S*

a = S*
b = n/2.

Proof. We put Alice at an xy-median of C. Bob is forced to place his facility at
the same location to maximize his payoff. See Fig. 4 for an example unrestricted
rectilinear Voronoi game. 
�

The implicit technique employed above is used several times later with some
tight modifications for regions with obstacles.



94 A. K. Das et al.

3.2 Simple Polygon Obstacle

Let GP,L1(C,P) be a Voronoi game in R2 with a simple polygonal obstacle P and
clients C. Let n = |C \ P|. We note that Bob has a simple strategy to ensure a
payoff of at least n/2.

Lemma 4. Let A be fixed. Then S+
b(A) ≥ n/2 for any simple polygon P.

Proof. We fix B+(A) overlapping A. Due to the space limitations, we omit impor-
tant (and technical) details, as the formal proof requires several more definitions
and claims. We request the interested reader to see the full version of this paper.


�
The strategy for Alice to ensure at least a minimum payoff is non-trivial. We

show below a facility location where she can get a payoff of �n/3�. With the aid
of numerous figures, we sketch the main idea in our proof. We omit important
(and technical) details, as the formal proof requires several more definitions and
claims. It is impossible to provide all the necessary details within the page limit
of the conference submission.

∼ 1/2 clients

∼ 1/2 clients

∅

Anew
2

Aold
2 !?

∅

∅

∅

∅

Fig. 5. The median horizontal and ver-
tical chords for xy-median do not inter-
sect in R for a set of points. We show the
existence of another valid location for xy-
median.

P

(+-)

(--) (-+)

(++)

q(++)

q(--)

Q(++)

Box(P)

Fig. 6. The Q(++) extended quadrant
with respect to an orthogonal convex
polygon P. Naturally, Q(++) ∪ Q(--) =
R2 \ P. Hence, C \ P ⊂ Q(++) ∪ Q(--).

We define the extended quadrants relative to P for the purpose of proofs
below. Let us consider the Voronoi diagram with obstacle P in L1 of the two
points q(++) = (xmax(P), ymax(P)) and q(--) = (xmin(P), ymin(P)). The closed
(++) extended quadrant, denoted by Q(++), is the set of points in the Voronoi
cell of q(++), i.e., { p ∈ R2 \ P | dP

L1
(q(++), p) ≤ dP

L1
(q(--), p)}. Likewise, we define

Q(-+), Q(--) and Q(+-) closed extended quadrants. See Fig. 6 for an illustration
of the extended quadrant Q(++).

Before proving a lower bound of �n/3�, we show first that �n/4� is a weaker
lower bound for S*

a .
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Lemma 5. S*
a ≥ �n/4� for any orthogonal convex polygon P.

Proof. We observe that at least one of any pair of diametrically opposite
extended quadrants of P, for example one of Q(++) or Q(--), will contain ≥�n

2 �
clients because they cover R2 \ P and hence C \ P. We can show that A on a
xy-median of the extended quadrant of the four that contains the most clients
will get ≥ �n/4� payoff. See Fig. 7. 
�

Later, in Theorem 10, we show that �n/3� is the tight bound of S*
a for even

orthogonal convex polygonal obstacles.

Lemma 6. S*
a ≥ �n/3� for any simple polygon P.

P

Q(++)
A

Fig. 7. A weak lower bound for Alice’s
payoff for rectilinear Voronoi game with
a simple orthogonal polygonal obstacle.
Q(++) quadrant contains ≥�n

2
� clients.

Alice gets at least half of the clients in
Q(++).

Box(P)

OChull(P)

A1

B1

Vorb(A1, B1)

Vora(A1, B1)

P

Fig. 8. Lower bound for Alice’s payoff
for rectilinear Voronoi game with a sim-
ple polygonal obstacle. Possible candi-
date location A1 in Lemma 6.

Proof. We consider two possible candidates for Alice’s facility location for our
claim. One of these will guarantee a payoff of �n/3�. The first candidate location,
denoted by A1, is a rightmost point of ∂(P). See Fig. 8. If S+

a(A1) ≥ �n/3� then
the proof is complete.

Otherwise, let B+(A1) = B1. We compute V = Vorb(A1,B1). Naturally C∩V
contains > �2n/3�, since, S+

a(A1) < �n/3� =⇒ S+
b(A1) > n − �n/3�. We fix A2 on

the xy-median of the clients in V, i.e., C ∩ V. We give a proof sketch below that
S+
a(A2) ≥ �n/3�. Let A2 = (ax, ay).

The following subcases arise.

Case 1. A2 ∈ R2 \ Box(P).
If A2 is, without loss of generality, such that ax ≥ xmin(P) and ay ≥ ymax(P),
then clearly there are at least �n/3� clients above and �n/3� clients right of A2.
If A2 is, without loss of generality, such that ax ≥ xmin(P) and ymin(P) <
ay > ymax(P), then we can show that B2 either serves only shared clients of
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A2

≥ �n/3� clients

≥ �n/3� clients

Vorb(A1, B1)

Overall ≥ �2n/3� clients

P

Box(P)

Fig. 9. Lemma 6: Case 1. (a) Both the
median lines for A2 are unbounded.

≥ �n/3� ≥ �n/3�

Vorb(A1, B1)

≥ �2n/3� clients

P

Box(P)

A2

B2

≥ �n/3�
≥ �n/3�

Fig. 10. Lemma 6: Case 1. (b) One of
the median lines for A2 is semi-bounded
and the other one is unbounded.

C ∩ V in any diametrically opposite quadrants relative to A2 or serves clients
of C ∩ V in only one of the any diametrically opposite quadrants relative to
A2. So, in either situation, A2 will get a payoff of at least �n/3�. See Figs. 9
and 10.

P

Box(P)

B2

A2

Vorb(A1, B1)

≥ �2n/3� clients

≥ �n/3�
≥ �n/3�

≥ �n/3� ≥ �n/3�

OChull(P)

Fig. 11. Lemma 6: Case 2. (a) Both
A2 and B2 in the same quadrant with
respect to P.

P

Box(P)

B2

A2

Vorb(A1, B1)

≥ �2n/3� clients

≥ �n/3�
≥ �n/3�

≥ �n/3� ≥ �n/3�

OChull(P)

Fig. 12. Lemma 6: Case 2. (b) A2 and
B2 in different quadrants with respect to
P.

Case 2. A2 ∈ Box(P) \ OCHull(P).
If A2 is, without loss of generality, in Q(++), then we can show that B2 either
serves only shared clients of C ∩ V in any diametrically opposite quadrants
relative to A2 or serves clients of C∩V in only one of the diametrically opposite
quadrants relative to A2. Thus, A2 is guaranteed a payoff of at least �n/3�.
See Figs. 11 and 12.

Case 3. A2 ∈ OCHull(P) \ P.
If A2 is sufficiently deep in a pocket such that the horizontal and vertical
chords passing through A2 are also in the same pocket and, without loss of
generality, the opening to the exterior is towards (++) quadrant with respect
to A2 then, we can argue that since there are �n/3� clients in C ∩ V below the
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P

Box(P)
Vorb(A1, B1)

≥ �2n/3� clients

OChull(P)

≥ �n/3�
≥ �n/3�

≥ �n/3� ≥ �n/3�

A2

B2

Fig. 13. Lemma 6: Case 3. (a) Both the
median chords for A2 are bounded.

P

Box(P)
Vorb(A1, B1)

≥ �2n/3� clients

OChull(P)

≥ �n/3� ≥ �n/3�

≥ �n/3�

≥ �n/3�

A2

B2

Fig. 14. Lemma 6: Case 3. (b) One of
the median chord for A2 is bounded and
the other semi-bounded.

horizontal chord and left of the vertical chord, Alice gets a payoff of at least
�n/3�. If A2 is shallow in a pocket, then too, we can show that B2 either serves
only shared clients of C∩V in any diametrically opposite quadrants relative to
A2 or serves clients of C∩V in only one of the diametrically opposite quadrants
relative to A2. Thus A2 ensures a payoff of at least �n/3�. See Figs. 13 and 14.

Case 4. A2 ∈ P
This case does not arise.

Consequently, in all the cases, S+
a(A2) ≥ �n/3�. 
�

Fig. 15. The lower bound for Alice’s
payoff for rectilinear Voronoi game with
a simple polygonal obstacle is tight.

Fig. 16. An oblique orthogonal convex
polygon P.

Theorem 7. Let GP,L1(C,P) be a Voronoi game in R2 with a simple polygonal
obstacle P and n clients C. Then �n/3� ≤ S*

a ≤ n/2 and n/2 ≤ S*
b ≤ �2n/3�. The

bounds are tight.
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Proof. The bounds are consequences of Lemma 4 and Lemma 6. For tightness,
we construct two Voronoi games as follows. We fix P as a rectangular region
with three sets of about n/3 nearly overlapping clients totaling n clustered at
three equidistant locations. We can show that S+

a(A) = �n/3�. See Fig. 15 for the
construction. For the tightness of the upper bound of S+

a , we construct a Voronoi
game as before with a single cluster of n overlapping clients. The polygonal
obstacle does not matter. 
�

3.3 Convex Polygon Obstacle

In [6], Alice was guaranteed a share of payoff for convex polygon case compared
to the general case. In [11], both Alice and Bob were guaranteed a share of
payoff for convex polygon case. However, unlike [6,11], in rectilinear Voronoi
games with obstacles, there is no such advantage for either Alice or Bob, if we
specialize to the class of convex polygonal obstacles. The proofs, on the other
hand, are simplified. Also, we note that the convex polygons are special cases of
orthogonal convex polygons though the opposite is not true. Thus we have the
following theorem.

Theorem 8. Let GP,L1(C,P) be a Voronoi game in R2 with a convex polygonal
obstacle P and n clients C. Then �n/3� ≤ S*

a ≤ n/2 and n/2 ≤ S*
b ≤ �2n/3�. The

bounds are tight.

Proof. The proof is similar to that of Theorem 7 though much simplified because
of the convexity of the polygonal obstacle. The tightness’s follow from the same
constructions. 
�

3.4 Orthogonal Simple Polygon Obstacle

Next, we consider the class of orthogonal simple polygonal obstacles, a subclass of
simple polygons. The class of such polygons includes degenerate polygons though
the paths should not cross the boundary edges. Again, we can conclusively show
that the bounds are the same and tight. Hence,

Theorem 9. Let GP,L1(C,P) be a Voronoi game in R2 with a orthogonal simple
polygonal obstacle P and n clients C. Then �n/3� ≤ S*

a ≤ n/2 and n/2 ≤ S*
b ≤

�2n/3�. The bounds are tight.

3.5 Orthogonal Convex Polygon Obstacle

Lastly, we show the bounds for the class of orthogonal convex polygonal obsta-
cles. As mentioned earlier, since the convex polygons are special cases of orthog-
onal convex polygons, hence the bounds here are valid for the earlier section too.
Again this is unlike [11].

Theorem 10. Let GP,L1(C,P) be a Voronoi game in R2 with a orthogonal simple
polygonal obstacle P and n clients C. Then �n/3� ≤ S*

a ≤ n/2 and n/2 ≤ S*
b ≤

�2n/3�. The bounds are tight.
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Proof. Case 3 of the proof of Lemma 6 does not arise because the orthogonal
convex polygonal obstacle will not have any pockets. Also, for the tightness, we
had deliberately constructed the Voronoi game so that the obstacle is at the
same time simple, convex, orthogonal simple and orthogonal convex. Hence the
same example game proves the tightness of each of these classes of obstacles. 
�

4 Bounds for L∞ Metric in Plane

Fig. 17. A Voronoi game GP,L∞(C,P) in
L∞ metric with the polygonal obstacle P
in plane.

Fig. 18. Tightness of the lower bound
for Alice’s payoff for the Voronoi game
GP,L∞(C,P) in L∞ metric with the con-
vex polygonal obstacle P in plane.

Let GP,L∞(C,P) be a Voronoi game in L∞ metric with the polygonal obstacle P
in plane with a set of clients C. We note that the L∞ metric is very similar to
L1. Though it is not apparent, we can easily extend the bounds to these Voronoi
games by modifying our proofs. Most of the arguments are valid if we choose an
oblique pair of reference axes, i.e., if we choose the lines x = y and x + y = 0 as
the x-axis and the y-axis, respectively. Moreover, an oblique orthogonal convex
polygon P, which is an extension of orthogonal convex polygons, has a property
that any lines parallel to the above two oblique axes will intersect the polygon P
in at most one interval. See Figs. 16 and 17 for examples of an oblique orthogonal
convex polygon and a Voronoi game GP,L∞(C,P) respectively (Fig. 18).

Theorem 11. Let GP,L∞(C,P) be a Voronoi game in R2 with a simple polygonal
obstacle and n clients. Then �n/3� ≤ S*

a ≤ n/2 and n/2 ≤ S*
b ≤ �2n/3�.

Also, there exist Voronoi games with a convex polygonal obstacle and n clients
such that S*

a = �n/3� and S*
b = n/2.

Corollary 12. �n/3� ≤ S*
a ≤ n/2 and n/2 ≤ S*

b ≤ �2n/3� for subclasses of Voronoi
games in L∞ with convex polygonal obstacles, oblique orthogonal polygonal obsta-
cles and oblique orthogonal convex polygonal obstacles. The bounds are tight.
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Abstract. In this work, we initiate the study of diversity of solutions in
the context of fair division of indivisible goods. In particular, we explore
the notions of disjoint, distinct and symmetric allocations and study
their complexity in terms of the fairness notions of envy-freeness and
equitability upto one item. We show that for binary valuations, the above
problems are polynomial time solvable. In contrast we show NP-hardness
of disjoint and symmetric case, when the valuations are additive.

Keywords: Fair division · Diverse solutions · Disjoint allocations ·
Symmetric allocations

1 Introduction

Finding diverse optimal solutions is a computational task, where the aim is not
only to find one solution, but to find multiple solutions that look sufficiently
diverse from each other.

Given a computational task at hand, the decision question asks if there exists
at least one solution and the search question aims at finding the solution by effi-
cient computation. This caters to the setting where we are interested in exactly
one element of the solution space. On the other extreme, there are counting
problems, where the aim is to decide if there exist at least k many solutions, and
if yes, the enumeration aims at listing all the possible solutions. This caters to the
setting where we are interested in the entire solution space. A middle ground
of these extremes is exactly where the concept of diverse solutions lie. Here,
we are interested in a subset of solution space containing sufficiently dissimilar
solutions.

Why do we need diverse solutions? Consider the classic problem finding a sta-
ble matching to pair up students for group projects. If for all the projects, the
same stable matching solution is implemented, it leads to lack of collaborations,
communication, and creates monotony. In such settings, a set of diverse solutions
helps retain stability of the matchings while diversifying the experiences. Even
in the instances where one solution suffices, the availability of diverse optimal
solution allows the administrator in the real-world to assess the solutions based
on their non-technical efficiencies such as such as gender diversity, environmental
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impacts, relocation costs, etc. and choose the one which is a better fit for the sit-
uation overall, even in terms of the parameters that are not part of the input. In
recent years, many studies have been focussed at finding these diverse solutions
in various contexts, for example, stable matchings [1],constrained programming
[2,3], hitting sets [4], mixed integer programming [5], finding graph patterns like
spanning trees, k-paths, isomorphisms [6].

In this paper, we consider diversity of solutions in the context of fair alloca-
tions of indivisible resources. Given a small list of optimal allocations, we can
select one which is best for our purpose, perhaps by taking into account external
factors. To the best of our knowledge, this direction has not been explored pre-
viously in this context. We say that two fair allocations are distinct if there is a
good that reaches different owners under the respective allocations. A stronger
notion of diversity is the pairwise disjointness of fair allocations, where every
good is supposed to reach a different owner under the respective allocations. We
also consider symmetric allocations for the restricted setting of two agents, where
if the bundles are exchanged among the two agents, fairness is not compromised.
That is, the agents not only value their own bundles, but also value the rivals
bundle to such an extent that if they are to exchange the bundles, they still
consider the allocations as fair. Disjoint allocation are always distinct but not
vice-versa. Also, note that in the setting of two agents, a symmetric allocation
is disjoint and vice versa.

We formulate the computational question as follows. For disjoint(distinct)
version, one fair allocation Φ is part of the input and the goal is to check whether
there exist an allocation disjoint(distinct) from Φ. While in context of symmetric
allocations, there is no given base allocation and we ask whether there exist an
allocation that is symmetric. Although the notions of symmetric and disjoint
allocation coincide for 2 agents, but a yes-instance of symmetric version may
not imply yes-instance of the disjoint version, although the other way round
holds true.

The fairness notions that we consider in this work are envy-freeness upto one
good (EF1) and equitability upto one good (EQ1). Both EF1 and EQ1 always
exists. [7] showed that the number of EF1 allocations is always exponential in the
number of items when there are 2 agents. When there are more than 2 agents, we
show that at least 2 distinct EF1 allocations can be found (Lemma 4). We present
a stronger lowerbound for EQ1 where we show that atleast n distinct EQ1 alloca-
tions always exist for any number of agents (Lemma 5). For the restricted cases of
binary and identical valuations respectively, we give bounds on the number of dis-
joint EF1 and EQ1 allocations (Lemma 1, 2, 3). Using a result from [8], we show
that for binary valuations, deciding whether an EF1 allocation disjoint from a
given one exists, can be done in polynomial time. On the other hand, for general
additive valuations, we establish the hardness of the above problem (6, 1). Then
in Sect. 5, we discuss the symmetric EF1 and EQ1 allocations for 2 agents and
present polynomial time constructive algorithms for the cases when symmetric
allocations exist. We defer the proof of the results marked with � to the Appendix
7. Table 1 contains a partial summary of our results.
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Table 1. A partial summary of our results. The results highlighted in bold are exis-
tential.

EF1 EQ1

Binary Additive Binary Additive

Distinct P
(By implication)

P
(Lemma 4)

P
(By implication)

P
(Lemma 5)

Disjoint P(Lemma 6) NP-Complete
(Exact Set Cover)
(Theorem 1)

? ?

Symmetric P(Lemma 7) ? P
(Lemma 9)

NP-Complete
(2-partition)
(Theorem 2)

2 Preliminaries

For any k ∈ N, let [k] := {1, . . . , k}. A fair division instance consists of a set N
of n agents, a set M of m objects/goods, and V = (v1, . . . , vn), a valuation profile
that captures the preferences of every agent i ∈ N over each subset of the goods
in M via a valuation function vi : 2M → N ∪ {0}. We will assume throughout
that v′

is satisfy additivity (unless otherwise stated), that is, for any agent i ∈ N
and any set of goods S ⊆ M , we have vi(S) :=

∑
j∈S vi({j}). The valuations

are said to be normalized if vi(∅) = 0 and all the agents value the grand bundle
(that is M), at a constant. They are monotone if for any T ⊆ M , vi(S) ≤ vi(T )
for all S ⊆ T and i ∈ [n].

A bundle is any subset S ⊆ M of the set of goods. An allocation Φ =
(Φ1, . . . , Φn) is a partition of the set of goods into n bundles, one for each agent.
We focus on complete allocations where

⋃n
i=1 Φi = M . Note that we will denote

the bundle obtained by the agent ai be either of the two notations Φi or Φ(ai).
An allocation Φ is said to be equitable (EQ) if for every pair of agents i, k ∈ N ,

we have vi(Φi) = vk(Φk), and equitable up to one good (EQ1) if for every pair
of agents i, k ∈ N such that Φk �= ∅, there exists some good j ∈ Φk such that
vi(Φi) ≥ vk(Φk \ {j}) [9,10].

An allocation Φ is said to be envy-free (EF) if for every pair of agents i, k ∈ N ,
we have vi(Ai) ≥ vi(Ak), and envy-free up to one good (EF1) if for every pair
of agents i, k ∈ N such that Φk �= ∅, there exists some good j ∈ Φk such that
vi(Φi) ≥ vi(Φk \ {j}) [11–13].

Two allocations Φ and Φ� are said to be disjoint if for every agent ai, the
bundle she gets under Φ and Φ� are disjoint, that is, Φi∩Φ�

i = ∅. Two allocations
Φ and Φ� are said to be distinct if for some agent ai, the bundle she gets under
Φ and Φ� are distinct, that is, ∃g ∈ [m] such that Φ−1(g) �= (Φ�)−1(g). Given
2 agents, an EF1 (EQ1) allocation Φ is said to be symmetric, if the swapped
allocation Φ�, under which a1 receives Φ2 and a2 receives Φ1, is also EF1 (EQ1).

The computational questions that we address in this paper are as follows:
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Disjoint Fair Allocations
Input: A set N = {a1, a2, . . . , an} of agents and a set M =
{g1, g2, . . . , gm} of objects, a preference profile describing the preferences
of all agents over the objects, a fair (EF1 or EQ1) allocation Φ
Question: Determine if there is an allocation Φ� that is disjoint from Φ

Distinct Fair Allocations
Input: A set N = {a1, a2, . . . , an} of agents and a set M =
{g1, g2, . . . , gm} of objects, a preference profile describing the preferences
of all agents over the objects, a fair (EF1 or EQ1) allocation Φ
Question: Determine if there is an allocation Φ� distinct from Φ

Symmetric Fair Allocations
Input: A set N = {a1, a2} of two agents and a set M = {g1, g2, . . . , gm}
of objects, a preference profile describing the preferences of all agents
over the objects
Question: Determine if there is a symmetric fair allocation Φ

3 Bounds on the Number of Disjoint and Distinct
Allocations

Lemma 1 (Upper Bound on the Number of Pairwise Disjoint EF1
Allocations). For any instance of the assignment problem that has n ≥ 2
agents and m ≥ 1 items with binary and additive valuations, it’s not possible to
have more than � α

� α−n+1
n � pairwise disjoint and complete EF1 allocations, where

α is the maximum number of goods valued by any agent, assuming α ≥ n.

Proof. For every agent ai ∈ N , let C(i) denote the set of items that are valued 1
by ai. Then, α is the maximum of |C(i)| over all agents ai. We assume that α ≥
n. Let ax be an agent for which |C(x)| = α. Let σ be a complete EF1 allocation.
As σ is EF1, |σ(ay)∩C(x)| ≤ |σ(ax)∩C(x)|+1 for all agents ay �= ax. Also, as σ
is complete,

∑n
i=1 |σ(ai) ∩ C(x)| = |C(x)|. Therefore, |C(x)| ≤ (n − 1)(|σ(ax) ∩

C(x)| + 1) + |σ(ax) ∩ C(x)|. That is, |σ(ax) ∩ C(x)| ≥ �(|C(x)| − n + 1)/n�.
Now, consider a collection of pairwise disjoint complete EF1 allocations, say
{σ1, ..., σp}. Due to pairwise disjointness, |σ1(ax) ∩ C(x)| + .... + |σp(ax) ∩ C(x)|
≤ |C(x)|. Also, for each 1 ≤ j ≤ p, we know that |σj(ax) ∩ C(x)| ≥ �(|C(x)| −
n+1)/n�. Therefore, p�(|C(x)|−n+1)/n� ≤ |C(x)|. So, as |C(x)| ≥ n, it follows
that p ≤ � α

� α−n+1
n �, as desired. ��

Lemma 2 (Counting EF1 Allocations for Identical Valuations). For
any instance of the assignment problem that has n ≥ 2 agents and m ≥ 1 items
with identical valuations, if m ≥ n − 1, then
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– The number of complete EF1 allocations is at least the number of permuta-
tions of [n].

– For every complete EF1 allocation Φ, the number of complete EF1 allocations
disjoint from Φ is at least the number of derangements of [n].

Proof. To obtain the said number of EF1 allocations, we start with an arbitrary
ordering on the n agents. All agents, one by one, pick an unallocated object that
they value the most, according to the specified ordering. This process continues
till there is any unallocated good available. We call the allocation obtained by
the above Round Robin Procedure as Φ. It is easy to verify that Φ is EF1.

We now claim that any permutation of the allocation Φ corresponds to a
complete EF1 allocation Φ�, disjoint from Φ. To this end, suppose there is an
agent ai, who received Φ�

i under Φ�, violates EF1 and envies the agent aj even
after removal of any good from the bundle of aj (=Φ�

j ). That is, ui(Φ�
i ) <

ui(Φ�
j \ {g})∀g ∈ Φ�

j . Since Φ� is a permutation of Φ, so Φ�
i and Φ�

j must be the
allocated bundles under Φ. Suppose they are allocated to the agents ap and aq

respectively. Then, up(Φ�
i ) < up(Φ�

j \{g})∀g ∈ Φ�
j as the valuations are identical

and ui and up are exactly the same functions. Therefore the agent ap violates
EF1 under the allocation Φ, which is a contradiction. This establishes that the
number of complete EF1 allocations us at least the number of permutations of
[n] and the number of allocations disjoint from Φ are exactly the permutations
that do not have any fixed point (which are exactly the number of derangements
of [n]). ��
Lemma 3 ((�) Counting Disjoint EQ1 Allocations for Identical Valu-
ations). For any instance of the assignment problem that has n ≥ 2 agents and
m ≥ 1 items with identical valuations, if m ≥ n − 1, then

– The number of complete EQ1 allocations is at least the number of permuta-
tions of [n].

– For every complete EQ1 allocation Φ, the number of complete EQ1 allocations
disjoint from Φ is at least the number of derangements of [n].

4 Computing Disjoint and Distinct Allocations

Lemma 4 (Existence of Two Complete and Distinct EF1 Allocations).
Every instance of the assignment problem that has n ≥ 2 agents and m ≥ 1
items with additive valuations admits two distinct allocations that are EF1 and
complete.

Proof. The proof proceeds by induction on m. If 1 ≤ m ≤ n, we are done by
simply taking any two distinct complete allocations that allocate at most 1 item
to each agent. Assume that the claim is true for 1 ≤ m ≤ p − 1, for some
p ≥ n + 1. Let’s argue that it’s true for m = p. Consider an instance with n
agents (say a1, . . . , an) and p goods.
Case 1. Suppose there exist two agents (say ai and aj) who have a common
most preferred item. Denote the most preferred good common to ai and aj by
g. Now consider the following runs of Round Robin algorithm:
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1. In Run 1, the agents are sorted such that ai gets the first turn and further,
ai chooses g in this turn.

2. In Run 2, the agents are sorted such that aj gets the first turn and further,
aj chooses g in this turn.

Clearly, the allocations returned by Run 1 and Run 2 are distinct and complete
EF1 allocations, as desired.
Case 2. Now, suppose that for any pair of agents, the set of their most preferred
items are disjoint. Let gi be (one of) the most preferred item(s) of ai. Note
that all gi’s are distinct because of the case we are in. Project the instance by
removing g1, . . . , gn. As p ≥ n + 1, at least one good remains. By the induction
hypothesis, there exist two distinct EF1 allocations for the projected instance.
Denote these allocations by Φ1 and Φ2. Now, obtain allocations Φ�

1 and Φ�
2 for

the original instance by taking the allocations Φ1 and Φ2 (respectively), and then
extending them by giving gi to ai for all i ∈ [n]. Clearly allocations Φ�

1 and φ�
2

are distinct (by the induction hypothesis). We now show that the allocation Φ�
1

is EF1. Consider agents ai and aj . Suppose their bundles are Φ�
1i = X ∪ {gi}

and Φ�
1j = Y ∪ {gj}. Since Φ1 is an EF1 allocation, we know that either there

exists g such that ui(Y \ {g}) ≤ ui(X) or ui(Y ) ≤ ui(X). In either case, since
ui(gi) ≥ ui(gj), we have that ai does not have envy towards aj (upto one good)
wrt the allocation Φ�. Similarly, aj does not envy ai (upto one good) wrt the
allocation φ�

2. A similar argument shows that Φ� is also EF1. ��
Lemma 5 (Existence of n Complete and Distinct EQ1 Allocations).
Every instance of the assignment problem that has n ≥ 2 agents and m ≥ 1
items with normalized monotone valuations admits n distinct allocations that
are EQ1 and complete.

Proof. We proceed by induction on the number of goods. Let a1, a2, . . . an be
the n agents. If 1 ≤ m ≤ n, then the allocations under which every agent gets
at most one good are all EQ1 allocations, and clearly there are at least n such
allocations. For instance, let us fix an object g1. We now describe n distinct
EQ1 allocations Φ1, Φ2, Φ3 . . . , Φn. In Φi, allocate the item g1 to agent ai, and
the remaining items arbitrarily among the remaining agents in such a way that
every agent gets at most one item. We remark here that if m = 1, then there
are exactly n such distinct EQ1 allocations.

Now we argue the case where m > n using induction on m. Assume that the
claim is true for 1 ≤ m ≤ p − 1, for some p ≥ n + 1. Now consider the case
when m = p. Then by induction hypothesis, there exist n distinct EQ1 (partial)
allocations Φ1, Φ2, Φ3 . . . , Φn that allocate the object {g1, g2, . . . , gp−1} among
the n agents. Consider the unallocated good gp under the above allocations. For
each Φi, allocate gp to the least happy agent a under Φi, resulting in a complete
allocation. Notice that the completion does not violate equitability upto one
good. Indeed, a is the least happy agent, so everyone else’s utility is at least as
much as that of a. So if g′

ps allocation to a makes any other agent unhappy, then
also, she regains equitability after the removal of at most one good, that is, gp

itself. Hence the completed allocations are EQ1. This proves the result. ��
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Now we define a matroid, which we use in the following result. For any set U
and a family F ⊆ 2U of subsets of U , we say that the pair (U ,F) is a matroid on
U if the following conditions hold: i) The empty set belongs to F . ii) For any set
A ∈ F , every subset of A belongs to F . iii) For any sets A,B ∈ F , if |A| > |B|,
then there exists an element u ∈ A \ B such that B ∪ {u} belongs to F .

Lemma 6 (Disjoint EF1 Allocations for Binary Valuations). The Dis-
joint Allocation problem is in P for binary and additive valuations.

Proof. For every 1 ≤ i ≤ n, let Mi denote the partition matroid on M whose
categories are M \Φ(ai) and Φ(ai), with capacities |M \Φ(ai)| and 0 respectively.
That is, Mi is the matroid on M whose family consists of all subsets of M \Φ(ai).
Note that an EF1 allocation σ is disjoint from the base allocation Φ if and only
if σ is feasible under the matroid constraints specified by M1, . . . ,Mn, i.e., for
every 1 ≤ i ≤ n, the bundle allotted to ai under σ belongs to the family of Mi.
As shown in [8] (Theorem 4.1, Sect. 4), a feasible EF1 allocation always exists
for the setting of partition matroids and binary additive valuations, and it can
be found in polynomial time. ��
Theorem 1 (Disjoint EF1 Allocations for General Valuations). The
Disjoint Allocation problem is NP-complete for general additive valuations.

Proof. Let I := (U,F , p) be an instance of Exact Cover by 3-Sets where,
U is a universe of 3p elements, F is a family of 3-sized subsets of U such that
|F| = t. The problem is to decide if there exist p sets in F , whose union is U .
We create the disjoint allocation instance as follows.

– We create t set agents {a1, a2, . . . at} corresponding to the sets in F , and one
special agent s.

– We introduce (t + 1) many identity items for each agent in {a1, a2, . . . at}.
Precisely, for each i ∈ t, we introduce the items {gj

i | j ∈ [t + 1]}.
– We introduce 3p universe items {g1, g2, . . . g3p} corresponding to the elements

in the universe.
– We also introduce (t − p) many pacifier items {q1, q2, . . . qt−p}.

A set agent ai values all its identity items {g1i , g2i , . . . gt+1
i } and all the paci-

fier items {q1, q2, . . . qt−p} at 2 each. She values the three universe items in its
corresponding set Si at 2

3 each. The special agent s values all the items at 0
each. We define one EF1 allocation Φ as follows.

Φ(a) =

{
{g1i , g2i , . . . gt+1

i }, if a = ai for some i ∈ [t]
{q1, q2, . . . qt−p} ∪ {g1, g2, . . . g3p} if a = s

Notice that Φ is indeed an EF1 allocation.

– The set agent ai does not envy any other set agent aj , as uai
(Φ(ai)) = 2(t+1)

and uai
(Φ(aj)) = 0

– The special agent s does not envy any ai, as us(Φ(s)) = 0 = us(Φ(ai)
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– The set agent ai do not envy the special agent s, as uai
(Φ(ai)) = 2(t+1) and

uai
(Φ(s)) = 2 + 2(t − p)

This completes the construction of the reduced instance. We defer the equiva-
lence argument to the Appendix 7. We demonstrate the reduction with the help
of an example below (Fig. 1). ��

Fig. 1. Consider an instance of Exact Cover by 3-Sets where U = {1, 2, . . . , 9} and
F = {S1, S2, . . . S6} where S1 = {1, 2, 3} , S2 = {4, 5, 6}, S3 = {7, 8, 9}, S4 = {2, 3, 4},
S5 = {3, 4, 5} and S6 = {3, 5, 9}. Here {S1, S2, S3} forms an exact cover of U . In the
reduced instance, we have 6 set agents and 7 set items corresponding to each set agent.
Each set agent ai for i ∈ [1, 6] values items aj

i for j ∈ [1, 7] at 2 each and other set items
at 0 each. There are 3 pacifier items q1, q2 and q3 are valued at 2 by each set agent.
There are 9 universe items. Each set agent values the universe items corresponding
to her set at 2

3
each and all other universe items at 0. The special agent values all

the items at 0. The ovals denote the bundles of all the agents corresponding to the
allocation Φ (LHS) and Φ′ (RHS) from top to bottom respectively.

We now discuss a restricted setting of two agents, and the aim is to find
whether there exists symmetric fair allocation.

5 Symmetric Allocations

Lemma 7 (Symmetric EF1 for Binary Valuations). For n = 2 and addi-
tive 0/1 valuations, there always exists a symmetric complete EF1 allocation and
can be found in polynomial time.

Proof. Let a1 and a2 denote the two agents. Let X denote the set of items that
are valued 1 by a1 and 0 by a2. Let Y denote the set of items that are valued
1 by a2 and 0 by a1. Let Z denote the set of items that are valued 1 by both
a1 and a2. Consider the following complete allocation Φ: Allocate any �|X|/2�
items of X to a1, and the remaining �|X|/2 items of X to a2. Allocate any
�|Z|/2 items of Z to a1, and the remaining �|Z|/2� items of Z to a2. Allocate
any �|Y |/2� items of Y to a1, and the remaining �|Y |/2 items of Y to a2. Here,

– a1 values her bundle at u11 := �|X|/2� + �|Z|/2
– a1 values a′

2s bundle at u12 := �|X|/2 + �|Z|/2�
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– a2 values her bundle at u22 := �|Y |/2 + �|Z|/2�
– a2 values a′

1s bundle at u21 := �|Y |/2� + �|Z|/2
Note that u11 and u12 differ by at most 1. Also, u22 and u21 differ by at most
1. So when the bundles are swapped, then also, the resulting allocation respects
EF1. Hence, Φ is a symmetric EF1 allocation. ��

Observe that for n = 2, m = 3, and additive valuations, there always exist
a symmetric complete EF1 allocation. To see this, let a1 and a2 denote the
two agents. Let a(.) and b(.) denote their valuation functions respectively. Let
{g1, g2, g3} denote the three items. WLOG, assume a(g1) ≥ a(g2) ≥ a(g3). If
b(g1) ≥ b(g2) or b(g1) ≥ b(g3), then the allocation where a1 gets g1 and a2

gets {g2, g3} is the required symmetric EF1 allocation. On the other hand, if
b(g1) < b(g2) and b(g1) < b(g3), then, the allocation where a1 gets g2 and a2

gets {g1, g3} is the required allocation.
In contrast to the fact that symmetric EF1 allocations always exists for binary

valuations, symmetric EQ1 allocations may not exist even with small number of
goods in the binary setting.

Lemma 8 ((�) Symmetric EQ1 for Binary Valuations (non-existence)).
For n = 2, m = 4 and additive 0/1 valuations, there are instances where no com-
plete EQ1 allocation is symmetric.

Whenever an EQ1 allocation exists, it can be found in polynomial time, as
suggested by the following lemma. The proof is based on a case analysis.

Lemma 9 (Symmetric EQ1 for Binary Valuations). For n = 2 addi-
tive 0/1 valuations, a symmetric EQ1 allocation, if one exists, can be found in
polynomial time.

Proof (Idea). Consider two agents a1 and a2 and a set of goods {g1.g2, . . . gm}.
Let X denote the set of items valued at 1 by a1 and 0 by a2. Let Y denote
the set of items valued at 0 by a1 and 1 by a2. Let Z be the set of items
valued at 1 by both a1 and a2. We argue the correctness of the claim by a case
analysis depending on the cardinalities of the sets X,Y and Z. We will show that
whenever |X| ≤ |Y | + 2, a symmetric EQ1 allocation always exists, irrespective
of the cardinality of Z. When |X| ≥ |Y | + 3, we argue, by contradiction that
such an allocation can not exist. For details of the proof, we defer the reader to
the Appendix 7. ��

We now turn to the case of additive valuations for EF1. Let a1 and a2 be the
two agents. Suppose that each of them orders the items in descending order of
their valuations. We say that a pair of items forms an inversion if their relative
order in a′

1s ordering is different from that in a′
2s ordering. Depending on the

number of inversion in the input instance, we now identify the scenarios where
a symmetric EF1 allocation always exists.

Lemma 10 ((�) Symmetric EF1 for Additive Valuations). If there is
atmost 1 inversion, then there always exists a symmetric complete EF1 allocation
and can be found in polynomial time.
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Lemma 11 ((�) Symmetric EF1 for Additive Valuations). If there are
even number of goods and

(
m
2

) − 1 inversions, then there always exists a sym-
metric EF1 allocation and can be found in polynomial time.

Beyond the special cases above, we leave the complexity for finding symmetric
EF1 allocations open. However, we show that finding symmetric EQ1 allocations
is intractable for additive valuations. We note that the hard instances generated
by our reduction do not have normalized utilities, and we leave open the issue
of whether the problem is hard for this special case as well.

Theorem 2 (Symmetric EQ1 for Additive Valuations). The problem
of determining whether a symmetric EQ1 allocation exists is NP-complete for
additive valuations.

Proof. Given an allocation Φ, we can check whether it is EQ1 in polynomial time
and we can again swap the bundles and check whether the allocation is EQ1.
Thus, this problem belongs to the class NP.

For proving that it is NP-hard, we use a reduction from the 2-partition prob-
lem. Consider a typical instance of two partition problem where S is a set of
positive integers and we need to find whether there exists a subset A ⊂ S such
that

∑
x∈A x =

∑
x∈S\A x.

We create an instance of symmetric EQ1 allocation as follows: Create two
agents a1 and a2. Let S = {x1, x2, . . . , xm} for some m ∈ N, let

∑
x∈S x = s.

We create set goods g1, g2, . . . , gm such that each gi is valued at xi by both a1

and a2. Create two dummy goods d1 and d2 such that both of them are valued
at a1 by 0 and at s + 1 by a2. We show that S has a 2-partition if and only if
this instance has a disjoint EQ1 allocation.

Forward Direction. Suppose there exists a subset A of S such that
∑

x∈A x =∑
x∈S\A x = s/2. Consider the allocation Φ where

Φ(a) =

{
{gi such that xi ∈ A} ∪ {d1} if a = a1

{gi such that xi ∈ S \ A} ∪ {d2} if a = a2

In this allocation a1 values her bundle at s/2 and a2 values her bundle at
3s/2+1. After removing d2 from the bundle of a2, she values it at s/2. Therefore,
this allocation is EQ1. After swapping the bundles, a1 values her bundle at s/2
and a2 values her bundle at 3s/2 + 1. After removing d2 from the bundle of
a2, she values it at s/2. Therefore, again the allocation is EQ1. Thus Φ is a
symmetric EQ1 allocation. This completes the proof of the forward direction.

Reverse Direction. Suppose we have a YES instance of disjoint EQ1 allocation.
Let this allocation be Φ.

Suppose Φ allots both the dummy goods to a2, then even after removing one
good from the bundle of a2, she will value her bundle at value at least s + 1.
Agent a1 cannot get a bundle of value s + 1 (according to a1) even if she gets
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all the set goods. This contradicts the fact that Φ is an EQ1 allocation. Now if
Φ allocates both the dummy goods to a1, after swapping the bundles both the
goods will go to a2. So this allocation will not be an EQ1 allocation as shown
above. This contradicts the fact that Φ is a symmetric EQ1 allocation.

Therefore Φ must allocate one dummy good to a1 and one dummy good to
a2. Without loss of generality we assume that Φ allocates d1 to a1 and d2 to a2.

Let the set of all set goods allocated to a1 by the allocation Φ be denoted by
A and the set of all set goods allocated to a2 by the allocation Φ be denoted by
B. Consider A′ = {xi} such that gi ∈ A for i ∈ [1,m] and B′ = {xi} such that
gi ∈ B for i ∈ [1,m]. Since each set good is allocated to exactly one agent, it
can be seen that A′ and B′ is a partition of S.

Observe that ∑

xi∈A′
xi =

∑

gi∈A

Φa1(gi) =
∑

gi∈A

Φa2(gi)

and ∑

xi∈B′
xi =

∑

gi∈B

Φa2(gi) =
∑

gi∈B

Φa1(gi).

Therefore to show that we have a YES instance of 2-partition, it is sufficient to
show that

∑

gi∈A

Φa1(gi) =
∑

gi∈A

Φa2(gi) =
∑

gi∈B

Φa2(gi) =
∑

gi∈B

Φa1(gi) (1)

Since in Φ the good d2 is assigned to a2, she will value her bundle at a value
of at least s + 1. Even if a1 gets all the set goods (i.e. A = S) she will value her
bundle at a value s. Since we know that Φ is EQ1, we can now say that value of
a1’s bundle according to a1 is greater than or equal to the value of a2’s bundle
after removing d2 according to a2. Thus value of goods in A according to a1 is
greater than or equal to the value of goods in B according to a2. Thus we have
the following:

∑

gi∈A

Φa2(gi) =
∑

gi∈A

Φa1(gi) ≥
∑

gi∈B

Φa2(gi) =
∑

gi∈B

Φa1(gi) (2)

Now the allocation obtained after swapping the bundles in Φ allots d1 to a2.
Thus she will value her bundle at a value of at least s+1. Even if a1 gets all the
set goods (i.e. B = S) she will value her bundle at a value s. Since we know that
Φ is EQ1, we can now say that value of a1’s bundle according to a1 is greater
than or equal to the value of a2’s bundle after removing d2 according to a2. Thus
value of goods in B according to a1 is greater than or equal to the value of goods
in A according to a2. Thus we have the following:

∑

gi∈B

Φa2(gi) =
∑

gi∈B

Φa1(gi) ≥
∑

gi∈A

Φa2(gi) =
∑

gi∈A

Φa1(gi) (3)

Using 2 and 3, we get that 1 is satisfied and thus we have a YES instance of
2-partition. This completes the proof of the reverse direction.
We refer Fig. 2 in the appendix for an example. ��
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6 Conclusion and Future Directions

While we show that for any number of agents, there are at least 2 distinct EF1
allocations, we do not claim the result to be tight, and it would be interesting
to get the upper-bounds in this context. The complexity of disjoint EQ1 alloca-
tions remains open. We settle the symmetric EQ1 question both in binary and
additive setting, however complexity of symmetric EF1 is open. It would also be
interesting to extend the scope of symmetric allocations to more than 2 agents.

Acknowledgement. The authors thank Neeldhara Misra for useful discussions.

7 Appendix

Proof (of Lemma 3). The proof idea is similar to that of Lemma 2. We start
by an arbitrary EQ1 allocation obtained by the following procedure. The least
happy agent comes first and picks an object she values the most. This procedure
is repeated until all the objects are allocated. It is easy to verify that the final
allocation Φ is indeed complete and EQ1. Now any permutation of Φ is also EQ1
by the similar argument as in Lemma 2 and this proves the result. ��
Proof (of Theorem 1). We argue here the equivalence of the reduction.

Forward Direction. Suppose I is a yes instance. Let S = {S1, S2, . . . Sp} be the
exact cover. We construct a disjoint allocation Φ′ as follows.

Φ′(a) =

⎧
⎪⎨

⎪⎩

Si ∪ {gi
1, g

i
2, . . . g

i
t} \ {ai

i} if a = ai such that i ≤ p

qi−p ∪ {gi
1, g

i
2, . . . g

i
t} \ {gi

i} if a = ai such that i > p

{gi
i , g

t+1
i ∀ i ∈ [t]} if a = s

Notice that Φ′ is disjoint from Φ. To see Φ′ is indeed EF1, notice that

– The set agent {ai : i ≤ p} does not envy any other set agent {aj : j ≤ p}, as
uai

(Φ′(ai)) = 2 = uai
(Φ′(aj))

– The set agent {ai : i ≤ p} envies {aj : j > p} upto one good, as uai
(Φ′(ai)) =

2 but uai
(Φ′(aj)) = 4

– The special agent s does not envy any ai, as us(Φ′(s)) = 0 = us(Φ′(ai)
– ai envies s up to one good, as uai

(Φ′(ai)) = 2 = uai
(Φ′(s) \ {gt+1

i }) ≤
uai

(Φ′(s)) = 4

Reverse Direction. Suppose Φ′ is an EF1 allocation, disjoint from Φ. Consider
any set agent ai. Under Φ′, ai can not get any of its t + 1 identity items. This
implies that these t + 1 items must be allocated among the remaining t agents.
By pigeonholing, one of the remaining agents, say x, must get at least two of
the identity items of ai. Then uai

(Φ′(x)) ≥ 4. As Φ′ is EF1, it must happen
that uai

(Φ′(ai)) ≥ 2. The only way this can happen is either ai gets a pacifier
item qi or gets all the items in its corresponding set Si. Since this is true for
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every set agent {a1, a2, . . . at}, and there are only t − p of the pacifier items,
therefore, p of the set agents, say {ai1 , ai2 , . . . aip

}, must get their corresponding
sets {Si1 , Si2 , . . . Sip

}. Since |U | = 3p, therefore {Si1 , Si2 , . . . Sip
} must form an

exact cover of U . Hence, I is a yes instance.
��

Proof (of Lemma 8). Let a1 and a2 be two agents. Let a′
1s valuation for the

four goods {g1, g2, g3, g4} be given by the vector [1, 0, 0, 0] and a′
2s valuation

be [1, 1, 1, 1]. Notice that under any EQ1 allocation, a2 can not receive all the
four goods. Also, if a1 gets all the four goods under an allocation Φ, then the
allocation Φ� obtained by swapping the bundles is not EQ1, therefore, Φ can
not be symmetric. So both the agents must get at least one good under any
symmetric EQ1 allocation. Now consider the following cases:

– Suppose under the EQ1 allocation Φ, a1 gets g1. Then she must also get one
of the three remaining goods else, u(a2) = 3 which will violate EQ1. Say, a1

gets {g1, g2}, WLOG, and a2 gets {g3, g4}. But notice that a1 value {g3, g4}
at 0 and hence will violate EQ1 if the bundles are swapped. Therefore Φ is
not symmetric.
Also, if a1 happened to receive {g1, g2, g3} under Φ, then although, Φ remains
EQ1 as both the agents value their respective bundles at one, but if the
bundles are swapped, then a1 derives 0 value, while a2 derives the value of 3,
therefore violating EQ1.

– Suppose under the EQ1 allocation Φ, a1 does not get g1. Then she must get all
the remaining 3 goods in order for Φ to be EQ1. But then under the allocation
Φ� obtained by swapping the bundles, uΦ�(a1) = 1 and uΦ�(a2) = 3, violating
EQ1. Therefore, Φ is not symmetric.

This concludes the argument. ��
Proof (of Lemma 9). Consider two agents a1 and a2 and a set of goods
{g1.g2, . . . gm}. Let X denote the set of items valued at 1 by a1 and 0 by a2. Let
Y denote the set of items valued at 0 by a1 and 1 by a2. Let Z be the set of
items valued at 1 by both a1 and a2. We argue the correctness of the claim by a
case analysis depending on the cardinalities of the sets X,Y and Z. Notice that
without loss of generality we can assume that |X| ≥ |Y |. (If that is not the case,
then we can interchange the agents a1 and a2 so that we now have |X| > |Y |.)

Also let z′ = |Z|
2 . Let Z1 denote a subset of Z of size �z′ and Z2 denote

Z \ Z1. Note that the size of Z2 will be �z′�.
– |X| ≤ |Y |+1. We claim that in this case , a symmetric EQ1 allocation always

exist, and can be computed as follows:
Consider the following allocation Φ:

Φ(a) =

{
X ∪ Z1 a = a1,

Y ∪ Z2 a = a2,
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If |Z| is even, the agent a1 values her bundle at |X| + |Z|
2 and the agent a2

values her bundle at |Y | + |Z|
2 . Since |X| ≤ |Y | + 1, the value of the bundle

of a1 (according to a1) is at most 1 more than the value of the bundle of a2

(according to a2). Therefore, the value of the bundle of a1 after removing one
good is at most as much as the bundle of a2. Thus this allocation is EQ1.
For showing that it is symmetric, we need to show that the allocation obtained
after swapping the bundles of agents a1 and a2 is also EQ1.
In the new allocation, both a1 and a2 value their bundles at |Z|

2 each. Thus
it is also EQ1.
Now consider the case where |Z| is odd. Thus |Z1| = |Z2| − 1. The agent a1

will value her bundle at |X| + |Z1| and the agent a2 values her bundle at
|Y | + |Z2|. If |X| = |Y |, then the valuation of agent a2 for her bundle will be
one more than the valuation of agent a1 for her bundle. But after removing
one item from the bundle of a2, both agents will have equal valuation for
their respective bundle (according to themselves). If |X| = |Y |+1, then both
the agents will have an equal valuation for their bundle. Hence this is an EQ1
allocation.
After swapping the bundles, a1 will value her bundle at |Z2| and a2 will value
her bundle at |Z1|. Since we have |Z1| = |Z2| − 1, the value assigned by a1

to her bundle is one more than the value assigned by a2 to her bundle. Thus,
after removing one good from the bundle of a2, both agents will have same
value for their bundle. Thus it is an EQ1 allocation even after swapping the
bundles.
So we have shown that Φ is a symmetric EQ1 allocation.

– |X| = |Y |+2. We claim that in this case, a symmetric EQ1 allocation always
exists, and can be computed as follows: If |Z| is even, consider the following
allocation Φ:

Φ(a) =

{
{|Y | + 1 many goods from X} ∪ Z1 a = a1,

Y ∪ Z2 ∪ {1 good from X} a = a2,

The value assigned by a1 to her bundle will be |Y | + 1 + |Z1| and the value
assigned by a2 to her bundle will be |Y |+|Z2|. Since |Z1| = |Z2| as |Z| is even,
the value assigned by a1 to her bundle is one more than the value assigned
by a2 to her bundle. Therefore, after removing one good from the bundle of
a1, both the agents assign the same value to their respective bundles. Thus
Φ is an EQ1 allocation.
After swapping the bundles of the two agents, the value assigned by a1 to her
bundle is |Z2| + 1 and the value assigned by a2 to her bundle is |Z1|. Thus
after removing one good from the bundle of a1, both the agents assign the
same value to their respective bundles. Thus we get an EQ1 allocation even
after swapping the bundles.
Hence we have shown that Φ is a symmetric EQ1 allocation.
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If |Z| is odd, consider the following allocation Φ:

Φ(a) =

{
X ∪ Z1 a = a1,

Y ∪ Z2 a = a2,

Since |Z| is odd, we have |Z2| = |Z1| − 1. Now the value assigned by a1 to
her bundle is |X| + |Z1| which is equal to |Y | + |Z2| + 1. The value assigned
by a2 to her bundle will be |Y | + |Z2|. So, after removing one good from the
bundle of a1, both the agents will assign the same value to their respective
bundles. Thus the allocation Φ is EQ1.
After exchanging the bundles, the agent a1 will value her bundle at |Z2| and
the agent a2 will value her bundle at |Z1|. Thus, after removing one good
from the bundle of a1, both the agents will assign the same value to their
respective bundles. Thus the allocation obtained after the exchange is also
EQ1.
Hence the allocation Φ is a symmetric EQ1 allocations.

– |X| ≥ |Y | + 3. We claim that in this case, a symmetric EQ1 allocation does
not exist, as argued below. For the sake of contradiction, assume that there
exists a symmetric EQ1 allocation, say Φ. Let x, y and z denote the number
of items from X, Y and Z respectively allocated to a1 under Φ. Note that
under Φ,

• a1 values her own bundle at x+z.
• a2 values her own bundle at |Y | − y + |Z| − z.

Since Φ is EQ1, we have x + z ≤ (|Y | − y + |Z| − z
)

+ 1.
That is,

x + y + 2z − |Z| ≤ |Y | + 1 (4)

Also, under the swapped allocation, say Φ�,
• a1 values her own bundle at |X| − x + |Z| − z.
• a2 values her own bundle at y+z.

Since Φ� is EQ1, we have |X| − x + |Z| − z ≤ (
y + z

)
+ 1.

That is,
x + y + 2z − |Z| ≥ |X| − 1 (5)

Using inequalities (1) and (2), we get |X| ≤ |Y | + 2, a contradiction.

Proof (of Lemma 10). Notice that for any pair of items X and Y that do not
appear consecutively in a1’s valuation, the relative order of X and Y is the same
in a1’s and a2’s valuations. This is true because there’s only one inversion.

a1 : gm ≥ gm−1 ≥ gm−2 ≥ . . . ≥ g3 ≥ g2 ≥ g1
a2 : any of the (m − 1) valuations that have 1 inversion

The following is a symmetric EF1 allocation:
a1 gets gm, gm−3, gm−4, gm−7, gm−8, . . .
a2 gets gm−1, gm−2, gm−5, gm−6, gm−9, . . .

This is because in a2’s (and also a1’s) valuation,
- gm ≥ gm−2, gm−3 ≥ gm−5, gm−4 ≥ gm−6, gm−7 ≥ gm−9, . . . and
- gm−1 ≥ gm−3, gm−2 ≥ gm−4, gm−5 ≥ gm−7, gm−6 ≥ gm−8, . . . so on. ��
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Proof (of Lemma 11). Notice that for any pair of items X and Y that do not
appear consecutively in a1’s valuation, the relative orders of X and Y are different
in a1’s and a2’s valuations - this is true because there are

(
m
2

) − 1 inversions.
a1 : gm ≥ gm−1 ≥ gm−2 ≥ . . . ≥ g3 ≥ g2 ≥ g1

a2 : any of the (m − 1) valuations that have
(
m
2

) − 1 inversions
The following is a symmetric EF1 allocation:

a1 gets gm, gm−3, gm−4, gm−7, gm−8, . . .
a2 gets gm−1, gm−2, gm−5, gm−6, gm−9, . . .

This is because

– In a1’s valuation,
- gm ≥ gm−2, gm−3 ≥ gm−5, gm−4 ≥ gm−6, gm−7 ≥ gm−9, . . . and
- gm−1 ≥ gm−3, gm−2 ≥ gm−4, gm−5 ≥ gm−7, gm−6 ≥ gm−8, . . .

– In a2’s valuation,
- gm−2 ≥ gm, gm−5 ≥ gm−3, gm−6 ≥ gm−4, gm−9 ≥ gm−7, . . .and
-gm−3 ≥ gm−1, gm−4 ≥ gm−2, gm−7 ≥ gm−5, gm−8 ≥ gm−6, . . .

��
Proof. (Example for Theorem 2) ��

Fig. 2. Consider an instance of 2-partition with S = {1, 2, 3, 4}. We create set goods
g1, g2, g3 and g4 such that both a1 and a2 value them at 1, 2, 3 and 4 respectively. These
are shown by the dark pink circles labelled 1, 2, 3 and 4 respectively. We create two
dummy goods d1 and d2 which are valued at 11 each by agent a1 and at 0 each by
agent a2. These are denoted by green circles labelled 11. It can be verified that both
the allocations shown (the allocation on the right is obtained by swapping the one on
the left) are disjoint and EQ1. (Color figure online)
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1 Introduction

In the area of identification/location problems, one is given a discrete structure
(such as a graph) and one wishes to identify its elements, that is, to be able to
pairwise distinguish them from each other. This can be done by constructing, for
example, dominating sets [15,22] or colorings [2,9,13] of the graph. The identifi-
cation process may be based on distances [9,21] or on neighborhoods [2,22], and
we may wish to distinguish all vertex pairs [15,21,22], only adjacent ones [13],
or those with the same color [2,9]. This vast research area has many applica-
tions both in practical settings like fault-diagnosis in networks [15], biological
testing [18], machine learning [11] and theoretical settings such as game analy-
sis [12], isomorphism testing [4] or logical definability [16], to name a few.

Taking cues from the above research topics, recently, two variants of graph
coloring were introduced, namely, locating coloring [9] and neighbor-locating
coloring [2,5]. While the former concept has been well-studied since 2002 [5–
10,19,20,23–25]), our focus of study is the latter, which was introduced in 2014
in [5] under the name of adjacency locating coloring, renamed in 2020 in [2] and
studied in a few papers since then [1,3,14,17].

Throughout this article, we will use the standard terminologies and notations
used in “Introduction to Graph Theory” by West [26].

Given a graph G, a (proper) k-coloring is a function f : V (G) → C, where C
is a set of k colors, such that f(u) �= f(v) whenever u is adjacent to v. The value
f(v) is called the color of v. The chromatic number of G, denoted by χ(G), is
the minimum k for which G admits a k-coloring.

Given a k-coloring f of G, its ith color class is the collection Si of vertices that
have received the color i. The distance between a vertex x and a set S of vertices
is given by d(x, S) = min{d(x, y) : y ∈ S}, where d(x, y) is the number of edges in
a shortest path connecting x and y. Two vertices x and y are metric-distinguished
with respect to f if either f(x) �= f(y) or d(x, Si) �= d(y, Si) for some color class
Si. A k-coloring f of G is a locating k-coloring if any two distinct vertices are
metric-distinguished with respect to f . The locating chromatic number of G,
denoted by χL(G), is the minimum k for which G admits a locating k-coloring.

Given a k-coloring f of G, suppose that a neighbor y of a vertex x belongs
to the color class Si. In such a scenario, we say that i is a color-neighbor of x
(with respect to f). The set of all color-neighbors of x is denoted by Nf (x). Two
vertices x and y are neighbor-distinguished with respect to f if either f(x) �= f(y)
or Nf (x) �= Nf (y). A k-coloring f is neighbor-locating k-coloring if each pair
of distinct vertices are neighbor-distinguished. The neighbor-locating chromatic
number of G, denoted by χNL(G), is the minimum k for which G admits a
neighbor-locating k-coloring.

Observe that a neighbor-locating coloring is, in particular, a locating coloring.
Thus, we have the following relation among the three parameters [2]:

χ(G) ≤ χL(G) ≤ χNL(G).

Note that for complete graphs, all three parameters have the same value, that
is, equality holds in the above relation. Nevertheless, the difference between the
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pairs of values of parameters χ, χNL and χL, χNL, respectively, can be arbitrarily
large. Moreover, it was proved that for any pair p, q of integers with 3 ≤ p ≤ q,
there exists a connected graph G1 with χ(G1) = p and χNL(G1) = q [2] and
a connected graph G2 with χL(G2) = p and χNL(G2) = q [17]. The latter
of the two results positively settled a conjecture posed in [2]. We strengthen
these results by showing that for any three integers p, q, r with 2 ≤ p ≤ q ≤ r,
there exists a connected graph Gp,q,r with χ(Gp,q,r) = p, χL(Gp,q,r) = q and
χNL(Gp,q,r) = r, except when 2 = p = q < r.

One fundamental difference between coloring and locating coloring (resp.,
neighbor-locating coloring) is that the restriction of a coloring of G to an
(induced) subgraph H is necessarily a coloring, whereas the analogous property
is not true for locating coloring (resp., neighbor-locating coloring). Interestingly,
we show that the locating chromatic number (resp., neighbor-locating chromatic
number) of an induced subgraph H of G can be arbitrarily larger than that of G.

Alcon et al. [2] showed that the number n of vertices of G is bounded above
by k(2k−1 − 1), where χNL(G) = k and G has no isolated vertices, and this
bound is tight. This exponential bound is reduced to a polynomial one when
G has maximum degree Δ, indeed it was further shown in [2] that the upper-
bound n ≤ k

∑Δ
j=1

(
k−1

j

)
holds (for graphs with no isolated vertices and when

Δ ≤ k − 1). It was left open whether this bound is tight. The cycle rank c of
a graph G, denoted by c(G), is defined as c(G) = |E(G)| − n(G) + 1. Alcon
et al. [3] gave the upper bound n ≤ 1

2 (k3 + k2 − 2k) + 2(c − 1) for graphs of
order n, neighbor-locating chromatic number k and cycle rank c. Further, they
also obtained tight upper bounds on the order of trees and unicyclic graphs in
terms of the neighbor-locating chromatic number [3], where a unicyclic graph is
a connected graph having exactly one cycle.

As a connected graph with cycle rank c and order n has n+c−1 edges and a
graph of order n and maximum degree Δ has at most Δ

2 n edges, the two latter
bounds can be seen as two approaches for studying the neighbor-locating coloring
for sparse graphs. We generalize this approach by studying graphs with given
average degree, or in other words, graphs of order n having at most an+ b edges
for some constants a, b (such graphs have average degree 2a + 2b/n). For such

graphs, we prove the upper bound n ≤ 2b+ k
2a∑

i=1

(2a+1− i)
(
k−1

i

)
. Furthermore,

we show that this bound is asymptotically tight, by a construction of graphs
with an + b edges (where 2a is any positive integer and 2b any integer) and
neighbor-locating chromatic number Θ(k), whose order is Θ(k2a+1). Moreover,
when b = 0, the graphs can be taken to have maximum degree 2a. This implies
that our bound and the one from [2] are roughly tight.

In Sect. 2, we study the connected graphs with prescribed values of chro-
matic number, locating chromatic number and neighbor-locating chromatic num-
ber. We also study the relation between the locating chromatic number (resp.,
neighbor-locating chromatic number) of a graph and its induced subgraphs.
Finally, in Sect. 3 we study the density of graphs having bounded neighbor-
locating chromatic number.
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2 Gaps Among χ(G), χL(G) and χNL(G)

The first result we would like to prove involves three different parameters,
namely, the chromatic number, the locating chromatic number, and the neighbor-
locating chromatic number.

Theorem 1. For all 2 ≤ p ≤ q ≤ r, except when p = q = 2 and r > 2, there
exists a connected graph Gp,q,r satisfying χ(Gp,q,r) = p, χL(Gp,q,r) = q, and
χNL(Gp,q,r) = r.

Proof. First of all, let us assume that p = q = r. In this case, for Gp,q,r = Kp, it
is trivial to note that χ(Gp,q,r) = χL(Gp,q,r) = χNL(Gp,q,r) = p. This completes
the case when p = q = r.

Second of all, let us handle the case when p < q = r. If 2 = p < q = r, then
take Gp,q,r = K1,q−1. Therefore, we have χ(Gp,q,r) = 2 as it is a bipartite graph,
and it is known that χL(Gp,q,r) = χNL(Gp,q,r) = q [2,9].

If 3 ≤ p < q = r, then we construct Gp,q,r as follows: start with a complete
graph Kp, on vertices v0, v1, · · · , vp−1, take (q−1) new vertices u1, u2, · · · , uq−1,
and make them adjacent to v0. It is trivial to note that χ(Gp,q,r) = p in this case.
Moreover, note that we need to assign q distinct colors to v0, u1, u2, · · · , uq−1

under any locating or neighbor-locating coloring. On the other hand, f(vi) = i
and f(uj) = j is a valid locating q-coloring as well as neighbor locating q-coloring
of Gp,q,r. Thus we are done with the cases when p < q = r.

Thirdly, we are going to consider the case when p = q < r. If 3 = p = q < r,
then let Gp,q,r = Cn where Cn is an odd cycle of suitable length, that is, a length
which will imply χNL(Cn) = r. It is known that such a cycle exists [1,5]. As we
know that χ(Gp,q,r) = 3, χL(Gp,q,r) = 3 [9], and χNL(Gp,q,r) = r [1,5], we are
done.

If 4 ≤ p = q < r, then we construct Gp,q,r as follows: start with a com-
plete graph Kp on vertices v0, v1, · · · , vp−1, and an odd cycle Cn on vertices
u0, u1, · · · , un−1, and identify the vertices v0 and u0. Moreover, we say that the
length of the odd cycle Cn is a suitable length, that is, it is of a length which
ensures χNL(Cn) = r and under any neighbor-locating r-coloring of Cn, every
color is used at least twice. It is known that such a cycle exists [1,5]. Notice that
χ(Gp,q,r) = p and χL(Gp,q,r) = q. On the other hand, as the neighborhood of
the vertices of the cycle Cn (subgraph of Gp,q,r) doesnot change if we consider
it as an induced subgraph except for the vertex v0 = u0. Thus, we will need at
least r colors to color Cn while it is contained inside Gp,q,r as a subgraph. Hence
χNL(Gp,q,r) = r. Thus, we are done in this case also.

Finally, we are into the case when p < q < r. If p = 2, q = 3 and r > 3, then
let Gp,q,r = Pn where Pn is a path of suitable length, that is, a length which
ensures χNL(Gp,q,r) = r. It is known that such a path exists [3]. As we know
that χ(Gp,q,r) = 2, χ(Gp,q,r) = 3 [9] and χNL(Gp,q,r) = r [1,5]. If p = 2 and
3 < q < r, refer [17] for this case.

If 3 = p < q < r, then we start with an odd cycle Cn on vertices
v0, v1, · · · , vn−1 of a suitable length, where suitable means, a length that ensures
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χNL(Cn) = r and under any neighbor-locating r-coloring of Cn, every vertex
has two distinct color-neighbors. It is known that such a cycle exists [1,5]. Take
q − 1 new vertices u1, u2, · · · , uq−1 and make all of them adjacent to v0. This
so obtained graph is Gp,q,r. It is trivial to note that χ(Gp,q,r) = 3 in this case.
Note that we need to assign q distinct colors to v0, u1, u2, · · · , uq−1 under any
locating or neighbor-locating coloring. One can show in a similar way like above
that χL(Gp,q,r) = q and χNL(Gp,q,r) = r.

If 4 ≤ p < q < r, then we start with a path Pn of a suitable length, that is,
it is of a length which ensures χNL(Pn) = r and under any neighbor-locating
r-coloring of Pn, every color is used at least twice. It is known that such a
path exists [1,5]. Let Pn = u0u1 · · · un−1. Now let us take a complete graph
on p vertices v0, v1, · · · , vp−1. Identify the two graphs at u0 and v0 to obtain
a new graph. Furthermore, take (q − 2) independent vertices w1, w2, · · · , wq−2

and make them adjacent to un−2. This so obtained graph is Gp,q,r. One can
show in a similar way like above that we have χ(Gp,q,r) = p, χL(Gp,q,r) = q, and
χNL(Gp,q,r) = r. ��

Furthermore, we show that, unlike the case of chromatic number, an induced
subgraph can have an arbitrarily higher locating chromatic number (resp.,
neighbor-locating chromatic number) than that of the graph.

Theorem 2. For every k ≥ 0, there exists a graph Gk having an induced sub-
graph Hk such that χL(Hk) − χL(Gk) = k and χNL(Hk) − χNL(Gk) = k.

Proof. The graph Gk is constructed as follows. We start with 2k independent
vertices a1, a2, · · · , a2k and k disjoint edges b1b

′
1, b2b

′
2, · · · , bkb′

k. After that we
make all the above mentioned vertices adjacent to a special vertex v to obtain
our graph Gk. Notice that v and the ais must all receive distinct colors under any
locating coloring or neighbor-locating coloring. On the other hand, the coloring
f given by f(v) = 0, f(ai) = i, f(bi) = 2i − 1, and f(b′

i) = 2i is indeed a
locating coloring as well as a neighbor-locating coloring of Gk. Hence we have
χL(Gk) = χNL(Gk) = (2k + 1).

Now take Hk as the subgraph induced by v, ais and bis. It is the graph K1,3k,
and we know that all vertices must get distinct colors under any locating coloring
or neighbor-locating coloring. Hence we have χL(Hk) = χNL(Hk) = (3k + 1).

This completes the proof. ��

3 Bounds and Constructions for Sparse Graphs

In this section, we study the density of graphs having bounded neighbor-locating
chromatic number.
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3.1 Bounds

The first among those results provides an upper bound on the number of vertices
of a graph in terms of its neighbor-locating chromatic number. This, in particular
shows that the number of vertices of a graph G is bounded above by a polynomial
function of χNL(G).

Theorem 3. Let G be a connected graph on n vertices and m edges such that
m ≤ an + b, where 2a is a positive integer and 2b is an integer. If χNL(G) = k,
then

n ≤ 2b + k
2a∑

i=1

(2a + 1 − i)
(

k − 1
i

)

.

In particular, any graph whose order attains the upper bound must be of maxi-
mum degree 2a + 1 and with exactly k

(
k−1

i

)
number of vertices of degree i.

Proof. Let Di and di denote the set and the number of vertices in G having
degree equal to i, respectively, and let D+

i and d+i denote the set and the number
of vertices in G having degree at least i, for all i ≥ 1. Using the handshaking
lemma, we know that

∑

v∈V (G)

deg(v) = 2|E(G)| = 2m ≤ 2(an + b).

Notice that, as G is connected, and hence does not have any vertex of degree 0,
it is possible to write

∑

v∈V (G)

deg(v) =
2a∑

i=1

i · di +
∑

v∈D+
2a+1

deg(v).

Moreover, the number of vertices of G can be expressed as

n = (d1 + d2 + · · · + d2a) + d+2a+1 = d+2a+1 +
2a∑

i=1

di.

Therefore, combining the above equations and inequalities, we have

2a∑

i=1

i · di +
∑

v∈D+
2a+1

deg(v) ≤ 2b + 2a

(

d+2a+1 +
2a∑

i=1

di

)

which implies

d+2a+1 ≤
∑

v∈D+
2a+1

(deg(v) − 2a) ≤

⎛

⎜
⎝

∑

v∈D+
2a+1

deg(v)

⎞

⎟
⎠−2ad+2a+1 ≤ 2b+

2a∑

i=1

(2a−i)di
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since there are exactly d+2a+1 terms in the summation
∑

v∈D+
2a+1

(deg(v) − 2a)

where each term is greater than or equal to 1, as deg(v) ≥ 2a+1 for all v ∈ D+
2a+1.

Let f be any neighbor-locating k-coloring of G. Consider an ordered pair
(f(u), Nf (u)), where u is a vertex having degree at most s. Thus, u may receive
one of the k available colors, while its color neighborhood may consist of at most
s of the remaining (k − 1) colors. Thus, there are at most k

∑s
i=1

(
k−1

i

)
choices

for the ordered pair (f(u), Nf (u)). As for any two vertices u, v of degree at most
s, the following ordered pairs (f(u), Nf (u)) and (f(v), Nf (v)) must be distinct,
we have

s∑

i=1

di ≤ k
s∑

i=1

(
k − 1

i

)

.

Using the above relation, we can show that
2a∑

i=1

(2a + 1 − i)di =

2a∑

s=1

(
s∑

i=1

di

)
≤

2a∑

s=1

(
k

s∑

i=1

(
k − 1

i

))
= k

2a∑

i=1

(2a + 1 − i)

(
k − 1

i

)
.

As
2a∑

i=1

(2a + 1 − i)di =
2a∑

i=1

di +
2a∑

i=1

(2a − i)di and d+2a+1 ≤ 2b +
2a∑

i=1

(2a − i)di,

we have

n = d+2a+1 +
2a∑

i=1

di ≤ 2b + k

2a∑

i=1

(2a + 1 − i)
(

k − 1
i

)

.

This completes the first part of the proof.
For the proof of the second part of the Theorem, we notice that if the order

of a graph G∗ attains the upper bound, then equality holds in all of the above
inequations. In particular, we must have d+2a+1 =

∑
v∈D+

2a+1
(deg(v) − 2a) which

implies that G∗ cannot have a vertex of degree more than 2a + 1. Moreover, we
also have the following equality.

s∑

i=1

di = k

s∑

i=1

(
k − 1

i

)

for s = 1, 2, . . . , 2a + 1.

This proves that G∗ has exactly k
(
k−1

i

)
vertices of degree i. ��

Next we are going to present some immediate corollaries of Theorem 3. A
cactus is a connected graph in which no two cycles share a common edge.

Corollary 1. Let G be a cactus on n vertices and m edges. If χNL(G) = k,
then

n ≤ k4 + 11k2 − 12k − 6
6

.

Moreover, if the cactus has exactly t cycles, then we have

n ≤ 2(t − 1) +
k3 + k2 − 2k

2
.
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Proof. Observe that G has at most 3(n−1)
2 edges. So, by substituting a = 3

2 and
b = − 3

2 in the bound for n established in Theorem 3, we have

n ≤ 2b + k
2a∑

i=1

(2a + 1 − i)

(
k − 1

i

)
= −3 + k

3∑

i=1

(4 − i)

(
k − 1

i

)

= −3 + 3k

(
k − 1

1

)
+ 2k

(
k − 1

2

)
+ k

(
k − 1

3

)

=
k4 + 11k2 − 12k − 6

6
.

Note that, if the cactus G has exactly t cycles, then G has exactly (n + t − 1)
edges. Hence, replacing a = 1 and b = (t − 1) in the bound for n established in
Theorem 3, we obtain the required bound for the cactus. ��

A graph is t-degenerate if its every subgraph has a vertex of degree at most t.

Corollary 2. Let G be a t-degenerate graph on n vertices and m edges. If
χNL(G) = k, then

n ≤ k

2t∑

i=1

(2t + 1 − i)
(

k − 1
i

)

− t(t + 1).

Proof. Observe that the number of edges in a t-degenerate graph is m ≤ tn −
t(t+1)

2 . Substituting a = t and b = − t(t+1)
2 in the bound for n established in

Theorem 3, we obtain the required bound. ��
A planar graph is 5-degenerate, thus using the above corollary, we know that

for a planar graph G one can obtain an upper bound of |V (G)|. However, since
|E(G)| ≤ 3|V (G)| − 6, we are able to obtain a better bound.

Corollary 3. Let G be a planar graph on n vertices and m edges. If χNL(G) =
k, then

n ≤ k

6∑

i=1

(7 − i)
(

k − 1
i

)

− 12.

Proof. Note that the number of edges in a planar graph is at most 3n − 6.
Substituting a = 3 and b = −6 in the bound for n established in Theorem 3, we
get the required bound. ��

3.2 Tightness

Next we show the asymptotic tightness of Theorem 3. To that end, we will prove
the following result.

Theorem 4. Let 2a be a positive integer and let 2b be an integer. Then, there
exists a graph G on n vertices and m edges satisfying m ≤ an + b such that
n = Θ(k2a+1) and χNL(G) = Θ(k). Moreover, when b = 0, G can be taken to be
of maximum degree 2a.
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The proof of this theorem is contained within a number of observations and
lemmas. Also, the proof is constructive, and the constructions depend on par-
ticular partial colorings. Therefore, we are going to present a series of graph
constructions, their particular colorings, and their structural properties. We are
also going to present the supporting observations and lemmas in the following.

Lemma 1. Let us consider a (p × q) matrix whose ijth entry is mi,j, where
p < q. Let M be a complete graph whose vertices are the entries of the matrix.
Then there exists a matching of M satisfying the following conditions:

(i) The endpoints of an edge of the matching are from different columns.
(ii) Let e1 and e2 be two edges of the matching. If one endpoint of e1 and e2

are from the ith columns, then the other endpoints of them must belong to
distinct columns.

(iii) The matching saturates all but at most one vertex of M per column.

Proof. Consider the permutation σ = (1 2 · · · q). The matching consists of edges
of the type m(2i−1),jm2i,σi(j) for all i ∈ {1, 2, · · · , 	p

2
} and j ∈ {1, 2, · · · , q}. We
will show that this matching satisfies all listed conditions.

Observe that, a typical edge of the matching is of the form m(2i−1),jm2i,σi(j).
As the second co-ordinates of the subscript of the endpoints of the said edge is
different, condition (i) from the statement is verified.

Suppose that there are two edges of the type m(2i−1),jm2i,σi(j) and
m(2i′−1),j′m2i′,σi′ (j′). If m(2i−1),j and m(2i′−1),j′ are from the same column,
that is, j = j′, then we must have i �= i′ as they are different vertices. Thus
σi(j) �= σi′

(j) = σi′
(j′) as i �= i′. If m(2i−1),j and m2i′,σi′ (j′) are from the same

column, then we have j = σi′
(j′). Moreover, if we have j′ = σi(j), then it will

imply that
j = σi′

(σi(j)) = σi+i′
(j).

This is only possible if q|(i + i′), which is not possible as i, i′ ∈ {1, 2, · · · , 	p
2
}.

Therefore, we have verified condition (ii) of the statement.
Notice that, the matching saturates all the vertices of M when p is even,

whereas it saturates all except the vertices in the pth row of the matrix when p
is odd. This verifies condition (iii) of the statement. ��
Corollary 4. Let G be a graph with an independent set M of size (p × q),
where M = {mij : 1 ≤ i ≤ p, 1 ≤ j ≤ q} and p < q. Moreover, let φ be a
(k′ + q)-coloring of G satisfying the following conditions:

1. k′ + 1 ≤ φ(x) ≤ k′ + q if and only if x ∈ M ,
2. x and y are neighbor-distinguished unless both belong to M ,
3. φ(mij) = k′ + j.

Then it is possible to find spanning supergraph G′ of G by adding a matching
between the vertices of M which will make φ a neighbor-locating (k′ +q)-coloring
of G′.
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Proof. First of all build a matrix whose ijth entry is the vertex mij . After that,
build a complete graph whose vertices are entries of this matrix. Now using
Lemma 1, we can find a matching of this complete graph that satisfies the
three conditions mentioned in the statement of Lemma 1. We construct G′ by
including exactly the edges corresponding to the edges of the matching, between
the vertices of M . We want to show that after adding these edges and obtaining
G′, indeed φ is a neighbor-locating (k′ + q)-coloring of G′.

Notice that by the definition of φ, (k′ + q) colors are used. So it is enough
to show that the vertices of G′ are neighbor-distinguished with respect to φ.
To be exact, it is enough to show that two vertices x, y from M are neighbor-
distinguished with respect to φ in G′. If φ(x) = φ(y), then they must have
different color-neighborhood inside M according to the conditions of the match-
ing. This is enough to make x, y neighbor-distinguished. ��

Now we are ready to present our iterative construction. However, given the
involved nature of it, we need some specific nomenclatures to describe it. For
convenience, we will list down some points to describe the whole construction.

(i) An i-triplet is a 3-tuple of the type (Gi, φi,Xi) where Gi is a graph, φi is a
neighbor-locating (ik)-coloring of Gi, Xi is a set of (i+1)-tuples of vertices
of Gi, each having non-repeating elements. Also, two (i+1)-tuples from Xi

do not have any entries in common.
(ii) Let us describe the 1-triplet (G1, φ1,X1) explicitly. Here G1 is the path

Pt = v1v2 · · · vt on t vertices where t = 4
⌊

k(k−1)(k−2)+4
8

⌋
. As

(k − 1)2(k − 2)
2

< 4
⌊

k(k − 1)(k − 2) + 4
8

⌋

≤ k2(k − 1)
2

,

we must have χNL(Pt) = k (see [2]). Let φ1 be any neighbor-locating k-
coloring of G1 and

X1 = {(vi−1, vi+1) : i ≡ 2, 3 (mod 4)}.

(iii) Suppose an i-triplet (Gi, φi,Xi) is given. We will (partially) describe a way
to construct an (i + 1)-triplet from it. To do so, first we will construct an
intermediate graph G′

i+1 as follows: for each (i+1)-tuple (x1, x2, · · · , xi+1) ∈
Xi we will add a new vertex xi+2 adjacent to each vertex from the (i + 1)-
tuple. Moreover, (x1, x2, · · · , xi+1, xi+2) is designated as an (i + 2)-tuple
in G′

i+1. After that, we will take k copies of G′
i+1 and call this so-obtained

graph as G′′
i+1. Furthermore, we will extend φi to a function φi+1 by assign-

ing the color (ik + j) to the new vertices from the jth copy of G′
i+1. The

copies of the (i + 2)-tuples are the (i + 2)-tuples of G′′
i+1.

(iv) Consider the (i + 1)-triplet (G′′
i+1, φi+1,X

′′
i+1) where X ′′

i+1 denotes the set
of all (i + 2)-tuples of G′′

i+1. The color of an (i + 2)-tuple (x1, x2, · · · , xi+2)
is the set

C((x1, x2, · · · , xi+2)) = {φi(x1), φi(x2), · · · , φi(xi+2)}.
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Let us partition the set of new vertices based on the colors used on the
elements (all but the last one) of the (i + 2)-tuple of which it is (uniquely)
part of. To be explicit, the last elements of two (i + 2)-tuples are in the
same partition if and only if they have the same color. Let this partition be
denoted by Xi1,Xi2, · · · ,Xisi

, for some integer si.
(v) First fix a partition Xir of Xi. Next construct a matrix with its �th column

having vertices from Xir as its entries if they are also from the �th copy
of G′

i+1 in G′′
i+1. Thus the matrix is a (p × q) matrix where p = |Xir| and

q = k. We are going to show that, p < q. However, for convenience, we will
defer it to a later part (Lemma 2).

(vi) Let us delete all the new vertices from G′′
i+1 except for the ones in Xir. This

graph has the exact same properties of the graph G from Corollary 4 where
Xir plays the role of the independent set M . Thus it is possible to add a
matching and extend the coloring (like in Corollary 4). We do that for each
value of r and add the corresponding matching to our graph G′′

i+1. After
adding all such matchings, the graph we obtain is Gi+1.

Lemma 2. We have |Xir| < k, where Xir is as in Item(v) of the above list.

Proof. It is easy to calculate that the set of 2-tuples having the same color in
G1 is strictly less than k. After that we are done by induction. ��
Lemma 3. The function φi+1 is a neighbor-locating coloring of Gi+1.

Proof. The function φi+1 is constructed from φi, alongside constructing the
triplet Gi+1 from Gi. While constructing, we use the same steps from that of
Corollary 4. Thus, the newly colored vertices become neighbor-distinguished in
Gi+1 under φi+1. ��

The above two lemmas validate the correctness of the iterative construction
of Gis. However, it remains showing how Gis help us prove our result. To do so,
let us prove certain properties of Gis.

Lemma 4. The graph Gi is not regular and has maximum degree (i + 1).

Proof. As we have started with a path, our G1 has maximum degree 2 and is
not regular. In the iteration step for constructing the graph Gi+1 from Gi, the
degree of an old vertex (or its copy) can increase at most by 1, while a new
vertex of Gi+1 is adjacent to exactly (i + 1) old vertices and at most one new
vertex. Hence, a new vertex in Gi+1 can have degree at most (i + 2). Therefore,
the proof is done by induction. ��

Finally, we are ready to prove Theorem 4.

Proof of Theorem 4. Given a and b, to build the example that will prove the
theorem, one can consider G = G2a+1. ��
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Abstract. We give an explicit procedure for 5-list coloring a large class
of toroidal 6-regular triangulations in linear time. We also show that
these graphs are not 3-choosable.

Keywords: List coloring · Toroidal graph · Triangulation · Regular
graph · Linear time algorithm

1 Introduction

We will be concerned with the following coloring variant known as list coloring,
defined independently by Vizing [34] and by Erdős, Rubin, and Taylor [18]. A
list assignment L on a graph G = (V,E) is a collection of sets of the form
L = {Lv ⊂ N : v ∈ V (G)}, where one thinks of each Lv as a list of colors
available for coloring the vertex v ∈ V (G). A graph G is L-choosable if there
exists a function color : V (G) → N such that color(v) ∈ Lv for every v ∈ V (G)
and color(v) �= color(w) whenever vw ∈ E(G). A graph G is called k-choosable
if it is L-choosable for every k-list assignment L (i.e., an assignment of lists of
size at least k, also called k-lists). The least integer k for which G is k-choosable
is the choice number, or list chromatic number, of G and is denoted χ�(G). If
χ�(G) = k, we also say that G is k-list chromatic. Notice that the usual notion
of graph coloring is equivalent to L-coloring when all the lists assigned by L are
identical. This also shows that χ(G) ≤ χ�(G) for all graphs G, and in general
the inequality can be strict [18,34].

1.1 Motivation

k-Choosability is Computationally Hard. It is well-known that computing
the chromatic number is an NP-hard problem [25]. The restricted problem of
finding a 4-coloring of a 3-chromatic graph is also NP-hard [24]. Even the problem
of 3-colorability of 4-regular planar graphs is known to be NP-complete [14].

Naturally, list coloring is also a computationally hard problem, but much
more: for instance, it is well-known [22] that the problem of deciding whether a
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given planar graph is 4-choosable is NP-hard—even if the 4-lists are all chosen
from {1, 2, 3, 4, 5} [13]—and so is deciding whether a given planar triangle-free
graph is 3-choosable [22]. But, contrast the latter with the fact that every pla-
nar triangle-free graph is 3-colorable by Grötzsch’s theorem [21], and that a
3-coloring can be found in linear time [15]. In other words, restrictions on graph
parameters—such as the girth, as in Grötzsch’s theorem—that allow for efficient
coloring algorithms need to be strengthened further in order to get list coloring
algorithms of a similar flavor.

Note that even proving nontrivial bounds for the choice number is far
tougher than the corresponding problem for the chromatic number. Some of the
notable instances of such bounds being determined include Brooks’s theorem
for choosability [18,34], Thomassen’s remarkable proof that every planar graph
is 5-choosable [31], and Galvin’s solution to the famous Dinitz problem [20].
Other interesting examples include the fact that planar bipartite graphs are 3-
choosable [5] and that any 4-regular graph decomposable into a Hamiltonian
circuit and vertex-disjoint triangles is 3-choosable [19]. However, there is a fun-
damental difference between the former and latter examples, as we elaborate
below.

L-Coloring is Algorithmically Hard. Consider the problem: given a list
assignment L on a graph G, can one efficiently determine whether or not G is L-
choosable, and in the case when G is L-choosable can one also efficiently specify a
proper coloring from these lists? The theorems of Brooks, Thomassen and Galvin
mentioned earlier are some of the few instances where such algorithms are known
for a large class of graphs. In the other examples that we mentioned, the proof
uses the combinatorial nullstellensatz [4], in particular a powerful application
found by Alon and Tarsi [5]. Hence, it does not allow one to extract an efficient
algorithmic solution to the problem of L-coloring when the list assignment L
is specified, except in certain special cases. That there is no known efficient
algorithm that produces a 3-list coloring from a given list assignment in these
examples illustrates the difficulty of the problem of efficiently finding a proper L-
coloring even for graphs of small maximum degree. Even just for planar bipartite
graphs, an algorithmic determination of a list coloring largely remains open [13].

Hence, efficient L-coloring algorithms for large classes of graphs are interest-
ing. We also place our work within the context of recent results on efficient list
coloring algorithms for similar classes of graphs in Sect. 1.3 below.

1.2 Our Work

As noted earlier, in order to find good bounds for the choice number it is natural
to place restrictions on certain graph parameters. We shall focus on a certain
class of graphs G having bounded degeneracy number d(G), defined as d(G) :=
maxH≤G{δ(H)}, where the maximum is taken over all induced subgraphs H of
G, and δ(H) is the minimum degree of H. A simple inductive argument [3] shows
that χ�(G) ≤ d(G)+1 for every simple graph G. This improves the rudimentary
upper bound χ�(G) ≤ Δ(G) + 1, where Δ(G) is the maximum degree of G. A
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natural choice for a large collection of graphs with bounded degeneracy number is
the class of graphs that are embeddable in a fixed surface, where by a surface we
mean a compact connected 2-manifold, and a graph is embeddable in a surface if,
informally speaking, it can be drawn on the surface without any crossing edges.
In this paper, we will be concerned only with toroidal graphs, that is, graphs
that are embeddable on the torus S1.

Let G = (V,E) be a toroidal graph, and let F be the set of its faces in
an embedding into S1. The graphs satisfying degree(v) = d for all v ∈ V and
degree(f) = m for all f ∈ F , for some d,m ≥ 1, have been of interest [6,7]
especially in the study of vertex-transitive graphs on the torus [30]. A simple
calculation using Euler’s formula shows that the only possible values of (d,m)
are (3, 6), (4, 4) and (6, 3). Our focus will be on the graphs of the last kind,
namely the 6-regular triangulations on the torus. Since triangulations have the
maximum possible number of edges in any graph with a fixed number of vertices
and embeddable on a given surface, one might additionally expect this class of
graphs to present a greater obstacle to an efficient solution to the list coloring
problem as compared to the others.

The main result of this paper, Theorem 1, is a linear time algorithm for 5-
list coloring a large class of these toroidal 6-regular triangulations. Our result is
nearly tight for this class in the sense that the list size is at most one more than
the choice number for any graph in this family. In fact, in Corollary 1 we find
an infinite family of 5-chromatic-choosable graphs for which a list coloring can
be specified in linear time.

Here, T (r, s, t) is a triangulation obtained from an r×s toroidal grid, r, s ≥ 1
(see Definition 1 for a precise statement):

Theorem 1. Let G be a simple 6-regular toroidal triangulation. Then, G is 5-
choosable under any of the following conditions:

(1) G is isomorphic to T (r, s, t) for r ≥ 4;
(2) G is isomorphic to T (1, s, 2) for s ≥ 9, s �= 11;
(3) G is isomorphic to T (2, s, t) for s and t both even;
(4) G is 3-chromatic.

Moreover, the 5-list colorings can be given in linear time. Furthermore, none of
these graphs are 3-choosable. Hence, χ�(G) ∈ {4, 5} if any of the cases (1) to (4)
hold for G.

We are currently unable to comment on the choosability of the excluded graphs,
but we note that they consist only of nine nonisomorphic 5-chromatic graphs,
as well as a subcollection of triangulations of the specific form T (1, s, t) that
are 4-chromatic. For any tuple (r, s, t), there is a simple formula describing each
tuple (r′, s′, t′) such that T (r, s, t) is isomorphic to T (r′, s′, t′) (see [6,29]), and
there are at most 6 such tuples for any (r, s, t). It is also not difficult to see
that the loopless multigraphs T (r, s, t) are all 5-choosable. So, in this sense,
Theorem 1 covers the 5-choosability of “most” 6-regular toroidal triangulations.
Furthermore, among those graphs covered in Theorem 1, the 5-chromatic ones
are precisely those isomorphic to T (1, s, 2) for s �≡ 0 (mod 4). Thus, we have:
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Corollary 1. If G is isomorphic to T (1, s, 2) for s �≡ 0 (mod 4), s ≥ 9, s �= 11,
then G is 5-chromatic-choosable, i.e. χ(G) = χ�(G) = 5. Moreover, a 5-list
coloring can be found in linear time.

To the best of our knowledge, the method of proof that we employ is novel, in that
we develop a framework that allows us to systematically compare the lists on ver-
tices that are not too far apart, and that allows us to compute the list coloring in
an efficient manner. By using the differential information between lists on nearby
vertices, we reduce the list configurations that need to be considered. This kind
of “list calculus” differs from other list coloring algorithms in the literature, which
instead reduce the possible graph configurations by exploiting general structure
results on the family of graphs under consideration (minimum girth, edge-width,
etc.), while the specific lists on the graphs remain nebulous. Our method of proof
could prove fruitful in other areas where a structure theorem—such as Theorem 2
in our case—allows one to shift attention towards the configuration of the lists
themselves. We also emphasize that our linear-time algorithm for 5-list coloring
these graphs is nearly best possible, since any fixed vertex needs to be “scanned”
very few times.

1.3 Related Work

Colorability vs. Choosability. Note that it follows from Brooks’s theorem
for choosability that any 6-regular toroidal triangulation not isomorphic to K7

is 6-choosable. Albertson and Hutchinson [2] showed that there is a unique
simple graph in this family that is 6-chromatic, which has 11 vertices, and
Thomassen [32] later classified all the 5-colorable toroidal graphs. But a pre-
cise characterization of all the 5-chromatic 6-regular toroidal triangulations was
completed only recently [12,29,35]. Our results are the first in this line to attempt
to characterize the list colorability of the 6-regular triangulations on the torus.

Choosability of Grids. The problem of determining the choice number of 4-
regular toroidal m × n grids, for m,n ≥ 3, has been raised by Cai, Wang and
Zhu [10]. These graphs are a special case of those satisfying (d,m) = (4, 4). It
is easy to show by induction that these grids are all 3-colorable, and the above
authors conjecture that they are also 3-choosable. Recent work by Li, Shao,
Petrov and Gordeev [26] has nearly determined the choice number of these grids
as follows: if mn is even, then the choice number is 3, else it is either 3 or 4.
Contrasting this with Theorem 1, we note that both nearly determine the choice
number in the sense that the true value of the choice number is either equal to, or
one less than, the computed value for each member of the family. However, their
result does not a priori give an efficient algorithm for L-coloring the toroidal
grids since their proof uses the combinatorial nullstellensatz, whereas our result
actually gives a linear time algorithm for L-coloring the toroidal triangulations.

Recent Algorithmic Advances for List Colorings. Dvořák and
Kawarabayashi [16] have shown that there exists a polynomial time algorithm
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for 5-list coloring graphs embedded on a fixed surface. Postle and Thomas [28]
have proved that for any surface Σ and every k ∈ {3, 4, 5} there exists a linear
time algorithm for determining whether or not an input graph G embedded in
Σ and having girth at least 8−k is k-choosable. In particular, when Σ = S1 and
k = 5, this implies that there is a linear time algorithm for determining whether
or not any of the 6-regular triangulations under consideration in this paper are
5-choosable. This work was later extended by Postle in [27], wherein he showed
that for each fixed surface Σ there exists a linear time algorithm to find a k-list
coloring of a graph G with girth at least 8 − k for k ∈ {3, 4, 5}. Again, when
Σ = S1 and k = 5, this says that there is a linear time algorithm to find a 5-list
coloring of a 6-regular triangulation on the torus.

Our results in this paper are stronger than those mentioned above for the class
of 6-regular toroidal triangulations. Firstly, the high degree of the polynomial
time algorithm in [16] makes it impractical to implement, though the authors
suggest that it should likely be possible to reduce the bound enough to make the
algorithm practical at least for planar graphs. Secondly, the linear time algorithm
in [28] is contingent upon an enumeration of the 6-list critical graphs on the
torus. Indeed, the authors show that there are only finitely many 6-list critical
graphs on the torus, but a full list of these graphs is not explicitly known, and
their bound on the maximum number of vertices any 6-list critical graph on the
torus can have is far too large to be amenable to a straightforward enumerative
check1. Also, their linear time algorithm does not specify an L-coloring in the
case when the graph is L-choosable for a given list assignment L. Thirdly, the
linear time algorithm in [27] first requires a brute-force computation of the list
colorings for any such list assignment on graphs of “small” order. However, the
bound on the sizes of these small graphs is far too large to be computationally
feasible, which makes the algorithm itself of mostly theoretical interest, as noted
in a recent work by Dvořák and Postle [17].

This is in contrast with the results in this paper, wherein the 5-choosable
graphs identified in Theorem 1 can also be given 5-list colorings in linear time,
unlike as in [28]. Furthermore, the non-3-choosability of the 3-chromatic graphs
T (r, s, t) is not covered by the results in [28] since these graphs have girth equal
to 3, whereas their algorithm for 3-list coloring is applicable only for graphs
having girth at least 5. Lastly, our proof of Theorem 1 supplies an implementable
algorithm for 5-list coloring all the toroidal graphs under consideration without
the need for running a brute-force check on any of them, in contrast with [27].

Structure of This Paper. In the rest of this paper, we sketch the proof of
Theorem 1. We relegate the full details to the arXiv version [8] due to space
constraints.

1 It is worth contrasting this with the corresponding colorability problem: while
Thomassen [33] has shown that for every fixed surface there are only finitely many 6-
critical graphs that embed on that surface, explicit lists of these 6-critical graphs are
known only for the projective plane [1], the torus [32] and the Klein bottle [11,23].
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2 Proof of Theorem 1

Definition 1. For integers r ≥ 1, s ≥ 1 and 0 ≤ t ≤ s − 1, take V = {(i, j) :
1 ≤ i ≤ r, 1 ≤ j ≤ s} to be the vertex set of the graph T (r, s, t) equipped with
the following edges. If r = 1, then (1, j) is adjacent to (1, j ± 1), (1, j ± t) and
(1, j ± (t + 1)). If r > 1, then: for each 1 < i < r, (i, j) is adjacent to (i, j ± 1),
(i ± 1, j) and (i ± 1, j ∓ 1); (1, j) is adjacent to (1, j ± 1), (2, j), (2, j − 1),
(r, j + t+1) and (r, j + t); (r, j) is adjacent to (r, j ± 1), (r − 1, j +1), (r − 1, j),
(1, j − t) and (1, j − t − 1).

Here, addition in the first coordinate is taken modulo r and in the second coordi-
nate is taken modulo s. It is clear that each T (r, s, t) is a 6-regular triangulation
of the torus. Conversely, we have

Theorem 2 (Altshuler [7], 1973). Every 6-regular triangulation on the torus
is isomorphic to T (r, s, t) for some integers r ≥ 1, s ≥ 1, and 0 ≤ t < s.

By the “column” Ci we shall mean the set Ci := {v ∈ V : v = (i, j) for some 1 ≤
j ≤ s}. Define the cylindrical triangulation C(r, s) to be the graph obtained from
T (r + 1, s, 0) by deleting the column Cr+1. Next, we compile some well-known
results (see [18], for instance) on the colorability of paths and cycles:

Lemma 1. 1. An even cycle is 2-list chromatic.
2. An odd cycle is not 2-colorable, and hence not 2-choosable. However, if L

is a list assignment of 2-lists on an odd cycle such that not all the lists are
identical, then the cycle is L-choosable.

3. If L is a list assignment on an odd cycle having one 1-list, one 3-list, and all
the rest as 2-lists, then the cycle is L-choosable.

4. If L is a list assignment on a path graph having one 1-list, and all the rest as
2-lists, then the path is L-choosable.
Moreover, the L-colorings can all be found in linear time.

The following lemma due to S. Sinha (during an undergraduate research intern-
ship with the first author) is in a similar spirit to Thomassen’s list coloring of
a near-triangulation of the plane [31], and is a key ingredient in the proof of
case (1) in Theorem 1. Note that L(i,j) denotes the list assigned on the vertex
(i, j) ∈ V by the list assignment L.

Lemma 2. For r ≥ 3, s ≥ 3, let G = C(r, s) be a cylindrical triangulation.
Suppose that L is a list assignment on G such that:

(1) there exists 1 ≤ j ≤ s such that the exterior vertices (1, j) and (1, j − 1)
have lists of size equal to 4;

(2) every other exterior vertex has a list of size equal to 3;
(3) every interior vertex has a list of size equal to 5.

Then, G is L-choosable. Moreover, an L-coloring can be found in linear time.
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Proof (sketch). By inductively coloring the rightmost column using Lemma 1, it
suffices to consider the case r = 3. Color the vertex (2, s) with c ∈ L(2,s) \L(1,s),
which exists since C2 has 5-lists. This reduces the sizes of the lists on each of the
neighbors of (2, s) by 1, except for L(1,s), which still has size equal to 4. Now,
use Lemma 1 to color C3, and then color the remaining vertices in the order as
indicated in Fig. 1. The numbers indicate the reduced list sizes at that step of
the coloring algorithm (note that the edges between the top and bottom rows
are not shown in this and all subsequent figures). At the final step we are left to
color a triangle with lists of sizes 1, 2, and 3, which is easily done.
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Fig. 1. Illustration of the sizes of the lists on the vertices at each step for G = C(3, 5)

2.1 Reductions for the Proof of Case (1)

Suppose that T (r, s, t), for r ≥ 4, s ≥ 3, has a 5-list assignment L. We assume
that not all the lists are identical, since these graphs are all 5-colorable in linear
time by the results in [12,29,35].

Reduction 1. For every vertex, its list is contained in the union of its lists on
its two left neighbors (as well as of its right neighbors).

Proof (sketch). If not, choose a color for v that is not in the union of the lists
of those two neighboring vertices. Use Lemma 1 to color the entire column of v,
and notice that Lemma 2 is now applicable.

Next, focus on a pair of adjacent vertices on the same column that have distinct
lists. Applying Lemmas 1 and 2 as before to this pair and their neighbors on an
adjacent column (say, the left one), we can cut down to

Reduction 2. Whenever (i, j) and (i, j − 1) have distinct lists assigned by L,
one of the following three configurations holds (and also one of a similar set of
configurations obtained by analysing the vertices adjacent on the right column):

(a) L(i,j) = L(i−1,j+1) and L(i,j−1) = L(i−1,j−1);
(b) L(i,j) = L(i−1,j+1) = L(i−1,j) and L(i,j−1) �= L(i−1,j−1);
(c) L(i,j) �= L(i−1,j+1) and L(i,j−1) = L(i−1,j) = L(i−1,j−1).

For the third reduction, focus on a pair of adjacent vertices on adjacent columns
that have the same lists. For the fourth reduction, focus on a face in which
the two adjacent vertices lying on the same column have the same lists. Using
Reduction 2 on the former, and Lemmas 1 and 2 on the latter, we get
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Reduction 3. Whenever u and v are adjacent vertices on distinct columns with
Lu = Lv, there is a vertex w adjacent to both u and v such that Lw = Lu = Lv.

Reduction 4. Whenever u, v and w are mutually adjacent vertices having iden-
tical lists, with v and w lying on the same column, at least one of the vertical
neighbors of u has a list identical to Lu.
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Fig. 2. Illustration of the ten configurations arrived at after reductions

What remains is to exploit the structure of 6-regular triangulations given by
Theorem 2 with the rigidity imposed on the list assignment by Reductions 1
to 4. For a list L, define the list-class of L in G, denoted G[L], to be the induced
subgraph of G on those vertices v such that Lv = L. Let L ∈ L and let H be a
(maximal connected) component of G[L]. If V (H) is a singleton, we call H an
isolated component, else we call H a nonisolated component.

Lemma 3. Suppose that L obeys Reductions 1 to 4.

(1) Let H be an isolated component, V (H) = {(i, j)}. Then, there are distinct
lists L′, L′′ ∈ L such that L(i−1,j+1) = L(i,j+1) = L(i+1,j+1) = L(i+1,j) = L′

and L(i−1,j) = L(i−1,j−1) = L(i,j−1) = L(i+1,j−1) = L′′.
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(2) Let H be a nonisolated component of a list-class G[L], with v ∈ V (H). Then,
at least one vertical neighbor of v also belongs to V (H).

Putting together all of the above, we get a complete description of the list assign-
ment L from only the information of lists assigned on every four or five consec-
utive vertices in any one column: the lists propagate across columns in any of
precisely ten ways, as shown in Fig. 2. The lists labelled L3 and L4 in Fig. 2
belong to isolated components. For the full details for how one arrives at these
ten configurations, the reader is requested to see [8].

2.2 Proof of Case (1)

Ideally, one would like to complete the proof with another application of
Lemma 2. However, an induction argument as in the proof of the lemma does
not directly work here, since a naive coloring of C1 need not give a cylindrical
triangulation satisfying the hypothesis (1) of the lemma. Applying a little more
discretion in our choices, we use the small set of allowed configurations for L to
arrive at the following two-step coloring scheme (assume r = 4 without loss of
generality):

1. Properly color C1 and a set J of alternate vertices in C3 such that (after
reducing the lists) C2 has one 4-list and the remaining as 3-lists.

2. Properly color C4, then the remaining vertices in C3, and finally C2.

Assuming step 1 is successfully achieved, we complete step 2 as illustrated in
Fig. 3.
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Fig. 3. Sizes of the lists on the columns C2, C3 and C4 in step 2 when s = 6 and 7,
respectively

Step 1 crucially uses the reduction into the ten cases illustrated in Fig. 2.
Indeed, for each of the ten configurations that could appear on the column C1,
we describe an explicit procedure for coloring C1, as well as for picking out the
set J and a coloring for it, so that step 1 is completed. This is a three stage
process; for the full details, the reader is again referred to [8].
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2.3 Proofs of Cases (2) to (4)

Notice that Lemma 2 is not applicable on C(r, s) for r ≤ 2, so cases (2) and
(3) of Theorem 1 require a different line of attack. So, we shall instead use the
narrow length of the r × s grid to place restrictions on the list assignment L.
The analysis is therefore shorter in these cases compared to case (1) as discussed
above, but we omit the proof here due to space constraints and instead refer the
reader to [8].

For case (4), the 5-choosability of the 3-chromatic 6-regular toroidal triangu-
lations was settled in a previous work [9], but a small modification is required to
get a linear time algorithm, for which we apply a lemma of Bondy, Bopanna, and
Siegel [5] instead of the theorem of Alon and Tarsi [5]. The necessary changes
are explicated in [8].

2.4 Proof of Non-3-Choosability of the Graphs in Cases (1) to (4)

Note that T (r, s, t) is 3-chromatic if and only if s ≡ 0 ≡ r − t (mod 3). Let
L1 := {1, 2, 3}, L2 := {2, 3, 4}, and L3 := {1, 3, 4}. Let L be the list-assignment
that assigns these lists to the columns of T (r, s, t) (r ≥ 4, s ≥ 3) as follows: C1

and C2 are assigned L1, C3 is assigned L2, and C4, . . . , Cr are assigned L3. Let
the vertices (1, 1) and (1, 2) be properly colored using L in any manner. This
uniquely determines a proper coloring of the induced subgraph on C1 ∪ C2.

Now, there is a unique way to extend this coloring properly to the induced
subgraph on C2 ∪ C3 as follows: simply extend the coloring from C2 to C3 using
the same lists used on C2, namely L1 = {1, 2, 3}; then, recolor all the vertices in
C3 that have the color 1 with the color 4. In this manner, one can see that the
coloring is extended uniquely to the rest of C3, with 4 occuring in those places
where 1 would have occured had C3 also been colored using L1 = {1, 2, 3}.

Next, repeat the same process to extend the coloring on C3 to a proper
coloring on the induced subgraph on C3 ∪ C4 ∪ · · · ∪ Cr as follows: color the
vertices in C4 ∪ · · · ∪ Cr using the colors used on C3, namely L2 = {2, 3, 4}, and
then recolor those vertices in C4 ∪· · ·∪Cr that have the color 2 with the color 1.

Now, we note that this coloring cannot be proper on all of T (r, s, t) because
this process of successive relabelling has mapped the tuple (1, 2, 3) to (2, 1, 3).
Thus, for this to be a proper coloring of T (r, s, t), the original coloring on C1

must arise as the unique extension of the coloring on Cr to the induced subgraph
on Cr ∪ C1; but, (2, 1, 3) is not a cyclic permutation of (1, 2, 3), so this cannot
happen for any t.

The rest of the cases (i.e., r ≤ 3) are handled similarly, and we direct the
reader to [8] for the full details.
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Abstract. A proper coloring of a graph G is said to be locally identifying
coloring (lid-coloring for short), if for every pair of adjacent vertices u
and v with distinct closed neighborhood, the sets of colors assigned in
the closed neighborhood of u and v are distinct. The minimum number of
colors required in any lid-coloring of a graph G is called the lid-chromatic
number of G, denoted by χlid(G).

In this paper, we give a characterization of graphs whose lid-chromatic
number equals the number of vertices. Next, we study lid-coloring on
several restricted graph classes. We show that for any block graph G,
χlid(G) ≤ 2χ(G), where χ(G) denotes the chromatic number of G. We
show that the lid-chromatic number of a biconvex bipartite graph can be
computed in polynomial time. Finally, we find the lid-chromatic number
of the Cartesian and Lexicographic products of paths and cycles.

1 Introduction

All graphs considered in this paper are finite, undirected and simple (without
loops and multiple edges). For a graph G = (V,E), we use V (G) and E(G) to
denote the vertex set and edge set of G respectively. The open neighborhood
of a vertex v, denoted N(v), is the set of vertices adjacent to v and the set
N [v] = N(v) ∪ {v} denote the closed neighborhood of v. Let f : V (G) → N be
a vertex coloring of G. For a subset X ⊆ V (G), f(X) = {f(v) | v ∈ X} denotes
the set of colors that appear in X.

A vertex coloring f of a graph G is called locally identifying coloring (lid-
coloring for short) if (i) f is a proper coloring of G (no two adjacent vertices have
the same color) and (ii) for each pair of adjacent vertices u, v with N [u] �= N [v],
we have f(N [u]) �= f(N [v]). The smallest integer k for which G admits a lid-
coloring is called the lid-chromatic number of G, denoted by χlid(G). Note that
the lid-chromatic number of a graph G is the maximum of the lid-chromatic num-
bers of its connected components. Therefore, throughout this paper we restrict
ourselves to connected graphs.

Locally identifying coloring was introduced by Esperet et al. [2]. They showed
that the decision version of the lid-coloring is NP-complete on bipartite graphs
but polynomial time solvable on trees. They also proved that χlid(G) ≤ 2χ(G) for
interval graphs, split graphs and cographs and conjectured the same bound for
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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chordal graphs. They also showed that for an outerplanar graph G, χlid(G) ≤ 20.
Foucaud et al. [4] showed that any graph G with maximum degree Δ has a locally
identifying coloring with at most 2Δ2 − 3Δ+3 colors, by answering positively a
question raised in the paper [2]. Goncalves [6] showed that for any planar graph
G, χlid(G) ≤ 1280. They also proved that for any graph class of bounded expan-
sion, the lid-chromatic number is bounded. Martins and Sampaio [7] obtained a
linear time algorithms to calculate the lid-chromatic number for some classes of
graphs having few P4’s.

Our Contributions: It is easy to see that χ(G) = n if and only if G = Kn. In
Sect. 3, we investigate the graphs for which the lid-chromatic number equals n
and give a complete characterization of graphs having lid-chromatic number n.

Esperet et al. [2] conjectured that, for any chordal graph G, χlid(G) ≤ 2χ(G).
They verified the conjecture for subclasses of chordal graphs such as interval
graphs, split graphs and cographs. In Sect. 4, we show that the conjecture holds
for block graphs, which are a subclass of chordal graphs.

Esperet et al. [2] showed that, if G is bipartite then χlid(G) ≤ 4. They
also proved that deciding whether a bipartite graph G has χlid(G) ∈ {3, 4} is
NP-complete. As lid-coloring is NP-complete on bipartite graphs, we focus on
biconvex bipartite graphs, which is a subclass of bipartite graphs. In Sect. 5, we
show that lid-chromatic number of biconvex bipartite graphs can be computed
in polynomial time.

Finally, we investigate lid-coloring on Cartesian product and Lexicographic
product of graphs. Proper coloring of various graph products has been well
studied [3,5,8,9]. For example, the chromatic number of the Cartesian product
of two graphs G and H [8] is equal to max{χ(G), χ(H)}. The chromatic number
of a lexicographic product of two graphs G and H is equal to the b-fold chromatic
number [5] of G, where b = χ(G). In Sects. 6 and 7, we give exact values of the
lid-chromatic number of Cartesian and Lexicographic products of paths and
cycles.

2 Preliminaries

We denote the set {1, 2, . . . , k} with [k]. Let c : V (G) → [k] be a coloring of
the vertices of G using k colors. Let S ⊆ V (G), then c(S) = {c(v) | v ∈ S}.
We say an edge uv ∈ E(G) respects lid-coloring if either (i) N [u] = N [v], or (ii)
c(N [u]) �= c(N [v]). We associate a distinguishing color for each edge satisfying
the condition (ii) in the above sentence. We define a distinguishing color for
the edge uv to be a color from (c(N [u]) \ c(N [v])) ∪ (c(N [v]) \ c(N [u])). That
is, a color that is seen in the closed neighborhood of u and not in the closed
neighborhood of v or vice-versa. The minimum degree of the graph G is denoted
by δ(G). For more details on graph theoretic notation or terminology, we refer
the reader to the textbook [1]. The lid-chromatic numbers of paths and cycles
are stated below.

Due to space constraints, the proofs of the results marked (�) are presented
in the full version of the paper.
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Lemma 1 ([4]). For a positive integer n, where n ≥ 2, we have

χlid(Pn) =

⎧
⎪⎨

⎪⎩

2 if n = 2;
3 if n is odd
4 if n is even and n �= 2;

Lemma 2 ([4]). For a positive integer n, where n ≥ 4, we have

χlid(Cn) =

⎧
⎪⎨

⎪⎩

3 if n ≡ 0 mod 4;
5 if n = 5 or 7;
4 otherwise;

3 Graphs with χlid(G) = |V (G)|
Let G = (V,E) be a graph on n vertices. It is known that χ(G) = n if and only if
G = Kn. In this section, we investigate graphs for which the lid-chromatic num-
ber equals n. We first show the characteristics of graphs G whose lid-chromatic
number is at most n − 1. Using this, we conclude with the structure of graphs
that require n colors.

Theorem 1. Let G = (V,E) be a graph on n vertices. Then χlid(G) ≤ n − 1 if
and only if there exist two non-adjacent vertices x, y ∈ V (G) such that for every
edge uv ∈ E(G) at least one of the following conditions is satisfied.

(1) if either u or v belong to {x, y}
(a) N [u] = N [v], or
(b) N [u] \ {x, y} �= N [v] \ {x, y}.

(2) Both u and v does not belong to {x, y}.
(a) N [u] = N [v], or
(b) N [u] \ {x, y} �= N [v] \ {x, y}, or
(c) N [u] \ {x, y} = N [v] \ {x, y} and

(i) if N(u) ∩ {x, y} �= ∅, then N(v) ∩ {x, y} = ∅, or
(ii) if N(u) ∩ {x, y} = ∅, then N(v) ∩ {x, y} �= ∅.

Proof. (=⇒) There exists a lid-coloring of G using at most n − 1 colors. We need
to show that there exist two non-adjacent vertices x, y ∈ V (G) such that for every
edge uv ∈ E(G) at least one of the given two conditions is satisfied. Without loss
of generality, let χlid(G) = n − 1. Otherwise, if χlid(G) < n − 1, we can always
replace the repeated colors in the lid-coloring of G with new colors to get a lid-
coloring of G that uses n − 1 colors. Let c : V (G) → [n − 1] be a lid-coloring of G.
There exists two non-adjacent vertices x and y in G such that c(x) = c(y).

Consider an arbitrary edge uv of G.

Case 1: Either u or v belong to {x, y}.
Without loss of generality, let u = x. Suppose the edge xv does not satisfy

the conditions 1(a) and 1(b). That is, we have

N [x] �= N [v], and (1)
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N [x] \ {x, y} = N [v] \ {x, y}. (2)

From Eqs. (1), (2) and the fact that c(x) = c(y), it is clear that c(N [x]) =
c(N [v]), which is a contradiction to the fact that c is a lid-coloring of G.

Case 2: Both u and v does not belong to {x, y}.
Suppose that the edge uv does not satisfy any of the three conditions 2(a),

2(b) and 2(c), we have
N [u] �= N [v], (3)

N [u] \ {x, y} = N [v] \ {x, y}, and (4)

N(u) ∩ {x, y} �= ∅, N(v) ∩ {x, y} �= ∅. (5)

If N(u) ∩ {x, y} = N(v) ∩ {x, y}, then using (4) we get N [u] = N [v], which
is a contradiction to (3). Therefore, using (3),(4) and (5), we get that

N(u) ∩ {x, y} �= N(v) ∩ {x, y}. (6)

Using Eq. (4), we have c(N [u] \ {x, y}) = c(N [v] \ {x, y}). From Eq. (5),
we know that u and v have some neighbor in {x, y}. Since, c(x) = c(y) the set
of colors assigned to vertices in N [u] and N [v] are the same in G even though
N [u] �= N [v]. This is a contradiction to the assumption that c is a lid-coloring
of G.

(⇐=) Let G be a graph with two non-adjacent vertices x and y such that for
every edge uv ∈ E(G), at least one of the given conditions is satisfied. We need
to show that χlid(G) ≤ n − 1.

Let f : V (G) → [n − 1] be a coloring of G constructed as follows. Assign
f(x) = f(y) = 1. Each of the vertices in V (G) \ {x, y} are assigned distinct
colors from [n − 1] \ {1}. We now argue that f is a lid-coloring of G.

Since every vertex in V (G)\{x, y} is assigned a distinct color and xy /∈ E(G),
we have that f is a proper coloring. Consider an arbitrary edge uv ∈ E(G).

Case 1: Either u or v belongs to {x, y}.
Without loss of generality we assume that u = x. If N [x] = N [v] then there

is nothing to prove.
If N [x] \ {x, y} �= N [v] \ {x, y}, then as no two vertices in V (G) \ {x, y} are

colored with the same color by f . Therefore f(N [x]) �= f(N [v]).

Case 2: Both u and v does not belong to {x, y}.
We assume that the edge uv does not satisfy condition 2(a), otherwise there

is nothing to prove.
If N [u] \ {x, y} �= N [v] \ {x, y}, then as no two vertices in V (G) \ {x, y} are

colored with the same color by f . Therefore, f(N [u]) �= f(N [v]).
Lastly, for any edge uv ∈ E(G), if N [u] \ {x, y} = N [v] \ {x, y}, then set of

colors (say S) used in N [u]\{x, y} is same as the set of colors used in N [v]\{x, y}.
If N(u) ∩ {x, y} = ∅, then set of colors in N [u] is S. Since N(v) ∩ {x, y} �= ∅,
set of colors used in N [v] is S ∪ {1}. Therefore, set of colors used in N [u] is not
same as set of colors used in N [v]. Similarly, if N(u) ∩ {x, y} �= ∅, then set of
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colors in N [u] is S ∪ {1}. Since, N(v) ∩ {x, y} = ∅, set of colors in N [v] is S.
Therefore, set of colors used in N [u] is not same as set of colors used in N [v].

Hence, f is a lid-coloring that uses n − 1 colors. ��
Given a graph G, if G does not satisfy the conditions mentioned in Theorem

1, then the lid-chromatic number of G is equal to |V (G)| = n.
Thus, as a consequence of Theorem 1, we have the following corollary.

Corollary 1. Given a graph G, we can decide in polynomial time if χlid(G) = n,
where n is the number of vertices of the graph G.

4 Block Graphs

This section is devoted to block graphs. We prove that every block graph has
lid-chromatic number at most 2ω(G), where ω(G) is the size of a largest clique
in G.

Definition 1 (Block Graphs [1]). A vertex u of a connected graph G is called
a cut vertex if G−u is disconnected. A block of a graph G is a maximal connected
induced subgraph of G that has no cut vertex. A block graph is a graph in which
every block is a clique.

To prove the result, we use the notion of block decomposition of graphs. Let
G = (V,E) be a block graph with q blocks B1, . . . , Bq. The block decomposition
of G is a tree denoted by TB = (VB , EB) where VB = {B1, . . . , Bq} and EB =
{BiBj | Bi ∩ Bj �= ∅}. We root the tree TB at a node BR having at least
two cut vertices. For example, the block decomposition of P4 (the path on four
vertices) contains three blocks {B1, B2, B3} where every block is a K2 with B2

being adjacent to both B1 and B3. The level of a block B denoted by �(B) is
the distance of B from the root block BR in TB . Clearly �(BR) = 0. We also
define level of a vertex v as �(v) = min{�(B) | v ∈ V (B)}. For each block B at
level p ≥ 1, we call the vertex v ∈ B as the distinguishing ancestor vertex of B,
denoted by dav(B), if and only if �(v) < �(B). We call B′ as the parent block of
B if B′ is the parent of B in TB .

For a vertex v ∈ V (G), let

D1(v) = {B | �(B) = �(v) + 1 and dav(B) = v}, and
D2(v) = {B | �(B) = �(v) + 2, and distG(dav(B), v) = 1},

where distG(w,w′) is the length of a shortest path from w to w′ in G.
Notice that if v is not a cut-vertex in G, then D1(v) = D2(v) = ∅. An

illustration of a block decomposition is shown in Fig. 1.
We first present the overall idea of the algorithm. We consider the blocks

level by level (starting with level 0) and in each level we process the blocks from
left to the right in some arbitrary order. First, all the vertices in the root block
are assigned colors. When a non-root block B is considered for coloring as in the
above ordering, all vertices at level at most �(B) − 1 are assigned colors.
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Fig. 1. An illustration of a block decomposition of G where each Bi represents a block.
Considering �(B1) = p, we have �(B2) = �(B3) = �(B4) = �(B5) = p+1, �(B6) = p+2
and �(B7) = �(B8) = p+3. Also dav(B1) = x, dav(B2) = dav(B3) = v, and dav(B6) =
a. For the vertex x, we have D1(x) = {B1} and D2(x) = {B2, B3, B4, B5}. For the
vertex a, we have D1(a) = {B6} and for the vertex b, we have D1(b) = {B7}.

We color each block B in two phases. In its first phase, exactly two vertices
of B are colored while coloring its parent block. After the first phase, we find a
set of forbidden colors for B. In its second phase, we arbitrarily assign colors to
the remaining uncolored vertices of B from the set [2k] excluding its forbidden
colors.

Theorem 2. If G is a block graph, then χlid(G) ≤ 2ω(G).

Proof. Given a block graph G and its block decomposition, we show that
χlid(G) ≤ 2k, where k = ω(G). To prove the result, we present a lid-coloring
c : V (G) → [2k] of G using at most 2k colors.

Coloring Procedure: Let N(B) be the set of colors that are forbidden to be
used in the block B. Initially N(B) = ∅, for each block B. We consider the
blocks level by level and from left to right in each level.

At each block B, for each cut vertex v ∈ V (B) \ {dav(B)}, we identify two
colors W (v) and A(v). For each edge vw, where w ∈ V (B) \ {dav(B)}, the color
W (v) serves as a distinguishing color for the edge vw. Similarly, A(v) serves as a
distinguishing color for the edges vw where w /∈ V (B). The intuition is that the
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edge vw respects lid-coloring because of the colors W (v) and A(v) depending on
whether or not w ∈ V (B).

Coloring the Root Block BR: Let {v1, v2, . . . , vk′}, where k′ ≤ k, be the ver-
tices of BR. Each vertex in V (BR) is assigned a distinct color from {1, 2, . . . , 2k}.
WLOG, let two vertices v1, v2 from BR be assigned the colors c1 and c2 respec-
tively. For each cut vertex v of BR, we do the following:

1. (a) If v �= v1 set A(v) = c1, else set A(v) = c2.
(b) Forbid the color A(v) to be used in all the blocks from D1(v) ∪ D2(v).

That is, for all B ∈ D1(v) ∪ D2(v), update N(B) = N(B) ∪ {A(v)}.
2. Choose W (v) to be a color from [2k] \ (c(BR) ∪ N(B′)) such that for any

two cut vertices u, u′ of BR, W (u) �= W (u′), where B′ is some block in
D1(v). Here c(BR) represents the colors assigned to the vertices in V (BR),
i.e., c(BR) = {c(w) | w ∈ V (BR)}, and N(B′) is the set of colors forbidden
to be used in V (B′).
Let S(BR) be the set of associated colors for the cut vertices of BR. That
is, S(BR) = {W (v) | v is a cut vertex of BR}. We now color a vertex in each
block of D1(v) in the following manner. For each B′ ∈ D1(v), choose an
arbitrary uncolored vertex v′ ∈ V (B′) and assign c(v′) = W (v). Then update
N(B′) = N(B′) ∪ (S(BR) \ {c(v′)}).

Notice that after processing all the cut vertices of BR, exactly two vertices in
each of the blocks at level 1 are colored.

Coloring a Non-Root Block B: In the first phase coloring of B, exactly two
vertices of B are colored. Let the two colored vertices be dav(B) and v′. In the
second phase coloring of B, we arbitrarily assign colors to the uncolored vertices
in V (B) from [2k] \ (N(B) ∪ {c(dav(B)), c(v′)}).

For each cut vertex v ∈ V (B) \ {dav(B)}, we do the following:

1. (a) Set A(v) = c(dav(B)).
(b) Forbid the color A(v) to be used in all blocks from D1(v) ∪ D2(v). That

is, for all B ∈ D1(v) ∪ D2(v), update N(B) = N(B) ∪ {A(v)}.
2. This step is similar to the Step 2 of the root block case where each instance

of BR is to be replaced by B. Also whenever we talk about the cut vertices
of BR, we replace it with the the cut vertices in V (B) \ {dav(B)}.

We recursively apply the above coloring procedure on the blocks in order and
complete the coloring. We now show that the coloring obtained is a lid-coloring
of G. Before we prove the correctness, we will look at the following claim.

Claim. For any non-root block B, we have |N(B)| ≤ k + 2.

Proof. Recall that, the set N(B) represents the set of colors that are forbidden in
B. Let B′ and B′′ be the parent and the grand-parent of B in TB respectively.
From the description of the algorithm, the colors of the vertices dav(B) and
dav(B′) are forbidden in B. In the worst case, B′ contains at most k cut vertices.
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For each cut vertex v ∈ V (B′), we assigned a color W (v) which is forbidden to
be used in B′. Therefore by combining all, at most k + 2 colors are forbidden
in B.

Correctness: We first need to show why it is possible to color the uncolored
vertices of each block B in its second phase of coloring. From the above claim,
we have that |N(B)| ≤ k + 2. Since B has exactly two colored vertices after its
first phase of coloring, the number of uncolored vertices in B is at most k − 2.
We have the budget to color the remaining with [2k] \ N(B).

It is easy to see that the coloring yields a proper coloring. We now show that
each edge respects lid-coloring. Let uv be an edge. We have the following cases.

• �(u) = �(v) Let u, v ∈ V (B). If none of them are cut vertices of B, then
N [u] = N [v]. If exactly one of them is a cut vertex, say u. Then by the
coloring procedure, there exists a color W (u) ∈ c(N [u]) and W (u) /∈ c(N [v]).
Else both u and v are cut vertices. Then W (u) ∈ c(N [u]) and W (u) /∈ c(N [v]).
Also W (v) /∈ c(N [u]) and W (v) ∈ c(N [v]).

• �(u) �= �(v)
Let u, v ∈ V (B) for some block B. Then it follows that exactly one of v or
u is dav(B). WLOG let dav(B) = u and B� be the parent block of B where
u ∈ V (B�). While coloring the block B�, we had chosen the color of a vertex
in B� to be the A(u) and forbid the color A(u) in D1(u)∪ D2(u). This forces
none of the neighbors of v in D1(v) to be assigned the color A(u). Hence the
edge uv respects lid-coloring.

The edge uv respects lid-coloring in all the above cases. This completes the
proof of Theorem 2. ��
Remark: Consider the graph P4. From Lemma 1, we have that χlid(P4) = 4. It
is easy to see that P4 is a block graph and the bound in Theorem 2 is tight.

5 Biconvex Bipartite Graphs

Definition 2 (Biconvex Bipartite Graph). A bipartite graph G = (X∪Y,E)
is called convex bipartite graph over the vertex set X if X can be enumerated
such that for all y ∈ Y the vertices adjacent to y are consecutive with respect to
the ordering on X. If G is convex over both X and Y , it is said to be biconvex
bipartite graph.

Theorem 3. If G = (X ∪ Y,E) is a connected biconvex bipartite graph having
at least three vertices, then

χlid(G) =

{
4, if Z ∩ X �= ∅ and Z ∩ Y �= ∅
3, otherwise

where Z = {u ∈ X ∪ Y | deg(u) = 1}.



On Locally Identifying Coloring of Graphs 155

Proof. Let G = (X ∪Y,E) be a biconvex bipartite graph. Let σ = x1, x2, . . . , xp

be an enumeration of vertices of X and π = y1, y2, . . . , yq be an enumeration
of vertices of Y . Let Z represent the set of degree one vertices in G. We will
divide the proof into the following cases depending on the existence of degree
one vertices in X and Y .

Case 1: |Z| = 0. That is δ(G) ≥ 2.
Let c : V (G) → {1, 2, 3} be a coloring of G defined as follows: c(xi) = 1 for

each i ∈ [p], c(yj) = 2 when j is even and c(yj) = 3 otherwise for each j ∈ [q].
Clearly c is a proper coloring. Next, we show that c is a lid-coloring of G.

Consider two adjacent vertices u ∈ X and v ∈ Y . Clearly N [u] �= N [v],
otherwise G = K2, contradicting the assumption that G is connected and has at
least three vertices. Hence, we have N [u] �= N [v] for any pair of adjacent vertices
of G. As deg(u) ≥ 2, we have c(N [u]) = {1, 2, 3} and c(N [v]) = {1, c(v)}. That
is c(N [u]) �= c(N [v]) for any pair of adjacent vertices u and v of G. Therefore, c
is a lid coloring of G.

Case 2: Either Z ∩ X �= ∅ or Z ∩ Y �= ∅ but not both.
Without loss of generality we assume that Z ∩ X = ∅ and Z ∩ Y �= ∅. It

is easy to see that the coloring c : V (G) → {1, 2, 3} defined in Case 1 is also a
lid-coloring of G in this case.

Case 3: Both Z ∩ X �= ∅ and Z ∩ Y �= ∅.
Suppose χlid(G) = 3 and let f : V (G) → [3] be a lid-coloring of G. Let

x ∈ Z ∩ X and y be the neighbor of x. Without loss of generality, assume that
f(x) = 1, f(y) = 2 and f(N [x]) = {1, 2}. Then f(N [y]) = {1, 2, 3}, since G is
connected and has at least three vertices. If z ∈ N(y), then f(N [z]) �= {1, 2, 3},
otherwise f(N [y]) = f(N [z]) and N [y] �= N [z]. Thus, f(N [z]) = {2, f(z)} for
every z ∈ N(y). Note that z is at even distance from x and y is at odd distance
from x. Thus for any vertex w, |f(N [w])| = 3 if w is at odd distance from x and
|f(N [w])| = 2 if w is at even distance from x. Every vertex v in the set Z ∩ Y
is at odd distance from x, that is |f(N [v])| = 3, which is a contradiction to the
fact that the degree of v is one in G. Therefore χlid(G) ≥ 4. It was shown in [2]
that χlid(G) ≤ 4 when G is bipartite. Hence, we conclude that χlid(G) = 4. ��
Corollary 2. Given a biconvex bipartite graph G, the lid-chromatic number of
G can be computed in polynomial time.

Proof. Given a biconvex bipartite graph G = (X ∪ Y,E), from Theorem 3 we
only need to determine whether both X and Y contain degree one vertices or not
which can be done in polynomial time. Based on this we decide the lid-chromatic
number of G. ��

6 Cartesian Product

Definition 3 (Cartesian product). Cartesian product G�H of graphs G and
H is a graph such that V (G�H) = V (G) × V (H), where × represents cartesian
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product and two vertices (u1, v1) and (u2, v2) in G�H are adjacent if and only if
either u1 = u2 and v1 is adjacent to v2 in H, or v1 = v2 and u1 is adjacent to u2

in G.

Theorem 4 ([2]). If G and H are bipartite graphs without isolated vertices,
then χlid(G�H) = 3.

As a corollary, we obtain the lid-chromatic number of Cartesian product of paths.

Corollary 3. For every pair of integers m and n, where 2 ≤ m ≤ n, we have
χlid(Pm�Pn) = 3.

Taking the work forward, we study lid-coloring of Cartesian product of a
path and a cycle, and Cartesian product of two cycles.

6.1 Cartesian Product of a Cycle and a Path

Theorem 5. For every pair of integers m and n, where m ≥ 3, n ≥ 2, we have

χlid(Cm�Pn) =

⎧
⎪⎨

⎪⎩

5 m = 3 and n ≥ 2
4 m is odd, m > 3 and n ≥ 2
3 m is even and n ≥ 2

Proof. Let G = Cm�Pn and let V (C3) = {u1, u2, u3}, V (Pn) = {v1, v2, · · · , vn}
and V (C3�Pn) = {(u1, vi), (u2, vi), (u3, vi) | i ∈ [n]}.
Case 1: When m = 3 and n ≥ 2. A 5-lid-coloring of C3�Pn is given in the
Fig. 2a. Hence, we have χlid(C3�Pn) ≤ 5.

Next, we show that χlid(C3�Pn) ≥ 5. Let X = {(u1, v1), (u2, v1), (u3, v1)}.
Clearly the graph G[X] ∼= C3. Hence χlid(G[X]) = 3. Observe that (a) every pair
of vertices inX have distinct closed neighborhoods and (b) all the three colors used
in X in any lid-coloring of C3�Pn appear in the neighborhood of any vertex of X.
In order to maintain distinct colors in their closed neighborhood, we must use at
least two new colors in {(u1, v2), (u2, v2), (u3, v2)}. Therefore, any lid-coloring of
C3�Pn must use at least 5 colors. Hence, we have χlid(C3�Pn) = 5.

Case 2: m > 3 and m is odd, n ≥ 2.
Let V (Cm) = {u1, u2, · · · , um} and V (Pn) = {v1, v2, · · · , vn}, and

V (Cm�Pn) = {(ui, vj) | i ∈ [m], j ∈ [n]}. A 4-lid-coloring of Cm�Pn is given in
the Fig. 2b. Hence, we have χlid(Cm�Pn) ≤ 4.

Next, we show that χlid(Cm�Pn) ≥ 4. Let X = {(ui, v1) | i ∈ [m]}. As the
graph G[X] induced by the vertices of X is an odd cycle, we have χlid(G) ≥
χ(G[X]) ≥ 3. Observe that in any proper coloring f : V (G[X]) → {1, 2, 3}
there exists two adjacent vertices (ui, v1) and (uj , v1) such that f(N [(ui, v1)]) =
f(N [(uj , v1)]) = {1, 2, 3} in G[X]. As N [(ui, v1)] �= N [(uj , v1)], in any lid-
coloring of G at least one new color must be used to color a vertex of
either N [(ui, v1)] or N [(uj , v1)]. Hence χlid(Cm�Pn) ≥ 4. Altogether we have
χlid(Cm�Pn) = 4.
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Case 3: m is even and n ≥ 2,
In this case both Cm and Pn are bipartite and hence from Theorem 4 we

have χlid(Cm�Pn) = 3. ��
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Fig. 2. (a) A 5-lid-coloring of C3�Pn for n ≥ 2, and (b) A 4-lid-coloring of Cm�Pn,
when m is odd, m > 3 and n ≥ 2.

6.2 Cartesian Product of Two Cycles

Theorem 6 (�). For every pair of integers m and n, where m ≥ 3, n ≥ 3, we
have

χlid(Cm�Cn) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

5 m = 3 and n ≥ 3
3 m is even and n is even
4 m is odd, m > 3 and n is even
≤ 5 m is odd, m > 3 and n is odd, n > 3

7 Lexicographic Product

Definition 4 (Lexicographic product). Lexicographic product G[H] of
graphs G and H is a graph such that V (G[H]) = V (G)× V (H), where × repre-
sents cartesian product and two vertices (u1, v1) and (u2, v2) in G[H] are adjacent
if and only if either u1 is adjacent to u2 in G, or u1 = u2 and v1 is adjacent to
v2 in H.

Definition 5. A lid coloring f : V (H) → [k] of a graph H is called ‘bad’ if there
exists a vertex v in H such that f(N [v]) = [k]. Otherwise, we call f as a ‘good’
lid-coloring of H.
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Theorem 7 (�). Let H be a graph on n vertices with χlid(H) = k. For any
integer m ≥ 3, we have

χlid(Pm[H]) =

⎧
⎪⎨

⎪⎩

2k + 1 if m is odd and every k-lid-colring of H is bad ;
2k + 2 if m is even and every k-lid-colring of H is bad ;
2k otherwise;

8 Conclusion

In this paper, we have studied the lid-coloring of graphs. We have given the
characterization of graphs having lid-chromatic number equals to the number
of vertices. We have shown that, for any block graph G, χlid(G) ≤ 2χ(G). We
have proved that lid-coloring is solvable in polynomial time on biconvex bipartite
graphs. We have given the exact values of lid-chromatic number for the Cartesian
and Lexicographic products of paths and cycles.

We conclude the paper with the following open problems.

1. If χlid(H) = k and every k-lid-coloring of H is ‘bad’ then what is the lid-
chromatic number of (a) P2[H] (b) C3[H]?

2. When both m and n are odd, we have showed that 4 ≤ χlid(Cm�Cn) ≤ 5.
We do not know the exact value of the lid-chromatic number of Cm�Cn.
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6. Gonçalves, D., Parreau, A., Pinlou, A.: Locally identifying coloring in bounded
expansion classes of graphs. Discrete Appl. Math. 161(18), 2946–2951 (2013)

7. Martins, N., Sampaio, R.: Locally identifying coloring of graphs with few P4s. Theor.
Comput. Sci. 707, 69–76 (2018)

8. Sabidussi, G.: Graphs with given group and given graph-theoretical properties.
Canadian J. Math. 9, 515–525 (1957)

9. Shitov, Y.: Counterexamples to hedetniemi’s conjecture. Ann. Math. 190(2), 663–
667 (2019)

http://arxiv.org/abs/2205.04953


On Structural Parameterizations of Star
Coloring

Sriram Bhyravarapu1(B) and I. Vinod Reddy2

1 The Institute of Mathematical Sciences, HBNI, Chennai, India
sriramb@imsc.res.in

2 Department of Electrical Engineering and Computer Science,
IIT Bhilai, Bhilai, India

vinod@iitbhilai.ac.in

Abstract. A star coloring of a graph G is a proper vertex coloring such
that every path on four vertices uses at least three distinct colors. The
minimum number of colors required for such a star coloring of G is called
star chromatic number, denoted by χs(G). Given a graph G and a posi-
tive integer k, the Star Coloring Problem asks whether G has a star
coloring using at most k colors. This problem is NP-complete even on
restricted graph classes such as bipartite graphs.

In this paper, we initiate a study of Star Coloring from the param-
eterized complexity perspective. We show that Star Coloring is fixed-
parameter tractable when parameterized by (a) neighborhood diversity,
(b) twin-cover, and (c) the combined parameters clique-width and the
number of colors.

1 Introduction

A coloring f : V (G) → {1, 2, . . . , k} of a graph G = (V,E) is a star coloring if
(i) f(u) �= f(v) for every edge uv ∈ E(G), and (ii) every path on four vertices
uses at least three distinct colors. The star chromatic number of G, denoted
by χs(G), is the smallest integer k such that G is star colorable using k colors.
Given a graph G and a positive integer k, the Star Coloring problem asks
whether G has a star coloring using at most k colors. The name star coloring
is due to the fact that the subgraph induced by any two color classes (subset of
vertices assigned the same color) is a disjoint union of stars.

Star Coloring [14] is used in the computation of the Hessian matrix. A
Hessian matrix is a square matrix of second order partial derivatives of a scalar-
valued function. Hessian matrices are used in large-scale optimization problems,
parametric sensitivity analysis [3], image processing, computer vision [22], and
control of dynamical systems in real time [3]. Typically, Hessian matrices that
arise in a large-scale application are sparse. The computation of a sparse Hessian
matrix using the automatic differentiation technique requires a seed matrix.
Coleman and Moré [5] showed that the computation of a seed matrix can be
formulated using a star coloring of the adjacency graph of a Hessian matrix.

Star Coloring was first introduced by Grünbaum in [15]. The computa-
tional complexity of the problem is studied on several graph classes. The problem
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Bagchi and R. Muthu (Eds.): CALDAM 2023, LNCS 13947, pp. 159–171, 2023.
https://doi.org/10.1007/978-3-031-25211-2_12
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is polynomial time solvable on cographs [23] and line graphs of trees [24]. It is
NP-complete to decide if there exists a star coloring of bipartite graphs [4] using
at most k colors, for any k ≥ 3. It has also been shown that Star Color-
ing is NP-complete on planar bipartite graphs [1] and line graphs of subcubic
graphs [20] when k = 3. Recently, Shalu and Cyriac [26] showed that k-Star
Coloring is NP-complete for graphs of degree at most four, where k ∈ {4, 5}.

To the best of our knowledge, the problem has not been studied in the frame-
work of parameterized complexity. In this paper, we initiate the study of Star
Coloring from the viewpoint of parameterized complexity. In parameterized
complexity, the running time of an algorithm is measured as a function of input
and a secondary measure called a parameter. A parameterized problem is said
to be fixed-parameter tractable (FPT) with respect to a parameter k, if the
problem can be solved in f(k)nO(1) time, where f is a computable function
independent of the input size n and k is a parameter associated with the input
instance. For more details on parameterized complexity, we refer the reader to
the texts [9]. As Star Coloring is NP-complete even when k = 3, the problem
is para-NP complete when parameterized by the number colors k. This motivates
us to study the problem with respect to structural graph parameters, which mea-
sure the structural properties of the input graph. The parameter tree-width [25]
introduced by Robertson and Seymour is one of the most investigated structural
graph parameters for graph problems.

The Star Coloring problem is expressible in monadic second order logic
(MSO) [17]. Using the meta theorem of Courcelle [6], the problem is FPT when
parameterized by the tree-width of the input graph. Clique-width [8] is another
graph parameter which is a generalization of tree-width. If a graph has bounded
tree-width, then it has bounded clique-width, however, the converse may not
always be true (e.g., complete graphs). Courcelle’s meta theorem can also be
extended to graphs of bounded clique-width. It was shown in [7] that all prob-
lems expressible in MSO logic that does not use edge set quantifications (called
as MS1-logic) are FPT when parameterized by the clique-width. However, the
Star Coloring problem cannot be expressed in MS1 logic [10,17]. Motivated
by this, we study the parameterized complexity of the problem with respect to
the combined parameters clique-width and the number of colors and show that
Star Coloring is FPT.

Next, we consider the parameters neighborhood diversity [19] and twin-
cover [13]. These parameters are weaker than clique-width in the sense that
graphs of bounded neighborhood diversity (resp. twin-cover) have bounded
clique-width, however, the converse may not always be true. Moreover, these
two parameters are not comparable with the parameter tree-width and they
generalize the parameter vertex cover [13] (see Fig. 1). We show that Star
Coloring is FPT with respect to neighborhood diversity or twin-cover.

2 Preliminaries

For k ∈ N, we use [k] to denote the set {1, 2, . . . , k}. If f : A → B is a function
and C ⊆ A, f |C denotes the restriction of f to C, that is f |C : C → B such
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Clique-width [*]

Distance to cluster

Neighborhood 

diversity [*]

Distance to 

co-cluster
Twin-cover [*] Tree-width

Vertex cover

Fig. 1. Hasse diagram of some structural graph parameters. An edge from a parameter
k1 to a parameter k2 means that there is a function f such that for all graphs G, we
have k1(G) ≤ f(k2(G)). The parameters considered in this paper are indicated by ∗.

that for all x ∈ C, f |C(x) = f(x). All graphs we consider in this paper are
undirected, connected, finite and simple. For a graph G = (V,E), we denote
the vertex set and edge set of G by V (G) and E(G) respectively. We use n to
denote the number of vertices and m to denote the number of edges of the graph.
For simplicity, an edge between vertices x and y is denoted as xy. For a subset
X ⊆ V (G), the graph G[X] denotes the subgraph of G induced by vertices of
X. If f : V (G) → [k] is a coloring of G using k colors, then we use f−1(i) to
denote the subset of vertices of G which are assigned the color i. For a subset
U ⊆ V (G), we use f(U) to denote the set of colors used to color the vertices of
U , i.e., f(U) =

⋃

u∈U

f(u).

For a vertex set X ⊆ V (G), we denote G − X, the graph obtained from G
by deleting all vertices of X and their incident edges. The open neighborhood
of a vertex v, denoted N(v), is the set of vertices adjacent to v and the set
N [v] = N(v) ∪ {v} denotes the closed neighborhood of v. The neighbourhood of
a vertex set S ⊆ V (G) is N(S) = (∪v∈SN(v)) \ S. For a fixed coloring of G, we
say a path is bi-colored if there exists a proper coloring of the path using two
colors.

The proofs of the theorems marked with (�) are presented in the full version
of this paper [2].

3 Neighborhood Diversity

In this section, we show that Star Coloring is FPT when parameterized
by neighborhood diversity. The key idea is to reduce star coloring on graphs
of bounded neighborhood diversity to the integer linear programming problem
(ILP). The latter is FPT when parameterized by the number of variables.
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Theorem 1 ( [11,18,21]). The q-variable Integer Linear Programming
Feasibility problem can be solved using O(q2.5q+o(q)n) arithmetic operations
and space polynomial in n, where n is the number of bits of the input.

We now define the parameter neighborhood diversity and state some of its
properties.

Definition 1 (Neighborhood Diversity [19]). Let G = (V,E) be a graph.
Two vertices u, v ∈ V (G) are said to have the same type if and only if N(u) \
{v} = N(v) \ {u}. A graph G has neighborhood diversity at most t if there exists
a partition of V (G) into at most t sets V1, V2, . . . , Vt such that all vertices in
each set have same type.

Observe that each Vi either forms a clique or an independent set in G. Also, for
any two distinct types Vi and Vj , either each vertex in Vi is adjacent to each
vertex in Vj , or no vertex in Vi is adjacent to any vertex in Vj . We call a set Vi

as a clique type (resp, independent type) if G[Vi] is a clique (resp, independent
set). It is known that a smallest sized partition of V (G) into clique types and
independent types can be found in polynomial time [19]. Hence, we assume that
the types V1, V2, . . . , Vt of the graph G are given as input.

We now present the main result of the section.

Theorem 2. Star Coloring can be solved in O(q2.5q+o(q)n) time, where q =
2t and t is the neighborhood diversity of the graph.

Let G = (V,E) be a graph with the types V1, V2, . . . , Vt. For each A ⊆
{1, 2, . . . , t}, we denote a subset type of G by TA = {Vi | i ∈ A}. We denote the
set of all types adjacent to type Vi by adj(Vi). That is, Vj ∈ adj(Vi) if every
vertex in Vj is adjacent to every vertex of Vi. Given a graph G and its types, we
construct the ILP instance in the following manner.

Construction of the ILP Instance: For each A ⊆ [t], let nA be the variable
that denotes the number of colors assigned to vertices in every type of TA and not
used in any of the types from {V1, V2, . . . , Vt} \ TA. For example, if A = {1, 3, 4}
(i.e., TA = {V1, V3, V4}) and nA = 2, then there are two colors, say c1 and c2,
such that both c1 and c2 are assigned to vertices in each of the types V1, V3 and
V4 and not assigned to any of the vertices in types {V1, V2, . . . , Vt}\{V1, V3, V4}.
This is the critical part of the proof where we look at how many colors are used
exclusively in each type of TA rather than what colors are used. Since we have
a variable nA for each A ⊆ [t], the number of variables is 2t.

We now describe the constraints for ILP with a short description explaining
the significance or the information being captured by the constraints.

(C0) Discard all subset types TA containing two types Vi, Vj where Vj ∈ adj(Vi).
To ensure that no two adjacent vertices are assigned the same color, we
introduce this constraint that only considers TA in which no two types in
TA are adjacent.

(C1) The sum of all the variables is at most k. That is
∑

A⊆[t]

nA ≤ k.

We introduce this constraint to ensure that the number of colors used in
any coloring is at most k.
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(C2) For each clique type Vi, i ∈ [t], the sum of the variables nA for which
Vi ∈ TA is equal to the number of vertices in Vi. That is,

∑

A:Vi∈TA

nA = |Vi|.
To ensure that no two vertices in the clique type Vi are assigned the same
color, we introduce this constraint.

(C3) For each independent type Vi, where i ∈ [t], the sum of the variables nA

for which Vi ∈ TA is at least one and at most the minimum of k and the
number of vertices in Vi. That is, 1 ≤ ∑

A:Vi∈TA

nA ≤ min{k, |Vi|}.

To ensure that the number of colors used for coloring an independent type
Vi is at least one and at most the minimum of k and |Vi|, we introduce
this constraint.

(C4) For each combination of four distinct types, say Vi1 , Vi2 , Vi3 and Vi4 , where
i1, i2, i3, i4 ∈ [t], with Vi1 , Vi3 ∈ adj(Vi2) and Vi4 ∈ adj(Vi3), we have the
following constraint:
If the sum of the variables nA for which Vi1 , Vi3 ∈ TA is at least one,
then sum of variables nB for which Vi2 , Vi4 ∈ TB should be equal to zero.
That is,

∑

A:Vi1 ,Vi3∈TA where
Vi1 ,Vi3∈adj(Vi2 ) and Vi4∈adj(Vi3 )

nA ≥ 1 =⇒
∑

B:Vi2 ,Vi4∈TB

nB = 0.

This constraint ensures that if there exists a vertex in Vi1 and a vertex in
Vi3 that are assigned the same color, then the sets of colors used to color
the vertices of Vi2 and Vi4 are disjoint.

(C5) For every combination of three distinct types, say Vi1 , Vi2 , Vi3 , where
i1, i2, i3 ∈ [t], with Vi1 being an independent type and Vi2 , Vi3 ∈ adj(Vi1),
we have the following constraint:
If the sum of the variables nA for which Vi1 ∈ TA is strictly less than
the number of vertices in Vi1 , then the sum of variables nB for which
Vi2 , Vi3 ∈ TB is equal to zero.

∑

A:Vi1∈TA, where Vi2 ,Vi3∈adj(Vi1 ) and
Vi1 is an independent type

nA < |Vi1 | =⇒
∑

B:Vi2 ,Vi3∈TB

nB = 0.

This constraint ensures that if there exist two vertices in Vi1 that are
assigned the same color, then every vertex in Vi2 is assigned a color different
from every vertex in Vi3 .

(C6) For every combination of two distinct independent types Vi1 , Vi2 , where
i1, i2 ∈ [t] with Vi1 ∈ adj(Vi2), if the sum of the variables nA for which
Vi1 ∈ TA is less than the number of vertices in Vi1 , then the sum of vari-
ables nB for which Vi2 ∈ TB is equal to the number of vertices in Vi2 , and
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vice-versa. The former constraint is illustrated below while the latter con-
straint can be constructed by swapping Vi1 and Vi2 in the former constraint.

∑

A:Vi1∈TA where Vi1∈adj(Vi2 )

and Vi1 ,Vi2 are independent types

nA < |Vi1 | =⇒
∑

B:Vi2∈TB

nB = |Vi2 |.

This constraint ensures that if there exist two vertices in Vi1 that are
assigned the same color then all vertices in Vi2 are assigned distinct colors.
We can say similar things for the latter constraint.

(C7) For each A ⊆ [t], nA ≥ 0.
The number of colors used exclusively in all the types of TA is at least 0.

The construction of the ILP instance is complete. We use Theorem 1 to
obtain a feasible assignment for ILP. Using this, we find a star coloring of G. We
now show that G has a star coloring using at most k colors if and only if there
exists a feasible assignment to ILP.

Lemma 1. If there exists a feasible assignment to ILP then G has a star coloring
using at most k colors.

Proof. Using a feasible assignment returned by the ILP, we construct a star
coloring f : V (G) → [k] of G. Let A1, A2, . . . A2t be the subsets of [t] in some

fixed order. For each Ai, we associate the set of colors c(Ai) = {
i−1∑

j=0

nAj
+

1,
i−1∑

j=0

nAj
+ 2, . . . ,

i−1∑

j=0

nAj
+ nAi

}, where nA0 = 0.

Now, for each Vj , we associate the set of colors c(Vj) = ∪j∈Ai
c(Ai). If Vj is

a clique type, then from constraint (C2), |c(Vj)| = |Vj | for every j. Therefore,
we color the vertices of Vj with distinct colors from the set c(Vj). If Vj is an
independent type, then from constraint (C3), 1 ≤ |c(Vj)| ≤ min{k, |Vj |}. In this
case, we greedily color the vertices of Vj with colors from the set c(Vj) such that
each color is used at least once in Vj . This finishes the description of the coloring
f of G.

We now argue that f is a star coloring of G. To show that f is a proper
coloring, we need to show that every vertex is assigned a color and adjacent
vertices do not receive the same color. The coloring process described above
ensures that every vertex is colored. Also, f is a proper coloring because of the
constraints (C0) and (C2). The former constraint ensures that subset types TA

considered do not contain a pair of adjacent types in it while the latter constraint
ensures that no two vertices in a clique type are assigned the same color. Thus
f is a proper coloring.

We now show that there is no bi-colored path of length 3. Suppose that there
exists a path u1 − u2 − u3 − u4 on four vertices such that f(u1) = f(u3) and
f(u2) = f(u4).
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– Vertices u1, u2, u3, u4 belong to four distinct types.
WLOG, let u1, u2, u3, u4 belong to V1, V2, V3, V4 respectively. From the defi-
nition of neighborhood diversity, we have V1, V3 ∈ adj(V2) and V4 ∈ adj(V3).
As f(u1) = f(u3) and f(u2) = f(u4), there exists two sets A ⊆ [t] and B ⊆ [t]
such that V1, V3 ∈ TA, V2, V4 ∈ TB , nA ≥ 1 and nB ≥ 1. This cannot happen
because of the constraint (C4).

– Vertices u1, u2, u3, u4 belong to three distinct types.
WLOG, let u1, u2, u3, u4 belong to V1, V2, V1, V3 respectively. Since f(u1) =
f(u3), it is the case that

∑

A:V1∈TA

nA < |V1| implying V1 is an independent

type. Since V1 is an independent type with two vertices assigned the same
color and f(u2) = f(u4), there exists B ⊆ [t] such that V2, V3 ∈ TB and
nB ≥ 1. This cannot happen because of the constraint (C5).

– Vertices u1, u2, u3, u4 belong to two distinct types.
WLOG, let u1, u3 ∈ V1 and u2, u4 ∈ V2. Similar arguments as in the above
case can be applied to show that V1 and V2 are independent types and this
case cannot arise due to constraint (C6).

Thus f is a star coloring of G using at most k colors. 
�
Lemma 2. If G has a star coloring using at most k colors then there exists a
feasible assignment to ILP.

Proof. Let f : V (G) → [k] be a star coloring of G using k colors. For each
A ⊆ [t], we set

nA = |
⋂

Vi∈TA

f(Vi) −
⋃

Vi /∈TA

f(Vi)|.

That is nA is the number of colors that appear in each of the types in TA and
does not appear in any of the types from {V1, . . . , Vt} \ TA. We now show that
such an assignment satisfies the constraints (C0)–(C7).

1. Since f is a proper coloring of G, no two vertices in two adjacent types are
assigned the same color. Hence the constraint (C0) is satisfied.

2. Using the fact that f is a star coloring that uses k colors and from the
definition of nA, where each color is counted towards only exactly one variable,
we see that the constraint (C1) is satisfied. For each of the remaining variables
nA for which no color is associated with it, we have that nA = 0. Hence the
constraint (C7) is satisfied.

3. When Vi is a clique type, we have that |f(Vi)| = |Vi|. The expression∑

A:Vi∈TA

nA denotes the number of colors used in Vi in the coloring f , which

equals |Vi|. Hence the constraint (C2) is satisfied.

4. When Vi is an independent type, the number of colors used in Vi is at most
the minimum of k and |Vi|. In addition, we need at least one color to color the
vertices of Vi. Hence 1 ≤ |f(Vi)| ≤ min{k, |Vi|}. Since

∑

A:Vi∈TA

nA = |f(Vi)|,
the constraint (C3) is satisfied.
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5. Since f is a star coloring, there is no bi-colored P4. Thus for every combination
of four types, say V1, V2, V3 and V4, if there exists a color assigned to a vertex
in V1 and a vertex in V3 with V1, V3 ∈ adj(V2) and V4 ∈ adj(V3), then all
the vertices in V2 ∪ V4 should be assigned distinct colors. That is, there is
no B ⊆ [t] for which V2, V4 ∈ TB and nB ≥ 1. Hence the constraint (C4) is
satisfied.

Similarly, we can show that constraints (C5) and (C6) are also satisfied. 
�
The running time of the algorithm depends on the time taken to construct

an ILP instance and obtain a feasible assignment for the ILP using Theorem
1. The former takes polynomial time while the latter takes O(q2.5q+o(q)n) time
where q = 2t is the number of variables. This completes the proof of Theorem 2.

4 Twin Cover

In this section, we show that Star Coloring is FPT when parameterized by
twin cover. Ganian [13] introduced the notion of twin-cover which is a gener-
alization of vertex cover. Note that the parameters neighborhood diversity and
twin-cover are not comparable (see Sect. 3.4 in [13]). We now define the param-
eter twin-cover and state some of its properties.

Definition 2 (Twin Cover [13]). Two vertices u and v of a graph G are said to
be twins if N(u)\{v} = N(v)\{u} and true twins if N [u] = N [v]. A twin-cover
of a graph G is a set X ⊆ V (G) of vertices such that for every edge uv ∈ E(G)
either u ∈ X or v ∈ X, or u and v are true twins.

Remark 1. If X ⊆ V (G) is a twin-cover of G then (i) G − X is disjoint union of
cliques, and (ii) for each clique K in G − X and each pair of vertices u, v in K,
N(u) ∩ X = N(v) ∩ X.

Theorem 3. Star Coloring can be solved in O(q2.5q+o(q)n) time where q =
22

t

and t is the size of a twin-cover of the graph.

Overview of the Algorithm: Given an instance (G, k, t) of Star Coloring,
and a twin cover X ⊆ V (G) of size t in G, the goal is to check if there exists a
star coloring of G using at most k colors. The algorithm consists of the following
four steps.

1. We guess the coloring f : X → [t′] of X in a star coloring of G (where
t′ ≤ t). Then construct an auxiliary graph G′ from G where the neighborhood
diversity of G′ is bounded by a function of t.

2. We show that G has a star coloring g, using at most k colors, such that
g|X = f if and only if G′ has a star coloring h, using at most k colors, such
that h|X = f .

3. We construct a graph B, which is a subgraph of G′ such that G′ has a star
coloring h, using at most k colors, such that h|X = f if and only if B has a
proper coloring using at most k − t′ colors, where t′ = |f(X)|.
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4. We show that the neighborhood diversity of B is bounded by a function of
t. Then we use the FPT algorithm parameterized by neighborhood diversity
from [13] to check whether B has a proper coloring using at most k − t′ colors
and decide if there exists a star coloring of G′ using at most k colors.

Given a graph G, there exists an algorithm to compute a twin-cover of size
at most t (if one exists) in O(1.2738t + tn) time [13]. Hence we assume that we
are given a twin-cover X = {v1, v2, . . . , vt} ⊆ V (G) of size t.

Let (G, k, t) be an instance of Star Coloring and X = {v1, v2, . . . , vt} ⊆
V (G) be a twin-cover of size t in G. That is, G[V \ X] is a disjoint union of
cliques. By the definition of twin cover, all vertices in a clique K from G[V \ X]
has the same neighborhood in X. Similar to the proof of Theorem 2, we define
subset types. For each A ⊆ [t], let TA = {vi | i ∈ A} ⊆ X denote a subset type
of G. For every subset type TA, we denote a clique type of G by KA = {K |
K is a clique in G[V \ X] and N(K) ∩ X = TA}.

Step 1 of the algorithm is to initially guess the colors of the vertices in X
in a star coloring of G. Let f : X → [t′] be such a coloring, where t′ ≤ t. The
rest of the proof is to check if f could be extended to a coloring g : V (G) → [k]
such that g|X = f . Let Xi = f−1(i) ⊆ X be the set of vertices from X that are
assigned the color i ∈ [t′] in f . We now construct an auxiliary graph G′ from G
by repeated application of the Claims 1, 2 and the Reduction Rule 1.

Claim 1. Let KA be a clique type with |KA| ≥ 2 and there exist two vertices
in Xi ∩ TA for some i ∈ [t′]. Let G� be the graph obtained from G by adding
additional edges between every pair of non-adjacent vertices in

⋃

K∈KA

V (K). Then

(G, k, t) is a yes-instance of Star Coloring if and only if (G�, k, t) is a yes-
instance of Star Coloring.

Proof. Let K,K ′ ∈ KA be two cliques and u, v ∈ Xi ∩TA (i.e., f(u) = f(v) = i).
For the forward direction, let g be a star coloring of (G, k, t). Since g|X = f and
g is a star coloring, no two vertices in

⋃

K∈KA

V (K) are assigned the same color.

Suppose not, there exists two vertices w,w′ ∈ ⋃

K∈KA

V (K) such that g(w) =

g(w′), then w − u − w′ − v is a bi-colored P4. Observe that g is also a star
coloring of (G�, k, t).

For the reverse direction, let h be a star coloring of (G�, k, t) that uses at
most k colors. Since G is a subgraph of G�, we have that h is also a star coloring
of (G, k, t). 
�

Notice that a clique type KA satisfying the assumptions of Claim 1 will now
have |KA| = 1. We now look at the clique types KA such that |KA| ≥ 2 and
apply the following reduction rule. Let K ∈ KA be an arbitrarily chosen clique
with maximum number of vertices.

Reduction Rule 1. Let KA be a clique type with |KA| ≥ 2 and |Xi ∩ TA| ≤ 1,
for all i ∈ [t′]. Also, let K ∈ KA be an arbitrarily chosen clique with maximum
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number of vertices over all cliques in KA. Then (G, k, t) is a yes-instance of
Star Coloring if and only if (G − ⋃

K′∈KA\{K}
V (K ′), k, t) is a yes-instance of

Star Coloring.

Lemma 3 (�). Reduction Rule 1 is safe.

We repeatedly apply Reduction Rule 1 on the clique types KA for which
|KA| ≥ 2 after the application of Claim 1. Thereby ensuring |KA| = 1 for all
clique types KA for which |KA| ≥ 2 in G. Thus for all clique types KA, we
have that |KA| ≤ 1. Notice that after the application of Claim 1 and Reduc-
tion Rule 1, the resulting graph has bounded neighborhood diversity. However,
a proper coloring of the resulting graph may not yield a star coloring. The fol-
lowing claim help us to reduce our problem to proper coloring parameterized by
neighborhood diversity.

Claim 2. Let KA and KB, with A �= B, be two clique types such that there exists
two vertices u, v ∈ Xi such that u ∈ TA ∩ TB and v ∈ TB, for some i ∈ [t]. Let
G� be the graph obtained from G by adding additional edges between every pair
of non-adjacent vertices in V (KA) ∪ V (KB). Then (G, k, t) is a yes-instance of
Star Coloring if and only if (G�, k, t) is a yes-instance of Star Coloring.

Proof. For the forward direction, let g be a star coloring of (G, k, t). This implies
that no two vertices in V (KA) ∪ V (KB) are assigned the same color because of
the vertices u and v. Hence g is also a star coloring of (G�, k, t).

The reverse direction is trivial. Since G is a subgraph of G�, the star coloring
of (G�, k, t) is also a star coloring of (G, k, t). 
�
We are now ready to explain the steps of our algorithm in detail.

Step 1: Given an instance (G, k, t) of Star Coloring, we construct an auxil-
iary graph. The graph constructed after repeated application of Claim 1, Reduc-
tion Rule 1 and Claim 2, is the auxiliary graph G′. We now argue that the
neighborhood diversity of G′ is bounded by a function of t. Consider the parti-
tion {V (KA) | A ⊆ [t]} ∪ {{vi} | vi ∈ X} of V (G′). Notice that each clique type
KA of G′ is a clique type (see Sect. 3 for more details). That is, all the vertices in
KA have the same neighborhood in X. This is true because initially all vertices
in KA have the same neighborhood (by definition of twin cover) and during the
process of adding edges (Claims 1 and 2), either all the vertices in KA are made
adjacent to all the vertices in a type KB (A �= B) or none of them are adjacent
to any vertex in KB . Thus the number of such types is at most 2t. Including the
vertices of X, we have that the neighborhood diversity of G′ is at most 2t + t.

Step 2: We need to show that (G, k, t) is a yes-instance of Star Coloring if
and only if (G′, k, t) is a yes-instance of Star Coloring. This is accomplished
by the correctness of the Claims 1, 2 and the Reduction rule 1.

Step 3: The next step of the algorithm is to find a set of colors from [t′] that
can be assigned to the vertices in V \X. Towards this, for each A ⊆ [t], we guess
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a subset of colors DA ⊆ [t′] of size at most |V (KA)|, that can be assigned to the
vertices in the clique type KA in a star coloring of G (extending the coloring f
of X) that uses at most k colors. For the guess DA, we arbitrarily (as it does
not matter which vertices are assigned a specific color) assign colors from DA to
vertices in KA such that |DA| vertices in KA are colored distinctly. Given the
guess DA for each KA, we can check in 2O(t) time if the color set DA associated
with KA is indeed a proper coloring (considering the coloring f of X and its
neighboring types). In a valid guess, some vertices Q ⊆ V (G′) \ X are assigned
colors from [t′]. The uncolored vertices of G′ should be given a color from [k]\[t′].
Let g : X ∪ Q → [t′] be a coloring such that g(v) = f(v) if v ∈ X, and g(v) = �,
where � is the assigned color as per the above greedy assignment, if v ∈ Q

We now extend this partial coloring g of Q∪X to a full coloring of G′, where
the vertices in V (G′) \ (Q ∪ X) are assigned colors from [k] \ [t′]. Let B be the
subgraph of G′ obtained by deleting the vertices Q ∪ X from G′. Notice that B
has neighborhood diversity at most 2t.

Claim 3. There exists a star coloring of G′ extending g using at most k colors
if and only if there exists a proper coloring of B using at most k − t′ colors.

Proof. Let h : V (G′) → [k] be a star coloring of G′ such that h|Q∪X = g. Clearly
|h(B)| = |h(V \ (Q ∪ X))| ≤ k − t′. That is, h restricted to the vertices of B is a
proper coloring of B which uses at most k − t′ colors.

For the reverse direction, let c : V (B) → [k − t′] be a proper coloring. We
construct a coloring h : V (G′) → [k] using the coloring c as follows: h(v) = c(v)
if v ∈ B, and h(v) = g(v) otherwise. We show that h is a star coloring of G′.
Suppose not, without loss of generality, let u1 − u2 − u3 − u4 be a bi-colored
P4, with u1 ∈ KA1 , u2 ∈ X, u3 ∈ KA2 and u4 ∈ X (notice that this is the only
way a bi-colored P4 exists), for some A1, A2 ⊆ [t]. That is, c(u1) = c(u3) and
c(u2) = c(u4). Also, A1 �= A2 because of the proper coloring. If this were the
case, we would have applied Claim 2 as KA1 and KA2 satisfy the assumptions
along with coloring of the vertices u2 and u4 in X. As a consequence, each vertex
in KA1 would have been adjacent to each vertex in KA2 . 
�

Step 4: It is known that proper coloring is FPT parameterized by neighborhood
diversity [12]. The algorithm in [12] uses integer linear programming with 22k

variables, where k is the neighborhood diversity of the graph. Since B has neigh-
borhood diversity at most 2t, we have that the number of variables q ≤ 22

t

. We
use the algorithm to test whether B has a proper coloring using at most k − t′

colors.

Running Time: Step 1 of the algorithm takes O(tt) time to guess a coloring of
X. Reduction Rule 1, Claims 1 and 2 can be applied in 2O(t)nO(1) time. Step 2 can
be processed in 2O(t)nO(1) time. Step 3 involves guessing the colors that the clique
types can take from the colors used in X and this takes O(22

t

) time. Constructing
B takes polynomial time. Step 4 is applying the FPT algorithm parameterized
by neighborhood diversity from [12] on B which takes O(q2.5q+o(q)n) time where
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q ≤ 22
t

. The latter dominates the running time and hence the running time of
the algorithm is O(22

t

q2.5q+o(q)nO(1)), where q ≤ 22
t

.
This completes the proof of Theorem 3.

5 Clique-Width

Theorem 4 (�). Given a graph G, its nice w-expression and an integer
k, we can decide if there exists a star coloring of G using k colors in
O((3w3k2+w2k2

)2nO(1)) time.

6 Conclusion

In this paper, we study the parameterized complexity of Star Coloring with
respect to several structural graph parameters. We show that Star Coloring
is FPT when parameterized by (a) neighborhood diversity, (b) twin cover, and
(c) the combined parameter clique-width and the number of colors.

We conclude the paper with the following open problems for further research.

1. What is the parameterized complexity of Star Coloring when parameter-
ized by distance to cluster or distance to co-cluster?

2. It is known that graph coloring admits a polynomial kernel when parameter-
ized by distance to clique [16]. Does Star Coloring also admit a polynomial
kernel parameterized by distance to clique?
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Abstract. In this paper, we prove that the G-generalized join of com-
plete or totally disconnected graphs is perfect if and only if G is per-
fect. As a result, we deduce some results proved in (Saeid et al. Rocky
Mountain J. Math. 48(3) (2018), 729–751) and (Nilesh et al. arXiv (2022),
arXiv:2205.04916). We also characterize rings, posets and reduced semi-
groups whose zero-divisor graphs and ideal based zero-divisor graphs are
perfect. As a consequence, we characterize distributive lattices with 0,
reduced semirings and boolean rings whose zero divisor graphs are perfect,
which are proved in (Patil et al. in Discrete Math. 340: 740–745, 2017).

Keywords: Perfect graphs · G-generalized join of graphs ·
Zero-Divisor Graphs

1 Introduction

All the graphs considered in the paper are finite, simple and undirected. Let
G = (V (G), E(G)) be a graph. For v ∈ V (G) and S ⊆ V (G), let NG(v) denote the
open neighborhood of v in G and 〈S〉 denote the subgraph induced by S. Let G
denote the complement of a graph G. A proper k-coloring of a graph G is a func-
tion from V (G) into a set of k colors such that no two adjacent vertices receive
the same color. The chromatic number of a graph G, denoted by χ(G), is the least
positive integer k such that there exists a proper k-coloring of G. A clique in a
graph G is a complete subgraph of G. The clique number of G is the largest size of
a clique in G and it is denoted by ω(G). Let G be a graph with V (G) = {u1,
u2, . . . , un} and H1,H2, . . . , Hn be pairwise disjoint graphs. The G-generalized
join graph, denoted by G[H1,H2, . . . , Hn], of H1,H2, . . . , Hn is the graph
obtained by replacing each vertex ui of G by Hi and joining each vertex of Hi to
each vertex of Hj by an edge if ui is adjacent to uj in G. If Hi

∼= H, for 1 ≤ i ≤ n,
then G[H1,H2, . . . , Hn] becomes the standard lexicographic product G[H].

For a graph G, we define a relation ∼G on V (G) as follows: For any x, y ∈ V (G),
define x∼G y if and only if NG(x) = NG(y). Clearly, ∼G is an equivalence relation
on V (G). Let [x] be the equivalence class which contains x and S be the set of all
equivalence classes of this relation ∼G. Based on this equivalence classes we define
the reduced graph Gr of a graph G as follows. The reduced graph Gr of G (defined
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Bagchi and R. Muthu (Eds.): CALDAM 2023, LNCS 13947, pp. 172–183, 2023.
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in [13]) is the graph with vertex set V (Gr) = S and two distinct vertices [x] and
[y] are adjacent in Gr if and only if x and y are adjacent in G.

Note that if V (Gr) =
{
[x1], [x2], . . . , [xk]

}
, then G is the Gr-generalized join

of 〈[x1]〉 , 〈[x2]〉 , . . . , 〈[xk]〉, that is, G = Gr

[ 〈[x1]〉 , 〈[x2]〉 , . . . , 〈[xk]〉 ]
and each

[xi] is an independent subset of G (that is, 〈[xi]〉 has no edge). Clearly, Gr is
isomorphic to an induced subgraph of G. It is easy to observe the following
observation.
Observation 1. If Gr is the reduced graph of G with ω(Gr) = χ(Gr), then
χ(G) = ω(Gr).

Let G be a graph with ω(G) = k, and let Δk(G) be the set of all the vertices
of a graph G which lie in some clique of size k of G. A connected graph G is
called a generalized complete k-partite graph (see [13]) if the vertex set V (G) of
G is a disjoint union of A and H satisfying the following conditions:

(1) A = Δk(G) and the subgraph induced by A is a complete k-partite graph
with parts, say, Ai, i = 1, 2, . . . , k.

(2) For any h ∈ H and i ∈ {1, 2, . . . , k}, h is adjacent to some vertex of Ai if
and only if h is adjacent to any vertex of Ai.
Set W (h) = {1 ≤ i ≤ k |N(h) ∩ Ai 	= ∅} for any h ∈ H.

(3) For any h1, h2 ∈ H,h1 is adjacent to h2 if and only if W (h1) ∪ W (h2) =
{1, 2, . . . , k}.

A graph G is called a compact graph (see [13]) if G contains no isolated vertices
and for each pair x, y of non-adjacent vertices of G, there is a vertex z in G with
N(x) ∪ N(y) ⊆ N(z). A graph G is said to be k-compact if it is compact and
ω(G) = k.

Throughout this paper, rings are finite non-zero commutative rings with
unity. Let R be a ring. A non-zero element x of R is said to be a zero-divisor
if there exists a non-zero element y of R such that xy = 0. A non-zero element
u of R is unit in R if there exists v in R such that uv = 1. For x ∈ R, the
annihilator of x is the set Ann(x) = {y ∈ R | xy = 0}. A ring R is said to
be local if it has unique maximal ideal M . The nilradical of a ring R is the set
J = {x ∈ R : xt = 0, for some positive integer t}. The index of nilpotency of J is
the least positive integer m for which Jm = {0}, where Jm = JJ . . . J (m-times).
A ring R is said to be reduced if J = {0}. A ring is said to be indecomposable
if it can not be written as a direct product of two rings. Let Zn be the ring of
integer modulo n.

For any ring R, in [6], Beck associated a simple graph with R whose vertices
are the elements of R and any two distinct vertices x and y are adjacent if and
only if xy = 0 in R. Beck conjectured that (see [6]) the chromatic number and
clique number of this graph are the same and this was disproved by Anderson and
Naseer in [2] (also, see [10]). It can be observed that for the graph associated
with the ring, the vertex 0 is adjacent to every other vertex. Anderson and
Livingston in [5] slightly modified the definition of the graph associated with a
ring by considering the zero-divisors as the vertices and any two distinct vertices
x and y are adjacent if and only if xy = 0 in R. They called this zero-divisor
graph of the ring R and it is denoted by Γ (R). Zero-divisor graphs have been
extensively studied in the past. This can be seen in [1,3,4,11,20].
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The following definitions and results can be found in [4,20]. For x, y ∈ R,
define x∼R y if and only if Ann(x) = Ann(y). It is proved in [4] that the relation
∼R is an equivalence relation on R. For x ∈ R, let Dx = {r ∈ R | x∼R r}
be the equivalence class of x. Let RE = {Dx1 ,Dx2 , . . . , Dxk

} be the set of all
equivalence classes of the relation ∼R. The compressed zero-divisor graph ΓE(R)
of R (defined in [20]) is a simple graph with vertex set RE\{D0,D1} and two
distinct vertices Dx and Dy are adjacent if and only if xy = 0. The following
result can be found in [18].

Theorem 1 [18]. If R is a ring, then

(i) Γ (R) ∼= ΓE(R)[〈Dx1〉, 〈Dx2〉, . . . , 〈Dxk−2〉], where Dxi
	= D0,D1, for 1 ≤

i ≤ k − 2,
(ii) 〈Dxi

〉 is complete if and only if x2
i = 0, and

(iii) 〈Dxi
〉 is totally disconnected (that is, 〈Dxi

〉 has no edge) if and only if
x2

i 	= 0.

The following result is proved in [3].

Theorem 2 [3]. If R is a non-zero reduced ring, then there exists a positive
integer k such that the compressed zero-divisor graph ΓE(R) ∼= Γ (Zk

2), where
Zk
2 = Z2 × Z2 × . . . × Z2 (k-times).

In [9], Hala and Jukl introduced the concept of the zero-divisor graph of a
poset. Let (P,≤) be a finite poset with the least element 0. For any a, b ∈ P ,
denote L(a, b) = {c ∈ P | c ≤ a and c ≤ b}. A non-zero element a ∈ P is said to
be a zero-divisor if L(a, b) = {0} for some 0 	= b ∈ P . We say a non-zero element
a ∈ P is an atom (primitive) if for any 0 	= b ∈ P, b ≤ a implies a = b. The zero-
divisor graph Γ (P ) of a poset P is a graph whose vertex set V (Γ (P )) consists
of the zero-divisors of P , in which a is adjacent to b if and only if L(a, b) = {0}.
It is shown in [9] that for any poset P , the clique number and the chromatic
number of Γ (P ) are the same.

By a semigroup, we mean a finite commutative semigroup with the zero
element 0. A semigroup S is said to be reduced if for any a ∈ S and any positive
integer n, an = 0 implies a = 0. A semigroup S is said to be idempotent (it is a
so-called semilattice, see [13]) if for each a ∈ S, a2 = a.

We define a zero-divisor graph of a semigroup in a similar manner in the
definition of zero-divisor graph of a ring.

Let R = Zk
2 . Clearly, it is a Boolean ring and it becomes a poset by defining

a ≤ b iff ab = a for any a, b ∈ R. Note that, the zero-divisor graphs of R as a
ring (or a semigroup) and as a poset coincide. Let H be a subgraph of Γ (Zk

2).
We say that H is minimal (see [13]) if H is an induced subgraph of Γ (Zk

2) which
contains all the atoms of the poset Zk

2 , and we say H is minimal closed (see [13])
if H is minimal and V (H) ∪ {0} is a sub-semigroup of Zk

2 . The following results
can be found in [13].

Theorem 3 [13]. Let G be a simple graph with ω(G) = k. Then the following
statements are equivalent:
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(i) G is the zero-divisor graph of a poset.
(ii) G is a k-compact graph.
(iii) G is a generalized complete k-partite graph.
(iv) The reduced graph Gr of G is isomorphic to a minimal subgraph of Γ (Zk

2).

Theorem 4 [13]. Let G be a simple graph with ω(G) = k. Then the following
statements are equivalent:

(i) G is the zero-divisor graph of a reduced semigroup with 0.
(ii) G is a generalized complete k-partite graph such that for any non-adjacent

vertices a, b ∈ V (G), there is a vertex c ∈ V (G) with W (c) = W (a)∪W (b).
(iii) The reduced graph Gr of G is isomorphic to a minimal closed subgraph of

Γ (Zk
2).

(iv) G is the zero-divisor graph of a semilattice (or equivalently, idempotent
semigroup) with 0.

A graph G is perfect if ω(H) = χ(H) for every induced subgraph H of G.
The following result was proved by Lovasz, see [12].

Theorem 5 [12]. The complement of every perfect graph is perfect.

In [7], Berge conjectured the following and it was proved by Chudnovsky et
al., see [8].

Theorem 6 (Strong Perfect Graph Theorem [8]). A graph G is perfect if
and only if it does not contain an induced subgraph which is either an odd cycle
of length at least 5 or the complement of such a cycle.

The paper mainly deals with the results on perfect graph using the Strong Perfect
Graph Theorem. As a result, we deduced many known results in the literature.
This is precisely as follows.

In Sect. 2, we prove that the G-generalized join of complete graphs and totally
disconnected graphs is perfect if and only if G is perfect. As a consequence,
we deduce the results proved in [14] and [17] and prove that the lexicographic
product of a perfect graph and a complete graph and the lexicographic product
of a perfect graph and a complement of a complete graph are perfect.

In Sect. 3, we characterize rings, posets and reduced semigroups whose zero-
divisor graphs and ideal based zero-divisors are perfect. As a result, we char-
acterize distributive lattices with 0, reduced semirings and boolean rings whose
zero divisor graphs are perfect, which are proved in [15]. Further, we completely
characterize rings the ideal based zero-divisor graph of the ring Zn is perfect.

2 When a G-generalized Join of Complete and Totally
Disconnected Graphs is Perfect

In this section, we prove the following result on perfect graphs.
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Theorem 7. If G is a graph with vertex set V (G) = {v1, v2, . . . , vn} and H1,H2,
. . . ,Hn are graphs such that each Hi is either complete or a totally disconnected
graph, then G is perfect if and only if G[H1,H2, . . . , Hn] is perfect.

Proof. Let G′ = G[H1,H2, . . . , Hn]. It is enough to prove if G is perfect, then
G′ is perfect. Suppose G′ is not perfect, then by Theorem 6, G′ contains either
an odd cycle of length at least 5 as an induced subgraph or the complement of
an odd cycle of length at least 5 as an induced subgraph.

Case 1. G′ contains an odd cycle C2k+1 as an induced subgraph, where k ≥ 2.
Let V (C2k+1) = {x0, x1, . . . , x2k} such that xi is adjacent to xi+1 (where the

addition in subscript is taken modulo 2k+1) and xi is not adjacent to xj , where
j 	= i−1, i+1. Suppose there exists 1 ≤ t ≤ n such that |V (C2k+1)∩V (Ht)| ≥ 2.

First, if there exists 0 ≤ i ≤ 2k such that xi, xi+1 ∈ V (Ht). Then Ht is
complete and hence xi−1 /∈ V (Ht) (otherwise, C2k+1 would not be induced in
G′). Thus there exists 1 ≤ s ≤ n with s 	= t such that xi−1 ∈ V (Hs) and hence
xi−1 is adjacent to xi+1, which is a contradiction.

Next, if there exist 0 ≤ i, j ≤ 2n such that j 	= i−1, i, i+1 and xi, xj ∈ V (Ht).
Then Ht has no edge in G′ and xi+1, xi−1 /∈ V (Ht). Suppose if j 	= i + 2, then
there exists 1 ≤ s ≤ n such that s 	= t and xi+1 ∈ V (Hs) and hence xj is adjacent
to xi+1, (because of xixi+1 ∈ E(C2k+1)) which is a contradiction. Therefore, if
j = i + 2, then there exists 1 ≤ s ≤ n such that s 	= t and xi−1 ∈ V (Hs) and
therefore xi−1 is adjacent to xj , which is again a contradiction.

Hence |V (C2k+1)∩V (Hi)| = 1, for 0 ≤ i ≤ 2k which implies that G contains
an odd cycle of length at least 5 as an induced subgraph, which is a contradiction.

Case 2. G′ contains a complement of an odd cycle of length at least 5 as an
induced subgraph.

Let C2k+1 be the complement of the odd cycle C2k+1 as an induced subgraph
of G′, where k ≥ 2 with V (C2k+1) = {x0, x1, . . . , x2k} such that xi is not adjacent
to xj for j = i − 1, i + 1 and xi is adjacent to xj , for j 	= i− 1, i, i + 1 (where the
addition in subscripts is taken modulo 2k + 1). Suppose there exists 1 ≤ t ≤ n
such that |V (C2k+1) ∩ V (Ht)| ≥ 2.

First, if there exists 0 ≤ i ≤ 2k such that xi, xi+1 ∈ V (Ht). Then Ht has
no edge and xi−1 /∈ Ht and hence there exists 1 ≤ s ≤ n with s 	= t such that
xi−1 ∈ V (Hs). But xi+1 is adjacent to xi−1 and hence xi is adjacent to xi−1,
which is a contradiction.

Next, if there exist 0 ≤ i, j ≤ 2n such that j 	= i−1, i, i+1 and xi, xj ∈ V (Ht).
Then Ht is complete and xi−1, xi+1 /∈ V (Ht). Suppose if j 	= i + 2, then there
exists 1 ≤ s ≤ n such that s 	= t and xi+1 ∈ V (Hs). But xj is adjacent to xi+1

and therefore xi is adjacent to xi+1, which is impossible. Hence, if j = i + 2,
then there exists 1 ≤ s ≤ n such that s 	= t and xi−1 ∈ V (Hs) and therefore
xi−1 is adjacent xi, which is again a contradiction.

Thus |V (C2k+1) ∩ V (Hi)| = 1, for 0 ≤ i ≤ 2k, which implies that G contains
a complement of an odd cycle of length at least 5 as an induced, which is a
contradiction.

The following corollary is an immediate consequence of Theorem 7.
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Corollary 1. If G is perfect and n is a positive integer, then G[Kn] and G[Kc
n]

are perfect.

Proof. As G[Kn] ∼= G[Kn,Kn, . . . ,Kn] and G[Kc
n] ∼= G[Kc

n,Kc
n, . . . ,Kc

n], the
result follows from Theorem 7.

The following result proved in [17] is deduced from Theorem 7.

Corollary 2 (Corollary 3.2, [17]). A graph G is perfect if and only if it’s
reduced graph Gr is perfect.

The following relation is defined on a graph G in [14]. For x, y ∈ V (G), define
x ≈ y if and only if either x = y or xy ∈ E(G) and N(x)\{y} = N(y)\{x}.
Clearly, it is an equivalence relation. Let [x] be the equivalence class of x, and
S = {[x1], [x2], . . . , [xr]} be the set of all equivalence classes of the relation ≈.
Based on these equivalence classes of the relation ≈, we defined (This can be seen
in [14]) the graph Gred with vertex set V (Gred) = S and two distinct vertices
[x] and [y] are adjacent in Gred if and only if x and y are adjacent in G. Clearly,
for any graph G, G = Gred[〈[x1]〉, 〈[x2]〉, . . . , 〈[xr]〉] and 〈[xi]〉 is complete, for
1 ≤ i ≤ r.

By Theorem 7, we deduce the following result proved in [14].

Corollary 3 (Theorem 4.4, [14]). A graph is perfect if and only if Gred is
perfect.

3 Perfect Zero-Divisor Graph of a Ring

In this section, we ask the following interesting question. When does the zero-
divisor graph of a ring R perfect? To answer this question, we provide a necessary
and sufficient condition for which the zero-divisor graph of a ring is perfect.

Theorem 8. If R is a ring, then Γ (R) is perfect if and only if its compressed
zero-divisor graph ΓE(R) of R is perfect.

Proof. The result follows from Theorems 1 and 7.

Let R1, R2, . . . , Rk be rings. For xj ∈ R1 × R2 × . . . × Rk, there exists a unique
xj(i) ∈ Ri, for 1 ≤ i ≤ k, such that xj = (xj(1), xj(2), . . . , xj(k)).

Note that there are several rings satisfying Beck’s conjecture; see [2,4,6,9,10,
20]. One of them is a finite reduced ring. Using Observation 1, we give a shorter
proof of this result as follows.

Corollary 4 [6,20]. If R is a non-zero reduced ring, then χ(Γ (R)) = ω(Γ (R)).

Proof. By Observation 1 and Theorem 2, it is enough to prove ω(Γ (Zk
2)) =

χ(Γ (Zk
2)). Clearly {ei | 1 ≤ i ≤ k}, where ei = (0, . . . , 0, 1, 0, . . . , 0), induces a

clique. Color first ei by i, for 1 ≤ i ≤ k.
For any x = (x(1), x(2), . . . , x(k)) ∈ V (Γ (Zk

2))\{ei | 1 ≤ i ≤ k}, there exists
a least j with 1 ≤ j ≤ k, such that x(i) = 0 for 1 ≤ i ≤ j − 1 and x(j) = 1.
Color x by j, then the resulting coloring is a proper k-coloring of Γ (Zk

2).
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The following result gives a necessary condition for a product of rings whose
zero-divisor graphs are perfect.

Theorem 9. Let R = R1 ×R2 × . . .×Rk, where Ri’s are indecomposable rings.
If Γ (R) is perfect, then k ≤ 4.

Proof. Suppose k ≥ 5. Then the set of vertices {(1, 1, 0, 0, 0, 0, . . . , 0), (0, 0, 1, 1, 0,
0, . . . , 0), (1, 0, 0, 0, 1, 0, . . . , 0), (0, 1, 0, 1, 0, 0, . . . , 0), (0, 0, 1, 0, 1, 0, . . . , 0)} forms
an induced cycle of length 5. By Theorem 6, we get a contradiction.

Next, let us prove the following result.

Theorem 10. If R = Z4
2 (= Z2 × Z2 × Z2 × Z2), then Γ (R) is perfect.

Proof. Suppose Γ (R) is not perfect. Then, by Theorem 6, we consider the fol-
lowing cases.

Case 1. Γ (R) contains an odd cycle of length at least 5 as an induced subgraph.
Let C2r+1 be an induced cycle in Γ (R) of length 2r + 1 with the vertex

set {x0, x1, . . . , x2r}, where r ≥ 2. If exactly one co-ordinate of xi is non-zero,
for 0 ≤ i ≤ 2r, then 2r + 1 ≤ 4, a contradiction. Therefore there exists an xi

containing at least two non-zero co-ordinates. WLOG, xi = (1, 1, xi(3), xi(4)),
for some i, 0 ≤ i ≤ 2r. Then the 1st two coordinates of xi−1, xi+1 are zeros,
that is, xi−1(1) = xi−1(2) = xi+1(1) = xi+1(2) = 0. Since xi−1 and xi+1 are
not adjacent, either the third coordinate or forth coordinate of xi−1 and xi+1

are non-zero. WLOG, xi−1(3) = xi+1(3) = 1. If xi−1(4) = 1, then xi+1(4) = 0,
as xi−1 	= xi+1 and hence xi−1 = (0, 0, 1, 1) and xi+1 = (0, 0, 1, 0). Since xi−2 is
adjacent to xi−1, we have xi−2 = (xi−2(1), xi−2(2), 0, 0). Thus xi−2 is adjacent to
xi+1, which is a contradiction. Hence xi−1(4) = 0, which implies that xi+1(4) = 1
and thus xi+1 = (0, 0, 1, 1) and xi−1 = (0, 0, 1, 0). Since xi+2 is adjacent xi+1,
we have xi+2 = (xi+2(1), xi+2(2), 0, 0) and hence xi+2 is adjacent to xi−1, which
is a contradiction.

Case 2. Γ (R) contains the complement of an odd cycle of length at least 5 as
an induced subgraph.

Let C2r+1 be an induced subgraph of Γ (R) with vertex set {x0, x1, . . . , x2r},
where r ≥ 2. If no xi contains exactly two coordinates that are non-zeros, then
there exists j, 1 ≤ j ≤ k such that xj contains exactly three that coordinates
that are non-zero (otherwise 2r + 1 ≤ 4), which is impossible. Thus there exists
i, 1 ≤ i ≤ k such that xi contains exactly two coordinates that are non-zeros.
WLOG, xi = (1, 1, xi(3), xi(4)). Since xi is adjacent to 2r − 2 vertices in C2r+1,
namely xi+2, xi+3, . . . , xi+2r−1 (where the addition in subscripts taken modulo
2r+1), we have the 1st two coordinates of xi+2, xi+3, . . . , xi+2r−1 are zero’s and
hence xi+2, xi+3, . . . , xi+2r−1 ∈ {(0, 0, 1, 1), (0, 0, 1, 0), (0, 0, 0, 1)}. Thus 2r − 2 ≤
3, which implies 2r+1 ≤ 6. As it is an odd number and r ≥ 2, we have 2r+1 = 5.
Therefore C5

∼= C5. By Case 1, which is impossible.

The following result in [14] is a consequence of Theorems 9 and 10.
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Corollary 5 [14]. If R = Zk
2 , then Γ (R) is perfect if and only if k ≤ 4.

Proof. By Theorems 9 and 10, it is enough to prove that Γ (R) is perfect if k ≤ 3.
In this case we have |V (Γ (R))| ≤ 6, and hence Γ (R) does not contain a cycle of
length 5 as an induced subgraph of Γ (R) and, thus the result follows.

It is well-known that any finite non-zero reduced commutative ring R is
isomorphic to a finite direct product of finite fields, say Fp

α1
1

,Fp
α2
2

, . . . ,Fp
α�
�

,
where pi’s are prime numbers and αi’s are positive integers, that is R ∼= Fp

α1
1

×
Fp

α2
2

× . . . × Fp
α�
�

.
By Theorem 2, the compressed zero-divisor graph of a reduced ring R is

isomorphic to the zero-divisor graph of Zk
2 , for some k ≥ 1, that is ΓE(R) ∼=

Γ (Zk
2). So, the following result is a consequence of Theorem 9 and Corollary 5.

Theorem 11. If R ∼= Fp
α1
1

×Fp
α2
2

× . . .×Fp
α�
�

is a non-zero reduced ring, where
Fp

αi
i
’s are finite fields, then Γ (R) is perfect if and only if � ≤ 4.

Proof. The first part is clear from Theorem 9. For the second part, let us assume
that � ≤ 4. Then ω(Γ (R)) ≤ 4. By the above discussion, ΓE(R) ∼= Γ (Zk

2) for
some k ≥ 1. Suppose k ≥ 5, then Γ (Zk

2) contains a clique 〈{ei : 1 ≤ i ≤ k}〉 of
size at least 5 (where ei’s are defined in Corollary 4) and hence ω(Γ (R)) ≥ 5,
which is impossible. Thus k ≤ 4 and therefore, by Corollary 5 Γ (Zk

2) is perfect,
and hence Γ (R) is perfect by Theorem 8.

The following result in [15] is an immediate consequence of Corollary 5,
because every finite Boolean ring R is isomorphic to Zk

2 , for some k ≥ 1.

Corollary 6 [15]. Let R be a finite Boolean ring. Then the following are equiv-
alent,

(1) Γ (R) is perfect.
(2) Γ (R) does not contain K5 as a subgraph.
(3) |R| ≤ 24.

3.1 Perfect Ideal Based Zero-Divisor Graph of Rings

In this subsection, we characterize rings whose ideal based zero-divisor graphs
are perfect. In particular, under what values of n, the ideal based zero divisor
graph of the ring Zn of integers modulo n is perfect.

The following observation is observed in [16] and [21].

(i) If I is an ideal of R and x1 + I, x2 + I, . . . , xk + I are the distinct co-
sets of I, which are zero-divisors of the quotient ring R

I , then ΓI(R) is a
Γ (R

I )-generalized join of 〈x1 + I〉, 〈x2 + I〉, . . . , 〈xk + I〉, that is,

ΓI(R) = Γ
(R

I

)[〈x1 + I〉, 〈x2 + I〉, . . . , 〈xk + I〉],

(ii) 〈xi + I〉 is a complete subgraph of ΓI(R) if and only if x2
i ∈ I,
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(iii) 〈xi + I〉 is a totally disconnected subgraph of ΓI(R) if and only if x2
i /∈ I.

Hence, by Theorems 7 and 8, we have

Theorem 12. Let I be an ideal of R, then the following are equivalent,

(i) ΓI(R) is perfect;
(ii) Γ (R

I ) is perfect;
(iii) ΓE(R

I ) is perfect.

We recall the following result proved in [19].

Theorem 13 [19]. The zero divisor graph Γ (Zn) of a ring Zn is perfect if and
only if n = pa, paqb, paqr, or pqrs, where p, q, r and s are distinct primes and a
and b are positive integers.

It is well known that if I is an ideal of Zn generated by m, then Zn

I
∼= Zm. So,

we have

Corollary 7. If I is an ideal of Zn generated by m, then ΓI(Zn) is perfect if
and only if m = pa, paqb, paqr, or pqrs, where p, q, r and s are distinct primes
and a and b are positive integers.

Proof. By Theorems 12 and 13, ΓI(Zn) is perfect if and only if Γ (Zm) is perfect
if and only if m = pa, paqb, paqr, or pqrs.

3.2 Zero-Divisor Graph of Rings, Reduced Semigroups and Posets

In [13], it is shown that the chromatic number is equal to the clique number
of zero-divisor graphs of poset, reduced semiring with 0 and reduced semigroup
with 0. So it is interesting to consider the following problem.

Problem. Characterize the posets, reduced rings and reduced semigroups whose
zero-divisor graphs are perfect.

Now we characterize posets whose zero-divisor graphs are perfect using The-
orem 3.

Theorem 14. Let G be a zero-divisor graph of a poset with 0 and ω(G) = k.
Then the following are equivalent,

(i) G is perfect.
(ii) The reduced graph Gr of G is perfect.
(iii) The reduced graph Hr of H (where H is in the Definition of generalized

complete k-partite graph) is perfect.

Proof. (i) ⇔ (ii) It follows from Corollary 2.
(ii) ⇒ (iii) It follows from the definition of perfect.
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(iii) ⇒ (ii) Suppose Gr is not perfect graph, then by the Theorem 6, Gr contains
an odd cycle of length at least 5 as an induced subgraph or the complement
of an odd cycle of length at least 5 as an induced subgraph.

Let e1, e2, . . . , ek be the atoms of G.

Case 1. Gr contains an odd cycle of length at least 5 as an induced subgraph.
Let C2s+1 be an odd cycle of Gr as an induced subgraph with vertex set

V (C2s+1) = {a0, a1 . . . , a2s}, where s ≥ 2. Then V (C2s+1) is not a subset of
V (Hr). As the atoms forms a clique, we have |V (C2s+1) ∩ {e1, e2, . . . , ek}| ≤ 2.
First if |V (C2s+1) ∩ {e1, e2, . . . , ek}| = 2, then there exist i, j ∈ {1, 2, . . . , k} and
� ∈ {0, 1, 2, . . . , 2s} such that a� = ei and a�+1 = ej . Since a�+2 and a�+3 are
not adjacent to a� = ei, we have i /∈ W (a�+2) ∪ W (a�+3) and hence W (a�+2) ∪
W (a�+3) 	= {1, 2, . . . , k}, which is a contradiction to the definition of generalized
complete k-partite graph. Next if |V (C2s+1) ∩ {e1, e2, . . . , ek}| = 1, then we get
a contradiction in a similar way as above. Thus V (C2s+1) ∩ {e1, e2, . . . , ek} = ∅
and hence C2s+1 is an induced odd cycle of Hr, which is a contradiction.

Case 2. Gr contains the complement of an odd cycle of length at least 5 as an
induced subgraph.

Let C2s+1 be the complement of the odd cycle C2s+1 in Gr with vertex set
V (C2s+1) = {a0, a1, . . . , a2s}, where s ≥ 2. If V (C2s+1) ∩ {e1, e2, . . . , ek} 	= ∅,
then there exists i ∈ {1, 2, . . . , k} such that ei = a�, for some � ∈ {0, 1, 2, . . . , 2s}.
Then a�−1, a�+1 /∈ {e1, e2, . . . , ek} and they are not adjacent to ei and hence i /∈
W (a�−1) ∪ W (a�+1), which is impossible. Thus, V (C2s+1) ∩ {e1, e2, . . . , ek} = ∅
and therefore C2s+1 lies in Hr, which is a contradiction.

Next, we present equivalent conditions for a zero-divisor graph of a reduced
semigroup to be perfect using Theorem 4.

Theorem 15. Let G be a zero-divisor graph of a reduced semigroup with ω(G) =
k. Then the following are equivalent,

(i) G is perfect.
(ii) The reduced graph Gr of G is perfect.
(iii) The reduced graph Hr of H (where H is given in the definition of generalized

complete k-partite graph) is perfect.

Proof. The proof is similar to that of Theorem 14.

A lattice L = (L,∧,∨) with 0 is distributive if for x, y, z ∈ L, x ∧ (y ∨ z) =
(x ∧ y) ∨ (x ∧ z). As every lattice is a poset, we have the following result proved
in [15].

Corollary 8 [15]. Let L be a distributive lattice with 0. Then the following are
equivalent,

(i) Γ (L) is perfect.
(ii) Γ (L) contains no induced cycle of length 5.
(iii) ω(Γ (L)) ≤ 4, (equivalently, the number of atoms of Γ (L) is at most 4).
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Proof. (i) ⇒ (ii) It is trivial from the definition of perfect graph.
(ii) ⇒ (iii) If 〈{a1, a2, . . . , as}〉 is a clique in Γ (L), where s ≥ 5, then the subgraph
induced by {a1 ∨a2, a3 ∨a4, a1 ∨a5, a2 ∨a3, a4 ∨a5} is an induced cycle of length
5 (as L is distributive) which is a contradiction.
(iii) ⇒ (i) Suppose Γ (L) is not perfect. Then by Theorem 14, the reduced sub-
graph Hr of H, defined in Theorem 14, is not perfect. By Theorem 6, Hr con-
tains an odd cycle of length at least 5 as an induced subgraph or its complement
of an odd cycle of length at least 5 as an induced subgraph. If Hr contains
an induced odd cycle C2s+1 with vertex set V (C2s+1) = {a1, a2, . . . , a2s+1},
where s ≥ 2. Then ai ∧ ai+1 = 0, for 1 ≤ i ≤ 2s, a2s+1 ∧ a1 = 0 and
ai ∧ aj 	= 0, for j 	= i − 1, i, i + 1 and hence the subgraph induced by
{a1 ∧ a3, a1 ∧ a4, a2 ∧ a4, a2 ∧ a5, a3 ∧ a2s+1} is a clique in Γ (L) of size 5, which
is a contradiction. Similarly if Hr contains the complement C2s+1 of an induced
odd cycle C2s+1 with vertex set V (C2s+1) = {a1, a2, . . . , a2s+1}, where s ≥ 2,
then the subgraph induced by {a1∧a2, a2∧a3, a3∧a4, a4∧a5, a5∧a1} is a clique
in Γ (L) of size 5, which is again a contradiction.

As every semiring is a semigroup and by Theorem 15, we have the following
result proved in [15].

Corollary 9 [15]. Let R be a reduced semiring with 0. Then the following are
equivalent,

(i) Γ (R) is perfect.
(ii) Γ (R) contains no induced cycle of length 5.
(iii) ω(Γ (R)) ≤ 4, (equivalently, the number of atoms of Γ (R) is at most 4).

Proof. The proof is similar to that of Corollary 8 by replacing ∨ and ∧ by
addition and multiplication, respectively.
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Abstract. A k-coupon coloring of a graph G without isolated vertices
is an assignment of colors from [k] = {1, 2, . . . , k} to the vertices of G
such that the neighborhood of every vertex of G contains vertices of all
colors from [k]. The maximum k for which a k-coupon coloring exists is
called the coupon coloring number of G. The Cayley graph Cay(Γ, C)
of a group Γ is a graph with vertex set Γ and edge set E(Cay(Γ, C)) =
{gh : hg−1 ∈ C}, where C is a subset of Γ that is closed under taking
inverses and does not contain the identity. Let R be a commutative ring
with unity. Then Cay(R+, Z∗(R)) is denoted by CAY(R), where R+ is
the additive group and Z∗(R) is the non-zero zero-divisors of R. For a
natural number n, the generalized Cayley graph, Γn

R is a simple graph
with vertex set Rn \ {0} and two distinct vertices X and Y are adjacent
if and only if there is a lower triangular matrix A over R whose entries on
the main diagonal are non-zero and such that AXT = Y T or AY T = XT ,
where BT is the transpose of the matrix B. In this paper, we have studied
the coupon coloring of CAY(R) and generalized Cayley graph Γn

R .

Keywords: Coupon coloring · Cayley graph · Generalized Cayley
graph

1 Introduction

The concept of coupon coloring number was introduced by Chen et al. in [6].
Let G be a graph without isolated vertices. A k-vertex coloring, or simply a
k-coloring of G is a mapping c from the vertex set of G to [k] = {1, 2, ..., k}. A
k-coupon coloring of a graph G is an assignment of colors from [k] = {1, 2, . . . , k}
to the vertices of G such that the neighborhood of every vertex of G contains
vertices of all colors from [k]. The maximum k for which a k-coupon coloring
exists is called the coupon coloring number of G and it is denote by χc(G).

Colors can be imagined as coupons of different types. The idea of coupon
coloring is to receive all different tokens from the neighbors of each vertex. The
concept can be applied to different practical problems. Suppose an information or
message is separated into mutually exhaustive parts and is assigned to different
members of a group. Each member is assigned only one part of these decomposed
parts. Members can be considered as vertices of a graph. Then the conditions of
coupon coloring ensures that each member gathers the whole piece of information
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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https://doi.org/10.1007/978-3-031-25211-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25211-2_14&domain=pdf
http://orcid.org/0000-0003-2712-3775
http://orcid.org/0000-0001-7895-5091
https://doi.org/10.1007/978-3-031-25211-2_14


On Coupon Coloring of Cayley Graphs 185

or message from her neighbors and the maximum k in coupon coloring is then
associated with maximizing the length of the original information. This concept
can be applied into problems in network science and one such application in
multi-robot network is given in [2].

Let G = (V,E) be a graph. D ⊆ V is a dominating set if every vertex in
V \D is adjacent to at least one vertex in D. Let G = (V,E) be a graph without
isolated vertices. D′ ⊆ V is a total dominating set (TDS) if every vertex of G
is adjacent to at least one vertex in D′. The minimum cardinality among all
the total dominating sets in G is called the total domination number, γt(G).
The coupon coloring number is also referred to as the total domatic number,
introduced in [4], which is the maximum number of disjoint total dominating
sets. Coupon coloring was studied by many authors [7,9,10]. In [10] Y Shi et
al. determined coupon coloring number of complete graphs, complete k-partite
graphs, wheels, cycles, unicyclic graphs and bicyclic graphs.

In this paper, we have studied the coupon coloring of Cayley graphs and
generalized Cayley graphs of finite commutative rings. Every finite commutative
ring can be written as a product of some finite local rings. The proof of this
result can be found in [5]. First, we found the exact coupon coloring number of
CAY(R). Further, we have studied the coupon coloring of Γn

R. We present some
bounds for the coupon coloring number of Γn

R in terms of |Z(R)| and |U(R)|.

2 Preliminaries

All graphs considered in this paper are simple, finite and undirected. As usual Kn

denotes the complete graph with n vertices. Let G be a graph without isolated
vertices. In a k-coupon coloring c of G, the neighborhood of a vertex must contain
vertices of all colors from [k]. Clearly, coupon coloring is an improper coloring
and χc(G) ≤ δ(G).

Let Γ be a group and let C be a subset of Γ that is closed under taking
inverses and does not contain the identity. Then the Cayley graph Cay(Γ,C) is
a graph with vertex set Γ and edge set

E(Cay(Γ,C)) = {gh : hg−1 ∈ C}.

Let Zn denote the additive group of integers modulo n. If C is a subset of Zn\{0},
then construct the graph Cay(Zn, C) as follows. The vertices of Cay(Zn, C) are
elements of Zn and (i, j) is an edge of Cay(Zn, C) if and only if j − i ∈ C.
The graph Cay(Zn, C) is called a circulant graph of order n, and C is called
its connection set. Let R be a commutative ring with unity, Z(R) be the set of
zero-divisors of R and U(R) be the set of units of R. Then the Cayley graph of R
with respect to its non-zero zero-divisors is the graph Cay(R+, Z∗(R)) denoted
by CAY(R), where Z∗(R) = Z(R)\{0}. This is the Cayley graph whose vertices
are all elements of the additive group R+ and in which two distinct vertices x
and y are joined by an edge if and only if x − y ∈ Z∗(R).

Let R be a commutative ring with identity element. For a natural number
n, Afkhami et al. [3] defined the generalized Cayley graph Γn

R in 2012. It is a
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simple graph with vertex set Rn \ {0} and two distinct vertices X and Y are
adjacent if and only if there is a lower triangular matrix A over R whose entries
on the main diagonal are non-zero and such that AXT = Y T or AY T = XT ,
where BT is the transpose of the matrix B.

The following results will be useful for the upcoming sections.

Theorem 1. [10] Let G be a complete graph with n vertices. Then

χc(G) =
⌊n

2

⌋
.

Theorem 2. [1] Let R be a ring. Then the following statements hold:

1. CAY(R) has no edge if and only if R is an integral domain.
2. If (R,M) is an Artinian local ring, then CAY(R) is a disjoint union of | RM |

copies of the complete graph K|M |.
3. CAY(R) cannot be a complete graph.
4. CAY(R) is a regular graph of degree |Z(R)− 1| with isomorphic components.

Theorem 3. [3] Let R be a commutative ring with unity. If X =
(x1, x2, . . . , xn), x1 ∈ U(R) and Y = (y1, y2, . . . , yn), y1 �= 0 are two vertices
of Γn

R, then X and Y are adjacent in Γn
R.

3 Coupon Coloring Number of CAY(R)

Coupon coloring is defined for graphs without isolated vertices. So, we consider
CAY(R), where R is a finite commutative ring which is not an integral domain.
If R is a finite local ring, then by Theorem 2, CAY(R) is the disjoint union of
| RM | copies of the complete graph K|M |. So, χc(CAY(R)) =

⌊
|M |
2

⌋
. The following

theorem gives the exact coupon coloring number of CAY(R), when R is a finite
commutative ring.

Theorem 4. Let R be a finite commutative ring and R ∼= R1 × R2 × · · · × Rn,
n > 1 be the local ring decomposition. If k = min{|Ri/mi| : i = 1, 2, . . . , n}, mi

be the maximal ideal of Ri, then

χc(CAY(R)) =
|R|
k

.

Proof. Assume that k = |R1/m1|. Let

R1/m1 = {rj + m1 : j = 1, 2, . . . , k}

Define Dt for each (n − 1)-tuple y(t) = (y(t)
2 , y

(t)
3 , . . . y

(t)
n ) ∈ R2 × · · · × Rn,

Dt = {(yj , y
(t)
2 , y

(t)
3 , . . . , y(t)

n ) : y′
js are distinct elements from the k cosets of m1}

So |Dt| = k and there are |R|
k such sets which are pairwise disjoint. Define

c : R →
[

|R|
k

]
by c(x) = t if x ∈ Dt. We claim that c is a coupon coloring
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of CAY(R). For let x ∈ R. Then x = (x1, x2 . . . , xn) and x1 ∈ rl + m1, for
some l ∈ {1, 2, . . . , k}. So there exists y = (y1, y

(t)
2 , y

(t)
3 , . . . , y

(t)
n ) ∈ Dt such that

y1 ∈ rl + m1. Then x1 − y1 ∈ m1 and x is adjacent to y. If x = y ∈ Dt, then x
is adjacent to all other elements of Dt, since x − y′ = (x1 − yj , 0, 0, . . . , 0) for all
y′ = (yj , y

(t)
2 , y

(t)
3 , . . . , y

(t)
n ) ∈ Dt. Hence the claim. So,

χc(CAY(R)) ≥ |R|
k

.

Let c be a k-coupon coloring of CAY(R) such that the color 1 is given to
at most k − 1 vertices. Suppose that S is the set of vertices with color 1. Since
mi has at least k cosets, for each i = 1, 2, . . . , n, there exists a coset rli + mi

of mi such that none of the elements of S has ith co-ordinate from rli + mi.
That is, if Ti = {(x1, x2, . . . , xn) ∈ R : xi ∈ rli + mi}, then S ∩ Ti = φ, for
all i = 1, 2, . . . , n. Consider the vertex z = (z1, z2, . . . , zn), zi ∈ rli + mi for all
i = 1, 2, . . . , n. Since c is a k-coupon coloring of CAY(R), there exists y ∈ S such
that y − z ∈ Z∗(R). That is, yj − zj ∈ Z(Rj) for some j. Then yj ∈ rlj +mj and
so y ∈ Tj , a contradiction. Hence in a k-coupon coloring of CAY(R) each color
must be given to at least k vertices and

χc(CAY(R)) ≤ |R|
k

.

Therefore, χc(CAY(R)) = |R|
k . 
�

4 Coupon Coloring Number of Γ n
R

In this section, we have studied the coupon coloring of generalized Cayley graphs
of finite commutative rings. If R �∼= Z2 is a field, then Γn

R is a union of n complete
graphs [3]. These n complete graphs are the graphs induced by Ci, for i =
1, 2, . . . , n, where Ci is the set of all vertices whose first non-zero components
are in the ith place. Therefore, χc(Γn

R) = min
{
χc(K|Ci|) : i = 1, 2, . . . , n

}
=

min
{⌊

|Ci|
2

⌋
: i = 1, 2, . . . , n

}
=

⌊
|Cn|
2

⌋
=

⌊
|R|−1

2

⌋
, since |Ci| = (|R| − 1)|R|n−i.

For the coupon coloring number, we have to find the maximum number of
disjoint total dominating sets of Γn

R. If R is not an integral domain, Selvakumar
[8] proved that {X = (x1, x2, . . . , xn), Y = (y1, y2, . . . , yn) : x1 ∈ U(R), y1 ∈
Z∗(R), y2 ∈ U(R)} is a total dominating set of Γn

R. Hereafter assume that R is
a finite commutative ring which is not an integral domain. So, there exists at
least one non-zero zero-divisor in R.

Theorem 5. Let R be a finite commutative ring and n > 1 be a positive integer.
Then

χc(Γn
R) ≥ (|Z(R)| − 1)|U(R)||R|n−2.
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Proof. Let X = (x1, x2, . . . , xn), Y = (y1, y2, . . . , yn), and let k = (|Z(R)| −
1)|U(R)||R|n−2. Consider the two element sets of the form

A =
{

X,Y : x1 ∈ U(R), x2 ∈ Z∗(R), y1 ∈ Z∗(R), y2 ∈ U(R)
}

Note that, for each pair (a, b) ∈ U(R) × Z∗(R),
{

X = (a, b, x3, x4, . . . , xn), Y = (b, a, x3, x4, . . . , xn)
}

are disjoint sets of the form A, for all (x3, x4, . . . , xn) ∈ Rn−2. So, there are
|R|n−2 disjoint sets of the form A, for each (a, b) ∈ U(R)× Z∗(R). Thus we can
have k sets of the form A. Name these k disjoint sets as A1, A2, . . . , Ak. Define
c : V (Γn

R) → [k] by

c(X) =

{
i if X ∈ Ai

1 otherwise.

Then c is a coupon coloring on Γn
R, since each Ai is a total dominating set of

Γn
R. Hence,

χc(Γn
R) ≥ k.


�
Lemma 1. Let R be a finite commutative ring and n > 1 be a positive integer.
In any k-coupon coloring of Γn

R, each color should be given to at least a vertex
of the form X = (x1, x2, . . . , xn) with x1 ∈ Z(R).

Proof. Let H be the set of all vertices with first co-ordinate is a zero divisor.
Suppose that there is a k-coupon coloring with none of the vertices of H has
color 1. Then the vertex Z = (0, z2, . . . , zn) has no neighbor with color 1. 
�

Suppose that Γn
R has a k-coupon coloring. Denote Ht as the set of all vertices

with color t ∈ {1, 2, . . . , k}. Then Ht must be a total dominating set of Γn
R for

all t = 1, 2, . . . , k.

Lemma 2. Suppose that Γn
R has a k-coupon coloring. If X = (0, x2, . . . , xn) ∈

Ht, then there is a Y = (y1, y2, . . . , yn) �= X with y1 ∈ Z(R) in Ht.

Proof. Suppose that X = (0, x2, . . . , xn) ∈ Ht and y1 /∈ Z(R) for all Y =
(y1, y2, . . . , yn) �= X in Ht. That is, y1 ∈ U(R) for all Y = (y1, y2, . . . , yn) �= X
in Ht. Then any vertex Z = (z1, z2, . . . , zn) with z1 �= 0 in Γn

R is adjacent to
a vertex Y with color t. But the vertex X has no neighbor with the color t, a
contradiction. 
�
Theorem 6. Let R be a finite commutative ring and n > 1 be a positive integer.
Then

χc(Γn
R) ≤ (|Z(R)| − 1)|R|n−1 +

⌊ |R|n−1

2

⌋
.
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Proof. Suppose that Γn
R has a k-coupon coloring. From Lemma 1, there is an

X = (x1, x2, . . . , xn) ∈ Ht, with x1 ∈ Z(R) in every Ht. So we can have at most
|Z(R)||R|n−1 such Ht’s. By Lemma 2, if X = (0, x2, . . . , xn) ∈ Ht, then there
is a Y = (y1, y2, . . . , yn) �= X with y1 ∈ Z(R) in Ht. Thus to get the maximum
number of color classes Ht, each Ht must contain either a vertex with non-zero
zero-divisor in first co-ordinate or two vertices with 0 in their first co-ordinate,
but not both. Hence we can have at most (|Z(R)|− 1)|R|n−1+

⌊
|R|n−1

2

⌋
distinct

color classes. 
�
Theorem 7. Suppose that Z(R) is an ideal of the finite commutative ring R and
n > 1 is a positive integer. If Γn

R has a k-coupon coloring, then there exist a vertex
X = (x1, x2, . . . , xn), x1 ∈ Z∗(R), x2 ∈ U(R) or a vertex X ′ = (0, x′

2, . . . , x
′
n) in

every Ht.

Proof. By Lemma 1, Ht must have a vertex with zero-divisor in its first co-
ordinate. Assume that y1 �= 0 for every Y = (y1, y2, . . . , yn) in Ht. Suppose that
the second co-ordinate is also a zero-divisor for every Y = (y1, y2, . . . , yn) in Ht

with y1 ∈ Z∗(R). Consider Z = (z1, z2, . . . , zn), z1 = 0, z2 ∈ U(R). Then there
must be an X = (x1, x2, . . . , xn) ∈ Ht with

⎛
⎜⎜⎜⎝

a 0 · · · 0
b c · · · 0

...
an1 an2 · · · ann

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x1

x2

...
xn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0
z2
...

zn

⎞
⎟⎟⎟⎠ (1)

or ⎛
⎜⎜⎜⎝

a′ 0 · · · 0
b′ c′ · · · 0

...
a′
n1 a′

n2 · · · a′
nn

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

0
z2
...

zn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

x1

x2

...
xn

⎞
⎟⎟⎟⎠ . (2)

Equation (2) is not possible, since x1 is non-zero. Since a �= 0, x1 ∈ Z∗(R).
Then there exists a ∈ Z∗(R) such that ax1 = 0. But bx1 + cx2 = z2 cannot be
a unit, since x1, x2 ∈ Z(R) and Z(R) is an ideal of R, z2 = bx1 + cx2 ∈ Z(R), a
contradiction. 
�

Next corollary follows from the proof of Theorem 6 and Theorem 7.

Corollary 1. Let R be a finite commutative ring and n > 1 be a positive integer.
If Z(R) is an ideal of R, then

χc(Γn
R) ≤ (|Z(R)| − 1)|U(R)||R|n−2 +

⌊ |R|n−1

2

⌋
.

Example: Consider a finite commutative ring R with Z(R) is an ideal of R and
n = 2. Let r = (|Z(R)| − 1)|U(R)|, s =

⌊
|U(R)|

2

⌋
.

A =
{

X = (x1, x2), Y = (y1, y2) : x1, y2 ∈ Z∗(R), y1, x2 ∈ U(R)
}
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B =

{
X = (0, x2), Y = (0, y2), Z = (x2, 0), V = (y2, 0) : x2, y2 ∈ U(R), x2 �= y2

}

Note that, there can be r disjoint sets of the form A and name them as Ai,
i = 1, 2, . . . , r. Similarly, there can be s disjoint sets of the form B and name
them as Bj for j = 1, 2, . . . , s. Clearly, Ai is a total dominating set for all
i = 1, 2, . . . , r. We claim that Bj is also a total dominating set of Γn

R. For, let
(a, b) ∈ V (Γn

R). If a �= 0, then (a, b) �= Z is adjacent to Z in Bj and Z is adjacent
to V . If a = 0, then b �= 0 and

(
b 0
0 x−1

2 b

)(
0
x2

)
=

(
0
b

)
.

So, if b �= x2, (a, b) is adjacent to (0, x2) and if b = x2, then (a, b) is adjacent to
(0, y2), (

x2 0
0 x−1

2 y2

) (
0
x2

)
=

(
0
y2

)
.

Thus Bj is a total dominating set for all j. Note that Ai ∩ Bj = φ for all i and
j. So there are r + s disjoint total dominating sets and

χc(Γ 2
R) ≥ (|Z(R)| − 1)|U(R)| +

⌊ |U(R)|
2

⌋
.

By the above corollary,

(|Z(R)| − 1)|U(R)| +
⌊ |U(R)|

2

⌋
≤ χc(Γ 2

R) ≤ (|Z(R)| − 1)|U(R)| +
⌊ |R|

2

⌋
,

since n = 2.
If R = Z4, then Z(R) = {0, 2}, U(R) = {1, 3} and 3 ≤ χc(Γ 2

Z4
) ≤ 4.

Here, A1 = {(2, 1), (1, 2)}, A2 = {(2, 3), (3, 2)}, B1 = {(0, 1), (0, 3), (1, 0), (3, 0)}.
Note that, C = {(0, 2), (2, 2), (1, 1)} is also a total dominating set. Therefore,
χc(Γ 2

Z4
) = 4. Hence, the bound in Corollary 1 is sharp.
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Abstract. The class of 2K2-free graphs has been well studied in vari-
ous contexts in the past. In this paper, we study the chromatic number
of {butterfly, hammer}-free graphs, a superclass of 2K2-free graphs and
show that a connected {butterfly, hammer}-free graph G with ω(G) �= 2
admits

(
ω+1
2

)
as a χ-binding function which is also the best available χ-

binding function for 2K2-free graphs. In addition, we show that if H ∈
{C4+Kp, P4+Kp}, then any {butterfly, hammer, H}-free graph G with
no components of clique size two admits a linear χ-binding function. Fur-
thermore, we also establish that any connected {butterfly, hammer, H}-
free graph G where H ∈ {(K1 ∪ K2) + Kp, 2K1 + Kp}, is perfect for
ω(G) ≥ 2p.

Keywords: Chromatic number · χ-binding function · 2K2-free graphs
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1 Introduction

All graphs considered in this paper are simple, finite and undirected. Let G be
a graph with vertex set V (G) and edge set E(G). For any positive integer k, a
proper k-coloring or simply k-coloring of a graph G is a mapping c : V (G) →
{1, 2, . . . , k} such that for any two adjacent vertices u, v ∈ V (G), c(u) �= c(v).
If a graph G admits a proper k-coloring, then G is said to be k-colorable. The
chromatic number, χ(G), of a graph G is the smallest k such that G is k-colorable.
In this paper, Kn, Pn and Cn denote the complete graph, the path and the cycle
on n vertices respectively. For T, S ⊆ V (G), let NS(T ) = N(T )∩S (where N(T )
denotes the set of all neighbors of T in G), let 〈T 〉 denote the subgraph induced
by T in G and let [T, S] denote the set of all edges in G with one end in T and
the other end in S. If every vertex in T is adjacent with every vertex in S, then
[T, S] is said to be complete. For any graph G, we write H 	 G if H is an induced
subgraph of G. A set S ⊆ V (G) is said to be an independent set (clique) if any
two vertices of S are non-adjacent (adjacent). The clique number of a graph G,
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is the size of a maximum clique in G and is denoted by ω(G). When there is
no ambiguity, ω(G) will be denoted by ω. A subset S of V (G) is known as a
dominating set if every vertex in V \S has a neighbor in S.

Let F be a family of graphs. We say that G is F-free if it contains no
induced subgraph which is isomorphic to a graph in F . For a fixed graph H, let
us denote the family of H-free graphs by G(H). For two vertex-disjoint graphs
G1 and G2, the join of G1 and G2, denoted by G1 + G2, is the graph whose
vertex set V (G1 + G2) = V (G1) ∪ V (G2) and the edge set E(G1 + G2) =
E(G1) ∪ E(G2) ∪ {xy : x ∈ V (G1), y ∈ V (G2)}.

A graph G is said to be perfect if χ(H) = ω(H), for every induced subgraph
H of G. A graph G is said to be a multisplit graph, if V (G) can be partitioned
into two subsets V1 and V2 such that V1 induces a complete multipartite graph
and V2 is an independent set in G. In particular, if V1 induces a complete graph,
then G is said to be a split graph. A hereditary graph class G is said to be
χ-bounded [11] if there is a function f (called a χ-binding function) such that
χ(G) ≤ f(ω(G)), for every G ∈ G. We say that the χ-binding function f is
special linear if f(x) = x + c, where c is a constant. There has been extensive
research done on χ-binding functions for various graph classes. See for instance,
[4,7,8,10,11,17,19,20]. Let us recall a famous result by P.Erdős.

Theorem 1 ([9]). For any positive integers k, l ≥ 3, there exists a graph G with
girth at least l and χ(G) ≥ k (girth of G is the length of the shortest cycle in
G).

As a consequence of Theorem 1, Gyárfás in [11] observed that there exists no
χ-binding function for G(H) whenever H contains a cycle. He further went on to
conjecture that G(H) is χ-bounded for every fixed forest H. One of the earlier
works in this direction, was done by S.Wagon in [20] where he showed that
the class of 2K2-free graphs admits

(
ω+1
2

)
as a χ-binding function. There has

been extensive studies on the class of 2K2-free graphs ; see for instance [2–
4,7,8,10,12,16,20]. He further extended this result to show that the class of
pK2-free graphs admit a χ-binding function of O(ω2p−2), when p ∈ N. In [5],
S. Dhanalakshmi et al. established the following structural characterization for
2K2-free graphs.

Theorem 2 ([5]). A connected graph is 2K2-free if and only if it is
{P5, butterfly, hammer}-free.

Theorem 2 brings to attention three specific superclasses of 2K2-free
graphs namely, {P5, hammer}-free graphs, {P5, butterfly}-free graphs and
{butterfly, hammer}-free graphs. In [3] Brause et al. showed that the class of
{P5, hammer}-free graphs admits the same χ-binding function as the class of
2K2-free graphs, namely

(
ω+1
2

)
. I. Schiermeyer in [18] established a cubic χ-

binding function for {P5, butterfly}-free graphs which was recently improved to
3
2 (ω2 − ω) by Wei Dong et al. in [6]. Finally, it remains to study the χ-binding
function for {butterfly, hammer}-free graphs.
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paw hammer butterfly HV N gem K1 + C4

Kp

2K1 +Kp

Kp

(K1 ∪ K2) +Kp

Kp

P4 +Kp

Kp

C4 +Kp

Fig. 1. Some special graphs

We begin this paper by showing that if G is a connected {butterfly,
hammer}-free graph with ω(G) �= 2, then G is χ-bounded and the
χ-binding function is same as the class of 2K2-free graphs. As a result the
connected {butterfly, hammer}-free graphs that are χ-unbounded should be
of clique size 2. In addition, we were able to show that if G is a connected
{butterfly, hammer}-free graph G with ω(G) �= 2 then V (G) can be parti-
tioned into four sets where three of them are independent and one induce a
2K2-free graph. As a consequence we see that for any graph H, if the class of
{2K2,H}-free graphs admits f as a χ-binding function then the class of con-
nected {butterfly, hammer,H}-free graphs G with ω(G) �= 2 will admit f +3 as
a χ-binding function. In [12] T. Karthick and S. Mishra posed a problem seeking
tight\linear chromatic bounds for {2K2,H}-free graphs for various H, where H
is a graph on t ≥ 6 vertices. We partially answer this question by providing linear
χ-bounds for {butterfly, hammer,H}-free graphs G which contain no compo-
nents of clique size two and where H ∈ {C4+Kp, P4+Kp, (K1∪K2)+Kp, 2K1+
Kp}. Some graphs that are considered as forbidden induced subgraphs in this
paper are given in Fig. 1. Notations and terminologies not mentioned here are
as in [21].

2 Preliminaries

Throughout this paper, we use a particular partition of the vertex set of a graph
G which was initially defined by S. Wagon in [20] and later improved by A.
P. Bharathi and S. A. Choudum in [1] as follows. Let A = {v1, v2, . . . , vω} be
a maximum clique of G. The lexicographic ordering on the set L = {(i, j) :
1 ≤ i < j ≤ ω} is defined in the following way. For two distinct ele-
ments (i1, j1), (i2, j2) ∈ L, we say that (i1, j1) precedes (i2, j2), denoted by
(i1, j1) <L (i2, j2) if either i1 < i2 or i1 = i2 and j1 < j2. For every (i, j) ∈ L,

let Ci,j = {v ∈ V (G)\A : v /∈ N(vi) and v /∈ N(vj)} \
{

∪
(i′,j′)<L(i,j)

Ci′,j′

}
. That
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is for (i, j) ∈ L, Ci,j consists of all the vertices v in V (G)\A such that i and j
are the least distinct positive integers for which vvi and vvj are not adjacent in
G. Clearly Ci,j ∩ Ci′,j′ = ∅ if (i, j) �= (i′, j′).

For 1 ≤ k ≤ ω, let us define Ik = {v ∈ V (G)\A : v ∈ N(vi), for every i ∈
{1, 2, . . . , ω}\{k}}. Clearly we see that [A\{vk}, Ik] is complete, for every k ∈
{1, 2, . . . , ω}. Since A is a maximum clique, for 1 ≤ k ≤ ω, Ik is an independent
set and for any x ∈ Ik, xvk /∈ E(G). Also for any (i, j) ∈ L and k ∈ {1, 2, . . . , ω},
from the defintion of Ci,j and Ik, we see that Ik∩Ci,j = ∅. In addition, each vertex
in V (G)\A is non-adjacent to at least one vertex in A. Hence those vertices will
be contained either in Ik for some k ∈ {1, 2, . . . , ω}, or in Ci,j for some (i, j) ∈ L.
Thus V (G) = A ∪ (

ω∪
k=1

Ik) ∪ ( ∪
(i,j)∈L

Ci,j). Throughout this paper we shall use

the partition V (G) = V1 ∪ V2, where V1 = ∪
1≤k≤ω

({vk} ∪ Ik) = ∪
1≤k≤ω

Uk and

V2 = ∪
(i,j)∈L

Ci,j .

Let us observe the following.

Fact 3 For every (i, j) ∈ L, if a ∈ Ci,j, then NA(a) ⊇ {v1, v2, . . . , vj}\{vi, vj}.
Proof. If a ∈ Ci,j , then i and j are the least distinct positive integers for which
vvi and vvj are not adjacent in G which implies vvk ∈ E(G) for every k ∈
{1, 2, . . . , j}\{i, j}.

3 {butterfly, hammer}-free graphs

In [4], Chung et al. proved the existence of a dominating maximum clique in a
connected 2K2-free graph G, when ω(G) ≥ 3. We begin Sect. 3 by showing that
if G is a connected graph in G(hammer), a superclass of 2K2-free graphs, with
ω(G) �= 2, then it contains a dominating ω-partite graph with clique number ω.

Theorem 4. If G is a connected hammer-free graph with ω(G) �= 2, then G
contains a dominating ω-partite graph with clique number ω.

Proof. Let G be a connected hammer-free graph. Clearly, 〈V1〉 is an ω-partite
graph such that ω(〈V1〉) = ω(G). We shall show that V1 is a dominating set of
G. For ω(G) = 1, there is nothing to prove. So let us assume that ω(G) ≥ 3.
Suppose there exists x ∈ V2 such that [x, V1] = ∅, then there exists y ∈ V2 such
that [y, V1] �= ∅ and x and y are connected by a path. Let y′ ∈ V2 such that
[y′, V1] �= ∅ and [x′, V1] = ∅ for every x′ ∈ V2 such that d(x, x′) ≤ d(x, y′). Let
Pxy′ denote the shortest path between x and y′ and z be the preceeding vertex
of y′ in Pxy′ . Let us assume that y′ ∈ Cm,n, for some (m,n) ∈ L. If NA(y′) �= ∅,
say vs ∈ NA(y′), then 〈{z, y′, vs, vm, vn}〉 ∼= hammer, a contradiction. Hence as
[y′, V1] �= ∅ and NA(y′) = ∅, there exists a vertex a ∈ Is, where s ∈ {1, 2, . . . , ω}
such that ay′ ∈ E(G). Also since ω(G) ≥ 3, there exists two integers r, q ∈
{1, 2, . . . , ω}\{s} such that 〈{z, y′, a, vr, vq}〉 ∼= hammer, a contradiction. Hence
every vertex in V2 has a neighbor in V1.
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One can notice that by Theorem 1, for any natural number k ≥ 3, there
exists a graph G with girth greater than 3 (which implies ω = 2) and χ(G) ≥ k.
This can also be observed by using the Mycielskian construction given in [13].
Since ω(hammer) = ω(butterfly) = 3, these graphs belong to the class of
{butterfly, hammer}-free graphs. Hence, while considering the χ-binding func-
tions of {butterfly, hammer}- free graphs we shall assume that ω �= 2. Let us
now find a structural characterization and a χ-binding function for connected
{butterfly, hammer}-free graphs.

Theorem 5. If G is a connected {butterfly, hammer}-free graph with ω(G) �=
2, then

(i) There exists a partition of V (G) such that V (G) = X1 ∪ X2 ∪ X3 ∪ X4 ∪ X5

where 〈X1〉 is a dominating ω-partite graph with ω(〈X1〉) = ω(G), 〈X2〉,
〈X3〉 and 〈X4〉 are independent sets and (〈X1 ∪ X5〉) is 2K2-free.

(ii) χ(G) ≤ (
ω(G)+1

2

)
.

Proof. Let G be a connected {butterfly, hammer}-free graph with ω(G) �= 2.
For ω(G) = 1, there is nothing to prove. So let us assume that ω(G) ≥ 3. By
Theorem 4, we see that V1 dominates G. We shall now show that Ci,j ’s are
independent.
Claim 1: Ci,j is an independent set for every (i, j) ∈ L.

By Fact 3, it is not difficult to see that if ab is an edge in 〈Ci,j〉, then (i, j) =
(1, 2). Since V1 dominates G, [a, V1] �= ∅ and [b, V1] �= ∅. Now if [{a, b}, A] �= ∅,
say vs is adjacent to either a or b then 〈{a, b, vs, v1, v2}〉 will induce a butterfly
or a hammer, a contradiction. Similarly, we can attain a contradiction when
[{a, b}, Is] �= ∅ for some s ∈ {1, 2, . . . , ω}. Hence C1,2 is also independent.

Next, we shall show that 〈V1 ∪ ( ∪
j≥4

∪
i≤j−1

Ci,j)〉 is 2K2-free.

On the contrary, let us assume that there exists an induced 2K2 in 〈V1 ∪
( ∪
j≥4

∪
i≤j−1

Ci,j)〉, say a, b, c, d with edges ab, cd ∈ E(G). We begin by considering

ω(G) = 3. Here, V1∪( ∪
j≥4

∪
i≤j−1

Ci,j) = V1. One can observe that {a, b, c, d}∩A =

∅ ( on the contrary, if one of the vertices of {a, b, c, d} is in A, say a = vr,
then c, d ∈ Ir, a contradiction to cd ∈ E(G)). Hence there exists an integer
k ∈ {1, 2, 3} such that Ik contains exactly two non-adjacent vertices of {a, b, c, d}
. Depending on whether the remaining two vertices of {a, b, c, d} belong to the
same Ii or not, we see that there exists an r ∈ {1, 2, 3} such that 〈{vr, a, b, c, d}〉 ∼=
butterfly or hammer, a contradiction.

Next, let us consider ω(G) ≥ 4. Let us break our proof into three cases.
Case 1: |{a, b, c, d} ∩ ( ∪

j≥4
∪

i≤j−1
Ci,j)| ≤ 1.

Without loss of generality, let us assume that b, c, d ∈ V1. Since ω(G) ≥ 4,
there exists q ∈ {1, 2, . . . , ω} such that Uq ∩{b, c, d} = ∅. Hence 〈{a, b, c, d, vq}〉 ∼=
butterfly or hammer, a contradiction.
Case 2: |{a, b, c, d} ∩ ( ∪

j≥4
∪

i≤j−1
Ci,j)| = 2.
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Let x, y ∈ {a, b, c, d} such that x, y ∈ V1. Let r1, r2 ∈ {1, 2, . . . , ω} (not
necessarily distinct) such that x ∈ Ur1 and y ∈ Ur2 . Clearly, there exists an inte-
ger q1 ∈ {1, 2, 3}\{r1, r2} such that [vq1 , {x, y}] is complete. As a consequence,
|[vq1 , {a, b, c, d}\{x, y}]| = 0, which implies {{a, b, c, d}\{x, y}} ⊆ ∪

j≥4
Cq1,j .

If there exists an integer q2 ∈ {1, 2, 3}\{r1, r2, q1}, then 〈{vq2 , a, b, c, d}〉 ∼=
butterfly, a contradiction. Hence {r1, r2, q1} = {1, 2, 3} and thereby
〈{vr2 , a, b, c, d}〉 ∼= butterfly or hammer, a contradiction.
Case 3: |{a, b, c, d} ∩ ( ∪

j≥4
∪

i≤j−1
Ci,j)| ≥ 3.

Similar to Case 2, but with a little more involved arguments we can show
that Case 3 is also not possible.

Therefore V1 ∪ ( ∪
j≥4

∪
i≤j−1

Ci,j) is 2K2-free.

Let {1, 2, . . . ,
(
ω+1
2

)} be the set of colors. For establishing a
(
ω+1
2

)
coloring

of G, let us start by assigning the color k to the vertices in (vk ∪ Ik), for every
k ∈ {1, 2, . . . , ω}. Next, for (i, j) ∈ L, color each Ci,j with a new color and hence

G can be colored with at most ω +
ω(G)∑

j=2

(j − 1) =
(
ω(G)+1

2

)
colors. Clearly, this is

a proper coloring of G.

One can observe that if G is a 2K2-free graph then it contains at most
one edge containing component and hence any k-coloring for the non-trivial
component of G will yield a k-coloring for G. Now as a consequence of Theorem
5 we get Corollary 1 and Corollary 2. Note that Corollary 1 is a result due to
S.Wagon in [20].

Corollary 1 ([20]). If G is a 2K2-free graph, then χ(G) ≤ (
ω(G)+1

2

)
.

Corollary 2. For any graph H, if the class of {2K2,H}-free graphs admits the
χ-binding function f , then a connected {butterfly, hammer,H}-free graph G
such that ω(G) �= 2 would admit f + 3 as a χ-binding function.

3.1 {butterfly, hammer, P4 + Kp}-free graphs

Without much difficulty, one can make the following observations on (P4 +Kp)-
free graphs.

Lemma 1. Let p be a positive integer and G be a (P4 + Kp)-free graph with
ω(G) ≥ p + 2. Then

(i) For k, � ∈ {1, 2, . . . , ω(G)}, [Ik, I�] is complete. Thus 〈V1〉 is a complete
multipartite graph with Uk = {vk} ∪ Ik, 1 ≤ k ≤ ω(G) as its partitions.

(ii) For (i, j) ∈ L with j ≥ p + 2, if a ∈ Ci,j such that av� /∈ E(G), for some
� ∈ {1, 2, . . . , ω}, then [a, I�] = ∅.

Now, let us establish a linear χ-binding function for {butterfly, hammer, P4+
Kp}-free graphs. When p = 0, P4+Kp

∼= P4 and since P4-free graphs are perfect,
G is ω-colorable. So let us consider p ≥ 1.
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Theorem 6. Let p be a positive integer. If G is a {butterfly, hammer, P4 +
Kp}-free graph such that no component has clique size two, then

χ(G) ≤
{

ω(G) + p(p+1)
2 for 1 ≤ ω(G) ≤ p + 1

ω(G) + p(p+1)
2 − 1 for ω(G) ≥ p + 2.

Proof. Let G be a connected {butterfly, hammer, P4+Kp}-free graph such that
ω(G) �= 2. Clearly, the vertices of V1 can be colored with ω(G) colors by assigning
the color k to the vertices in Uk, for 1 ≤ k ≤ ω. Now, by Claim 1 of Theorem 5,
Ci,j is an independent set for every (i, j) ∈ L. In order to color the vertices of
V2, let us break the proof into two cases depending upon the value of ω(G).
Case 1 1 ≤ ω(G) ≤ p + 1

For ω(G) = 1, there is nothing to prove. Let ω(G) ≥ 3. Since each Ci,j

is an independent set, each Ci,j can be properly colored by assigning a new

color. Therefore V2 can be colored with at most
p+1∑

j=2

j − 1 = p(p+1)
2 colors. Hence

χ(G) ≤ ω(G) + p(p+1)
2 .

Case 2 ω(G) ≥ p + 2
Let {1, 2, . . . , ω + p(p+1)

2 − 1} be the set of colors. If one observes closely,

it can be seen that for j ≥ p + 3, (
j−1∪
i=1

Ci,j) is an independent set. Hence by

using (ii) of Lemma 1, for j ≥ p + 3 we can assign the color j to each vertex

in (
j−1∪
i=1

Ci,j). In addition, we can assign the color p + 2 to the vertices in C1,p+2

and color k to the vertices in Ck,p+2, 2 ≤ k ≤ p + 1. Let us next color the
vertices of C1,p+1. If a ∈ C1,p+1 such that [a, I1] = ∅, then assign the color 1
to a. If [a, I1] �= ∅ then we shall show that it can be assigned the color p + 1.
We begin by showing that for r ≥ p + 2, [a, Ur] = ∅. Let b ∈ I1 such that
ab ∈ E(G). If there exists an r ≥ p + 2 such that [a, Ur] �= ∅, then let ur ∈ Ur

such that aur ∈ E(G). Hence by (i) of Lemma 1 and Fact 3 we can see that if
p = 1, then 〈{a, b, vp+1, v1, ur}〉 ∼= P4 + Kp, a contradiction and if p ≥ 2, then
〈{a, b, vp+1, v1, ur, v2, . . . , vp}〉 ∼= P4 + Kp, a contradiction. Hence [a, Ur] = ∅
for r ≥ p + 2 and this in turns implies that [a,Cp+1,p+2] = ∅ and [a, Ip+1] = ∅.
Therefore, when [a, I1] �= ∅, then a can be colored with p+1. Finally, the vertices
of the remaining Ci,j can be colored by assigning a new color to each Ci,j and

hence G can be colored with at most ω +
p+1∑

j=2

(j − 1) − 1 = ω + p(p+1)
2 − 1 colors.

Clearly this is a proper coloring of G.
Without much difficulty one can see that the same can be extended for the

disconnected case.

By using Corollary 1 and Theorem 6 we get a χ-binding function for {2K2, P4 +
Kp}-free graphs and partially answer the question raised by T. Karthick and S.
Mishra in [12].
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Corollary 3. If p is a positive integer and G is a {2K2, P4 + Kp}-free graph,

then χ(G) ≤
{

ω(G) + p(p+1)
2 for 1 ≤ ω(G) ≤ p + 1

ω(G) + p(p+1)
2 − 1 for ω(G) ≥ p + 2.

As a simple consequence of Corollary 3 we get Corollary 4 and Corollary 5,
results in [3] and [16] respectively.

Corollary 4. [3] Let G be a {2K2, gem}-free graph, then χ(G) ≤ max{3, ω}.
Corollary 5. [16] If G is a {2K2,K2 + P4}-free graph with ω(G) ≥ 4, then
χ(G) ≤ ω(G) + 2.

3.2 {butterfly, hammer,C4 + Kp}-free graphs

While considering {butterfly, hammer,C4 + Kp}-free graphs, as in Theorem 6,
with similar type of cases but with a slightly different argument one can establish
a linear χ-binding function.

Theorem 7. Let p be a positive integer. If G is a {butterfly, hammer,C4+Kp}-
free graph such that no component has clique size two, then χ(G) ≤ ω(G) +
p(p+1)

2 .

One can easily observe that Corollary 6 and Corollary 7 follows from Corollary
1 and Theorem 7.

Corollary 6. Let p be a positive integer. If G is a {2K2, C4 + Kp}-free graph,
then χ(G) ≤ ω(G) + p(p+1)

2 .

Corollary 7. [16] If G is a {2K2,K1 + C4}-free graph, then χ(G) ≤ ω(G) + 1.

We see that here also Corollary 6 partially answers the question raised by T.
Karthick and S. Mishra in [12]. The question of whether this bound is optimal
remains open.

3.3 {butterfly, hammer, (K1 ∪ K2) + Kp}-free graphs

Let us begin by recalling some of the results in [14,15].

Theorem 8. [14] Let G be a connected graph. Then G is paw-free if and only
if G is either K3-free or complete multipartite.

Proposition 1. [15] Let G be a ((K1 ∪K2)+Kp)-free graph with ω(G) ≥ p+2,
p ≥ 1. Then G satisfies the following.

(i) For k, � ∈ {1, 2, . . . , ω(G)}, [Ik, I�] is complete. Thus, 〈V1〉 is a complete
multipartite graph with Uk = {vk} ∪ Ik, 1 ≤ k ≤ ω(G) as its partitions.

(ii) For j ≥ p + 2 and 1 ≤ i < j, Ci,j = ∅.
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(iii) For x ∈ V2, x has neighbors in at most (p − 1) U�’s where � ∈
{1, 2, . . . , ω(G)}.

By using Proposition 1, let us show that connected {butterfly, hammer,
(K1 ∪ K2) + Kp}-free graphs with ω ≥ 2p are multisplit graphs.

Theorem 9. Let p be an integer greater than 1 and G be a connected {butterfly,
hammer, (K1∪K2)+Kp}-free graph. If ω(G) ≥ 2p, then G is a multisplit graph.

Proof. Let G be a connected {butterfly, hammer, (K1 ∪ K2) + Kp}-free graph
with ω(G) ≥ 2p, p ≥ 2. Since ω(G) ≥ 2p, by (i) of Proposition 1, we see that 〈V1〉
is a complete multipartite graph. Next, let us show that V2 is an independent
set. Clearly ω(G) �= 2 and hence by Claim 1 of Theorem 5, if ab is an edge in
G, then a ∈ Cm1,n1 and b ∈ Cm2,n2 where (m1, n1) �= (m2, n2). It is easy to see
that by (iii) of Proposition 1, |NA({a, b})| ≤ 2p−2 and hence there exist at least
two vertices vr, vs ∈ A such that [{a, b}, {vr, vs}] = ∅. Without loss of generality,
let us assume that (m1, n1) <L (m2, n2). If m1 < m2, then bvm1 ∈ E(G) and
〈{a, b, vm1 , vr, vs}〉 ∼= hammer, a contradiction. If m1 = m2 and n1 < n2, then
bvn1 ∈ E(G) and 〈{a, b, vn1 , vr, vs}〉 ∼= hammer, again a contradiction. Hence
V2 is independent and thereby G is a multisplit graph.

One can notice that when p = 0 and 1, (K1 ∪ K2) + Kp
∼= K1 ∪ K2 and (K1 ∪

K2) + Kp
∼= paw respectively. As (K1 ∪ K2) 	 P4, (K1 ∪ K2)-free graphs are

perfect. Also C. Brause et al. in [3] has shown that every multisplit graph is
perfect. Hence as a consequence of Theorem 8 and Theorem 9 we get Corollary
8, Corollary 9 and Corollary 10.

Corollary 8. Let p be a non-negative integer and G be a connected
{butterfly, hammer, (K1 ∪ K2) + Kp}-free graph with ω(G) ≥ 2p. If ω(G) �= 2,
then G is perfect.

Corollary 9. [3] If G is a connected {2K2, (K1 ∪ K2) + Kp})-free graph with
ω(G) ≥ 2p, p ≥ 2, then G is a multisplit graph.

Corollary 10. [3] Let p ≥ 0 be an integer and G be a {2K2, (K1∪K2)+Kp}-free
graph with ω(G) ≥ 2p. If p �= 1 or ω(G) �= 2, then G is perfect.

By using Theorem 6 and Theorem 9, one can find a linear χ-binding function
for the class of {butterfly, hammer, (K1 ∪ K2) + Kp}-free graphs.

Theorem 10. Let p be a non-negative integer and G be a connected
{butterfly, hammer, (K1 ∪ K2) + Kp}-free graph with ω(G) �= 2. Then

χ(G) ≤
{

ω(G) + p(p+1)
2 for 1 ≤ ω(G) ≤ p + 1

ω(G) + p(p−1)
2 for ω(G) ≥ p + 2.

As a consequence of Corollary 1 and Theorem 10, we get Corollary 11 and as a
result we see that we have a better χ-binding function than ω(G)+(2p−1)(p−1),
the one given by C. Brause et al. in [3] for the class of {2K2, (K1∪K2)+Kp}-free
graphs, when p ≥ 2.
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Corollary 11. Let p be a non-negative integer. If G is a {2K2, (K1∪K2)+Kp}-
free graph, then χ(G) ≤

{
ω(G) + p(p+1)

2 for 1 ≤ ω(G) ≤ p + 1
ω(G) + p(p−1)

2 for ω(G) ≥ p + 2.

3.4 {butterfly, hammer, 2K1 + Kp}-free graphs

For connected {butterfly, hammer, 2K1 + Kp}-free graphs with ω(G) ≥ 2p, by
using similar techniques as in Theorem 9, we can show that they are split graphs.

Theorem 11. Let p be a non-negative integer and G be a connected
{butterfly, hammer, 2K1 + Kp}-free graph. If ω(G) ≥ 2p, then G is a split
graph.

One can see that Corollary 12 follows from Theorem 11.

Corollary 12. [3] If G is a connected {2K2, 2K1 + Kp}-free graph with
ω(G) ≥ 2p for some positive integer p, then G is a split graph.

By using Theorem 11, without much difficulty one can find a linear χ-binding
function for the class of connected {butterfly, hammer, 2K1 + Kp}-free graphs
with ω(G) �= 2.

Theorem 12. Let p be a non-negative integer. If G is a connected
{butterfly, hammer, 2K1 + Kp}-free graph with ω(G) �= 2, then χ(G) ≤ ω(G) +
p(p−1)

2 .

As a simple consequence of Corollary 1 and Theorem 12, we get a χ-binding
function better than ω + (2p − 1)(p − 1), which was given by C. Brause et al. in
[3] for the class of {2K2, 2K1 + Kp}-free graphs. This can be seen in Corollary
13.

Corollary 13. Let p be a non-negative integer and G be a connected
{2K2, 2K1 + Kp}-free graph. Then χ(G) ≤ ω(G) + p(p−1)

2 .

For the particular case when ω = 2p − 1 and ω = 2p − 2, with involved
arguments one can observe that χ(G) = ω(G).

Theorem 13. Let p be a non-negative integer. If G is a connected
{butterfly, hammer, 2K1 + Kp}-free graph with ω(G) = 2p − 1, then χ(G) =
ω(G).

Theorem 14. If p is a non-negative integer not equal to 2 or 3 and G is a
connected {butterfly, hammer, 2K1 + Kp}-free graph with ω(G) = 2p − 2, then
χ(G) = ω(G).

Finally, one can easily observe that Corollary 14, Corollary 15, Corollary 16
follows from Corollary 1, Corollary 12, Theorem 13 and Theorem 14.
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Corollary 14. If G is a {2K2, 2K1 + Kp}-free graph and p is a non-negative
integer with ω(G) = 2p − 1, then χ(G) = ω(G).

Corollary 15. If G is a {2K2, 2K1 + Kp}-free graph with ω(G) = 2p − 2 and p
is a non-negative integer such that p �= {2, 3}, then χ(G) = ω(G).

Corollary 16. [1] If a graph G is (2K2, diamond)-free, then χ(G) ≤ 3 for ω =
2, 3 and G is perfect if ω ≥ 4.

4 Conclusion

We conclude this paper with the following two open problems.

Problem 1: Let f∗ and g∗ denote the smallest χ-binding functions of {2K2,H}-
free graphs and connected {butterfly, hammer,H}-free graphs G with ω(G) �=
2. For what choices of H is g∗ = f∗ + 3?

Problem 2: Let H = {H1,H2, . . . , Hl} , where ω(Hi) ≥ 3 and q = min{ω(Hi)|
i ∈ {1, 2, . . . , l}}. If K denotes the class of all graphs with ω < q and G′(H)
denotes the class of all connected H-free graphs, then under what condition is
(G′(H)\K) χ-bounded?
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Abstract. The Weak (2, 2)-Conjecture is a graph labelling problem ask-
ing whether all connected graphs of at least three vertices can have their
edges assigned red labels 1 and 2 and blue labels 1 and 2 so that any two
adjacent vertices are distinguished either by their sums of incident red
labels, or by their sums of incident blue labels. This problem emerged
in a recent work aiming at proposing a general framework encapsulating
several distinguishing labelling problems and notions, such as the well-
known 1-2-3 Conjecture and so-called locally irregular decompositions.

In this work, we prove that the Weak (2, 2)-Conjecture holds for two
classes of graphs defined in terms of forbidden induced structures, namely
claw-free graphs and graphs with no pair of independent edges. One main
point of interest for focusing on such classes of graphs is that the 1-2-
3 Conjecture is not known to hold for them. Also, these two classes of
graphs have unbounded chromatic number, while the 1-2-3 Conjecture is
mostly understood for classes with bounded and low chromatic number.

Keywords: Distinguishing labelling · 1-2-3 Conjecture · Sum
distinction

1 Introduction

This work deals with several distinguishing labelling problems, taking part
to a wide and vast area of research, as reported in several dedicated surveys on
the topic, such as e.g. [7,10]. More particularly, we focus on a subset of these
problems revolving around the so-called 1-2-3 Conjecture, which can all be
defined through the following unified terminology, introduced recently in [3].

Let G be a graph, and α, β ≥ 1 be two positive integers. An (α, β)-labelling
of G is an assignment � of labels from {1, . . . , α} × {1, . . . , β} to the edges of G,
where each edge e gets assigned a label �(e) = (x, y) with colour x ∈ {1, . . . , α}
and value y ∈ {1, . . . , β}. Now, for every vertex v of G and any i ∈ {1, . . . , α}, we
denote by σi(v) the sum of the values of the labels with colour i assigned to the
edges incident to v, which we call the i-sum of v. We say that � is distinguishing
if for every two adjacent vertices u and v of G, there is an i ∈ {1, . . . , α} such
that the i-sums of u and v differ, that is, if σi(u) ≠ σi(v).
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Fig. 1. The current knowledge we have on whether all graphs admit distinguishing
(α, β)-labellings, for fixed α, β ≥ 1. For a pair (α, β), the associated box is green if all
graphs were proved to admit the corresponding labellings, the box is red if it is known
that not all graphs admit the corresponding labellings, while the box is blue if the
status is unknown. Arrows indicate existential implications. (Color figure online)

Regarding these notions, it can be noted that if G is K2, the complete graph
of order 2, then there are no α, β ≥ 1 such that G admits distinguishing (α, β)-
labellings. Apart from this peculiar case, it is not too complicated to prove that,
for any fixed α ≥ 1, there is a β ≥ 1 such that distinguishing (α, β)-labellings of
any graph G exist. For these reasons, in the context of distinguishing labellings,
we generally focus on nice graphs, which are those graphs with no (connected)
component isomorphic to K2. Therefore, throughout this work, every graph we
consider is thus implicitly assumed nice.

A natural question, now, is whether, for some fixed α, β ≥ 1, every graph
admits distinguishing (α, β)-labellings. It turns out, as mentioned earlier, that
the literature actually provides answers for several values of α and β (see Fig. 1).

– Note that if α, β and α′, β′ are such that α′
≥ α, β′

≥ β, and (α, β) ≠ (α′, β′),
then any distinguishing (α, β)-labelling is a distinguishing (α′, β′)-labelling.

– Distinguishing (1, β)-labellings are labellings where all labels are of the same
colour, and all adjacent vertices should be distinguished according to their
sums of incident labels. Such labellings are exactly those behind the so-
called 1-2-3 Conjecture [9] of Karoński, �Luczak, and Thomason, which asks
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whether all graphs admit distinguishing (1, 3)-labellings. To date, the best
result towards this is that they all admit distinguishing (1, 5)-labellings [8].

– Distinguishing (α, 1)-labellings can be seen as edge-colourings where, for every
two adjacent vertices, there must be a colour that is not assigned the same
number of times to their incident edges. These labellings are those of the
multiset version of the 1-2-3 Conjecture [1], which asks whether graphs admit
distinguishing (3, 1)-labellings. This conjecture was proved in [11].

– In [3], the authors noticed that, given a distinguishing (1, 5)-labelling of some
graph, by modifying the label colours and values in a particular way, we can
derive a distinguishing (2, 3)-labelling of the same graph. Similarly, we can
derive a distinguishing (3, 2)-labelling from a distinguishing (1, 5)-labelling.

– It is not too complicated to see that, in regular graphs, distinguishing (1, 2)-
labellings and distinguishing (2, 1)-labellings are equivalent notions. In [2], it
was proved that determining whether a cubic graph admits a distinguishing
(1, 2)-labelling is NP-hard. Thus, there are infinitely many graphs that admit
neither distinguishing (1, 2)-labellings nor distinguishing (2, 1)-labellings.

– Graphs admitting distinguishing (1, 1)-labellings are precisely the so-called
locally irregular graphs, which are those graphs with no two adjacent vertices
having the same degree. These graphs have been appearing frequently in the
field, and have even been receiving dedicated attention, see e.g. [4].

From this all, there are thus only three pairs (α, β) for which we are still
not sure whether all graphs admit distinguishing (α, β)-labellings: (1, 3), which
corresponds to the original 1-2-3 Conjecture; (1, 4), which is weaker than the
1-2-3 Conjecture since more label values are available (while, similarly, all labels
are of the same colour); and (2, 2), which is the only pair for which we have two
label colours to deal with. The latter pair leads to the following conjecture [3].

Weak (2, 2)-Conjecture. Every graph admits a distinguishing (2, 2)-labelling.

At first glance, the 1-2-3 Conjecture and the Weak (2, 2)-Conjecture might
seem a bit distant. It is worth emphasising, however, that the former conjecture,
if true, would imply the latter [5]. For this reason, the Weak (2, 2)-Conjecture can
be perceived as a weaker version of the 1-2-3 Conjecture. Also, to get progress
towards these conjectures, one can thus investigate the Weak (2, 2)-Conjecture
for classes of graphs for which the 1-2-3 Conjecture is not known to hold. To
date, the 1-2-3 Conjecture was mainly proved for 3-colourable graphs [10]. The
weaker conjecture was mainly proved for 4-colourable graphs [5].

Theorem 1 ([5]). The Weak (2, 2)-Conjecture holds for 4-colourable graphs.

Both conjectures were also proved for other classes of graphs, but not as
significant. One reason why the chromatic number parameter appears naturally
in this context is that having a proper vertex-colouring φ in hand can be helpful
to design a distinguishing labelling, since φ informs on sets of vertices that are not
required to be distinguished. One downside, however, is that making a labelling
match φ somehow, might require lots of labels if φ itself contains lots of parts.
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Here, we prove the Weak (2, 2)-Conjecture for two classes of graphs for which
the 1-2-3 Conjecture (and thus the Weak (2, 2)-Conjecture, recall [5]) has not
been proved. Besides, these classes have unbounded chromatic number, which,
recall, is significant. Precisely, we prove the Weak (2, 2)-Conjecture for K1,3-free
graphs (with no induced claw) and 2K2-free graphs (with no pair of independent
edges). Each result is proved by first dealing with the 5-colourable graphs of the
class, before focusing on those with chromatic number at least 6.

Due to space limitation, in what follows we only present our result for 2K2-
free graphs, its proof being a lighter, less technical version of that for K1,3-free
graphs, which require more involved arguments. We start in Sect. 2 with some
preliminaries, before proving the Weak (2, 2)-Conjecture for 2K2-free graphs in
Sect. 3. In concluding Sect. 4, we explain how to go from 2K2-free graphs to
K1,3-free graphs, summarising the arguments from our full-length paper [6].

2 Preliminaries

Let G be a graph, and � be an (α, β)-labelling of G. If α=1, then we will sometimes
call � a β-labelling for simplicity. Also, in such cases, instead of denoting the 1-
sum of a vertex v by σ1(v), we will simply denote it as σ(v), or as σ�(v) in
case we want to emphasise that we refer to the labels assigned by �. Now, when
considering the Weak (2, 2)-Conjecture and, thus, (α, β) = (2, 2), it will be more
convenient to see the labels with colour 1 as red labels, and similarly those with
colour 2 as blue labels. We will thus refer, for any vertex v, to the red sum σr(v)
of v (being σ1(v)), and to the blue sum σb(v) of v (being σ2(v)).

We now point out a situation where, assuming a partial labelling of a graph
is given, we can extend it to some edges so that some properties are preserved.

Lemma 1. Let G be a graph, H be a connected bipartite subgraph of G, and �
be a partial 2-labelling of G such that only the edges of H are not labelled. For
any vertex w of H, there is a 2-labelling �′ of H such that, for every two adjacent
vertices u and v of H with w ∉ {u, v}, we have

σ�(u) + σ�′(u) ≠ σ�(v) + σ�′(v).

Proof. Let (U, V ) denote the bipartition of H. We produce a 2-labelling �′ such
that, for every vertex u ≠w of H, we have σ�(u) + σ�′(u) ≡ 0 mod 2 if u ∈ U , and
σ�(u) + σ�′(u) ≡ 1 mod 2 otherwise. This implies what we want to prove.

Start from all edges of H being assigned label 2 by �′. Now, consider any
vertex u of H for which σ�(u) + σ�′(u) does not satisfy the required condition
above. Since H is connected, there is a path P from u to w that uses edges of H
only. Now turn all 1’s assigned by �′ to the edges of P into 2’s, and conversely
turn all 2’s into 1’s. As a result, note that σ�(v) + σ�′(v) is not altered for every
vertex v of H with v ∉ {u,w}, while both σ�(u) + σ�′(u) and σ�(w) + σ�′(w) had
their parity altered. So σ�(u) + σ�′(u) now verifies the desired condition.

Repeating those arguments until all vertices u ≠ w of H have σ�(u) + σ�′(u)
verifying the desired condition, we end up with �′ being as desired. ��
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Fig. 2. Terminology used in the proof of Theorem 3, and the red sums and blue sums
we aim at getting for the vertices by the designed (2, 2)-labelling. In the depicted
situation, it is assumed that an upward edge of R is assigned red label 1

We also recall a nice tool that proved to be very useful towards proving the
multiset version of the 1-2-3 Conjecture from [1]. Let G be a graph. A balanced
tripartition of G is a partition V0, V1, V2 of V (G) fulfilling, for every vertex v ∈Vi

with i∈{0, 1, 2}, that dVi+1(v)≥max{1, dVi
(v)} (all operations over the subscripts

are modulo 3). That is, v has at least one neighbour in the next part Vi+1, and
it actually has more neighbours in Vi+1 than in Vi. It turns out that graphs with
large chromatic number admit such balanced tripartitions.

Theorem 2 ([1]). Every graph G with χ(G) > 3 admits a balanced tripartition.

3 Graphs with No Induced Pair of Independent Edges

As mentioned earlier, we prove the Weak (2, 2)-Conjecture for 2K2-free graphs by
treating the 5-chromatic ones first, and then those with large chromatic number.

Theorem 3. Every 2K2-free graph with chromatic number 5 admits a distin-
guishing (2, 2)-labelling.

Proof. Let G be a 2K2-free graph with chromatic number 5. We construct a
distinguishing (2, 2)-labelling of G assigning red labels 1 and 2 and blue labels 1
and 2. We can assume G is connected, since its 5-chromatic components can be
handled through what follows, while Theorem 1 applies for its 4-colourable ones.

Let D be a maximal independent set of G, and set R=G−D. Note that every
vertex v in R is incident to at least one upward edge vu, i.e., going to D (so,
u ∈D). We say that a component of R is empty if it contains no edges, while it is
non-empty otherwise. Since G is 2K2-free, note that R contains at most one non-
empty component. Actually, R must contain exactly one non-empty component
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R as otherwise G would be bipartite, contradicting that its chromatic number
is 5. Let now I denote the vertices from the empty components of R, and let H
be the subgraph of G induced by the edges incident to the vertices of I. Then
H is bipartite, and because G is 2K2-free, H consists of only one component.

Since G is 5-chromatic, note that R is 4-chromatic; let thus V0,0, V0,1, V1,0, V1,1

be parts forming a proper 4-vertex-colouring φ of R. We modify φ, if needed, so
that if v is a vertex of R with dR(v)=1, then v belongs to V0,0 or V0,1 (note that
this is clearly possible, since v has exactly one neighbour in R). Now order the
vertices v1, . . . , vn in any way satisfying that, for every i∈{1, . . . , n−1}, vertex vi

is incident to at least one forward edge vivj (i.e., with j > i, which is a backward
edge from vj ’s point of view). Such an ordering can be obtained e.g. by reversing
the ordering in which vertices are encountered while performing a breadth-first
search algorithm from any vertex (standing as the last vertex vn).

We are now ready to start labelling the edges of G. We begin with all edges
incident to the vertices of R. We consider the vi’s one by one, following the
ordering above, and for every vertex vi considered in that course, we assign a
label to all upward edges (assigning them blue labels, except in one peculiar
case) and forward edges (assigning them red labels only) incident to vi so that
some desired red sum and blue sum are realised at vi. When proceeding that
way, note that, whenever considering a new vertex as vi, only its backward edges
can be assumed to be labelled, with red labels. The procedure goes as follows:

– If i ≠ n, then vi is incident to forward edges. We start by assigning blue
label 2 to all upward edges incident to vi, and red label 2 to all forward
edges incident to vi. Assume vi ∈ Vα,β . If σb(vi) ≢ β mod 2, then we change
to blue label 1 the label assigned to any one upward edge incident to vi.
Likewise, if σr(vi)≢α mod 2, then we change to red label 1 the label assigned
to any one forward edge incident to vi. This way, we get σr(vi)≡α mod 2 and
σb(vi) ≡ β mod 2. In particular, by how we modified φ earlier, note that we
must have σr(vi) ≥ 2 (either dR(vi) ≥ 2 in which case this condition clearly
holds; or dR(vi) = 1, in which case α = 0 and thus the only inner edge incident
to vi is assigned red label 2, implying the condition).

– If i = n, then the only edges incident to vn that remain to be labelled are
upward edges. Recall, in particular, that all backward edges incident to vn

are assigned red labels. We consider two cases, assuming vn ∈ Vα,β :
• If σr(vn)≡α mod 2, then we assign blue labels to all upward edges incident

to vn, their values being chosen so that σb(vn) ≡ β mod 2. In that case,
we thus have σr(vn) ≡ α mod 2 and σb(vn) ≡ β mod 2. Again, by how φ
was modified earlier, we must have σr(vn) ≥ 2.

• If σr(vn) ≢ α mod 2, then we assign red label 1 to any one upward edge
incident to vn, while we assign blue labels to the other upward edges
(if any) so that σb(vn) ≡ β mod 2. Here, either σb(vn) ≠ 0 in which case
σr(vn) ≡ α mod 2 and σb(vn) ≡ β mod 2; or σb(vn) = 0 in which case all
edges incident to vn are assigned red labels (implying that σr(vn) ≥ 2).

Note that, in all cases above, for all vertices vi ∈Vα,β , we guarantee 2≤σr(vi)≡
α mod 2. Also, except maybe for vn, we also guarantee 0 < σb(vi) ≡ β mod 2.
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Regarding vn, either σb(vn) = 0, in which case vn is distinguished from all its
neighbours in R through its blue sum, or 0 < σb(vn) ≡ β mod 2, in which case
vn is distinguished from its neighbours in R through its red sum and/or blue
sum. Regarding the vertices of D, only one of them can be incident to an edge
being assigned a red label, 1. So, for every u ∈ D, we have σr(u) ≤ 1, while
σr(v) ≥ 2 for every v ∈ R. Thus, currently, vertices of R are distinguished from
their neighbours in D. If H has no edges, then all edges of G are labelled, and
we have a distinguishing (2, 2)-labelling. So, below, we can assume H has edges.

We are now left with labelling the edges of H, which, recall, consists of exactly
one component. We consider two main cases:

– Assume there is some vertex w ∈H with σr(w) = 1 (Fig. 2). Recall that there
can be only one such vertex, which belongs to D and must be a neighbour of
vn. Recall also that the vertices of D ∩ V (H) can be incident to edges being
currently assigned blue labels (being upward edges incident to vertices of R).
Taking these labels into account, by Lemma 1 we can assign blue labels 1
and 2 to the edges of H so that any two of its adjacent vertices u and v with
w ∉ {u, v} are distinguished by their blue sums.
Since we did not modify labels assigned to edges incident to the vertices in
R, and the edges of H are assigned blue labels only, the vertices of R remain
distinguished from their neighbours due to arguments above. Regarding adja-
cent vertices of H, they are either distinguished by their blue sums (if w is
not involved), or because one of them has red sum 1 (if w is involved). So,
here as well, we do not have conflicts.

– Assume no vertex of H currently has red sum at least 1. In this case, let w be
any vertex of I. By Lemma 1, we can assign blue labels 1 and 2 to the edges
of H so that, taking into account the other edges of G that are currently
already assigned blue labels, and omitting w, any two adjacent vertices of H
are distinguished by their blue sums. In case w has d≥2 neighbours x1, . . . , xd

(which lie in D), then we further modify the labelling by changing to red
label 1 the label assigned to wx1, . . . , wxd.
Again, we did not modify the red sums and blue sums of the vertices in
R. Also, the only vertex of D ∪ I that might have red sum at least 2 is w
(note that the xi’s, if they exist, have red sum 1), which lies in I, the set of
isolated vertices of R and thus cannot be adjacent to the vertices of R. Since
the vertices of R have red sum at least 2, they thus cannot be involved in
conflicts. Now, if dG(w) = 1, then, because G is not just an edge, the unique
neighbour of w must have degree at least 2, meaning that w is necessarily
distinguished from its unique neighbour. Otherwise, i.e., w has d≥2 neighbours
x1, . . . , xd ∈D, then σr(w) = d ≥ 2 while the xi’s have red sum 1, and thus w
cannot be involved in conflicts. Regarding the xi’s, they have red sum 1, so
they cannot be in conflict with their neighbours of H different from w, since
they have red sum 0. Finally, for every vertex of H not in {w, x1, . . . , xd},
note that we did not modify its blue sum when introducing red labels. So we
still have that any two such adjacent vertices are distinguished by their blue
sums, by how we applied Lemma 1. So, no conflicts exist in G.
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Fig. 3. Terminology used in the proof of Theorem 4, and the red sums and blue sums
we aim at getting for the vertices by the designed (2, 2)-labelling.

The resulting (2, 2)-labelling of G is thus distinguishing, as desired. ��

Theorem 4. Every 2K2-free graph with chromatic number at least 6 admits a
distinguishing (2, 2)-labelling.

Proof. Let G be a 2K2-free graph with chromatic number at least 6. We construct
a distinguishing labelling of G assigning red labels 1 and 2 and blue labels 1 and 2.
Again, we may assume that G is connected.

Let D1 be a maximal independent set of G. Note that every vertex of G−D1

has at least one neighbour in D1. Now let D2 be a maximal independent set of
G−D1. Similarly, every vertex of G−D1 −D2 has at least one neighbour in D2.
Since χ(G) ≥ 6, note that χ(G −D1 −D2) ≥ 4. According to Theorem 2, there is
thus a balanced tripartition V0, V1, V2 of G−D1 −D2 (see Fig. 3). Note that D1,
D2, V0, V1, and V2 form a partition of V (G). An upward edge of G is an edge
with one end in V0 ∪ V1 ∪ V2 and the other in D1 ∪ V2. An inner edge of G is an
edge with both ends in some Vi. If u ∈Vi and u′

∈Vi+1 (where the operations over
the subscripts of the Vi’s are modulo 3) are adjacent for some i ∈ {0, 1, 2}, then
uu′ is a forward edge from u’s perspective, and a backward edge from that of u′.
Because G is 2K2-free, note that all three of G[V0], G[V1], and G[V2] contain at
most one component with edges each.

We denote by H the set of the components of G[D1 ∪D2]. Since every vertex
of D2 has neighbours in D1, note that H has edges. Since G is 2K2-free, there
is exactly one component H of H that is non-empty, i.e., contains edges. H can
also contain empty components, which consist in a single vertex of D1.
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We design the desired (2, 2)-labelling of G following four steps. First, we label
all inner, upward, and forward edges incident to the vertices of V0 so that they
fulfil certain properties on σr and σb. Second and third, we then achieve the
same for the vertices of V1 and V2. Last, we label the edges of H.

Step 1: Labelling the inner, upward, and forward edges of V0.

We start by labelling the following edges of G:

1. We first assign blue label 2 to all inner edges incident to vertices of V0.
2. We then consider every vertex u of V0 in turn, assign red label 2 to all upward

edges incident to u, and eventually change to red label 1 one of these red labels
so that the red sum of u becomes odd.

3. We now distinguish two cases, through which we get to defining a special
vertex w ∈D2 that will be useful later on, by the last step of the proof.

– |V0| = 1, i.e., G[V0] is a single vertex u. Here, we assign blue label 2 to
all forward edges incident to u. We also modify the labelling further as
follows. Set w as any neighbour of u in D2. Note that, by swapping the
red labels assigned to uw and another upward edge incident to u, we can,
if necessary, assume uw is assigned red label 2. We then change the label
assigned to uw to blue label 1.

– Otherwise, i.e. |V0| ≥ 2. Here, let u1, . . . , un be an arbitrary ordering over
the vertices of V0, and consider the ui’s one by one in order. Since extra
modifications must be made around u1, let us consider that vertex specif-
ically before describing the general case. Just as in the previous case, let
w be any neighbour of u1 in D2. Again, we can swap labels assigned to
upward edges, if necessary, so that u1w is assigned red label 2. Then we
change the label assigned to u1w to blue label 1, before assigning blue
label 2 to all forward edges incident to u1. Now, for every subsequent ui

with i ≥ 2, denote by ui1 , . . . , uid the d ≥ 0 neighbours of ui in V0 that
precede ui in the ordering. If d = 0, then assign blue label 2 to all for-
ward edges incident to ui. Now, if d ≥ 1, then recall that ui is incident to
dV1(ui)≥d forward edges. By assigning red label 2 to none, one, two, etc.,
or all of these edges, and blue label 2 to all others, we can increase the
red sum of ui by any amount in {0, 2, . . . , 2dV1(ui)}, which set contains
dV1(ui)+1≥d+1 elements. There is thus a way to assign red label 2 to at
most d forward edges incident to ui, and blue label 2 to the rest, so that
the red sum of ui is different from the red sums of ui1 , . . . , uid .

Once the steps above have been performed fully, note that all inner, upward,
and forward edges incident to the vertices of V0 are assigned a label. Also, for
every vertex u ∈ V0, we currently have σr(u) ≡ 1 mod 2, and it can be checked
that also σb(u)≥2. Furthermore, every two adjacent vertices of V0 currently have
their red sums being different. Remark last that all upward edges incident to the
vertices of V0 are assigned red labels, except for exactly one edge incident to w,
which is assigned blue label 1.
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Step 2: Labelling the inner, upward, and forward edges of V1.

Due to the previous step, note also that all backward edges incident to the
vertices in V1 are labelled with red label 2 and blue label 2. So, one should keep
in mind that, currently, σr(u) is even for every u ∈ V1.

We now label more edges as follows:

1. First, we assign blue label 2 to all inner edges incident to vertices of V1.
2. Second, we consider every vertex u of V1 in turn. Recall that u is incident

to at least two upward edges. We assign red label 2 to all these edges. If
necessary, we change the label assigned to two of these edges to red label 1,
so that σr(u) ≡ 2 mod 4.

3. Third, let u1, . . . , un be an arbitrary ordering over the vertices of V1, and
consider the ui’s one by one in turn. For every ui considered that way, denote
by ui1 , . . . , uid the d≥0 neighbours of ui in V1 that precede ui in the ordering.
If d = 0, then assign blue label 2 to all forward edges incident to ui. Now,
if d ≥ 1, then recall that ui is incident to dV2(ui) ≥ d forward edges. Thus,
through assigning blue labels to these edges, we can make the blue sum of
ui vary by any amount in the set {dV2(ui), . . . , 2dV2(ui)}, which contains
dV2(ui) + 1 ≥ d + 1 elements. Thus, it is possible to assign blue labels to the
forward edges incident to ui so that its resulting blue sum is different from
that of ui1 , . . . , uid .

After completing the previous steps, all edges incident to the vertices in V1

are labelled. For every vertex u ∈ V1, we get σr(u) ≡ 2 mod 4, and also σb(u) ≥ 2,
because either dV1(u) = 0 and at least one forward edge incident to u is assigned
blue label 2, or dV1(u) > 0 and at least one inner edge incident to u is assigned
blue label 2. Also, adjacent vertices of V1 are distinguished by their blue sums,
and all upward edges incident to the vertices of V1 are assigned red labels.

Step 3: Labelling the inner, upward, and forward edges of V2.

Note that after performing the previous step, all backward edges incident to
the vertices of V2 are assigned blue labels; so, their red sum is currently 0.

We now perform the following:

1. We assign blue label 2 to all inner edges incident to vertices in V2.
2. We then consider every vertex u of V2 in turn, which, recall, is incident to

at least two upward edges. We assign red label 2 to all these edges before, if
necessary, changing the label assigned to two of these edges to red label 1, so
that σr(u) ≡ 0 mod 4.

3. We finish off this step similarly as the previous one. Let u1, . . . , un be any
ordering over the vertices of V2, and consider the ui’s one after the other. For
every ui, let ui1 , . . . , uid be the d ≥ 0 neighbours of ui in V2 that precede ui

in the ordering. If d = 0, then assign blue label 2 to all forward edges incident
to ui. Otherwise, if d ≥ 1, then recall that ui is incident to dV0(ui) ≥ d forward
edges. Via assigning blue labels to these edges, we can thus make the blue
sum of ui increase by any value in {dV0(ui), . . . , 2dV0(ui)}, which set contains
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dV0(ui) + 1 ≥ d + 1 elements. Thus, we can assign blue labels to the forward
edges incident to ui so that its blue sum is different from that of ui1 , . . . , uid .

Once this step achieves, all edges incident to vertices in V0 ∪ V1 ∪ V2 are
labelled. For every vertex u ∈ V2, we have σr(u) ≡ 0 mod 4 and σb(u) ≥ 2. Every
two adjacent vertices of V2 are distinguished by their blue sums, while all upward
edges incident to the vertices in V2 are assigned red labels. It is important to
emphasise also that assigning blue labels to the edges joining vertices of V2

and V0 altered the blue sums of the vertices in V0, which is not an issue since
the adjacent vertices of V0 are distinguished by their red sums, which were not
altered. So, any two adjacent vertices in V0 remain distinguished, and similarly
for any two adjacent vertices in V1. Finally, note that any two adjacent vertices in
distinct Vi’s are distinguished by their red sums having different values modulo 4.

Step 4: Labelling the edges of H.

Recall that, at this point, we have σb(v)=0 for every vertex v ∈D1∪D2∖{w}
and σb(w) = 1, while σb(u) ≥ 2 for every vertex u ∈ V0 ∪ V1 ∪ V2. In particular,
if v ∈D1 belongs to an empty component of H, then all edges incident to v are
already labelled, and v is distinguished from its neighbours due to its blue sum.

Recall that H denotes the unique non-empty component of H, and that H
actually contains all edges of G that remain to be labelled. Recall also that H
contains w, a special vertex we defined in the first labelling step, which is the
only vertex of H having non-zero blue sum. According to Lemma 1, we can assign
red labels 1 and 2 to the edges of H so that, even when taking into account the
red labels assigned to the upward edges incident to the vertices in V0 ∪ V1 ∪ V2,
any two adjacent vertices of H different from w are distinguished by their red
sums. Since σb(w) = 1 while σb(v) = 0 for every v ∈ V (H) ∖ {w}, vertex w is also
distinguished from its neighbours in H. These conditions guarantee we have not
introduced any conflicts involving vertices of D1∪D2 and vertices of V0∪V1∪V2.

Thus, the resulting (2, 2)-labelling of G is distinguishing. ��

4 From 2K2-free Graphs to K1,3-free Graphs, and Beyond

As mentioned earlier, we also proved the Weak (2, 2)-Conjecture for claw-free
graphs in the full paper [6], in a way that is quite reminiscent of how we proved
Theorems 3 and 4. The structure of 2K2-free graphs being much more con-
strained than that of K1,3-free graphs, this required involved refinements over
our arguments; in particular:

– The main issue in order to adapt Theorem 3 to K1,3-free graphs, is that
R can now have several non-empty components, and similarly for H. Then,
by leading the proof the exact same way for every non-empty component of
R, multiple upward edges can now be assigned red label 1. Fortunately, the
fact that G is claw-free implies that every u ∈D neighbours vertices from at
most two components of R, meaning that σr(u) ≤ 2. So there can be conflicts
between vertices of R and D, but we can get rid of those by altering the
labelling around very local structures of G.
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– Regarding adapting Theorem 4 to K1,3-free graphs, the main issue is that H
can now have several non-empty components, the most troublesome of which
can consist of a single edge v1v2 with v1 ∈D1 and v2 ∈D2. The problem is that
distinguishing v1 and v2 has nothing to do with the label assigned to v1v2;
in particular, v1 and v2 might get in conflict because of how we labelled the
upward edges, when dealing with the vertices of V0 ∪ V1 ∪ V2. We deal with
this issue through being extra cautious when labelling upward edges, to make
sure such situations do not occur. This requires us to also modify our sum
rules by a bit. For instance, we allow vertices of V0 to have a red sum that is
not odd, provided their neighbourhood satisfies some conditions.

In both cases, the final step of labelling the edges of H is also slightly trickier,
due to the fact that we have less control over the labels assigned to upward edges.
Fortunately, when G is claw-free, H is actually a bipartite graph with maximum
degree at most 2, a structure which is quite favourable, and which we manage
to deal with using algebraic tools (such as the Combinatorial Nullstellensatz).

To go farther on this topic, it could be interesting to investigate the Weak
(2, 2)-Conjecture for more classes of graphs defined in terms of forbidden struc-
tures, such as triangle-free graphs, or graphs with large girth in general. One
could wonder also about graphs in which many short cycles are present, such as
chordal graphs. Another class could be that of P4-free graphs (cographs).
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Abstract. A graph G is said to be a bisplit graph if its vertex set can
be partitioned into a stable set and a complete bipartite graph. The
minimum Steiner tree problem (STREE) is defined as follows: given a
connected graph G and a subset of vertices R ⊆ V (G), the objective is
to find a minimum cardinality set S ⊂ V (G) such that the set R ∪ S
induces a connected subgraph. In this paper, we present an interesting
dichotomy result for STREE on bisplit graphs, we show that STREE is
polynomial-time solvable for chordal bipartite bisplit graphs, and NP-
complete otherwise. Further, we show that for chordal bisplit graphs,
the problem is polynomial-time solvable. A revisit of our NP-complete
reduction instances reveals that the instances are diameter at most 5
bipartite graphs. We also obtain one more dichotomy result for STREE
on bisplit graphs which says that for diameter 5 the problem is NP-
complete and polynomial-time solvable for diameter at most 4. On the
parameterized complexity front, we show that the parameterized version
of Steiner tree problem on bisplit graphs is fixed-parameter tractable
when the parameter is the biclique size and is W[2]-hard on bisplit graphs
if the parameter is the solution size. We conclude this paper by presenting
structural results of bisplit graphs which will be of use to solve other
combinatorial problems.

Keywords: Bisplit graphs · The Steiner tree problem · W-hardness ·
Dichotomy results

1 Introduction

The class of bisplit graphs was introduced by Brandstädt et al. in 2005 [1].
An undirected graph G is a bisplit graph if its vertex set can be partitioned
into a stable set and a complete bipartite graph. Bisplit graphs have attracted
researchers from both structural and algorithmic perspectives. Bisplit graphs
can be recognized in O(n2) time [2].
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Bisplit graphs resemble split graphs which are graphs whose vertex set can
be partitioned into a clique and a stable set. Having seen this resemblance it is
natural to ask for the computational complexity of classical problems on bisplit
graphs which are NP-complete on split graphs [3]. In this paper, we look at one
such problem namely the Steiner tree problem. We also highlight other combina-
torial problems such as the Hamiltonian cycle problem [4], the outer-connected
domination problem [5] are NP-complete on split graphs. Further, the complex-
ity of these problems is analyzed in the subclass of split graphs. For example,
STREE is NP-complete on K1,5-free split graphs, and polynomial-time solvable
on K1,4-free split graphs, and a similar study was also made for Hamiltonian
cycle [6] and Hamiltonian path [7]. As per our knowledge, there are very few
combinatorial problems whose complexity status is known on bisplit graphs [8–
10].

This paper aims to study the computational complexity of the Steiner tree
problem on bisplit graphs and its subclasses. To the best of our knowledge, the
computational complexity of the Steiner tree problem considered in this paper
is not explored on bisplit graphs. The decision version of combinatorial problem
which we consider in this paper is as defined below;

The Steiner tree problem (STREE)(G,R, k)
Instance: A graph G, a terminal set R ⊆ V (G), and a positive integer k.
Question: Is there a set S ⊆ V (G) \ R such that |S| ≤ k, and G[S ∪ R] is

connected ?
The Steiner tree problem is NP-complete on split graphs [3]. We investigate

the complexity of STREE on bisplit graphs and show that STREE remain NP-
complete for bisplit graphs as well. It is known that bisplit graphs are a subclass
of comparability graphs, and the status of well-known combinatorial problems
such as the dominating set problem [11], the Steiner tree problem [12], etc., are
NP-complete in comparability graphs. Thus this paper reinforces the result of
[12]. Further, a well-known subclass of bisplit graphs is bipartite chain graphs
where the status of these problems are polynomial-time solvable [13].

Our research is driven by the following questions on bisplit graphs for
STREE:

1. What is the complexity of STREE on bisplit graphs when the cycle length
is bounded? For example, chordal bisplit, chordal bipartite bisplit, and other
special bisplit graphs.

2. What is the complexity of STREE on bisplit graphs when the bisplit graphs
have bounded diameter? For example, diameter 5 bisplit graphs.

3. Can cycle length or diameter dictate the dichotomy status of STREE on
bisplit graphs?

4. What is the parameterized complexity of STREE on bisplit graphs when the
parameters are the biclique size and the solution size?

Our Results:

1. We prove that the complexity of STREE on bisplit graphs is NP-complete. By
using the reduction instances, we identify a subclass of bisplit graphs for which
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STREE is polynomial-time solvable, which we shall discuss in Sect. 2. We also
analyze the complexity of STREE on bisplit graphs with the parameter being
the diameter, which shall be discussed in Sect. 3.

2. Our final result is from the parameterized complexity theory, to be presented
in Sect. 4. We prove that the parameterized version of Steiner tree problem
on bisplit graphs with the parameter being the solution size is W[2]-hard, and
is fixed-parameter tractable when the parameter is the biclique size.

Graph Preliminaries: In this paper, we consider connected, undirected,
unweighted, and simple graphs. For a graph G, V (G) denotes the vertex set,
and E(G) represents the edge set. For a set S ⊆ V (G), G[S] denotes the
subgraph of G induced on the vertex set S. The open neighborhood of a ver-
tex v is NG(v) = {u | {u, v} ∈ E(G)} and the closed neighborhood of v is
NG[v] = {v} ∪ NG(v). The degree of vertex v is dG(v) = |NG(v)|.

A graphG is a bipartite graph if V (G) can be partitioned intoX∪Y such that
X, Y are disjoint independent sets. A bipartite graph G is called star-convex
bipartite, if there is an associated star T on vertices of X, such that each vertex
y ∈ Y , its neighborhood NG(y) induces a substar of T [14]. For such star-convex
bipartite graphs, we say the convexity is onX. A bipartite graph is chordal bipar-
tite if every cycle of length strictly greater than four has a chord. For any integer
k ≥ 3, a graph is k-chordal if it has no induced cycle of length greater than k [15].
For a bisplit graph, let A ∪ B represents complete bipartite graph, and I rep-
resents an independent set. Let A = {a1, a2, . . . , an}, B = {b1, b2, . . . , bm}, and
I = {x1, x2, . . . , xt}. For a connected graph, the distance d(u, v) between u and
v is the number of vertices in the shortest (u, v) path. For a connected graph, the
diameter of G, diam(G), is defined by diam(G) = max{d(u, v) : u, v ∈ V (G)}.

2 STREE in Bisplit Graphs

In this section, we show that STREE on bisplit graphs is NP-complete. We estab-
lish a classical hardness of STREE on bisplit graphs by presenting a polynomial-
time reduction from STREE on split graphs. The decision version of Steiner tree
problem is defined below:

STREE (G,R, k)
Instance: A graph G, a terminal set R ⊆ V (G), and a positive integer k.
Question: Is there a set S ⊆ V (G) \ R such that |S| ≤ k, and G[S ∪ R] is
connected ?

Theorem 1. For bisplit graphs, STREE is NP-complete.

Proof. STREE is in NP Given a bisplit graph G and a certificate S ⊆ V (G),
we show that there exists a deterministic polynomial-time algorithm for verifying
the validity of S. Note that the standard Breadth First Search (BFS) algorithm
can be used to check whether G[S ∪R] is connected. It is easy to check whether
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|S| ≤ k. The certificate verification can be done in O(|V (G)| + |E(G)|). Thus,
we conclude that STREE is in NP.

STREE is NP-Hard It is known that STREE on split graphs is NP-hard.
STREE on split graphs can be reduced in polynomial time to STREE on bisplit
graphs using the following reduction. We map an instance of (G,R = I, k) where
|K| = n, |I| = m to the corresponding instance of (G′, R′, k′ = 2k) as follows:
V (G′) = V1 ∪ V2 ∪ V3 ∪ V4, V1 = {vi | vi ∈ K, 1 ≤ i ≤ n}, V2 = {ui | vi ∈
K, 1 ≤ i ≤ n}, V3 = {wi | yi ∈ I, 1 ≤ i ≤ m}, V4 = {xi | yi ∈ I, 1 ≤ i ≤ m},
and E(G′) = E′ ∪ {{vi, wi}, {ui, xi} | {vi, yi} ∈ E(G), vi ∈ K, yi ∈ I}, E′ =
{{vi, uj} | vi ∈ V1, uj ∈ V2, 1 ≤ i ≤ j ≤ n}. Let R′ = V3 ∪ V4, k′ = 2k. Note
that G′ is a bisplit graph with V1 ∪V2 induces a biclique and V3 ∪V4 induces an
independent set.

Claim 1. (G,R, k) is an yes-instance of STREE in G if and only if (G′, R′, k′ =
2k) is an yes-instance of STREE in G′.

Proof. Necessary: Suppose that there exists a Steiner tree in G for R = I. Hence
the Steiner set S ⊆ K. The set S′ of G′ is S′ = {vi, ui | vi ∈ S, vi ∈ V2, ui ∈ V3}
is the Steiner set with R′ = V3 ∪ V4. Also, note that |S′| = 2k.

Sufficiency: Assume that there exists a Steiner tree of G′ for R. We know that
S′ ⊆ V1∪V2. By our construction we know that for any vi ∈ V1, vi is not adjacent
to wj , wj ∈ V3. Similarly ui ∈ V2, ui is not adjacent to xj , xj ∈ V4. Hence for
R ∩ V3, we need k vertices from V1 and for R ∩ V4, we need k vertices from
V2. Since |S′| = 2k, we now construct S = {vi | vi ∈ V1, vi ∈ S′}. Therefore,
S is the corresponding solution of STREE in G. Since k′ = 2k, observe that
|S′ ∩ V1| ≤ k or |S′ ∩ V2| ≤ k. Without loss of generality, let |S′ ∩ V1| ≤ k. Note
that {vi ∈ K | vi ∈ S′ ∩ V1} forms a Steiner set of size at most k in G. �	
Therefore, STREE is NP-complete on bisplit graphs. �	
Corollary 1. For bipartite graphs of diameter at most 5, STREE is NP-
complete.

Proof. Since bisplit graphs instance generated from Theorem 1 are bipartite
graphs having diameter at most 5, STREE is NP-complete on bipartite graphs
of diameter at most 5. �	
Theorem 2. [16] For K1,5-free split graphs, STREE is NP-complete.

Theorem 3. [16] For K1,4-free split graphs, STREE is polynomial-time solv-
able.

We extend the results of Theorem 2 and Theorem 3, for diameter at most 5
bipartite bisplit graphs. We have the following partitions in diameter at most 5
bipartite bisplit graphs; Let G be a diameter at most 5 bipartite bisplit graph.
Let the biclique be A ∪ B, and let the independent set be D1 ∪ D2. Note that
D1 represents vertices in I that are adjacent to B, and D2 represents vertices in
I that are adjacent to A.
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Corollary 2. If the graph induced on A∪D2 is a K1,5-free graph and the graph
induced on B ∪ D1 is a K1,5-free graph, then STREE is NP-complete.

Proof. Since from Theorem 2, it is known that for K1,5-free split graphs, STREE
is NP-complete. When we take the input instance of the reduction to beK1,5-free
split graph, then the generated instances will have the property that the graph
induced on A ∪ D2 is a K1,5-free graph and the graph induced on B ∪ D1 is a
K1,5-free graph. Thus Corollary 2 is true because of Theorem 1 and Theorem 2.

Theorem 4. If the graph induced on A∪D2 is a K1,4-free graph and the graph
induced on B∪D1 is a K1,4-free graph, then STREE is polynomial-time solvable.

Proof. Let G be a bipartite bisplit graph such that the graph induced on A∪D2

is a K1,4-free graph and the graph induced on B ∪ D1 is a K1,4-free graph. We
solve for R = I instance in G. For all other instances of R, the solution can be
obtained by using R = I algorithm. By considering A as clique and by using
K1,4-free split graph Steiner tree algorithm [16] and Theorem 3 as black box, we
obtain a Steiner solution S1 for D2. Similarly for D1, we obtain Steiner solution
S2 for D1. Thus Steiner solution for G is S1 ∪ S2. �	
From Corollary 2 and Theorem 4, it is clear that we obtain a dichotomy on
diameter at most 5 bipartite bisplit graph.

Highlights:

1. Note that the reduction instances generated from Theorem 1 are odd cycle-
free bisplit graphs. Observe that the reduction instances can have cycles of
any even length.

2. A natural question that can arise is that
”What happens to the complexity of STREE on bisplit graphs if they are
even-cycle free (chordal bisplit graphs)?”
”What happens to the complexity of STREE on bisplit graphs if all even
cycles are length four (chordal bipartite bisplit graphs)?”
We answer these questions in the following sections.

2.1 Chordal Bisplit Graphs

We show that STREE on chordal bisplit graphs is polynomial-time solvable.

Theorem 5. A graph G is a chordal bisplit graph, if and only if the following
properties are satisfied.

1. The biclique in G is K1,l, for some l ≥ 0.
2. Each vertex x ∈ I, if dG(x) ≥ 2, then x is adjacent to a1.
3. The graph induced on B ∪ I is a forest.

Proof. (i) On the contrary, if G has K2,l, for some l ≥ 0. Then G has C4 as an
induced subgraph, which contradicts the fact that G is a chordal graph. Thus
biclique of size Ki,l, i ≥ 2, for some l is not possible. Without loss of generality
we shall assume that |A| = 1, A = {a1}.
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(ii) Suppose that there exists a vertex, say x ∈ I such that dG(x) ≥ 2 and x
is not adjacent to a1. Let the neighbour of x be v1, v2. Observe that v1, v2 ∈ B
and we know that {v1, v2} /∈ E(G). Then a1, v1, x, v2 is a cycle of length 4, which
contradicts the fact that G is a chordal graph.

(iii) Since G is a chordal graph, even cycle is not possible in G[B∪I]. Further,
since G is a bisplit graph, an odd cycle of length greater than or equal to five is
not possible by Theorem 14. The only possible cycle length on G[B ∪ I] is three.
Suppose that G[B ∪ I] has cycle of length three, it must the case that either
{bi, bj} ∈ E(G), bi, bj ∈ B, 1 ≤ i < j ≤ m or {xu, xv} ∈ E(G) xu, xv ∈ I, 1 ≤
u < v ≤ t. It contradicts the fact that G is a bisplit graph. �	
Let the vertices in biclique be {a1, b1, . . . , bl} such that A = {a1}, B =
{b1, . . . , bl}. In Theorem 6, we show that for chordal bisplit graphs, finding
a minimum Steiner tree is polynomial-time solvable. For the polynomial-time
solvable cases of STREE, we consider the case R = I, for other cases such as
R ⊆ A ∪ B, R ⊆ A, R ⊆ B, can be found by using the case R = I.

Algorithm 1. STREE for chordal bisplit graphs
1: Input: A connected chordal bisplit graph G with R = I.
2: Output: A Steiner solution S for G
3: Let the vertices in biclique be a1, b1, . . . , bl
4: if there exist a pendent vertex v in R then
5: S = S ∪ N(v)
6: R = R \ N(v)
7: end if
8: if R = ∅ and G[R ∪ S] is connected then
9: Stop the algorithm
10: else
11: S = S ∪ {a1}
12: end if
13: Return S

Theorem 6. Finding a minimum Steiner tree on chordal bisplit graphs is
polynomial-time solvable.

Proof. We consider the case R ⊆ I. Suppose if there exist a pendent vertex v in
R, then by Step 5 of Algorithm 1 in order to connect v with rest of the vertices
in R, N(v) is included in S. If any vertex in R whose neighbor is not in S or the
vertices included so far do not induce a connected graph, then by Step 11 of the
algorithm, including a1 in S as by Theorem 5, a1 is adjacent to vertices of degree
at least 2, a1 is adjacent to vertices in B. Therefore, G[R∪ S] is connected, and
|S| is the minimum. �	
Since we check for the presence of pendent vertices in G, the check can be done
in linear time. Thus the time complexity of Algorithm 1 is O(n), where n is the
number of vertices in G.
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2.2 Chordal Bipartite Bisplit Graphs

Since finding a minimum Steiner set for a given R on chordal bisplit graphs
turns out to be polynomial-time solvable. We extend this line of study further,
by restricting cycle length. Further, it is known [17] that on chordal bipartite
graphs, STREE is NP-complete. Hence we are interested to study the complexity
of STREE on chordal bipartite bisplit graphs.

We prove that finding a minimum Steiner tree on chordal bipartite bisplit
graphs is polynomial-time solvable. We use the algorithm of finding a minimum
Steiner tree on strongly chordal split graphs as the black box.

Theorem 7. [3] Finding a minimum Steiner tree on strongly chordal graphs is
polynomial-time solvable.

Corollary 3. Finding a minimum Steiner tree on strongly chordal split graphs
is polynomial-time solvable.

Since all other cases such as R ⊆ (A∪B) or R ⊆ (A∪B ∪ I) can be reduced to
the case R = I, it is enough to consider the case when R = I.

Theorem 8. A minimum Steiner tree on chordal bipartite bisplit graphs can be
found in polynomial time.

Proof. Let G be chordal bipartite bisplit graphs. To find the solution set S
for R, we transform the graph G to G′ such that V (G′) = V (G), E(G′) =
E(G) ∪ {{ai, aj} | ai, aj ∈ A, 1 ≤ i < j ≤ n} ∪ {{bi, bj} | bi, bj ∈ B, 1 ≤ i < j ≤
m}, R′ = I. Observe that the resultant graph is a strongly chordal split graph
[4]. It is known that finding a minimum Steiner tree on strongly chordal split
graphs is polynomial-time solvable. Thus a minimum Steiner set for G′ can be
obtained in polynomial-time. Let S′ be a minimum Steiner set for G′. Moreover,
the transformation of G to G′ is a solution preserving reduction. Using R′ of G′,
we obtain a minimum Steiner set to R of G. Let S′ be a minimum Steiner set
for R′ of G. Suppose if A ∩ S′ 
= ∅ and B ∩ S′ 
= ∅, then S′ is also a minimum
Steiner set for G. Suppose if G[R∪S′] is disconnected, then one of A∩S′ = ∅ and
B∩S′ = ∅. In that case, we include arbitrary vertex a ∈ A in S′, if A∩S′ = ∅ or
an arbitrary vertex from B is included in S′. Therefore, S′ is a minimum Steiner
set of G for R = I. �	
Remarks:

1. Thus we obtain a dichotomy with cycle length as the parameter of interest.
2. It is known [18] that finding a minimum Steiner tree on strictly chordality k

graphs, k ≥ 5 is polynomial-time solvable.

3 Complexity of STREE on Bisplit Graphs with Diameter
as the Parameter

On bipartite bisplit graphs with diameter at most 5, it known from Theorem 1
that STREE is NP-complete. A natural question is to analyze ”the complexity
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of STREE on diameter 4 bipartite bisplit graphs?” We answer this question in
Theorem 10. An edge {u, v} is said to be a dominating edge, if (NG(u)∪NG(v)) =
V (G).

Theorem 9. If bipartite bisplit graphs have diameter 4, then it contains a dom-
inating edge.

Proof. Let G be a diameter 4 bipartite bisplit graph. It is clear that the distance
between any two vertices must be at most 4. Hence there does not exist two
vertices in A, say u, v such that NG(v) 
= NG(u). Suppose that NG(v) 
= NG(u).
Let y ∈ NG(v), z ∈ NG(u). Then the path between y, z must be of length 5. This
contradicts the fact that G is a diameter 4 bipartite bisplit graph. Similarly, the
argument is true with respect to B as well. �	
Theorem 10. Let G be a bipartite bisplit graph with diameter 4. Then the min-
imum Steiner set can be found in linear time.

Proof. If |I| = 1, then clearly S = ∅. If |I| ≥ 2, by the structure of G and by
Theorem 9, clearly one of {u} or {v} or {u, v} is a desired Steiner set. �	

4 Parameterized Complexity Results

In this section, we study the complexity of the parameterized version of Steiner
tree problem on split graphs with the parameter being the solution size and with
respect to another parameter being the size of the biclique.

4.1 Parameterized Intractability

We consider the following parameterized version of the Steiner tree problem.
The parameterized version of Steiner tree problem (PSTREE)
PSTREE(G,R, k)
Instance: A graph G, a terminal set R, a positive integer k
Parameter: k
Question: Does there exist a set S ⊆ V (G) \ R such that |S| ≤ k, and

G[R ∪ S] is connected?
We now prove that our reduction establishes a stronger result: Theorem 1 is

indeed a parameter preserving reduction which we establish in Theorem 11.

Theorem 11. For bisplit graphs, PSTREE is W[2]-hard with parameter being
the solution size.

Proof. It is known that the parameterized version of Steiner tree problem on
split graphs with the parameter being solution size is W[2]-hard. Note that
the reduction presented in Theorem 1 maps (G,R, k) to (G′, R′, k′ = 2k). From
Claim 1 of Theorem 1, we can observe that the reduction is a solution preserving
reduction. Hence the reduction is a deterministic polynomial-time parameterized
reduction. Therefore, PSTREE on split graphs is W[2]-hard. �	



Short Cycles Dictate Dichotomy Status of STREE on Bisplit Graphs 227

4.2 FPT Algorithm for Bisplit Graph

We consider the following parameterized version of the Steiner tree problem.
The parameterized version of Steiner tree problem (PSTREE1)
PSTREE(G,R, k)
Instance: A bisplit graph G with biclique size l, a terminal set R, a positive

integer k
Parameter: k, l
Question: Does there exist a set S ⊆ V (G) \ R such that |S| ≤ k, and

G[R ∪ S] is connected??
We now prove that with respect to the parameter being the size of biclique,

PSTREE1 is in FPT.
Let the vertices in biclique L be x1, . . . , xn, y1, . . . , ym, and let R = I. For

each vertex in L, we decide whether to include that vertex in the solution or
not. The basic idea is that for every vertex in L, we consider two cases: for every
vertex l ∈ L, include l in the solution and reduce the graph G = G − N I

G[l] or
G = G − l. If we can find the Steiner set of size k − 1 in either G = G − N I

G[l]
or G = G − l, we can construct the Steiner solution for G.

Algorithm 2. STREE for bisplit graphs
1: Input: A connected bisplit graph G with R = C.
2: Output: A Steiner solution S for G
3: Let the vertices in biclique L be x1, . . . , xn, y1, . . . , ym
4: for each vertex l in L do
5: Include l ∈ S, continue with G = G − NC

G [l]
6: Remove l, continue with G = G − l
7: end for
8: Pick a branch for which |S| ≤ k

The key Observation can be stated as follows:

Observation 1. Let G be a bisplit graph and l ∈ L be a vertex in the biclique.
The graph G has a Steiner solution of size k if and only if either G = G−NC

G [l]
has a Steiner solution of size k or G = G− l has a Steiner solution of size k−1.

Theorem 12. PSTREE1 on bisplit graphs can be computed in time O(2l.nΘ(1)).

Proof. Since R = I, S ⊆ L. Let |I| = t. By our approach, we choose an arbitrary
vertex in v ∈ L such that dIG(v) 
= 0, and we branch by having v ∈ S and another
branch with v /∈ S. We can observe that length of the tree is |L| and the number
of leaves is at most 2|L|. Since all possible paths from the root to leaves are
explored, one of the paths from the root to a leaf yields a minimum Steiner set.

Observe that Algorithm 2 lists all feasible solutions. The running time of the
algorithm is bounded by the number of nodes (2|L|) and the time taken at each
node is nΘ(1). �	
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5 Structural Results on Bisplit Graphs

In this section, we shall present some structural results on bisplit graphs, which
will be of independent interest, however can be used in analyzing computational
complexity status of other combinatorial problems on bisplit graphs.

Theorem 13. Bisplit graphs have diameter at most 5.

Proof. Suppose that there exists a bisplit graph G having diameter 6. It must
be the case that there exist at least two vertices having the shortest distance
between them being 6. For any two vertices from biclique, their distance is at
most three. For a vertex from I and a vertex from A ∪ B, their distance is at
most four. If there are two vertices from I, say y, z, and four vertices are from
biclique, say u, v, w, x. It is clear that two vertices from A and from B. Without
loss of generality, u ∈ NG(y), and v ∈ NG(z), then the shortest path between
y, z is y, u, w, v, z, a path of length five, which contradicts the fact that there
exist at least two vertices having shortest distance between them is 6. Therefore,
Bisplit graphs have diameter at most 5. �	
Theorem 14. If a graph G is a bisplit graph, then it does not contain an odd
cycle of length greater than or equal to 5 as an induced subgraph.

Proof. On the contrary, suppose that G contains C5 as an induced subgraph,
then the maximum stable set in C5 is 2. Let the cycle C5 inG be c1, c2, c3, c4, c5.
Without loss of generality, c3, c5 are in I, then c1, c2, c4 are in biclique Km,n.
Let the vertices in biclique be partitioned as A∪B such that the graph induced
on A is a stable set and the graph induced on Y is a stable set. From the structure
of C5, it is known that at least one vertex has to be in each of the partitions,
then the biclique edges in G form a chord in the cycle. Therefore, bisplit graphs
do not contain odd cycles of length greater than or equal to 5. �	
Theorem 15. Every minimum vertex separator S in a bisplit graph G is a
subset of A ∪ B, where A ∪ B forms a biclique in G.

Proof. From the structure of bisplit graphs, it is known that any minimum vertex
separator cannot be from stable set I and I ∩ S = ∅. Suppose that S ⊂ I, then
the vertices in V (G) \ S form a connected subgraph. Thus, S ⊂ I is a minimum
vertex separator is not possible. Suppose that S is a minimum vertex separator
I ∩ S 
= ∅, then S′ = S \ I is also a vertex separator and |S′| < |S|, which
is a contradiction that S is a minimum vertex separator. Thus every minimum
vertex separator S in a bisplit graph G is a subset of vertices in a biclique. �	
Observation 2. Every induced subgraph of a bisplit graph is a bisplit graph.

Observation 3. Bisplit graphs are a subclass of wheel-free graphs(Wn-free
graphs, n ≥ 3).

Observation 4. Bisplit graphs are K4-free perfect graphs.
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Theorem 16. If G is a bisplit graph, then G is a P7-free chordality 4 graph.

Proof. By the definition of the bisplit graph, we know that A, B, C are stable
sets. Thus, in G we obtain three cliques, for a path of maximum length each
clique can contribute at most two vertices. The maximum length possible in G
is P6. Hence G is a P7-free graph.

Next we show that G is a chordality 4 graph. Suppose that there exists a
cycle of length greater than or equal to 5 as an induced subgraph in G, then at
least three vertices are from C, which forms a chord in the cycle. Thus G has a
cycle of length greater than or equal to five as an induced subgraph, which is a
contradiction.

Therefore, G is a P7-free chordality 4 graph. �	
Observation 5. If G is a bisplit graph, then the diameter of G is at most 6.

Definition 1. A graph G is a strict star-convex bipartite graph if it is a star-
convex bipartite graph and each vertex in Y is adjacent to the root of the imagi-
nary star.

Lemma 1. Strict star-convex bipartite graphs are a subclass of bisplit graphs.

Proof. By the structure of strict star-convex bipartite graphs, there exists a
vertex say x which is adjacent to all the vertices of degree at least two in the
partition of V (G) not containing x. Let G be a strict star-convex bipartite graph
with two partitions X, Y . Without loss of generality assume that x is in the
partition X of G and all the vertices in Y are adjacent to x.

Now we show that any strict star-convex bipartite graph is a bisplit graph
G′, by showing three partitions A, B, C such that A = {u}, where u is adjacent
all vertices in Y in G, B = Y , C = X \ {x} and E(G′) = E(G). �	
Conclusion and Directions for Further Research:

Algorithmic and complexity aspects of STREE, were investigated on bisplit
graphs.

– We have investigated the classical complexity of STREE on bisplit graphs,
chordal bipartite bisplit graphs, and chordal bisplit graph.

– We have analyzed parameterized complexity of the Steiner tree problem on
bisplit graphs with respect to the solution size as the parameter. Further, we
also analyzed the parameterized complexity of the Steiner tree problem on
bisplit graphs with respect to biclique as the parameter.

– One can investigate the complexity of other combinatorial problems on bisplit
graphs.
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Abstract. For any flow network, min(s, t)-cut query is a fundamental
graph query that asks for a minimum weight cut that separates vertices
s and t. Gomory and Hu [13] proposed a data structure which is an undi-
rected weighted tree that compactly stores min(s, t)-cut for all (s, t) pairs
of an undirected weighted graph. Although there have been some research
towards the problem of dynamically maintaining Gomory-Hu tree of a
graph [4,18], an efficient dynamic (incremental or decremental) algorithm
for general graphs remains elusive. Also efficient dynamic algorithms for
maintenance of Gomory-Hu tree for special graphs has not been inves-
tigated sufficiently. In this paper we propose algorithms for Gomory-Hu
tree for a special class of graphs, known as cactus graphs. First we show
that Gomory-Hu tree for a cactus graph can be constructed in linear
time. Then we provide both incremental and decremental algorithms for
maintaining a Gomory-Hu tree of a cactus graph. The algorithms use
relations between blocks of a graph and its Gomory-Hu tree. For the
incremental algorithm the amortized update time is O(log n) and for the
decremental algorithm the worst-case update time is O(log n). For gen-
eral graphs with integral weights, we present a data structure requiring
O(mn2) space that helps us create a new Gomory-Hu tree if the weights
of some edges of a given graph are changed by some integral amounts.
Specifically, if the weights of k edges are changed by w1, w2, ..., wk units
respectively, then a new Gomory-Hu tree of the modified graph can be
reconstructed in O((

∑k
i=1 wi)mn) time.

Keywords: Min-cut · Gomory-Hu tree · Cactus graph · Dynamic
graph

1 Introduction

In a flow network, computing the min-cut is a fundamental graph problem. In
a weighted graph, the minimum weight cut that separates two vertices s and t
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is denoted as min(s, t)-cut. The Max-flow Min-cut Theorem [10] states that for
all (s, t) pair of vertices, the weight of a min(s, t)-cut is equal to the maximum
flow from s to t in the flow network. This gave rise to many min-cut algorithms
based on finding a max-flow in the flow network.

About half a century ago, Gomory and Hu [13] proposed a tree representation
for all-pair min-cut of an undirected weighted graph. The tree, popularly known
as the Gomory-Hu tree, is constructed over the set of the vertices of the given
graph and has a strong property that for all (s, t) pair of vertices, any min(s, t)-
cut in the tree, is also a min(s, t)-cut in the original graph. Hence the problem of
finding a min(s, t)-cut in a undirected weighted graph can be reduced to finding
a min(s, t)-cut in a undirected weighted tree. We know that any two vertices on
a tree are connected by a unique path. Hence, an edge of minimum weight on the
unique s to t path corresponds to the min(s, t)-cut in the tree and the weight of
that edge is equal min(s, t)-cut value in the original graph. Note that removing
the min(s, t)-cut edge in the Gomory-Hu tree will disconnect the tree into two
components. The vertex sets of the two components is the cut bipartition. The
cutset of this min(s, t)-cut set would be the set of edges that join vertices of the
two vertex sets. This allows construction of a data structure that can pre-process
over a Gomory-Hu tree and can answer min(s, t)-cut query for any (s, t) pair in
amortized logarithmic time [2].

Gomory and Hu [13] also gave an algorithm to compute a Gomory-Hu tree of
a graph by making n−1 different min(s, t)-cut computations on auxiliary graphs.
Gusfield [15] modified this algorithm to make those n − 1 different min(s, t)-
cut computations on the original graph. The time complexity of this algorithm
is O((n − 1) × (time for a single min(s, t)-cut computation)) + O(n2). Amir
Abboud et al. [2] recently showed that there exists a data structure with near-
linear pre-processing time that can answer min(s, t)-cut queries in amortized
polylogarithmic time if and only if Gomory-Hu tree of a graph can be constructed
in near-linear time. This essentially showed that Gomory-Hu trees are optimal
for answering min-cut queries. Any solution to the min(s, t)-cut problem for
all (s, t) pairs requires at least n − 1 different min(s, t)-cut computations. The
remarkable thing about Gomory-Hu tree is that it takes exactly n − 1 machine
words to encode at least one min(s, t)-cut, for each (s, t) pairs. Hence Gomory-Hu
trees are also optimal in space.

1.1 Related Work and Motivation

The max-flow min-cut theorem [10] gives the fundamental relation between
flows and cuts in a flow network. The best algorithms for min(s, t)-cut in gen-
eral graphs follow from algorithms for max-flow. The Ford-Fulkerson algorithm
[11], which is one of the earliest algorithm for max − flow, has a time complex-
ity of O(mC) (here C is the upper bound of the max-flow). The Push-relabel
algorithm by Andrew V. Goldberg and Robert Tarjan [12] has a time complexity
of O(mn2). This is better than the complexity of Edmonds-Karp algorithm [9]
which has a time complexity of O(nm2). The current best algorithm for the max
flow problem [7] is almost linear, computing max-flow in m1+o(1) time.
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The current best known time complexity of computing the Gomory-Hu tree
for a general weighted graph is Õ(n2) shown recently in [1]. Significant progress
has also been made on special cases of the problem. When the largest edge weight
U is small, offline algorithms [21,22] that run in time Õ(min(m

10
7 U

1
7 ,m

11
8 U

1
4 ))

are closer to the optimal. For planar graphs, Gomory-Hu tree can be constructed
in near-linear time [6].

There has been some work on dynamically maintaining a global min-cut of a
graph. A cut in a graph is called a global min-cut of the graph iff no other cut in
the graph has value less than the value of that cut. When the global min-cut size
is small, Thorup [24] demonstrated that the global min-cut of a graph can be
exactly maintained in Õ(

√
n) worst-case update time and (1 + ε)-approximately

otherwise. A different analysis of the similar problem was done later [14]. Karger
[19] proposed a fully dynamic randomised algorithm for maintaining minimum
cut in Õ(n

1
2+ε) expected amortized time per edge insertion with an approxima-

tion factor of (1 + 2
ε )

1
2 . In planar graphs with arbitrary edge weights, Lacki and

Sankowski [20] proposed algorithms having sub-linear worst case update and
query time for maintaining the exact minimum cut. Dinitz and Westbrook [8]
gave an incremental algorithm for maintaining the classes of k-edge-connectivity
(for arbitrary k) in a (k − 1)-edge-connected graph.

Relating to the problem of dynamic maintenance of all-pair min(s, t)-cut,
Hartmann et al. [18] gave a fully dynamic algorithm for Gomory-Hu tree. Though
the algorithm performs well on some real world data, in the worst case the algo-
rithm is as bad as computing the Gomory-Hu tree from scratch. Barth et al. [4]
showed how to compute the Gomory-Hu tree using two pre-computed Gomory-
Hu trees in O(n2) time when weight of exactly one edge varies. If weights of
k edges vary then their method requires 2k pre-computed Gomory-Hu trees.
Whether the problem can be solved using polynomial number of trees was left
as an open question. Recently Baswana et al. [5] presented a compact data
structure that can report those (s, t)-pairs of vertices for which the min(s, t)-cut
changes due to insertion of an edge in optimal query time. The data structure
works for a static graph. However if the graph changes, due to insertion of an
edge, then the data structure is not dynamically updated making it incapable
of answering subsequent queries. In recent years significant advances have been
made in the design and analysis of dynamic algorithms for various graph prob-
lems. Dynamic algorithms have been proposed for shortest path, connectivity,
reachability, matching, clustering and various other graph theoretic problems
[17]. However, almost no dynamic algorithm is known for the Gomory-Hu tree
construction problem. This paper is an attempt to fill that gap.

Our Contribution. In this work we first show that Gomory-Hu tree for a
cactus graph can be constructed optimally in linear time. Then we provide both
incremental and decremental algorithms for Gomory-Hu tree for cactus graphs.
The algorithms use relations between blocks of a graph and its Gomory-Hu tree.
For the incremental algorithm the amortized update time is O(log n) and for
the decremental algorithm the worst-case update time is O(log n). For general
graphs with integral weights, we present a data structure requiring O(mn2) space
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that helps us create a new Gomory-Hu tree if the weights of some edges of the
given graph are changed by some integral amounts. Specifically, if the weights of
k edges are changed by w1, w2, ..., wk units respectively, then a new Gomory-Hu
tree of the modified graph can be constructed in O((

∑k
i=1 wi)mn) time.

Paper Organization. In Sect. 3, we introduce relation between block decompo-
sition of a graph and its Gomory-Hu tree. Section-4 contains dynamic algorithms
(both incremental and decremental) for maintaining Gomory-Hu tree of a cac-
tus graph. Sect. 5 presents a sensitivity data structure for Gomory-Hu tree for
general graphs with integral weights. Finally we conclude in Sect. 6.

2 Preliminary

All graphs considered in this work are edge-weighted undirected simple graphs.
The weights associated with edges are positive real numbers. Throughout the
paper, for a graph G, V (G) denotes the set of vertices, E(G) denotes the set of
edges and ∀e ∈ E(G),WG(e) denotes the weight of edge e. When the graph G
is clear from the context, we use V , E and W (e) for the respective purposes.

Cut: A cut in a graph is a bi-partition of the set of vertices. Let S be a
non-empty proper subset of V . The cut corresponding to the bi-partition of V
into S and V \S is denoted by (S)-cut. Cutset of (S)-cut is the set of edges with
one endpoint in S and the other endpoint in V \S. Value of (S)-cut is defined as
the sum of the weights of the edges in its cutset. Let s, t ∈ V , s �= t. ∀S ⊂ V ,
(S)-cut is called a (s, t)-cut iff (s ∈ S and t ∈ V \S) or (t ∈ S and s ∈ V \S).
A (s, t)-cut is called a min(s, t)-cut iff the value of that (s, t)-cut is not greater
than the value of any other (s, t)-cut.

Definition 1 (Gomory-Hu tree). Let G be an undirected weighted graph.
Then an undirected weighted tree T over the same set of vertices as G is called
a Gomory-Hu tree of G iff: ∀ distinct pair of vertices s, t ∈ V and ∀ subsets S
of V , if (S)-cut is a min(s, t)-cut in T , then (S)-cut is a min(s, t)-cut in G and
value of (S)-cut in T is equal to value of (S)-cut in G.

Gomory-Hu tree of a connected graph may not be unique and in case of discon-
nected graphs, we have a forest of Gomory-Hu trees of its connected components.

3 Gomory-Hu Trees of Blocks of a Graph

In this section, we derive the relationship between Gomory-Hu tree of a graph
and Gomory-Hu trees of blocks of the graph. We first present a result about
Gomory-Hu tree of the union of two graphs having single common vertex, which
is used to derive the main result of this section in Theorem-1.

Lemma 1. Let G1 and G2 be two connected graphs having exactly one common
vertex. Then the following hold:

1. If T1, T2 are Gomory-Hu trees of G1, G2 respectively, then T1∪T2 is a Gomory-
Hu tree of G1 ∪ G2.

2. If T is a Gomory-Hu tree of G1 ∪ G2, then ∃ trees T1, T2 such that T1, T2 are
Gomory-Hu trees of G1, G2 respectively and T1 ∪ T2 = T .
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A decomposition of a connected graph is a set of subgraphs such that every
edge of the graph belongs to exactly one subgraph in the set. The decomposition
in which every subgraph in the collection is a block of the graph is called the block
decomposition of the graph. We have followed standard definition for blocks, as
provided in [25].

Theorem 1. Let G be a connected graph and H1,H2, ...,Hk be all the blocks of
G. Then the following hold:

1. If T1, T2, ..., Tk are Gomory-Hu trees of H1,H2, ...,Hk respectively, then
∪k

i=1Ti is a Gomory-Hu tree of G.
2. If T is a Gomory-Hu tree of G, then ∃ trees T1, T2, ..., Tk such that ∀1 ≤ i ≤

k, Ti is a Gomory-Hu tree of Hi and ∪k
i=1Ti = T .

The first part of Theorem-1 shows a way to compute Gomory-Hu tree of
a graph using Gomory-Hu trees of blocks of the graph. The second part of the
Theorem-1 gives a decomposition of Gomory-Hu tree of a graph into Gomory-Hu
trees of blocks of the graph.

4 Gomory-Hu Tree of a Cactus Graph

In this section we combine results of the previous section with the properties
of cactus graphs to obtain efficient algorithms for Gomory-Hu trees of cactus
graphs. A connected graph G is a cactus graph iff every block of G is either
an edge or a simple cycle. A disconnected graph is a cactus graph iff every
connected component of it is a cactus graph. Equivalently, it can be defined as
a graph in which no two cycles share an edge. Cactus graphs are sparse graphs,
i.e., |E(G)| = O(n), where n is the number of vertices in the graph.

Lemma 2. Let G be a simple cycle. Let emin be an edge of minimum weight
in G. Let G′ be a graph such that V (G′) = V (G) and E(G′) = E(G) − {emin}
with weight function as ∀e ∈ E(G′),WG′(e) = WG(e) + WG(emin). Then G′ is
a Gomory-Hu tree of G.

The converse of Lemma-2 is not true in general, i.e., not every Gomory-Hu
tree of a simple cycle is of the form shown in the lemma. However, we show that
if a simple cycle has a unique edge of minimum weight, then it has a unique
Gomory-Hu tree in Lemma-3.

Lemma 3. Let G be a connected cactus graph. G has a unique Gomory-Hu tree
iff every cycle of G has a unique edge of minimum weight.

Lemma-3 gives a necessary and sufficient condition for the uniqueness of
Gomory-Hu tree for cactus graphs. Many recent papers ([3,6,23]) use a suffi-
cient condition for uniqueness of Gomory-Hu tree, however to the best of our
knowledge no necessary and sufficient condition is known for general graphs. The
following theorem is stated without proof due to space limitations:

Theorem 2. Let G be a cactus graph. A Gomory-Hu tree of G can be con-
structed in linear time.
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4.1 Dynamically Maintaining a Gomory-Hu Tree

Gomory-Hu Tree Representation: The dynamic algorithms presented here
maintain the adjacency list array of a Gomory-Hu tree of a cactus graph. In this
adjacency list array, for all vertices, their adjacency list are stored using height-
balanced BST (Binary Search tree), which allows insertion, look-up, and deletion
of edges in O(log n) time. So the entry indexed to each vertex in the adjacency
list array stores pointer to the root node of the BST storing its adjacency list.

The Gomory-Hu tree of the cactus graph maintained by our dynamic algo-
rithm is of the form described in Lemma-2, i.e., the Gomory-Hu tree is a subgraph
of the cactus graph. The weight of any edge in this Gomory-Hu tree correspond-
ing to a cycle of the cactus graph is equal to the sum of the weight of that edge
in the cactus graph and the weight of the minimum weight edge of the cycle.
Finding the weight of an edge of the Gomory-Hu tree: For any graph structure,
one of the fundamental queries is to find the weight of any edge. The naive way
is to store the weight of each edge as an additional data in the nodes of the BSTs
in the adjacency list array, allowing finding the weight of any edge in O(log(n))
time. We use a different approach for storing the weights, requiring only O(n)
more space. This approach allows us to increase or decrease the weights of all
the edges of the Gomory-Hu tree corresponding to the same cycle in the cactus
graph in total O(log(n)) time.
Our Approach for Storing the Weights: We store two values in every node of the
BST, one being the weight of the corresponding edge in the cactus graph and
second being the cycle number the edge corresponds to, i.e., we assign each cycle
in the graph a distinct number from 1 to k where the total number of cycles in
the graph is k. The edges that do not correspond to any cycle can be assigned
a cycle number of 0. We also maintain an additional array referred as the cycle
array and the value stored at index i of this array is the weight of minimum
weight edge of cycle i.
Space Complexity: Since no two cycles of a cactus graph share an edge, it implies
that any two cycles share at most 1 vertex. Hence the maximum number of cycles
in a cactus graph is bounded by n. Hence the size of the cycle array is O(n).
Notice that finding all the cycles of a cactus graph and assigning each edge their
cycle number can be done in O(n) time. To get the weight of an edge in the
Gomory-hu tree, we simply add the weight of that edge in the graph which is
stored in the node and the value corresponding to the index in the cycle array.

The query time of both incremental and decremental algorithm is O(1) which
is taken as the time to return the pointer to these array structures. In the rest of
the analysis we discuss the update time, i.e. time taken to update these arrays.

4.2 Incremental Algorithm for Gomory-Hu Tree

Incremental algorithms deal with updates which increase the size of the graph
by insertion of new edges. This can be divided into two cases:
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u

v

Fig. 1. Neither of u or v is a root vertex in their tree.

– Case-1: Inserted edge connects vertices of different connected components.
– Case-2: Inserted edge connects vertices of the same connected component.

Maximal connected subgraphs of a graph are called its connected com-
ponenets. Identifying which of the above two case occurs can be done using
Union-Find data structure. It takes amortized O(α(n)) time, where α(n) is the
extremely slow-growing inverse Ackermann function. For any practical purposes,
it can be considered as amortized constant time.

Our incremental algorithm maintains a rooted tree structure of the Gomory-
hu tree, using an array Par of size n where Par[i] = parent of vertex i for all
i except the root vertex and Par[j] = 0 where j is a root vertex. In case of a
forest of Gomory-Hu trees, there will be multiple root vertices, one for each tree.
The incremental algorithm uses this representation to compute the unique path
between any two vertices of the same connected component in O(l) time, where
l denotes the length of the path between those two vertices. This rooted tree is
only used in our incremental algorithm and is not maintained in the decremental
algorithm (Sect.-4.3).
Case-1: Inserted edge connects vertices of different connected components.

Since the newly inserted edge connects two connected components of the graph,
it will form a block containing this single edge of the modified graph. Hence, the
Gomory-Hu forest of the modified graph can be obtained by joining the Gomory-
Hu trees of the two connected components by this edge. Inserting an edge in the
adjacency array takes O(log(n)) time. However, since we maintain a rooted tree
representation for internal computations, we also require to update it.

Let (u, v) be the inserted edge. The following sub-cases are possible:

– If u is the root in the Gomory-Hu tree of its component, then changing Par[u]
from 0 to v gives the new Gomory-Hu tree.

– If v is the root in the Gomory-Hu tree of its component, then changing Par[v]
from 0 to u gives the new Gomory-Hu tree.

– When neither of u and v are roots in their trees, as shown in Fig.-1, the above
changes will not lead to a rooted tree.

We handle this by first making one of u or v as the roots of their Gomory-Hu
tree, then it can be handled easily as stated below.



238 V. Malik and S. Karmakar

Rooted trees can be seen as directed trees where the direction of each edge
can be taken as from child to parent. Let us assume that we want to make u
as root of its tree. Consider the directed path from u to its root. Notice that
all other edges are directed towards this path. If the directions of the edges on
this path are reversed, we get a tree rooted at u. Time taken for this change is
O(number of edges on the path from u to its root). Instead of u, we can do this
for v also, in which case the time taken will be O(number of edges on the path
from v to its root).

We traverse the directed paths leaving from u and v, simultaneously. The
path on which we first reach at a root vertex first is the path with lesser number
of edges and we will reverse the direction of that path.

Once the path is chosen, reversing the direction of edges on that path can be
done in O(path length). Hence the time complexity is O(min(path length from u
to its root, path length from v to its root). This is of the form: T (a + b) = T (a) +
T (b) + c × min(a, b), where a and b are the number of vertices in the two trees
and c is some constant. Then it can be shown that T (r) is O(rlog(r)). Hence, the
amortized time complexity to handle Case-(i) is O(log(n)).
Case-2: Inserted edge connects vertices of the same connected component.

Let G be the graph and T its Gomory-Hu tree and (u, v) be the edge to
be inserted. Let the modified graph be G′. Since u and v belong to the same
connected component, there is a path from u to v in G. Hence this newly inserted
edge forms a cycle in the connected component. The path from u to v in G must
be unique, otherwise insertion of edge (u, v) will violate the property of cactus
graph that no two cycles share an edge. Hence all the edges on the path from
u to v in G form blocks of single edge. Hence the Gomory-Hu tree T contains
those edges. Hence T contains that path.
Finding path from u to v in T : Since the tree T is stored as a rooted tree, to
obtain the path between u, v we can simply traverse in parallel from u and v
along the parent edges towards the root. The first common vertex on the path
from u to root and the path from v to root is their LCA. The path between u, v
is given by the joining the path of u to LCA and v to LCA. Let l denote the
length of this u, v path. So time complexity of this process is O(l).

Let e be an edge of minimum weight on the path from u to v. We can find e by
traversing over the path. This is shown in Fig.-2. We compare the weight of edge
e with the weight of the inserted edge (u, v). The following cases are possible:
Subcase-2.1 : If wG(e) ≥ wG′((u, v)), then (u, v) is an edge of minimum weight
in its cycle in G′. Hence, the path from u to v in G with the weights of the edges
on the path increased by wG′((u, v)), is a Gomory-Hu tree of the newly formed
cycle. Hence increasing the weights of the edges of the path from u to v in T by
wG′((u, v)) gives a Gomory-Hu tree of G′. This can be done in O(l).
Subcase-2.2 : Here wG(e) < wG′((u, v)). Let C be the cycle containing edge (u, v)
in G′. The path obtained by removing edge e from C and the weight of every
edge on the path increased by wG(e) is a Gomory-Hu tree of C. To get this,
we need to remove edge e from T and insert edge (u, v), with the weight of the
edges modified as required. Edge e lies either on the path u to LCA or on the
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u

v

LCA

e

Fig. 2. e is the edge of minimum weight on the path from u to v.

path from v to LCA in T . We traverse both of them and check on which of
the two it lies on. If it lies on the path from u to LCA then we remove e by
assigning Par[child in e] = 0. This creates a new rooted tree containing u. Note
that We represent the Gomory-Hu tree as a rooted tree. Therefore we make the
new rooted tree containing u, rooted at u before inserting the edge (u, v). This
is done by reversing the direction of the edges from the breaking point to u.
This will take O(l). Now, we set Par[u] = v to insert the edge (u, v). Finally,
we increase weights of the edges by wG(e). This gives the modified Gomory-Hu
tree in O(l).

Time Complexity:

– Case-1: Update time is amortized O(log n).
– Case-2: Let (u, v) be the edge to be inserted. Let � be the number of edges on

the path from u to v in G. Then, update time is O(� log(n)). The � edges on
the path from u to v in G, were not part of any cycle. Hence, insertion of those
� edges came under Case-1. As cycles of a cactus graph are edge disjoint, the
amortized analysis gives the update time as amortized O(log(n)).

4.3 Decremental Algorithm for Gomory-Hu Tree

Decremental algorithm deal with updates that decrease the size of the graph by
deletion of an edge from the graph. This can be divided into two cases:

1. Deleted edge belongs to some cycle.
2. Deleted edge doesn’t belong to any cycle.

Pre-processing: We do a pre-processing to obtain the list of all the cycles of the
graph. Corresponding to each edge e we store a number CycleNumber[e] which
is the index of the cycle where the edge e belongs to. We maintain an array
indexed with these cycle numbers. The value stored at index i of this array is
the weight of the minimum weight edge of the i th cycle in the graph. Also, while
computing the initial Gomory-Hu tree (can be done in linear time), we obtain
an array called MinEdge such that MinEdge[i] = (r, p) means that edge (r, p)
was removed while obtaining a Gomory-Hu tree of the ith cycle.
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The steps taken by the algorithm for the cases are described below:
Case-1: Deleted edge belongs to some cycle. Let (u, v) be the edge to be deleted
and i = CycleNumber[(u, v)] and MinEdge[i] = (r, p). Let G be the graph
and T its Gomory-Hu tree and the modified graph after edge deletion be G′.
Hence the path from r to p in T is a Gomory-Hu tree of ith cycle. The modified
Gomory-Hu tree is obtained by deleting edge (u, v) from the Gomory-Hu tree and
inserting edge (r, p). These insertion and deletion operations in the adjacency
array will take O(log(n)).
Updating the weights of the edges: We only need to set the value indexed at i in
the cycle weight array to 0. As the edges corresponding to cycle i use this value
when we query their weight, setting it to 0 reduces the weights of all those edges
simultaneously in O(1) time.
Case-2: Deleted edge does not belong to any cycle. Let (u, v) be the edge to be
deleted. As (u, v) does not belong to any cycle, deleting this edge disconnects
the graph. Hence the modified Gomory-Hu tree can be obtained by deleting this
edge from the Gomory-Hu tree. Hence, it can be done in O(log(n)) time.

Hence, the time complexity of the update operation in both cases is O(log(n)).

5 Gomory-Hu Tree Sensitivity Data Structure

In this section we provide a sensitivity data structure for Gomory-Hu tree con-
struction for graphs with integer weights. Theorem-3 presents this key result.

Theorem 3. For any integer weighted undirected graph G, there exists a data
structure of size O(n2mG) that can report a Gomory-Hu tree of any other integer
weighted undirected graph G′ having the same set of vertices as G, in time O(n×
max(mG,mG′) × WeightedHammingDistance(G,G′)).

Here, mG = |E(G)| and mG′ = |E(G′)|. Weighted hamming distance between
G,G′ is defined as the L1 distance of their weighted adjacency matrices. Since
G′ is any graph over the same set of vertices as G, G′ can be obtained from G
by some sequence of the following 4 elementary graph edit operations: (i) insert
a new edge e of weight 1 (ii) delete an existing edge e of weight 1 (iii) increase
the weight of an existing edge e by 1 unit (iv) decrease the weight of an existing
edge e of weight w by 1 unit (here w > 1).

The minimum number of the above elementary graph edit operations required
to modify G to G′ is same as the WeightedHammingDistance(G,G′). If we
consider only the operations of increasing/decreasing the weights of existing
edges, then we get Corollary-1. The proof of these results come from the analysis
of the below proposed data structure which we have omitted here due to space
limitations.

Corollary 1. For any integer weighted undirected graph G, there exists a data
structure of size O(n2m) that can report a new Gomory-Hu tree if weights of
some k number of edges of G is changed by w1, w2, ..., wk integral amounts respec-
tively, in time O((

∑k
i=1 wi)mn).
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Algorithm 1: Computing a Gomory-Hu tree of G′

Input: G′ (an integer weighted undirected graph with V (G′) = V (G))
Output: T (a Gomory-Hu tree of G′)

1 Compute a minimum length sequence of elementary graph edit operations
(r1, r2, ..., rk) that when applied on G modifies it to G′.

2 Run Gusfield’s Algorithm [15] to compute a Gomory-Hu tree T of G′, with
Algorithm-2 being used as calls to min-cut oracle.

Proposed Data Structure: For all pairs of distinct vertices (s, t) in the
graph G, the data structure stores an integer-max(s, t)-flow. Hence, the
space complexity of the data structure is O(n2 × m) and construction time
is O(n2× (Time to compute integer-max(s, t)-flow)).

Query to the data structure: The query comes with an integer weighted graph
G′ and the output is a Gomory-Hu tree of G′, which is computed as shown
in Algorithm-1 in time O(n × max(mG,mG′) × WeightedHammingDistance
(G,G′)).

The Algorithm-1 uses Gusfield’s Algorithm [15] for computing Gomory-Hu
tree. The Gusfield’s algorithm shows that a Gomory-Hu tree of a graph can be
computed with n − 1 calls to an oracle for the graph, that when given 2 distinct
vertices s, t ∈ V returns a min(s, t)-cut of the graph. Along with the n − 1 calls
to a min-cut oracle, the Gusfield’s algorithm takes additional computation time
of O(n2), which leads to the total time complexity of computing a Gomory-Hu
tree being O((n − 1) × (Time to compute min(s, t)-cut)) + O(n2).

We use our data structure as the min-cut oracle. Algorithm-2 shows the steps
to compute a min(s, t)-cut of G′ using our data structure. Hence the time com-
plexity to return the output for any query, i.e. the time complexity of Algorithm-1
is O((n − 1) × (Time taken by Algorithm-2) + O(n2)).

The best-known static algorithm (until 2022) for computing a Gomory-Hu
tree of a general weighted graph was the Gusfield’s algorithm where instead of
calls to some oracle, it used the current best known static algorithm for comput-
ing a min(s, t)-cut of a graph [7], that has a time complexity of O(m1+o(1)). Hence
the time complexity for computing a Gomory-Hu tree becomes O(nm1+o(1)).
However the recent result by Abboud et al. [1] provides a Monte Carlo random-
ized algorithm for computing a Gomory-Hu tree having a time complexity of
Õ(n2). Though this result outperforms our scheme for dense graphs, however
for sparse graphs our scheme performs better when the number of edge modifi-
cations is bounded by a constant. Moreover our data structure is deterministic
and has a much simpler implementation.
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Algorithm 2: Computing a min(s, t)-cut of G′

Input: two distinct vertices s, t ∈ V and a sequence of elementary graph edit
operations (r1, r2, ..., rk) that modify G to G′

Output: min(s, t)-cut of G′

1 Let H ← G.
2 Let f ← max(s, t)-flow of G, stored in our data structure.
3 for graph edit operation ri, i from 1 to k do
4 Let H ′ ← graph obtained if H is modified by applying ri.
5 Compute f ′, a max(s, t)-flow of H ′.
6 H ← H ′ and f ← f ′. // Update H and f for next iteration.

7 end
8 Compute a min(s, t)-cut of G′ using f .

6 Conclusion and Future Works

In this work we presented both incremental and decremental algorithms for
Gomory-Hu trees of cactus graphs were also given. For general graphs with
integral weights, we present a data structure requiring O(mn2) space that helps
us create a new Gomory-Hu tree if the weights of some edges of the given graph
are changed by some integral amounts. Specifically, if the weights of k edges are
changed by w1, w2, ..., wk units respectively, then a new Gomory-Hu tree of the
modified graph can be reconstructed in O((

∑k
i=1 wi)mn) time.

There are two key directions in which our work can be extended:

– Cactus graphs are special cases of outerplanar graphs. In a recent paper [23],
it was shown that an outerplanar graph with no cut vertices has a Gomory-Hu
tree as its subgraph. Efficient algorithms may be obtained for such families
of graphs using similar ideas.

– Block of a graph is a maximal subgraph such that if a vertex is removed
from it, it still remains connected. As a graph can be broken into blocks, a
block can be decomposed into triconnected components [16]. A triconnected
component is a maximal subgraph such that if two vertices are removed from
it, it still remains connected. This hints the possibility for some generalization
of Theorem-1 for such smaller decompositions.
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Abstract. We introduce a new graph-theoretic concept in the area of
network monitoring. In this area, one wishes to monitor the vertices
and/or the edges of a network (viewed as a graph) in order to detect and
prevent failures. Inspired by two notions studied in the literature (edge-
geodetic sets and distance-edge-monitoring sets), we define the notion of
a monitoring edge-geodetic set (MEG-set for short) of a graph G as an
edge-geodetic set S Ď V (G) of G (that is, every edge of G lies on some
shortest path between two vertices of S) with the additional property
that for every edge e of G, there is a vertex pair x, y of S such that e lies
on all shortest paths between x and y. The motivation is that, if some
edge e is removed from the network (for example if it ceases to function),
the monitoring probes x and y will detect the failure since the distance
between them will increase.

We explore the notion of MEG-sets by deriving the minimum size of
a MEG-set for some basic graph classes (trees, cycles, unicyclic graphs,
complete graphs, grids, hypercubes, ...) and we prove an upper bound
using the feedback edge set of the graph.

1 Introduction

We introduce a new graph-theoretic concept, that is motivated by the problem of
network monitoring, called monitoring edge-geodetic sets. In the area of network
monitoring, one wishes to detect or repair faults in a network; in many applica-
tions, the monitoring process involves distance probes [1–3,8]. Our networks are
modeled by finite, undirected simple connected graphs, whose vertices represent
systems and whose edges represent the connections between them. We wish to
monitor a network such that when a connection (an edge) fails, we can detect
the said failure by means of certain probes. To do this, we select a small subset
of vertices (representing the probes) of the network such that all connections are
covered by the shortest paths between pairs of vertices in the network. Moreover,
any two probes are able to detect the current distance that separates them. The
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goal is that, when an edge of the network fails, some pair of probes detects a
change in their distance value, and therefore the failure can be detected. Our
inspiration comes from two areas: the concept of geodetic sets in graphs and its
variants [9], and the concept of distance edge-monitoring sets [7,8].

We now proceed with some necessary definitions. A geodesic is a shortest path
between two vertices u, v of a graph G [14]. The length of a geodesic between
two vertices u, v in G is the distance dG(u, v) between them. For an edge e of
G, we denote by G ´ e the graph obtained by deleting e from G. An edge e in a
graph G is a bridge if G ´ e has more connected components than G. A vertex
of a graph is said to be a leaf if its neighborhood contains exactly one vertex.
The open neighborhood of a vertex v P V (G) is NG(v) “ {u P V |uv P E(G)}
and its closed neighborhood is the set NG[v] “ NG(v) Y {v}.

Monitoring Edge-Geodetic Sets. We now formally define of our main concept.

Definition 1. Two vertices x, y monitor an edge e in graph G if e belongs to all
shortest paths between x and y. A set S of vertices of G is called a monitoring
edge-geodetic set of G (MEG-set for short) if, for every edge e of G, there is a
pair x, y of vertices of S that monitors e.

We denote by meg(G) the size of a smallest MEG-set of G. We note that
V (G) is always an MEG-set of G, thus meg(G) is always well-defined.

Related Notions. A set S of vertices of a graph G is a geodetic set if every vertex
of G lies on some shortest path between two vertices of S [9]. An edge-geodetic
set of G is a set S Ď V (G) such that every edge of G is contained in a geodesic
joining some pair of vertices in S [13]. A strong edge-geodetic set of G is a set
S of vertices of G such that for each pair u, v of vertices of S, one can select
a shortest u ´ v path, in a way that the union of all these

(|S|
2

)
paths contains

E(G) [12]. It follows from these definitions that any strong edge-geodetic set is
an edge-geodetic set, and any edge-geodetic set is a geodetic set (if the graph
has no isolated vertices). In fact, every MEG-set is a strong edge-geodetic set.
Indeed, given an MEG-set S, one can choose any shortest path between each
pair of vertices of S, and the set of these paths covers E(G). Indeed, every edge
of G is contained in all shortest paths between some pair of S. Hence, MEG-sets
can be seen as an especially strong form of strong edge-geodetic sets.

A set S of vertices of a graph G is a distance-edge monitoring set if, for every
edge e, there is a vertex x of S and a vertex y of G such that e lies on all shortest
paths between x and y [7,8]. Thus, it follows immediately that any MEG-set of
a graph G is also a distance-edge monitoring set of G.

Our Results. We start by presenting some basic lemmas about the concept of
MEG-sets in Sect. 2, that are helpful for understanding this concept. We then
study in Sect. 3 the optimal value of meg(G) when G is a tree, cycle, unicyclic
graph, complete (multipartite) graph, hypercubes and grids. In Sect. 4, we show
that meg(G) is bounded above by a linear function of the feedback edge set
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number of G (the smallest number of edges of G needed to cover all cycles of
G, also called cyclomatic number) and the number of leaves of G. This implies
that meg(G) is bounded above by a function of the max leaf number of G (the
maximum number of leaves in a spanning tree of G). These two parameters are
popular in structural graph theory and in the design of algorithms. We refer
to Fig. 1 for the relations between parameter meg and other graph parameters.
Finally, we conclude in Sect. 5.

Vertex Cover Number

Max Leaf Number

Feedback Edge Set
Number meg

Feedback Vertex Set
Number

Distance Edge-Monitoring
Number

Strong Edge-Geodetic
Set Number

Edge-Geodetic
Set Number

Geodetic Set
Number

Arboricity

Fig. 1. Relations between the parameter meg and other structural parameters in graphs
(with no isolated vertices). For the relationships of distance edge-monitoring sets, see [7,
8]. Arcs between parameters indicate that the value of the bottom parameter is upper-
bounded by a function of the top parameter.

2 Preliminary Lemmas

We now give some useful lemmas about the basic properties of MEG-sets.
A vertex is simplicial if its neighborhood forms a clique. In particular, a leaf

is simplicial.

Lemma 2. In a graph G with at least one edge, any simplicial vertex belongs to
any edge-geodetic set and thus, to any MEG-set of G.

Proof. Let us consider by contradiction an MEG-set of G that does not contain
said simplicial vertex v. Any shortest path passing through its neighbors will not
pass through v, because all the neighbors are adjacent, hence leaving the edges
incident to v uncovered, a contradiction. ��

Two distinct vertices u and v of a graph G are open twins if N(u) “ N(v)
and closed twins if N [u] “ N [v]. Further, u and v are twins in G if they are
open twins or closed twins in G.
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Lemma 3. If two vertices are twins of degree at least 1 in a graph G, then they
must belong to any MEG-set of G.

Proof. For any pair u, v of open twins in G, for any shortest path passing through
u, there is another one passing through v. Thus, if u, v were not part of the
MEG-set, then the edges incident to u and v would remain unmonitored, a
contradiction.

If u, v are closed twins, if some shortest path contains the edge uv, then it
must be of length 1 and consist of the edge uv itself (otherwise there would be
a shortcut). Thus, to monitor uv, both u, v must belong to any MEG-set. ��

The next two lemmas concern cut-vertices and subgraphs, and will be useful
in some of our proofs.

Lemma 4. Let G be a graph with a cut-vertex v and C1, C2, . . . , Ck be the k
components obtained when removing v from G. If S1, S2, . . . , Sk are MEG-sets
of the induced subgraphs G[C1 Y {v}], G[C2 Y {v}], . . . , G[Ck Y {v}], then S “
(S1 Y S2, . . . ,YSk) \ {v} is an MEG-set of G.

Proof. Consider any edge e of G, say in C1. Then, there are two vertices x, y of
S1 such that e belongs to all shortest paths between x and y in G1 “ G[C1Y{v}].
Assume first that v /P {x, y}. All shortest paths between x and y in G also exist
in G1. Thus, e is monitored by {x, y} Ď S in G. Assume next that v P {x, y}:
without loss of generality, v “ x. At least one edge exists in G[C2 Y {v}], which
implies that S2 \ {v} is nonempty, say, it contains z. Then, e is monitored by y
and z, since z P S. Thus, S monitors all edges of G, as claimed. ��

3 Basic Graph Classes and Bounds

In this section, we study MEG-sets for some standard graph classes.

3.1 Trees

Theorem 5. For any tree T with at least one edge, the only optimal MEG-set
of T consists of the set of leaves of T .

Proof. The fact that all leaves must be part of any MEG-set follows from
Lemma 2, as they are simplicial. For the other side, let L be the set of leaves of
T . Let e “ xy be an edge of T and consider two leaves of T , lx and ly, such that
lx is closer to x than to y and that ly is closer to y than to x. We note that e
belongs to the unique (shortest) path between lx and ly, thus e is monitored by
L. Hence, L is an MEG-set of T . ��
Corollary 6. For any path graph Pn, where n � 2, we have meg(Pn) “ 2.

This provides a lower bound which is tight for path graphs, which have order n
and exactly 2 leaves.

Corollary 7. For any tree T of order n � 3, we have 2 � meg(T ) � n ´ 1.

The upper bound is tight for star graphs, which have order n and n´1 leaves.
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3.2 Cycle Graphs

Theorem 8. Given an n-cycle graph Cn, for n “ 3 and n � 5, meg(Cn) “ 3.
Moreover, meg(C4) “ 4.

Proof. Let us first prove that we need at least three vertices to monitor any cycle.
By contradiction, let us assume that two vertices suffice. For any arbitrary vertex
pair in the cycle graph, there are two paths joining them, but there is either one
single shortest path or two equidistant shortest paths between them. Thus, the
edges on at least one of the two paths between the pair will not be monitored
by it. Hence, we need at least three vertices in any MEG-set of Cn (n � 3).

We now prove the upper bound. Let n � 5 or n “ 3, with the vertices of Cn

from v0 to vn´1. Consider the set S “ {v0, v�n
3 �, v� 2n

3 �}. We show that S is an
MEG-set of Cn.

Consider every edge of Cn between a vertex pair vx and vy in S, then we
note that they lie on every (unique) shortest path between these vertices, which
has a length at least one for n � 5 and at least 2 otherwise, and at most

⌈
n
3

⌉
.

Thus, meg(Cn) “ 3 when n � 5 or n “ 3.
In the case of C4, the above construction does not work. Consider a set of

three vertices, say v0, v1, v2 without loss of generality due to the symmetries
of C4. Notice that the edge v0v3 is unmonitored by this set. Thus, we have
meg(C4) “ 4. ��

3.3 Unicyclic Graphs

A unicyclic graph is a connected graph containing exactly one cycle [10]. We
now determine the optimal size of an MEG-set of such graphs.

Theorem 9. Let G be a unicyclic graph where the only cycle C has length k
and whose set of leaves is L(G), |L(G)| “ l. Let Vc̀ be the set of vertices of C
with degree at least 3. Let p(G) “ 1 if G[V (C)\Vc̀ ] contains a path whose length
is at least

⌊
k
2

⌋
, and p(G) “ 0 otherwise.

Then, if k P {3, 4},
meg(G) “ l ` k ´ |V `

c |.
Otherwise (k � 5), then

meg(G) “

⎧
⎪⎪⎨

⎪⎪⎩

3, if |Vc̀ | “ 0
l ` 2, if |Vc̀ | “ 1
l ` p(G), if |Vc̀ | > 1

Proof. Let G be a unicyclic graph where the only cycle C has length k and
whose set of leaves is L(G). By Lemma 2, all leaves are part of any MEG-set of
G. This implies that meg(G) is at least l. If |V `

C | “ 0 (i.e. l “ 0), we are done
by Theorem 8, so let us assume |V `

C | > 0 and thus, l > 0.
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Similarly as in the proof of Lemma 4, for every vertex v of V `
C , we know that

at least one leaf will exist in the tree component Tv formed if we remove the
neighbors of v in C from G. Informally speaking, towards the rest of the graph,
this leaf simulates the fact that v is in the solution set.

If k P {3, 4}, we consider S “ L(G) and we add to S all vertices of C that
are of degree 2 in G. One can easily check that this is an MEG-set. Moreover,
one can see that adding these degree 2 vertices is necessary by using similar
arguments as in the proof of Theorem 8 on cycles.

Next, we assume that k � 5. Let v0, . . . , vk´1 be the vertices of C.
When |Vc̀ | “ 1, without loss of generality, consider the vertex in Vc̀ to be

v0. Then, the vertices {v� k
3 � , v� 2k

3 �} on the cycle are sufficient to monitor the
graph, in the same way as in Theorem 8. Moreover, by the same arguments as
in the proof of Theorem 8, one can see that if at most one vertex on C is chosen
in the MEG-set, some edge will not be monitored.

If |Vc̀ | > 1 and p(G) “ 0, the l leaves are sufficient to monitor G. Indeed,
consider an edge e. If e is not on C, let v be the vertex of V `

C closest to e, and
let w �“ v be the vertex of V `

C closest to v (it exists because |Vc̀ | > 1). Consider
a leaf f of G such that e lies on some path from v to f . Since p(G) “ 0, the path
from w to f is a unique shortest path, and thus, e is monitored by f and some
leaf whose closest vertex on C is w.

If e is an edge of C, e lies on a path between two vertices v, w of V `
C . Since

p(G) “ 0, this path is a shortest path, and e is monitored by two leaves, each of
which has v and w as its closest vertex of C, respectively.

Finally, consider the case where p(G) “ 1 and |Vc̀ | > 1. Since p(G) “ 1,
G[V (C) \ Vc̀ ] contains a path P whose length is at least

⌊
k
2

⌋
and thus, the

edges of P are not monitored by the set of leaves of G, which implies that
meg(G) � l ` 1. To show that meg(G) � l ` 1, we select as an MEG-set, the
set of leaves together with the middle vertex of P (if P has even length) or one
of the middle vertices of P (if P has odd length). One can see that this is an
MEG-set by similar arguments as in the previous case. ��

3.4 Complete Graphs

The following follows immediately from Lemma 2, since every vertex of a com-
plete graph is simplicial.

Theorem 10. For any n � 2, we have meg(Kn) “ n.

3.5 Complete Multipartite Graphs

The complete k-partite graph Kp1,p2,...,pk
consists of k disjoint sets of vertices of

sizes p1, p2, . . . , pk, with an edge between any two vertices from distinct sets.

Theorem 11. We have meg(Kp1,p2,...,pk
) “ ∣

∣V (Kp1,p2,...,pk
)
∣
∣, with the excep-

tional case of a bipartite graph K1,p with an independent set of size 1 (a star
graph), for which meg(K1,p) “ p.
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Proof. In a complete k-partite graph, all vertices in a given partite set are twins.
Therefore, by Lemma 3, all vertices of ant partite set of size at least 2 need to
be a part of any MEG-set.

If we have several partite sets of size 1, then the vertices from these sets are
closed twins, and again by Lemma 3 they all belong to any MEG-set.

Thus, we are done, unless there is a unique partite set of size 1, whose vertex
we call v. If there are at least three partite sets, then note that v is never part of
a unique shortest path, and thus the edges incident with v cannot be monitored
if v is not part of the MEG-set.

On the other hand, if the graph is bipartite, it is a star K1,p. Here, we know
by Theorem 5 that meg(G) “ p, as claimed. ��

3.6 Hypercubes

The hypercube of dimension n, denoted by Qn, is the undirected graph consisting
of k “ 2n vertices labeled from 0 to 2n´1 and such that there is an edge between
any two vertices if and only if the binary representations of their labels differ by
exactly one bit [15]. The Hamming distance H(A,B) between two vertices A,B
of a hypercube is the number of bits where the two binary representations of its
vertices differ.

We next show that not only C4 has the whole vertex set as its only MEG-set
(Theorem 8), but that this also holds for all hypercubes.

Theorem 12. For a hypercube graph Qn with n � 2, we have meg(Qn) “ 2n.

Proof. Assume by contradiction that there is an MEG-set M of size at most
2n ´ 1. Let v P V (G) be a vertex that is not in M . It is known that for every
vertex pair {vx, v} with H(vx, v) � n, there are H(vx, v) vertex-disjoint paths
of length H(vx, v) between them [15]. Thus, there is no vertex pair in M with a
unique shortest path going through the edges incident with v, and M is not an
MEG-set, a contradiction. ��

3.7 Grid Graphs

The graph G�H is the Cartesian product of graphs G and H and with vertex
set V (G�H) “ V (G) x V (H), and for which {(x, u), (y, v)} is an edge if x “ y
and {u, v} P E(H) or {x, y} P E(G) and u “ v. The grid graph G(m,n) is the
Cartesian product Pm�Pn with vertex set {(i, j) | 1 � i � m, 1 � j � n}.

Theorem 13. For any m,n � 2, we have meg(G(m,n)) “ 2(m ` n ´ 2).

Proof. We claim that the set S “ {(i, j) P V (G(m,n)) i P {1,m} and 1 � j �
n or j P {1, n} and 1 � i � m} of 2(m ` n ´ 2) vertices of G(m,n) that form
the boundary vertices of the grid, form the only optimal MEG-set.

For the necessity side, let us assume that some vertex v “ (i, j) of S is
not part of the MEG-set. If v is a corner vertex (without loss of generality say
v “ (1, 1), the two edges incident with v are not monitored, as for any shortest
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path going through them, there is another one going through vertex (2, 2). If v is
not a corner vertex (without loss of generality say v “ (1, j) with 2 � j � n´1),
then the edge e between v “ (1, j) and (2, j) is not monitored, indeed for any
shortest path containing e, there is another one avoiding it, either going through
vertex (2, j ´ 1) or through (2, j ` 1).

To see that S is an MEG-set, first see that each boundary edge is monitored
by its endpoints. Next, consider an edge e that is not a boundary edge, without
loss of generality, e is between (i, j) and (i`1, j). Then, it is monitored by (1, j)
and (m, j), whose unique shortest path goes through e. ��

4 Relation to Feedback Edge Set Number

A feedback edge set of a graph G is a set of edges which when removed from G
leaves a forest. The smallest size of such a feedback edge set of G is denoted by
fes(G) and is sometimes called the cyclomatic number of G.

We next introduce the following terminology from [6]. A vertex is a core
vertex if it has degree at least 3. A path with all internal vertices of degree 2 and
whose end-vertices are core vertices is called a core path. Do note that we allow
the two end-vertices to be equal, but that every other vertex must be distinct. A
core path that is a cycle (that is, both end-vertices are equal) is a core cycle. For
the sake of distinction, a core path that is not a core cycle is called a proper core
path. We say that a (non-empty) path from a core vertex u to a leaf v is a leg of
u if all internal vertices of the path have degree 2 (u is not considered to be a
part of the leg). The base graph of a graph G is the graph of minimum degree 2
obtained from G by iteratively removing vertices of degree 1. A hanging tree is a
connected subtree of G which is the union of some legs removed from G during
the process of creating the base graph Gb of G. Thus, G can be decomposed into
its base graph and a set of maximal hanging trees. The root of such a maximal
hanging tree T is the vertex common to T and Gb.

See Fig. 2 for a graph whose core vertices are in red. It has two hanging trees,
four core cycles, three proper core paths of length 4, and six proper core paths
of length 1.

Based on the aforementioned, we have the following lemma.

Lemma 14 ([6,11]). Let G be a graph with fes(G) “ k � 2. The base graph of
G has at most 2k - 2 core vertices, that are joined by at most 3k - 3 edge-disjoint
core paths. Equivalently, G can be obtained from a multigraph H of order at most
2k ´ 2 and size at most 3k ´ 3 by subdividing its edges an arbitrary number of
times and iteratively adding degree 1 vertices.

Lemma 15. Let S be an MEG-set of the base graph Gb of G and L(G) be the
set of leaves in G. Then, S Y L(G) is an MEG-set of G.

Proof. Let Gb be a base graph of G. Consider all vertices that are roots of max-
imal hanging trees on Gb. By Theorem 5, the optimal MEG-set of each tree
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Fig. 2. Example of a graph G with its core vertices in red. (Color figure online)

consists of all leaves. We repeatedly apply Lemma 4 to G, where for each appli-
cation of Lemma 4, the cut-vertex is the root of a hanging tree in consideration.

��
Lemma 2, Theorem 5 and Lemma 15 together imply that if fes(G) “ 0, then

meg(G) � fes(G) ` |L(G)|. Moreover, if fes(G) “ 1, then meg(G) � fes(G) `
|L(G)| ` 3, where |L(G)| is the number of leaves of G. We next give a similar
bound when fes(G) � 2.

Fig. 3. Example of a graph G and its base graph Gb with four core cycles.

Theorem 16. If fes(G) � 2, then meg(G) � 9 fes(G) ` |L(G)| ´ 8 where |L(G)|
is the number of leaves of G.

Proof. Let k “ fes(G). We show how to construct a MEG-set M of Gb of order
at most 9k´8 and, by applying Lemma 15 to G, of order 9k´8` |L(G)| for G. If
an edge e is part of a maximal hanging tree, then by Lemma 2 and Lemma 4, it
is monitored by the leaves of G on the maximal hanging tree. M is constructed
as follows.
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– We let all core vertices of Gb be part of M .
– One or two internal vertices from each proper core path belongs to M , only

if the length is at least 2, as explained below.
– Two or three internal vertices from each core cycle, as explained below.

Consider a proper core path P , with core vertex endpoints c and c′, and the
median vertex x1 in the case of an odd-length path and x1, x2 in the case of an
even-length path, with d edges (on P ) between the endpoints and the respective
medians in P . Then, we choose the single median vertex x1 or the two median
vertices x1, x2 from each of the core paths into M .

For each core cycle, in addition to the core vertex of that cycle, we add three
vertices that are as equidistant as possible on the cycle, to be part of M (as in
Theorem 8).

Let e be any edge of G. We now show that our construction M monitors any
such edge in Gb. If e lies on a core cycle, assume an origin core vertex of v0.
Then, based on Lemma 4 and Theorem 8, we deduce that in the worst case, four
vertices together suffice to monitor the edges.

If the edge e lies on a proper core path P , then we have the following cases.
Let c and c′ be the core vertex endpoints of P , and the median vertex x1 in the
case of an odd-length path and x1, x2 in the case of an even-length path and d
edges of P between the end points and the respective medians in P . Without loss
of generality, let us say that e lies on the path P such that its closest core vertex
is c and closest median x1 in the event of an even-length path. Suppose first that
d is even. Given that the distance between c and x1 is d in P , the length of any
other path between them must be at least d ` 2. Therefore, c and x1 monitor e.
We can similarly argue that if the closest core vertex to e was c′ and the closest
median vertex was x2, then c′ and x2 monitor e. If e lay in between the median
vertices x1 and x2, then we know that those vertices would monitor e because
they are adjacent. If the path was of odd length, then depending on which of the
core vertices c and c′ was closest to e, the distance between the median and the
core vertices would be d in P and the length of any other path between them at
least d ` 1, ensuring that the median vertex x1 would monitor the edge apart
from the core vertices. This justifies our construction of M for Gb.

By Lemma 14, the number of core vertices of Gb is at most 2k´ 2, and there
are at most 3k ´ 3 core paths.

If we have core cycles in our graph, then we must note that there can be at
most k such cycles in the graph. Indeed, if there were k ` 1 core cycles in the
graph, since they are all edge-disjoint, we need at least k`1 edges to be removed
from G to obtain a forest, a contradiction to the fact that fes(G) “ k.

Let nc be the number of core cycles and np be the number of proper core
paths. We have |M | “ 3nc ` 2np ` 2k ´ 2. Since nc � k and nc `np � 3k ´ 3 by
Lemma 14, we get |M | � 3k ` 2(2k ´ 3) ` 2k ´ 2 “ 9k ´ 8. ��

Recall that the max leaf number of G, denoted mln(G), is the maximum
number of leaves in a spanning tree of G. It can be seen as a refinement of the
feedback edge set number of G [4,5]. We get the following corollary.
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Corollary 17. For any graph G, we have meg(G) � 10mln(G), where mln(G)
is the max leaf number of G.

Proof. It is known that fes(G) � mln(G) [4], and clearly, |L(G)| � mln(G), thus
the bound follows from Theorem 16. ��
Proposition 18. For any integer k � 2, there exists a graph G with fes(G) “ k
and meg(G) “ 3k `∣

∣L(G)
∣
∣.

Proof. Consider G and its base graph Gb in Fig. 3. We know that the leaves must
be part of any MEG-set by Lemma 2. The MEG-set for Gb consists of all the
vertices in each of the core cycles (each a C4) in Gb, except the common core
vertex. It is easy to check that no smaller set can work. The size of the optimal
MEG-set in this example is 3k ` |L(G)| and therefore, this is an instance where
this proposition holds. ��

5 Conclusion

Inspired by a network monitoring application, we have defined the new concept
of MEG-sets of a graph, which is a common refinement of the popular concept
of a geodetic set and its variants, and of the previously studied distance-edge-
monitoring sets.

We have studied the concept on basic graph classes. It is interesting to note
that there are many graph classes which require the entire vertex set in any
MEG-set: complete graphs, complete multipartite graphs, and hypercubes. It
could thus be a difficult, but interesting, question, to characterize all such graphs.

Our upper bound using the feedback edge set number is probably not tight.
What is a tight bound on this regard?

Finally, it remains to investigate computational aspects of the problem.

Acknowledgements. Florent Foucaud thanks Ralf Klasing and Tomasz Radzik for
initial discussions which inspired the present study.
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12. Manuel, P., Klavžar, S., Xavier, A., Arokiaraj, A., Thomas, E.: Strong edge geode-
tic problem in networks. Open Math. 15(1), 1225–1235 (2017)

13. Santhakumaran, A.P., John, J.: Edge geodetic number of a graph. J. Discret. Math.
Sci. Cryptogr. 10, 415–432 (2007)

14. Skiena, S.: Implementing Discrete Mathematics: Combinatorics and Graph Theory
with Mathematica. Addison-Wesley, Reading (1990)

15. Saad, Y., Schultz, M.: Topological properties of hypercubes. IEEE Trans. Comput.
37(7), 867–872 (1988)

https://doi.org/10.1007/978-3-030-39219-2_3


Cyclability, Connectivity
and Circumference

Niranjan Balachandran1 and Anish Hebbar2(B)

1 Indian Institute of Technology Bombay, Mumbai, India
niranj@iitb.ac.in

2 Indian Institute of Science, Bangalore, India

anishhebbar@iisc.ac.in

Abstract. In a graph G, a subset of vertices S ⊆ V (G) is said to be
cyclable if there is a cycle containing the vertices in some order. G is
said to be k-cyclable if any subset of k ≥ 2 vertices is cyclable. If any k
ordered vertices are present in a common cycle in that order, then the
graph is said to be k-ordered. We show that when k ≤ √

n+ 3, k-cyclable
graphs also have circumference c(G) ≥ 2k, and that this is best possible.
Furthermore when k ≤ 3n

4
−1, c(G) ≥ k+2, and for k-ordered graphs we

show c(G) ≥ min{n, 2k}. We also generalize a result by Byer et al. [4] on
the maximum number of edges in nonhamiltonian k-connected graphs,
and show that if G is a k-connected graph of order n ≥ 2(k2 + k) with
|E(G)| > (

n−k
2

)
+ k2, then the graph is hamiltonian, and moreover the

extremal graphs are unique.

Keywords: Cyclability · Connectivity · Circumference · Hamiltonicity

1 Introduction

We consider only finite, undirected, simple graphs throughout this paper. The
vertex and edge sets of G will be denoted by V (G) and E(G) respectively, the
graph complement by G. The length of the longest cycle in the graph G, also
known as the circumference, will be denoted by c(G). The minimum degree,
independence number and connectivity of a graph will denoted by δ(G), α(G)
and κ(G) respectively. We will also use dH(v) for the degree of v in H. The
set of neighbours of a vertex v ∈ V (G) will denoted by N(v), and the closed
neighbourhood of v, viz. N(v) ∪ {v} will be denoted by N [v]. The join of two
graphs G1, G2, denoted G1 ∨ G2 is simply a copy of G1 and G2, with all edges
between V (G1) and V (G2) also being present.

A subset S ⊆ V (G) of vertices in a graph G is said to be cyclable if G
has a cycle containing the vertices of S in some order, possibly including other
vertices. A graph G is said to be k-cyclable if any k ≥ 2 vertices of G lie on
a common cycle. Note that the problem of determining the hamiltonicity of
a graph is a special case of cyclability, namely when k = n. Cyclability and
connectivity are interlinked, as was shown by Dirac [8] who proved for every
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Bagchi and R. Muthu (Eds.): CALDAM 2023, LNCS 13947, pp. 257–268, 2023.
https://doi.org/10.1007/978-3-031-25211-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25211-2_20&domain=pdf
https://doi.org/10.1007/978-3-031-25211-2_20


258 N. Balachandran and A. Hebbar

k ≥ 2, k-connected graphs are also k-cyclable. In fact, for k = 2 connectivity
and cyclability are equivalent, but in general for k ≥ 3 it is not necessarily true
that every k-cyclable graph is also k-connected, as can be seen by considering
the graph K2 ∨ 2Kk which has connectivity exactly 2 and is also k-cyclable. For
a brief survey of results involving conditions for cycles to contain a particular
set, refer to [12].

There is a rich literature on conditions guaranteeing the presence of long
cycles in graphs, the most classical one being that of Dirac [7] who showed
that in 2-connected graphs, the circumference is at leastc(G) ≥ min{n, 2δ(G)}.
Moreover, k-connected graphs have a circumference of at least min{n, 2k} from
an easy consequence of Menger’s theorem, and this is tight. A famous result by
Chvátal and Erdős [5] relates the connectivity and independence number of a
graph to hamiltonicity, and says that if the connectivity of a graph G is at least
its independence number, then the graph is hamiltonian. However, not much is
known when the requirement of connectivity is weakened to cyclability. Bauer
et al. [1] obtained lower bounds for the length of the longest cycle in 3-cyclable
graphs in terms of the minimum degree and independence number, but not much
else is known for k-cyclable graphs for arbitrary k.

Cyclability has also received interest from an algorithmic and complexity
theoretic point of view as it is a ‘hard’ parameter that can be thought of as
a more quantitative measure of hamiltonicity. Since the classical HAMILTO-
NIAN CYCLE problem is NP-complete, the problem of determining whether
a graph is k-cyclable (CYCLABILITY) is NP-complete as well. The problem
of determining whether a given subset S of vertices is cyclable (TERMINAL
CYCLABILITY) has been studied in the Parameterized Complexity frame-
work (FPT) (parameterized by |S|) and the best known algorithm has running
time O(2|S|nO(1)) [2]. For some special classes of graphs such as interval graphs
and bipartite permutation graphs, Crespelle and Golovach [6] showed that both
these problems can be solved in polynomial time. For |S| = O((log log n)1/10),
Kawarabayashi [14] obtained a polynomial time algorithm for TERMINAL
CYCLABILITY.

Note that k-connectivity guarantees c(G) ≥ min{n, 2k} and also ensures k-
cyclability. Thus, a natural question to ask is whether the same bound on the
circumference can be obtained when the connectivity criteria is weakened to
cyclability. When k = n − 1, we would require any set of n − 1 vertices of G to
lie on a common cycle. It turns out that in this case, it is not necessary that
the graph is hamiltonian. Indeed, the existence of hypohamiltonian graphs [9]
of order n is known for all n ≥ 18. Our first result in this paper gives a similar
circumference bound for a wide range of k:

Theorem 1. Let G be a k-cyclable graph, where 2 ≤ k ≤ n. Then,

c(G) ≥
{

2k if k ≤ √
n + 3

k + 2 if k ≤ 3n
4 − 1

Moreover, for 2 ≤ k ≤ √
n + 3, this bound on the circumference is best possible.
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Note that for k ≥ n
2 it is still possible that one can have a bound of the form

c(G) ≥ (1 + γ)k for some fixed positive constant γ < 1 as long as k 	= n − o(n).
A related notion is the orderedness of a graph, a strong hamiltonian prop-

erty that was first introduced by Ng and Schultz [16]. A graph G is said to be
k-ordered if any sequence of distinct vertices T = {v1, . . . , vk} are present in
some common cycle in that order, possibly including other vertices. Note that
k-ordered graphs are naturally also k-cyclable, and it is also easy to see that
they are (k − 1)-connected. For a comprehensive survey of results on k-ordered
graphs, see [11]. We show that for k-orderedness, the same circumference bound
as k-connectivity holds for all 2 ≤ k ≤ n.

Theorem 2. Let G be a k-ordered graph, 2 ≤ k ≤ n. Then, c(G) ≥ min{n, 2k}.
Our second pursuit in this paper is to obtain Turán-type results for the cir-

cumference of k-connected graphs, specifically the maximum number of edges in
nonhamiltonian k-connected graphs. A classical result states that if G is a graph
of order n with |E(G)| >

(
n−1
2

)
+ 1, then G is hamiltonian. This was general-

ized by [4] for k ≤ 3, where they showed that if G is k-connected and satisfies
|E(G)| >

(
n−k
2

)
+k2 with n sufficiently large, then the graph is hamiltonian and

the extremal graphs are unique. We further generalize their result and extend it
to any k satisfying n ≥ 2(k2 + k).

Theorem 3. Let G be a k-connected graph of order n ≥ 2(k2 + k). If |E(G)| >(
n−k
2

)
+ k2, then G is hamiltonian. Moreover, the extremal graphs are unique.

The rest of the paper is organized as follows. We lay out some preliminaries
in the next section, and give the proofs of Theorems 1, 2, and 3 in the following
section. We conclude with some remarks and open questions.

2 Preliminaries

When the underlying graph is clear, we will use δ, κ, α instead of δ(G), κ(G), α(G)
for brevity, and also omit the subscript in dH(v). We also use the following well-
known lemma attributed to Dirac repeatedly throughout the paper, and provide
an outline of the proof for completeness.

Lemma 4 ([8]). Any k-connected graph G is k-cyclable. Moreover, it satisfies
c(G) ≥ min{n, 2k}

Proof Sketch. Suppose some subset S of vertices with |S| = k was not fully
contained in any cycle. Then, take a cycle C containing as many of the vertices
of S as possible, and pick some v ∈ S that is not in C. By Menger’s theorem, we
can choose k vertex-disjoint paths from v to the cycle C, and these endpoints
divide C into k segments. Since there are strictly less than k vertices of S in
C, one of the segments does not contain any vertex from S, and thus we can
extend this segment with the 2 disjoint paths from v at the ends of the segment
to obtain a cycle containing more vertices of S, contradiction.
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Now consider the longest cycle C in G and suppose its length is strictly less
than min{n, 2k}. Pick some v ∈ V (G) not in C, and by Menger’s theorem there
are k vertex disjoint paths from v to C. By the pigeonhole principle, some two
endpoints of these k paths must be adjacent on the cycle C, giving a contradiction
as we can replace the edge between these endpoints with the 2 paths to obtain
a longer cycle. 
�

A famous result by Chvátal and Erdős states the following

Theorem 5 ([5]). If in a graph G, α(G) ≤ κ(G), then G is hamiltonian.

A natural generalization of the above is to flip the condition α(G) ≤ κ(G),
and instead ask for lower bounds on the circumference of a graph G where
α(G) ≥ κ(G). Foquet and Jolivet [13] conjectured the following, which was later
proven by Suil O, Douglas B. West and Hehui Wu.

Theorem 6 ([17]). If G is a k-connected n-vertex graph with independence
number α and α ≥ k, then G has a cycle of length at least k(n+k−α)

α .

The following result by Dirac is well-known and was a precursor to a number
of results involving the length of the longest cycle in a graph.

Theorem 7 ([7]). If G is 2-connected and has minimum degree δ, c(G) ≥
min{2δ, n}.

Note that 2-connectivity is equivalent to 2-cyclability. Bauer et al. obtained
a bound on the circumference of 3-cyclable graphs in terms of the minimum
degree and independence number.

Theorem 8 ([1]). If G is 3 cyclable, then

c(G) ≥ min{n, 3δ − 3, n + δ − α}.

Ng and Schultz studied a related hamiltonian property termed k-orderedness,
and showed the following connectivity result. Once again, we include the proof
for completeness.

Lemma 9 ([16]). Let G be a k-ordered graph. Then, G is (k − 1)-connected.

Proof. If not, there exists a set S of k − 2 vertices whose removal disconnects G,
breaking it into at least 2 components. Take 2 vertices u, v in different compo-
nents, then any path from u to v must go through some vertex of S. Thus, let
T consist of u, v and then the vertices of S, in that order. These vertices must
appear in some cycle in that order, giving a contradiction. 
�

We will also need the concept of graph closure introduced by Bondy and
Chvátal. Define the closure of G, denoted cl(G), to be the graph obtained by
repeatedly joining any two nonadjacent vertices x, y that satisfy d(x)+d(y) ≥ n
in G. They showed that cl(G) is well-defined (independent of the order in which
nonadjacent vertex pairs are considered), and that G is hamiltonian if and only
if cl(G) is also hamiltonian.
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Lemma 10 ([3]). Suppose cl(G) = G for a nonhamiltonian graph G of order
n. Then d(x) + d(y) ≤ n − 1 for any pair {x, y} of nonadjacent vertices.

This was later generalized to obtain results for higher order connectivity, the
bounds now also involving the independence number. We define

σk(G) = min{
k∑

i=1

d(xi), {x1, . . . xk} an independent set of size k in G}

Note that σ1(G) simply corresponds to the minimum degree δ, and Ore’s
theorem [18] states that if σ2(G) ≥ n, then the graph is hamiltonian.

Theorem 11 ([15]). Let G be a k-connected graph of order n and independence
number α. If σk+1(G) ≥ n + (k − 1)α − (k − 1), then G is hamiltonian.

3 Proofs of the Results

Proof of Theorem 1.
We will first prove the bound for the regime 2 ≤ k ≤ √

n + 3.
Consider any k-cyclable graph with α(G) ≥ k. Then, let S be a set of k

independent vertices, and consider the cycle containing it. This gives us a cycle
of length at least 2k, as any 2 independent vertices are not adjacent to each
other. Thus, we can assume α(G) ≤ k − 1. Let the connectivity of the graph be
κ. Using Theorem 6, it suffices to show

κ(n + κ − α)
α

≥ 2k ⇐⇒ n ≥ 2k(
α

κ
) + (α − κ)

As k-cyclable graphs are also 2-cyclable, and thus 2-connected, we must have
κ ≥ 2. Hence, it is sufficient to show the stronger inequality

n ≥ 2k(
k − 1

κ
) + k − 3

which is always true when

n ≥ k2 − 3 ⇐⇒ k ≤ √
n + 3

Note that if we only ask for an improvement of the form c(G) ≥ (1+γ)k for some
positive constant γ < 1, we can improve the range of k for which the result holds.
Once again, let S be any set of at least (1+γ)k

2 many independent vertices, and
consider the cycle containing S. This corresponds to a cycle containing at least
(1+ γ)k many vertices since any two independent vertices are not adjacent, and
thus we get α < (1+γ)k

2 . Similar to the previous argument, if the connectivity of
the graph is κ, by Theorem 6 it suffices to show

κ(n + κ − α)
α

≥ (1 + γ)k ⇐⇒ n ≥ (1 + γ)k(
α

κ
) + (α − κ)
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Using κ ≤ 2 and α < (1+γ)k
2 , we are done as long as

n ≥ (1 + γ)2k2

4
+

(1 + γ)k
2

− 2 ⇐⇒
√

4n + 9
1 + γ

≥ k

So the above argument only yields a linear improvement in c(G) for k up to
around 2

√
n.

Now, suppose 2 ≤ k ≤ 3n
4 − 1, and assume to the contrary that c(G) <

k + 2. We must have k ≥ 3 as 2-cyclable graphs are 2-connected and hence
have circumference at least 4 for n ≥ 4. By Theorem 7, we must have δ ≤ k+1

2 .
Moreover, α ≤ k+1

2 as otherwise we could simply take a cycle containing α
many independent vertices. Consider a vertex v with minimum degree δ, with
neighbourhood N(v) satisfying |N(v)| = δ. Now, choose v and any k−1 vertices
from V \N [v], which is possible as long as k − 1 ≤ n − 1 − δ. Then, any cycle
containing these vertices must also contain some 2 neighbours of v, giving c(G) ≥
k + 2, and we are done.

Thus, we must have k + δ > n. Note that when 2 ≤ k ≤ 3n
4 − 1, n ≥ k + 2 if

n ≥ 4. So, we must either have 3δ − 3 ≤ k + 1 or n + δ − α ≤ k + 1, otherwise
we are done by Theorem 8.

The former inequality gives δ ≤ k+4
3 , which gives

n < k + δ ≤ 4k + 4
3

=⇒ 3n − 4
4

< k

a contradiction. Hence, we must have δ ≥ k+5
3 , α ≤ k+1

2 giving

k + 1 ≥ n + δ − α ≥ n +
k + 5

3
− k + 1

2
= n +

7 − k

6

or equivalently, 3n
4 − 1 ≥ k ≥ 6n+1

7 , which is again a contradiction. 
�
We now prove an analogous bound for the circumference of k-ordered graphs.

Proof of Theorem 2.
We know that k-ordered graphs are also k − 1 connected from Theorem 9, thus
κ ≥ k − 1. We also must have α ≤ k − 1, as otherwise we can simply take k
independent vertices in any order to obtain a cycle of size at least 2k, in which
case we are done. Hence,

κ ≥ k − 1 ≥ α

so by Theorem 5, we have that G is hamiltonian, and thus we are done in this
case as well. 
�

In fact, it is not hard to see that the min{n, 2k} bound on the circumference
is achieved for all 2 ≤ k ≤ n. If k > n/2, simply consider the complete graph
Kn which is clearly k-connected, k-ordered, k-cyclable and has circumference
n. If k ≤ n/2, consider the complete bipartite graph G = Kk,n−k = (A,B,E),
which is k-ordered, and hence k-cyclable. Indeed, take any sequence of k distinct
vertices T = (v1, v2, . . . , vk). We construct a cycle containing T in that order as
follows.
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Let TA be the set of vertices in T and A, with TB being defined similarly.
Then, for any v ∈ TA, if the next vertex in the sequence T is in TB, then simply
follow the edge joining them. Otherwise, first follow an edge to a vertex in B\TB,
and then back to the next vertex which must have been in TA. Follow the same
procedure for vertices in TB . At the end, follow the edge joining the first and last
vertex. We cannot run out of vertices as the number of extra vertices outside
TA in A that are needed is at most |TB |, and |A| = k = |TA| + |TB |. Similarly,
|B| = n − k ≥ k = |TA| + |TB |.

We now generalize a result by [4] on the maximal number of edges in a k-
connected nonhamiltonian graph, for k = 2, 3. We will need the following short
lemma which appears in [4].

Lemma 12 ([4]). Let G be a nonhamiltonian, k-connected graph of order n.
Then k ≤ n−1

2 and |E(G)| ≥ (
k+1
2

)
+ (k − 1)(n − k − 1) − σk+1(G)

Proof. By Theorem 5, k-connected nonhamiltonian graphs must contain an inde-
pendent set I = {x1, . . . , xk+1} of k + 1 vertices. The graph is disconnected on
removal of the n−(k+1) vertices of G−I, thus we must have n−(k+1) > k−1,
or k ≤ n−1

2 .
Now consider the independent set I satisfying

∑k+1
i=1 d(xi) = σk+1(G). Let

the edges in G incident on at least one vertex of I be denoted XI . Then XI

contains
(
k+1
2

)
edges with both endpoints in I and

∑k+1
i=1 (n − 1 − k − dG(xi))

edges with exactly one endpoint in I. Thus, we obtain

|E(G)| ≥ |XI | =
(

k + 1
2

)
+ (k − 1)(n − k − 1) − σk+1(G)


�
Using a slight variation of the above result and Lemma 10, [4] also show the
following result.

Lemma 13 ([4]). Suppose G = cl(G) for a nonhamiltonian graph G of order
n, and m ≤ α(G). Then

|E(G)| ≥
{

m
2 (n − m) for n odd
m
2 (n − m) + m

2 − 1 for n even

With the above results, we are ready to proceed to the proof of Theorem 3. The
idea is that if n is not that much bigger than α, then we can get a sufficient lower
bound on |E(G)| using Lemma 13. Otherwise, n is much bigger than α, and we
can use Theorem 11 and Lemma 12. To show the uniqueness of the extremal
graphs, we will make use of the fact that these graphs must satisfy Lemma 10
maximally, i.e., addition of any further edge causes a violation of the condition.
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Proof of Theorem 3.
First of all, assume k ≥ 2 as we already know that when |E(G)| >

(
n−1
2

)
+ 1,

then G is hamiltonian and consequently connected as well. Assume G is non-
hamiltonian. We may assume G = cl(G), in which case d(x) + d(y) ≤ n − 1 for
any two nonadjacent vertices x, y, from Lemma 10. It suffices to prove that

|E(G)| ≥
(

n

2

)
−

((
n − k

2

)
+ k2

)
= k · n − 3k2 + k

2

Note first that if σk+1(G) ≤ n + k2 − k − 1, by Lemma 12

|E(G)| ≥
(

k + 1
2

)
+ (k + 1)(n − k − 1) − (n + k2 − k − 1) = k · n − 3k2 + k

2

as desired. We now assume σk+1(G) ≥ n + k2 − k and show that in this case,
|E(G)| is strictly greater than k ·n− 3k2+k

2 . We will divide the problem into two
cases, depending on the size of n compared to α.

Case 1: Assume n > (k2−1)·α+y
k , where y = −k3+4k2+3k+2

2 .
Let I = {x1, x2, . . . , xk+1} be a set of k + 1 independent vertices satisfying∑k+1

i=1 d(xi) = σk+1(G), and assume without loss of generality that

d(x1) ≥ σk+1(G)
k + 1

≥ n + k2 − k

k + 1

Subcase 1a: Suppose d(x1) ≥ n−2k. Note that V (G)−I −N(x1) is non-empty,
as otherwise we would have d(x1) = n−k − 1, giving d(xi) ≤ k for 2 ≤ i ≤ k +1
as d(x1)+d(xi) ≤ n−1 for 2 ≤ i ≤ k+1. This contradicts σk+1(G) ≥ n+k2−k.
Thus, pick some v ∈ V (G)−I −N(x1), giving dG(v) = n−1−dG(v) ≥ dG(x1) ≥
n − 2k. Therefore, G contains at least n − 2k − |I| = n − 3k − 1 edges with
both endpoints not in I. Using the same bound we got in Lemma 12 but also
including the extra edges in G incident with v (that have no endpoint in I) and
using Theorem 11, we obtain

|E(G)| ≥
(k + 1

2

)
+ (k + 1)(n − k − 1) + (n − 3k − 1) − σk+1(G)

≥ (k + 2) · n − k2 + 9k + 4

2
− (n + (k − 1)α − k)

> k · n − 3k2 + k

2
+

3k2 + k

2
− k2 + 9k + 4

2
+ k +

(k2 − 1) · α + y

k
− (k − 1)α

= (k · n − 3k2 + k

2
) +

(k − 1) · α + y + k(k2 − 3k − 2)

k
> (k · n − 3k2 + k

2
)

as desired, where the last inequality follows from y = −k3+4k2+3k+2
2 .

Subcase 1b: Suppose next that d(x1) ≤ n − 2k − 1. Then there exist distinct
vertices v1, v2 . . . , vk ∈ V (G) − I − N(x1), and G contains at least

(dG(v1) − k − 1) + (dG(v2) − k − 2) + · · · + (dG(vk) − 2k) =
k∑

i=1

dG(vi) − 3k2 + k

2
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edges with neither endpoint in I. Using d(vi) + d(x1) ≤ n − 1 as G = cl(G), we
get dG(vi) ≥ dG(x1) ≥ n+k2−k

k+1 for all 1 ≤ i ≤ k. Consequently, we obtain at
least

k(n + k2 − k)
k + 1

− 3k2 + k

2
edges in G with neither endpoint in I. Using Theorem 11 and Lemma 12 again,
we get

|E(G)| ≥
(k + 1

2

)
+ (k + 1)(n − k − 1) +

k(n + k2 − k)

k + 1
− 3k2 + k

2
− (n + (k − 1)α − k)

= (kn − 3k2 + k

2
) +

k

k + 1
n − (k − 1)α +

(k + 1

2

)
− (k + 1)2 +

k(k2 − k)

k + 1
+ k

> (kn − 3k2 + k

2
) +

k

k + 1

(k2 − 1)α + y

k
− (k − 1)α +

−k2 − k − 2

2
+

k(k2 − k)

k + 1

= (kn − 3k2 + k

2
) +

1

k + 1

(−k3 + 4k2 + 3k + 2

2
+

(−k2 − k − 2)(k + 1)

2
+ k3 − k2

)

= kn − 3k2 + k

2

Case 2: Assume n ≤ (k2−1)α+y
k .

In this case, α ≥ nk−y
k2−1 . By Lemma 13, |E(G)| ≥ 1

2α(n − α). This is a
upward facing parabola for fixed n, so for nk−y

k2−1 ≤ α ≤ n − nk−y
k2−1 , this function

is minimized at α = nk−y
k2−1 . Therefore, in this range

|E(G)| ≥ α

2
(n − α) ≥ 1

2
(
nk − y

k2 − 1
)(

n(k2 − k − 1) + y

k2 − 1
)

=
n2k(k2 − k − 1) + n(2k + 1 − k2)y − y2)

2(k2 − 1)2

If we want the above to be strictly greater than kn − 3k2+k
2 ,

n2k(k2 − k − 1)
2(k2 − 1)2

≥ kn ⇐⇒ n ≥ 2(k2 − 1)2

k2 − k − 1
= 2(k2 + k +

1 − k

k2 − k − 1
)

suffices. This is because for k ≥ 5, y = −k3+4k23k+2
2 < 0 and 2k + 1 − k2 < 0,

giving (2k+1−k2)(y) > 0. Similarly, −y2 = (−k3+4k2+3k+2)2

4 > −(3k2+k)(k2−
1)2 for k ≥ 5, so we only have to check the cases of k = 2, 3, 4 manually which
is a routine check.

Now, it remains to consider the possibility that α > n− nk−y
k2−1 = n(k2−k−1)+y

k2−1 .
In this case however, α is quite large compared to n, so the

(
α
2

)
edges in G between

the vertices of an independent set of size α is strictly greater than k · n − 3k2+k
2

for all n. Indeed, we manually verify for k ≤ 3, and for k ≥ 4 simply note that
nk
2 + y ≥ 0, and hence when n ≥ 2(k2 + k) we have

α >
n(k2 − 3k

2 − 1)
k2 − 1

≥ 9n

15
,

(
9n/15

2

)
>

9n

30
· 8n

15
> kn
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We now prove that the extremal nonhamiltonian k-connected graphs are
unique for n ≥ 2(k2 + k), by making use of Lemma 10. Recall that we may
assume G = cl(G) is a nonhamiltonian, k-connected graph of order n ≥ 2k2 +2k
with σk+1(G) = n + k2 − k − 1 as equality only holds if all the inequalities in
the above proof are tight.

Thus, all the edges in G have atleast one endpoint in I. Let I =
{x1, x2, . . . , xk+1} be a set of independent vertices such that k ≤ d(x1) ≤ . . . ≤
d(xk+1). Note that k-connected graphs have minimum degree at least k as oth-
erwise, the graph could be disconnected by removing at most k − 1 vertices. As
mentioned in the previous section, we may further assume that all edges in G
have at least one endpoint in I, that is, if x, y ∈ V (G) − I, then {x, y} ∈ E(G).
We will now use the properties of graph closure repeatedly. First, note that we
must have a clique on the remaining n− k − 1 vertices, each of which has degree
at least n − k − 2.

• Say d(xk) ≥ k + 1 Consider the neighbours of xk in the clique. These neigh-
bours have degree at least n − k − 1, and hence since G = cl(G), must be
adjacent to xk+1 as well as d(xk+1) ≥ k +1, But then, these neighbours have
degree at least n−k, and hence must be adjacent to all of x1, . . . , xk+1 by the
same argument. Thus, I and N(I) together form a complete bipartite graph
with |N(I)| ≥ k + 1 = |I|. If d(xk+1) > k + 1, then it is easy to see that the
graph is hamiltonian, and otherwise k + 1 = d(xi)∀i ∈ [k + 1], giving

σk+1 = n + k2 − k − 1 = (k + 1)2 ⇐⇒ n = 3k + 2

which is false as we assumed n ≥ 2k2 + 2k.
• Otherwise d(xk) = k, , and hence d(xk+1) = σk+1 − k2 = n − k − 1, so we

have a clique on the n − k vertices in G\{x1, . . . , xk}. The neighbours of any
xi, i ∈ [k] must have degree at least n − k, and hence are joined to all the xi.
Thus, we obtain the desired extremal graph with exactly

(
n−k
2

)
+ k2 many

edges, namely a clique on n − k vertices and k other independent vertices
forming a complete bipartite graph with some k vertices from the clique. 
�

4 Concluding Remarks

A simpler proof of Theorem 1 with a weaker constant can be obtained using
Turán’s theorem and a theorem of Erdős and Gallai [10] on the length of the
longest cycle in a graph. Consider any k-cyclable graph with α(G) ≥ k. Then, let
S be a set of k independent vertices, and consider the cycle containing it. This
gives us a cycle of length atleast 2k, as any two independent vertices are not
adjacent to each other. Thus, we must have α(G) < k. By a variant of Turán’s
theorem, we also have α > n

d̃+1
, where d̃ is the average degree. Thus, we obtain

2|E(G)|
n

+ 1 = d̃ + 1 >
n

α
≥ n

k − 1
=⇒ |E(G)| ≥ 1

2
n

(
n

k − 1
− 1

)
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which is larger than 1
2 (2k−1)(n−1) if n ≥ 2k2. giving c(G) ≥ 2k when k ≤ √

n/2.
It is also interesting to understand what happens to the circumference of

k-cyclable graphs for large values of k. As mentioned earlier in the introduction,
it is not necessarily the case that c(G) = n when k = n − 1 due to the existence
of hypohamiltonian graphs. Thus, we have the following extremal problem.

Conjecture 1. For a given n, let f(n) be the largest value of k such that any
k-cyclable graph satisfies c(G) > k. From the above, we have f(n) < n − 1 and
from Theorem 1, we know f(n) = Ω(n). Is it the case that f(n) = n − 2?

We can also ask for what regime of k as a function of n do results of the type in
Theorem 1 hold.

Conjecture 2. For a given n, let g(n) be the largest value of k such that any
k-cyclable graph satisfies c(G) ≥ 2k. From Theorem 1 we know g(n) = Ω(

√
n).

Is it the case that g(n) = O(
√

n)?

Moreover, our results only give an improvement of the form c(G) ≥ (1+γ)k,
0 < γ < 1, for k up to around 2

√
n, and it is natural to ask if such a linear bound

on the circumference can be obtained for much larger regimes of k. Finally, note
that the results of Theorem 3 only hold for n ≥ 2(k2 + k). For fixed values of
k ≤ 3, [4] give a tight bound for the minimum value of n for this to hold. They
also note that this bound cannot hold for k = Ω(n), in particular if p = �n−1

2 �,
the graph obtained by joining n−p independent vertices to each vertex of Kp is k-
connected and nonhamiltonian, with total number of edges more than

(
n−k
2

)
+k2

when n+1
6 < k < �n−1

2 �. This still leaves a significant gap in the possible range
of k for which k-connectivity and |E(G)| >

(
n−k
2

)
+ k2 implies hamiltonicity, as

our result only applies for k = O(
√

n).
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Univ. Orsay, Orsay (1976)

14. Kawarabayashi, K.: An improved algorithm for finding cycles through elements.
In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp.
374–384. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68891-
4 26

15. Li, H.: Generalizations of Dirac’s theorem in Hamiltonian graph theory-a survey.
Discret. Math. 313(19), 2034–2053 (2013). https://doi.org/10.1016/j.disc.2012.11.
025

16. Ng, L., Schultz, M.: k-ordered Hamiltonian graphs. J. Graph Theory 24(1), 45–57
(1997). https://doi.org/10.1002/(SICI)1097-0118(199701)24:1〈45::AID-JGT6〉3.0.
CO;2-J

17. Suil, O., West, D.B., Wu, H.: Longest cycles in k-connected graphs with given
independence number. J. Comb. Theory Ser. B 101(6), 480–485 (2011). https://
doi.org/10.1016/j.jctb.2011.02.005

18. Ore, O.: Note on Hamilton circuits. Am. Math. Mon. 67(1), 55 (1960). https://
doi.org/10.2307/2308928

https://doi.org/10.1002/mana.19600220107
https://doi.org/10.1002/mana.19600220107
https://doi.org/10.1016/0012-365X(75)90020-5
https://doi.org/10.1007/BF02024498
https://doi.org/10.1007/BF02024498
https://doi.org/10.1016/S0012-365X(00)00202-8
https://doi.org/10.1016/j.disc.2008.04.017
https://doi.org/10.1007/978-3-540-68891-4_26
https://doi.org/10.1007/978-3-540-68891-4_26
https://doi.org/10.1016/j.disc.2012.11.025
https://doi.org/10.1016/j.disc.2012.11.025
https://doi.org/10.1002/(SICI)1097-0118(199701)24:1<45::AID-JGT6>3.0.CO;2-J
https://doi.org/10.1002/(SICI)1097-0118(199701)24:1<45::AID-JGT6>3.0.CO;2-J
https://doi.org/10.1016/j.jctb.2011.02.005
https://doi.org/10.1016/j.jctb.2011.02.005
https://doi.org/10.2307/2308928
https://doi.org/10.2307/2308928


Graph Domination



On Three Domination-Based
Identification Problems in Block Graphs

Dipayan Chakraborty1 , Florent Foucaud1(B) , Aline Parreau2,
and Annegret K. Wagler1
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Abstract. The problems of determining the minimum-sized identify-
ing, locating-dominating and open locating-dominating codes of an input
graph are special search problems that are challenging from both theo-
retical and computational viewpoints. In these problems, one selects a
dominating set C of a graph G such that the vertices of a chosen subset
of V (G) (i.e. either V (G) \ C or V (G) itself) are uniquely determined
by their neighborhoods in C. A typical line of attack for these problems
is to determine tight bounds for the minimum codes in various graph
classes. In this work, we present tight lower and upper bounds for all
three types of codes for block graphs (i.e. diamond-free chordal graphs).
Our bounds are in terms of the number of maximal cliques (or blocks) of
a block graph and the order of the graph. Two of our upper bounds verify
conjectures from the literature - with one of them being now proven for
block graphs in this article. As for the lower bounds, we prove them to be
linear in terms of both the number of blocks and the order of the block
graph. We provide examples of families of block graphs whose minimum
codes attain these bounds, thus showing each bound to be tight.

Keywords: identifying code · locating-dominating · domination
number · block graph · maximal clique · order of a graph · articulation

1 Introduction

For a graph (or network) G that models a facility or a multiprocessor network,
detection devices can be placed at its vertices to locate an intruder (like a faulty
processor, a fire or a thief). Depending on the features of the detection devices,
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(a) (b) (c)

Fig. 1. Examples of (a) ID-code, (b) LD-code and (c) OLD-code. The set of black
vertices in each of the three graphs constitute the respective code of the graph.

different types of dominating sets can be used to determine the optimum dis-
tributions of these devices across the vertices of G. In this article, we study
three problems arising in this context, namely three types of dominating sets
- the identifying codes, locating-dominating codes and open locating-dominating
codes - of a given graph. Each of these problems has been extensively studied
during the last decades. These three types of codes are among the most promi-
nent notions within the larger research area of identification problems in discrete
structures pioneered by Rényi [24], with numerous applications, for example in
fault-diagnosis [23], biological testing [21] or machine learning [8].

Let G = (V (G), E(G)) be a graph, where V (G) and E(G) denote the set
of vertices (also called the vertex set) and the set of edges (also called the edge
set), respectively, of G. The (open) neighborhood of a vertex u ∈ V (G) is the set
NG(u) of all vertices of G adjacent to u; and the set NG[u] = {u} ∪ NG(u) is
called the closed neighborhood of u.

A vertex subset C ⊆ V (G) is called an identifying code [20] (or an ID-code
for short) of G if

(1) NG[u] ∩ C �= ∅ for each vertex u (the property of domination); and
(2) NG[u] ∩ C �= NG[v] ∩ C for all distinct vertices u, v ∈ V (G) (the property of

closed-separation in G).

See Fig. 1(a) for an example of an ID-code. A graph G admits an ID-code if and
only if G has no closed-twins (i.e. a pair of distinct vertices u, v ∈ V (G) with
NG[u] = NG[v]).

A subset C ⊆ V (G) is called a locating-dominating code [26] (or an LD-code
for short) of G if

(1) NG[u] ∩ C �= ∅ for each vertex u (the property of domination); and
(2) NG(u)∩C �= NG(v)∩C for all distinct vertices u, v ∈ V (G)\C (the property

of location in G).

See Fig. 1(b) for an example of an LD-code. Every graph has an LD-code.
Finally, a subset C ⊆ V (G) is called an open locating-dominating code [25]

(or an OLD-code for short) of G if

(1) NG(u) ∩ C �= ∅ for each vertex u (the property of open-domination); and
(2) NG(u) ∩ C �= NG(v) ∩ C for all distinct vertices u, v ∈ V (G) (the property

of open-separation in G).
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See Fig. 1(c) for an example of an OLD-code. A graph G admits an OLD-code if
and only if G has neither isolated vertices nor open-twins (i.e. a pair of distinct
vertices u, v ∈ V (G) with NG(u) = NG(v)).

A graph with no open twins, no closed twins or neither open- nor closed-
twins is also called open-twin-free, closed-twin-free and twin-free, respectively.
For the rest of this article, we often simply use the word code to mean any
of the above three ID-, LD- or OLD-codes without distinction. Given a graph
G, the identifying code number γID(G) (or ID-number for short), the locating-
dominating number γLD(G) (or LD-number for short) and the open locating-
dominating number γOLD(G) (or OLD-number for short) of G are the minimum
cardinalities among all ID-codes, LD-codes and OLD-codes, respectively, of G.
In other words, for simplicity, for any symbol X ∈ {ID, LD, OLD}, we have the
X-number: γX(G) = min{|C| : C is an X-code of G}. In the case that all three
codes are addressed together as one unit anywhere in the text, i.e. any specific
symbol for X ∈ {ID, LD, OLD} is irrelevant to the context, we then simply refer
to the X-numbers as the code numbers of G.

For any two sets A and B, let A�B = (A\B)∪(B\A) denote the symmetric
difference between A and B. Then, for a vertex subset C ⊂ V (G) and distinct
vertices u, v ∈ V (G), if there exists a vertex w ∈ (NG(u) ∩ C)�(NG(v) ∩ C)
(resp. (NG[u] ∩ C)�(NG[v] ∩ C)), then both C and the vertex w are said to
open-separate (resp. closed-separate) the vertices u and v (in C).

Known Results. Given a graph G, determining γID(G), γLD(G) or γOLD(G)
is, in general, NP-hard [7,25] and remains so for several graph classes like bipar-
tite graphs [7], split and interval graphs [15] where other hard problems become
easy to solve. The problems are also hard to approximate within a factor of
log |V (G)| [10]. As these problems are computationally hard, a typical line of
attack is to determine bounds on the code numbers for specific graph classes.
Lower bounds for all three code numbers for several graph classes like interval
graphs, permutation graphs, cographs [14] and lower bounds for ID-numbers for
trees [5], line graphs [12], planar graphs [22] and many others of bounded VC-
dimension [6] have been determined. Upper bounds for ID-codes (See e.g. [4,9]),
LD-codes (see e.g. [4,13,16]) and OLD-codes (see [18]) for certain graph classes
have also been obtained.

Our Work. In this paper, we consider the family of block graphs, a subclass of
chordal graphs defined by Harary in [17] (see also [19] for equivalent characteri-
zations). A block graph is a graph in which every maximal 2-connected subgraph
(or block) is complete. Linear-time algorithms to compute all three code numbers
in block graphs have been presented in [2]. In this paper, we complement these
results by determining tight lower and upper bounds on all three code numbers
for block graphs. We give bounds using (i) the number of vertices, i.e. the order
of a graph, as has been done for several other classes of graphs; and (ii) the
number of blocks of a block graph, a quantity equally relevant to block graphs.
In doing so, we also prove the following conjectures.

Conjecture 1 ([1], Conjecture 1). The ID-number of a closed-twin-free block
graph is bounded above by the number of blocks in the graph.
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Layer 0

Layer 1 (leaf)

Layer 1
Layer 2
(leaf)

Articulation
vertices

Non-articulation
vertices

Fig. 2. Example of different layer numbers, articulation vertices (grey) and non-
articulation vertices (white) of a connected block graph.

Conjecture 2 ([13,16], Conjecture 2). Every twin-free graph G with no isolated
vertices satisfies γLD(G) ≤ |V (G)|

2 .

Terminologies. For a block graph G, let K(G) denote the set of all blocks of
G, i.e. the set of all complete subgraphs of G of maximal order. Note that the
vertex sets of any two distinct blocks of G can intersect at a single vertex at
most; and any such vertex at the intersection of the vertex sets of two distinct
blocks is called an articulation vertex of both the blocks. Any vertex that is not
an articulation vertex, is called a non-articulation vertex of G. For a connected
block graph G, we fix a root block K0 of G and define a system of assigning
numbers to every block of G depending on “how far” the latter is from K0. So,
define a layer function f : K(G) → Z on G by: f(K0) = 0 and, for any other
(non-root) block K, define inductively f(K) = i if V (K) ∩ V (K ′) �= ∅ for some
block K ′ other than K such that f(K ′) = i − 1. Any block K with f(K) = i is
said to be in Layer i. See Fig. 2 for a demonstration of the layers.

For a pair of distinct blocks K,K ′ of G such that their vertex sets intersect
and that f(K) = f(K ′)+1, we call the (only) vertex in the intersection V (K)∩
V (K ′) the negative articulation vertex of K and a positive articulation vertex
of K ′. Note that the root block does not have any negative articulation vertex
and every other block has exactly one negative articulation vertex. Finally, any
block of G that has exactly one articulation vertex is called a leaf block, and
whereas any block that is not a leaf block is called a non-leaf block of G.

Structure of the Paper. Sections 2 and 3 of this paper are dedicated to our
results on the upper bounds and lower bounds, respectively, on the code numbers
of block graphs. We conclude the paper in Sect. 4. In this extended abstract,
Theorems 4 and 6 are presented with their proof sketches only, whereas Theorem
9 and all lemmas are presented with their statements only. Theorems 3 and 8,
however, are presented with their proofs in full. For the purposes of this abstract,
all results marked with (�) are either presented with only their statements or
with only sketches of their proofs.

2 Upper Bounds

In this section, we establish upper bounds on the ID-, LD- and OLD-numbers
for block graphs. Two of these upper bounds are proving Conjectures 1 and 2.
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2.1 Identifying Codes

The number of blocks is as relevant a quantity for block graphs as is the number
of vertices for trees. Next, we prove Conjecture 1 to provide an upper bound on
γID(G) for a block graph G in terms of its number of blocks.

Theorem 3. Let G be a closed-twin-free block graph and let K(G) be the set of
all blocks of G. Then γID(G) ≤ |K(G)|.
Proof. As the ID-number of a graph is the sum of the ID-numbers of all its
components, it is enough to assume that the block graph G is connected. Now,
assume by contradiction that there is a closed-twin-free block graph G of mini-
mum order such that γID(G) > |K(G)|. We also assume that G has at least four
vertices since it can be easily checked that the theorem is true for block graphs
with at most three vertices. Suppose that K ∈ K(G) is a leaf-block of G. Due to
the closed-twin-free property of G, one can assume that V (K) = {x, y}. With-
out loss of generality, suppose that x is the non-articulation and y the negative
articulation vertex of K. Let G′ = G − x be the graph obtained by deleting the
vertex x ∈ V (G) (and the edge incident on x) from G. Then G′ is a block graph
with |K(G′)| = |K(G)| − 1. We now consider the following two cases.

Case 1 (G’ is closed-twin-free). By the minimality of the order of G, there is
an ID-code C ′ of G′ such that |C ′| ≤ |K(G′)| = |K(G)| − 1. First, assume that
y /∈ C ′. Then by the property of domination of C ′, there exists a vertex z ∈ V (G′)
such that z ∈ NG′(y) ∩ C ′. We claim that C = C ′ ∪ {x} is an ID-code of G.
First of all, that C is a dominating set of G is clear from the fact that C ′ is a
dominating set of G′. To prove that C is a closed-separating set of G, we see
that x is closed-separated in C from all vertices in V (G′) \ {y} by itself and is
closed-separated in C from y by the vertex z ∈ C ′. Moreover, all other pairs
of distinct vertices closed-separated by C ′ and are also closed-separated by C.
Thus, C, indeed, is an ID-code of G. This implies that γID(G) ≤ |C| ≤ |K(G)|,
contrary to our assumption.

We therefore assume that y ∈ C ′. If again, there exists a vertex z ∈ NG′(y)∩
C ′, then by the same reasoning as above, C = C ′ ∪ {x} is an ID-code of G.
Otherwise, we have NG′ [y] ∩ C ′ = {y}. Now, since G is connected, we have
degG(y) > 1 and therefore, there exists a vertex w ∈ NG(y) \ {x}. Then C =
C ′ ∪ {w} is an ID-code of G. To prove so, we only need to check that C closed-
separates x from every vertex in V (G′). Now, y closed-separates x from every
vertex in V (G′) \ {y, w} in C; w closed-separates x from y in C; and w closed-
separates itself from x in C. Moreover, C is clearly also a dominating set of G.
Hence, this leads to the same contradiction as before.

Case 2 (G’ has closed-twins). Assume that vertices u, v ∈ V (G′) are a pair of
closed-twins of G′. Since u and v were not closed-twins in G, it means that x
is adjacent to u, say, without loss of generality. This implies that u = y. Note
that v is then unique with respect to being a closed-twin with y in G′. This is
because, if y and some vertex v′(�= v) ∈ V (G′) were also closed-twins in G′, then
it would mean that v and v′ were closed-twins in G, contrary to our assumption.
Now, let G′′ = G′ − v. We claim the following.
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Claim 2A. G” is closed-twin-free.

Proof of Claim 2A. Toward a contradiction, if vertices z, w ∈ V (G′′) were a pair
of closed-twins in G′′, it would mean that z ∈ NG′(v), without loss of generality,
and w /∈ NG′(v). This would, in turn, imply that z ∈ NG′(y) (since y and v
are closed-twins in G′). Or, in other words, y ∈ NG′′(z). Now, since z and w
are closed-twins in G′′, we have w ∈ NG′(y). Again, by virtue of y and v being
closed-twins in G′, we have w ∈ NG′(v), contrary to our assumption. �

We also note here that the vertices y and v must be from the same block
for them to be closed-twins in G′. Thus, G′′ is a connected closed-twin-free
block graph. Therefore, by the minimality of the order of G, there is an ID-code
C ′′ of G′′ such that |C ′′| ≤ |K(G′′)| < |K(G)|. If y /∈ C ′′, then we claim that
C = C ′′ ∪ {x} is an identifying code of G. This is true because, firstly, C is a
dominating set of G (note that, by the property of domination of C ′′ in G′′,
there exists a vertex z ∈ NG′′(y) ∩ C ′′; and since y and v are closed-twins in
G′, we have z ∈ NG(v) ∩ C). Moreover, x is closed-separated in C from every
other vertex in V (G) \ {y} by x itself; and x and y are closed-separated in C by
some vertex in NG′′(y) ∩ C ′′ that dominates y. The vertices y and v are closed-
separated in C by x; y is closed-separated in C ′′ from all vertices in V (G′′)\{y}
and so is v, since y and v have the same closed neighborhood in G′. Finally,
every pair of distinct vertices closed-separated by C ′′ still remain so by C. Thus,
C, indeed, is an ID-code of G. This implies that γID(G) ≤ |C| ≤ |K(G)|; again
a contradiction.

Let us, therefore, assume that y ∈ C ′′. This time, we claim that C = (C ′ \
{y}) ∪ {x, v} is an ID-code of G. That C is a dominating set of G is clear. As
for the closed-separating property of C, as before, x is closed-separated in C
from every vertex in V (G) \ {y} by x itself; and x and y are closed-separated
in C by v. Vertices y and v are closed-separated in C by x; and v and x are
closed-separated in C by v. Since y and v have the same closed neighbourhood
in G′ and since y is closed-separated in C ′′ from every other vertex in V (G′′),
both v and y are each closed-separated in C from every vertex in V (G′′)\{v, y}.
Finally, every pair of distinct vertices of G′′ closed-separated by C ′′ still remain
so by C. This proves that C is an ID-code of G and hence, again, we are led to
the contradiction that γID(G) ≤ |C| ≤ |K(G)|. This proves the theorem. �
Besides for stars, the upper bound in Theorem 3 is attained by the ID-numbers
of thin headless spiders [3]. These graphs, therefore, serve as examples to show
that the bound in Theorem 3 is tight.

2.2 Locating-Dominating Codes

In our next result, we prove Conjecture 2 for block graphs.

Theorem 4 (�). Let G be a twin-free block graph with no isolated vertices. Then
we have γLD(G) ≤ |V (G)|

2 .

Proof (sketch). It is enough to prove the theorem for a connected twin-free block
graph G. The proof follows from partitioning the vertex set of G into two parts
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K0

art+(K0)

art(K0)

(a) Rule 1

art−(K)

(b) Rule 2(i)

art−(K)

(c) Rule 2(ii)

K

art−(K)

K ′art−(K ′)

(d) Rule 3(i)

art−(K)

(e) Rule 3(ii)

Fig. 3. The rules in the proof of Theorem 4. The symbols art+(K), art−(K) and
art(K) represent the set of all positive articulation, negative articulation and non-
articulation vertices, respectively of K. The black and white vertices represent those
picked in the sets C∗ and D∗, respectively. The blocks with dashed edges represent
those that are yet to be analysed for their choices of vertices in C∗ and D∗.

C∗ and D∗ and showing that both the parts are LD-codes of G. So, assign a leaf
block of G to be the root block and define a layer function f on G with the root
block in Layer 0. Then construct the sets C∗ and D∗ by the following rules.

(1) The root block is of size 2, as G is twin-free. So, pick the positive articulation
vertex of the root block in D∗ and the other vertex in C∗. See Fig. 3(a).
Next, assume that K is non-root block of G.

(2) Let the negative articulation vertex of K be in D∗. (i) If K has one non-
articulation vertex, pick it in C∗. Moreover, pick all positive articulation ver-
tices of K in D∗. (ii) If K has no non-articulation vertices, pick one of its pos-
itive articulation vertices in C∗, and the rest in D∗. See Figs. 3(b) and 3(c).

(3) Let the negative articulation vertex of K be in C∗. (i) If K has one non-
articulation vertex, pick it inD∗. Pick one positive articulation vertex (if avail-
able) of K in C∗, and the rest in D∗. (ii) If K has no non-articulation vertices,
pick all its positive articulation vertices in D∗. See Figs. 3(d) and 3(e).

Clearly, the sets C∗ and D∗ are complements of each other in V (G); and every
block of G has at least one vertex in each of them. Thus, both are dominating
sets of G. Next, we show that both C∗ and D∗ are locating sets of G each.
We start with C∗ and show that any two distinct vertices u, v ∈ D∗ are open-
separated in C∗. As G is twin-free, there exist distinct blocks K,K ′ ∈ K(G) such
that u ∈ V (K) and v ∈ V (K ′). Then, it is enough to show the following claim.

Claim: Either u or v is an articulation vertex of K or K’, respectively.

Proof of Claim. Toward a contradiction, let us assume that both u and v are
non-articulation vertices of K and K ′, respectively. Since both V (K) and V (K ′)
have non-empty intersection with C∗, the only non-trivial case to investigate is

V (K) ∩ C∗ = V (K ′) ∩ C∗ = V (K) ∩ V (K ′). (1)

Case 1 ( f(K ′) = f(K) + 1): Here, K must be a non-root block (by Rule 1) and
has its negative articulation vertex in D∗. Since u is a non-articulation vertex of
K, by Rule 2(i), u must belong to C∗, a contradiction to our assumption u ∈ D∗.
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v

u

x2w2 w3 x3x1w1

z2y2 y3 z3z1y1

(a) Block graph H3 whose LD-number at-
tains the upper bound in Theorem 4.

u

v2

w2

v1

w1

a2a1

y3y2y1

x3x2x1

(b) Block graph G2,3 whose OLD-number
attains the upper bound in Theorem 6.

Fig. 4. The black vertices constitute a minimum respective code of each graph.

Case 2 ( f(K) = f(K ′)). Here, the negative articulation vertices of both K and
K ′ are the same and is in C∗. Assume K to be a non-leaf block (as one of K,K ′

must be, for G to be twin-free). Since v is a non-articulation vertex of K ′, by
Rule 3(i), K has a positive articulation vertex in C∗, which contradicts (1). �
This proves the above claim and that C∗ is a locating set of G. The proof for
D∗ being a locating set of G is carried out in a very similar manner. �
The trees whose LD-codes attain the bound in Theorem 4 were characterized
in [13]. There are also arbitrarily large connected twin-free block graphs - that
are not trees - and whose LD-numbers attain the bound in Theorem 4. Examples
of such graphs are, for instance, those of the type in Fig. 4(a). We therefore have
the following proposition.

Proposition 5 (�). There exist arbitrarily large connected twin-free block
graphs whose LD-numbers are equal to half the number of vertices.

2.3 Open Locating-Dominating Codes

We now focus our attention on upper bounds on OLD-numbers of block graphs.

Theorem 6 (�). Let G be a connected open-twin-free block graph such that G is
neither a copy of P2 nor of P4. Let mQ(G) be the number of non-leaf blocks of G
with at least one non-articulation vertex. Then γOLD(G) ≤ |V (G)|−mQ(G)−1.

Proof (sketch). It is easy to check that the result holds when G is iomorphic to
a bull graph (a K3 with two leaves each adjacent to a distinct vertex of the K3;
see Fig. 5(a)); So, we assume that G is not a bull graph. We define a particular
type of “join” of two graphs: Assume G′ to be any graph and X to be either
a 4-path or a bull graph. For a fixed vertex q ∈ V (G′), we define a new graph
G′ �q X to be the graph obtained by identifying a vertex q ∈ V (G′) with an
articulation vertex of X. Next, we choose a root block of G according to whether
G ∼= G′ �q X or G �∼= G′ �q X, for some block graph G′. Thereafter, we construct
a particular vertex subset C ⊂ V (G) and, through various case analyses, show
that C indeed is an OLD-code of G and is of size |V (G)| − mQ(G) − 1. �
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b3

b2b4

b1b5

(a) The Bull graph. (b) Z: Graph of largest size whose mini-
mum OLD-code is a 3-clique.

Fig. 5. The black vertices constitute a minimum respective code of each graph.

Foucaud et al. [11] have shown that, for any open-twin-free graph G with no
isolated vertices, γOLD(G) ≤ |V (G)| − 1 unless G is a special kind of bipartite
graph called a half-graph (a half-graph is a bipartite graph with both parts of
the same size, where each part can be ordered so that the open neighbourhoods
of consecutive vertices differ by exactly one vertex). Since P2 and P4 are the
only block graphs that are half-graphs, Theorem 6 is a refinement of their result
for block graphs.

We now show that the upper bound on the OLD-numbers for block graphs
in Theorem 6 is tight and is attained by arbitrarily large connected block graphs
of the type in Fig. 4(b).

Proposition 7 (�). There exist arbitrarily large connected open-twin free block
graphs whose OLD-numbers equal the upper bound in Theorem 6.

3 Lower Bounds

The general lower bound for the size of an identifying code using the number
of vertices is γID(G) ≥ �log2(|V (G)| + 1)� [20]. However, to reach this bound,
a graph needs to have a large VC-dimension [6] (the VC-dimension of a graph
G is the size of a largest shattered set, that is, a set S of vertices such that
for every subset S’ of S, some closed neighbourood in G intersects S exactly
at S′). Indeed, if a graph has VC-dimension c, then any identifying code has
size at least O(|V (G)|1/c) [6]. The value 1/c is not always tight, see for example
the case of line graphs which have VC-dimension at most 4 but for which the
tight order for the lower bound is Ω(|V (G)|1/2) [12]. Similar results hold for
LD- and OLD-codes (using the same techniques as in [6]). Block graphs have
VC-dimension at most 2 (one can check that a shattered set of size 3 would
imply the existence of an induced 4-cycle or diamond), and thus, using results
from [6], their ID-number is lower bounded by Ω(|V (G)|1/2). In this section, we
improve this lower bound to a linear one which is also tight. Our first result of
this section is the following.

Theorem 8. Let G be a connected block graph. Then we have
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γID(G) ≥ |V (G)|
3 + 1, γLD(G) ≥ |V (G)|+1

3 and, for G not isomorphic to Z,

γOLD(G) ≥ |V (G)|
3 + 1; where Z is the graph K4 with three leaves each adjacent

to a distinct vertex of the K4.

See Fig. 5(b) for the graph Z. Extremal cases where these bounds are attained
can be constructed as follows (see Fig. 6). Consider the graph with one path on
vertices u1, ...., uk (the vertices in the code) and attach further vertices as follows.

(1) for an ID-code C: attach a single vertex to each ui and vertices to the pairs
ui, ui+1 for 1 < i < k − 1,

(2) for an OLD-code C: attach a single vertex to u1, uk and each ui for 2 < i <
k − 1 and vertices to all the pairs ui, ui+1,

(3) for an LD-code C: attach a single vertex to each ui and vertices to all the
pairs ui, ui+1.

(a) (b) (c)

Fig. 6. Extremal cases where the lower bounds are attained, black vertices form a
minimum (a) ID-code, (b) OLD-code, (c) LD-code.

Note that the graphs presented here are all the possible extremal cases for ID-
codes, whereas further extremal graphs for OLD-codes and for LD-codes exist.
If we now consider the parameter |K(G)|, we can use the relation |V (G)| ≥
|K(G)| + 1 to obtain a similar lower bound. However, this lower bound can be
improved as our next theorem shows.

Theorem 9 (�). Let G be a connected block graph and K(G) be the set of all
blocks of G. Then we have

γID(G) ≥ 3(|K(G)|+2)
7 , γLD(G) ≥ |K(G)|+2

3 and γOLD(G) ≥ |K(G)|+3
2 .

To prove Theorems 8 and 9, we introduce the following notations and terminolo-
gies. By ni(G) we shall mean the number of vertices of degree i in a graph G.
For a given code C of a connected block graph G, let the subgraph G[C] of G
have k components and that C1, C2, ..., Ck are all of its components. Note that
each Ci is a block graph and so is G[C], therefore. Then, V (G) is partitioned
into the four following parts. Starting with V1 = C, we define the other parts.

(1) V2 = {v ∈ V (G) \ V1 : |N(v) ∩ C| = 1},
(2) V3 = {v ∈ V (G) \ V1 : there exist distinct i, j ≤ k such that N(v) ∩ Ci �=

∅ and N(v) ∩ Cj �= ∅}, and
(3) V4 = V (G) \ (V1 ∪ V2 ∪ V3). Note that, for all v ∈ V4, N(v) ∩ C ⊂ V (Ci) for

some i and that |N(v) ∩ V (Ci)| ≥ 2.
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Our next lemmas establish upper bounds on the sizes of V1, V2, V3 and V4.

Lemma 10 (�). Let G be a connected block graph and C be a code of G. Then
following are upper bounds on the size of the vertex subset V2 of G.

(1) |V2| ≤ |C| − n0(G[C]) if C is an ID-code.
(2) |V2| ≤ |C| if C is an LD-code.
(3) |V2| ≤ |C| − n1(G[C]) if C is an OLD-code.

Lemma 11 (�). Let G be a connected block graph and C be a code of G such
that G[C] has k components. Then, we have |V3| ≤ k − 1.

Lemma 12 (�). Let G be a connected block graph and C be a code of G such
that G[C] has k components. Then, we have |V4| ≤ |C| − k. In particular,

(1) |V4| ≤ |C| − 3k + 2n0(G[C]) if C is an ID-code;
(2) |V4| ≤ |K(G[C])| ≤ |C| − 2k1 − 3k2 + n1(G[C]) if C is an OLD-code; where

k1 = |{Ci : Ci is a component of G[C] and Ci
∼= K3}| and k2 = k − k1.

Proof of Theorem 8. Let C be a code of G and that G[C] have k components.
We prove the theorem using the relation |V (G)| = |C| + |V2| + |V3| + |V4| and
the upper bounds for |V2| |V3| and |V4| in Lemmas 10, 11 and 12, respectively.

If C is an ID-code, then we have

|V (G)| =C| + |V2| + |V3| + |V4|
≤|C| + |C| − n0(G[C]) + k − 1 + |C| − 3k + 2n0(G[C])
=3C| − 2k − 1 + n0(G[C]).

Now, there must be at least as many components of G[C] as there are isolated
vertices in G[C], i.e. we have k ≥ n0(G[C]). This implies that |V (G)| ≤ 3|C| −
k − 1. Thus, for k ≥ 2, the result holds. Moreover, when k = 1, we must have
n0(G[C]) = 0 and so, again, the result holds.

If C is an LD-code, then the result holds because we have
|V (G)| = |C| + |V2| + |V3| + |V4| ≤ |C| + |C| + k − 1 + |C| − k = 3|C| − 1.
Finally, if C is an OLD-code, then we have

|V (G)| =|C| + |V2| + |V3| + |V4|
≤|C| + |C| − n1(G[C]) + k1 + k2 − 1 + |C| − 2k1 − 3k2 + n1(G[C])
=3C| − k1 − 2k2 − 1.

This implies that the result holds when either k1 ≥ 2 or when k2 ≥ 1.
If however, k1 = 1 and k2 = 0, then G[C] is isomorphic to K3. If n ≤ 6,

the result holds since |V (G)| ≤ 3|C| − 3. Thus, let |V (G)| = 7. Since no vertex
v ∈ V (G) \ C can be adjacent to exactly two vertices of C (or else, the last
vertex of C would not be open-separated from v), each vertex in V (G) \ C must
be adjacent to either exactly one or all three vertices of C. Therefore, G ∼= Z in
Fig. 5(b). Hence, the result holds for all connected block graphs G �∼= Z. �
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The proof of Theorem 9 is by using similar bounding techniques as in the proof of
Theorem 8, but on |K(G)| instead of |V (G)|. Using |K(G)| = |E(G)| = |V (G)|−1
for any tree G, the bounds in Theorem 9 are equivalent to the known lower
bounds for trees in terms of number of vertices (see [5] for ID-codes, [26] for
LD-codes and [25] for OLD-codes). In fact, the code numbers of infinite families
of trees attain the three bounds in Theorem 9.

4 Conclusion

Block graphs form a subclass of chordal graphs for which all three considered
identification problems can be solved in linear time [2]. In this paper, we comple-
mented this result by presenting tight lower and upper bounds for the optimum
sizes of all the three types of codes. We gave bounds in terms of both the number
of vertices - as it has been done for several other classes of graphs - and also the
number of blocks of G - a parameter more fitting for block graphs. In particular,
we verified Conjecture 1 on an upper bound on the ID-number for block graphs
from [1] and Conjecture 2 on the LD-numbers from [16] for the special case of
block graphs. Moreover, we addressed the questions to find block graphs where
the provided lower and upper bounds are attained.

The structural properties of block graphs have enabled us to prove interesting
bounds for the three considered problems. It would be further interesting to
study other structured classes in a similar way. It would also be interesting to
prove Conjecture 2 for a larger class of graphs, like chordal graphs, for example.
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Abstract. In a graphG = (V,E), a vertex u ∈ V dominates a vertex v ∈
V if v ∈ NG[u]. A sequence S = (v1, v2, . . . , vk) of vertices of G is called a
double dominating sequence of G if (i) for each i, the vertex vi dominates
at least one vertex u ∈ V which is dominated at most once by the
previous vertices of S and, (ii) all vertices of G have been dominated at
least twice by the vertices of S. Grundy Double Domination problem
asks to find a double dominating sequence of maximum length for a
given graph G. In this paper, we prove that the decision version of the
problem is NP-complete for bipartite and co-bipartite graphs. We look
for the complexity status of the problem in the class of chain graphs
which is a subclass of bipartite graphs. We use dynamic programming
approach to solve this problem in chain graphs and propose an algorithm
which outputs a Grundy double dominating sequence of a chain graph
G in linear-time.

Keywords: Double Dominating Sequences · Bipartite Graphs · Chain
Graphs · NP-completeness

1 Introduction

For a graph G = (V,E), a set D ⊆ V is called a dominating set of G, if for
each vertex x ∈ V , NG[x] ∩ D �= ∅. The Minimum Domination problem is
to find a dominating set of a graph G having minimum cardinality. One of the
fundamental problems in graph theory is the Minimum Domination problem
and there is a huge amount of literature on this topic, see [7–10]. Further, Fink
and Jacobson introduced the concept of double domination [4,5]. For a graph G
with no isolated vertices, a set D ⊆ V is called a double dominating set of G, if
for every vertex x ∈ D, |NG[x] ∩ D| ≥ 2.

In 2014, Brešar et al. introduced the concept of dominating sequences. A
motivation for introducing dominating sequences came from the well known
domination game in which we get a vertex sequence as an outcome of a two-
player game, played on a graph. For detailed description, one may refer [2].

Formally, a dominating sequence of G is a sequence S of vertices of G such
that (i) each vertex of S dominates at least one vertex of G which was not
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Bagchi and R. Muthu (Eds.): CALDAM 2023, LNCS 13947, pp. 284–296, 2023.
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dominated by any of the previous vertices of S, and (ii) every vertex of G is
dominated by at least one vertex of S. The Grundy Domination problem
is to find a longest dominating sequence of a given graph G. The Grundy
Domination Decision (GDD) problem is the decision version of the Grundy
Domination problem.

Recently Haynes et al. proposed various kinds of vertex sequences, each of
which is specified in terms of some conditions that must be satisfied by every
subsequent vertex in the sequence [6]. Predictably, double domination in the
sequence context is one of these variations. Before formally presenting the defi-
nitions related to this variant, we mention that for a sequence S, consisting of
distinct vertices of a graph G, the corresponding set of vertices is denoted by ̂S.

A sequence S is called a double neighborhood sequence of G if for each i,
the vertex vi dominates at least one vertex u of G which is dominated at most
once by the vertices v1, v2, . . . , vi−1. If ̂S is a double dominating set of G, then
we call S a double dominating sequence of G. A double dominating sequence
of G with maximum length is called a Grundy double dominating sequence of
G. The length of a Grundy double dominating sequence is the Grundy double
domination number of G and is denoted by γ×2

gr (G). Given a graph G with no
isolated vertices, the Grundy Double Domination (GD2) problem asks to
find a Grundy double dominating sequence of G. The decision version of the
Grundy Double Domination problem is as follows.

Decision Version: Grundy Double Domination Decision (GD2D) Problem

Input : A graph G = (V,E) with no isolated vertices and k ∈ Z+.

Question: Is there a double dominating sequence of G of length at least k?

This concept was introduced in a slightly different manner by Haynes et al.
in [6]. In their version, Si denotes the subsequence (v1, v2, . . . , vi) which consists
of the first i vertices of S. If for each i, the vertex vi ∈ ̂S dominates at least one
vertex x ∈ V (G) \ ̂Si−1 which is dominated at most once by the vertices in ̂Si−1

and S is of maximal length, then S is called a double dominating sequence of G.
This definition does not obey the property that ̂S is a double dominating set of
G. Brešar et al. introduced the former definition of double dominating sequences
and argued that two invariants are equal in all graphs [3]. So, in this paper, we
only consider the former version of double dominating sequences.

The Grundy double domination number of a tree T is exactly the number
of vertices of T [6]. Recently, Brešar et al. proved that the GD2D problem is
NP-complete for split graphs and can be solved efficiently for threshold graphs
[3]. Here, we extend the literature of this variant by studying it for bipartite
graphs.

The structure of the paper is as follows. In Sect. 2, we give some basic defi-
nitions and notations used throughout the paper. In Sect. 3, we prove that the
GD2D problem is NP-complete even when restricted to bipartite and co-bipartite
graphs. On the positive note, we present a linear-time algorithm for determining
the Grundy double domination number of chain graphs in Sect. 4. Finally, we
conclude the paper in Sect. 5.
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2 Preliminaries

All graphs considered in this paper are simple, undirected and connected. Let
[n] = {1, . . . , n} for any positive integer n. Given a graph G, the open neigh-
borhood of a vertex x is NG(x) = {y ∈ V (G) : xy ∈ E(G)}, while the closed
neighborhood of x is NG[x] = NG(x)∪{x}. For a graph G = (V,E), the subgraph
induced on a set U ⊆ V , denoted by G[U ], is the subgraph of G whose vertex
set is U and whose edge set consists of all edges in G that have both endpoints
in U .

A complete graph is a graph in which every two vertices are adjacent. A
complete graph on n vertices is denoted by Kn. An independent set of G is a set
of vertices A ⊆ V (G) such that no two vertices of A are adjacent in G. A bipartite
graph is a graph whose vertex set can be partitioned into two independent sets.
The complement of G, denoted by G, is the graph obtained by removing the edges
of G and adding the edges that are not in G. A co-bipartite graph is a graph
which is the complement of a bipartite graph. A bipartite graph G = (X,Y,E)
is a chain graph if there exists an ordering α = (x1, x2, . . . , xn1 , y1, y2, . . . , yn2)
of vertices of G such that N(x1) ⊆ N(x2) ⊆ · · · ⊆ N(xn1) and N(y1) ⊇ N(y2) ⊇
· · · ⊇ N(yn2), where X = {x1, x2, . . . , xn1} and Y = {y1, y2, . . . , yn2}. The
ordering α is called a chain ordering of G and it can be computed in linear-time
[11].

Recall that a relation on a set A is a subset of A × A. We define a relation
R on the vertex set of a chain graph G = (X,Y,E) such that two vertices u and
v of G are related if and only if NG(u) = NG(v). It is easy to see that R is an
equivalence relation so it provides a partition P of V (G). Let {X1,X2, . . . , Xk}
and {Y1, Y2, . . . , Yk} be the parts obtained from the relation R for the X and Y
side respectively. We write the partition P as {X1,X2, . . . , Xk, Y1, Y2, . . . , Yk}.
We keep the order of the sets in P so that it is satisfied that N(X1) ⊂ N(X2) ⊂
· · · ⊂ N(Xk) and N(Y1) ⊃ N(Y2) ⊃ · · · ⊃ N(Yk). For each i, j ∈ [k], it is easy
to see that N(Xi) = ∪i

r=1Yr and N(Yj) = ∪k
r=jXr.

For two vertex sequences S1 = (v1, . . . , vn) and S2 = (u1, . . . , um), in G,
the concatenation of these two sequences is defined by the sequence S1 ⊕ S2 =
(v1, . . . , vn, u1, . . . , um). For an ordered set A = {u1, u2, . . . , uk} of vertices, (A)
denotes the sequence of vertices (u1, u2, . . . , uk).

Proofs of the results marked with � are omitted due to space con-
straints.

3 NP-Completeness

3.1 Bipartite Graphs

Recall that the GD2D problem is NP-complete for general graphs [3]. In this
subsection, we prove that the problem remains NP-complete for bipartite graphs.

Let H = (X , E) be a hypergraph with no isolated vertices. An edge cover of
H is a set of hyperedges from E that covers all vertices of X . A legal hyperedge
sequence of H is a sequence of hyperedges C = (C1, . . . , Cr) of H such that, for
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each i, i ∈ [r], Ci covers a vertex not covered by Cj , for each j < i. In addition, if
the set ̂C is an edge cover of H, then C is called an edge covering sequence of H.
The maximum length of an edge covering sequence of H is denoted by ρgr(H).
The Grundy Covering problem asks to find an edge covering sequence of H
having size ρgr(H). The Grundy Covering Decision (GCD) problem is the
decision version of the Grundy Covering problem.

It is known that GCD problem is NP-hard in general graphs [1]. For k ≤ 2,
we can find an edge covering sequence of the hypergraph H of length at least k
in polynomial time. So, the GCD problem is NP-complete for k ≥ 3.

Theorem 1. The GD2D problem is NP-complete for bipartite graphs.

Proof. It is clear that the GD2D problem is in class NP. To show the NP-
hardness, we give a polynomial reduction from the GCD problem in hypergraphs
which is known to be NP-hard [1]. Given a hypergraph H = (X , E) with |X | = n
and E = {E1, E2, . . . , Em}, (n,m ≥ 2), we construct an instance G = (X∗, Y ∗, E∗)
of the GD2D problem, where G is a bipartite graph, as follows. X∗ = I ∪
X ′ and Y ∗ = E ′, where I = {v1, v2, . . . , vm}, X ′ = {x1, x2, . . . , xn} and E ′ =
{α, e1, e2, . . . , em}. A vertex of X ′ corresponds to a vertex of X in the hypergraph
H and the vertex ei of E ′ corresponds to the hyperedge Ei of H. Now, a vertex
x of X ′ is adjacent to a vertex of ei ∈ E ′ in G if and only if x ∈ Ei in H.
Each vertex of I is adjacent to each vertex of E ′ in G. Clearly, G is a bipartite
graph. Figure 1 illustrates the construction of G when H is the hypergraph given
by (X = {x1, x2, x3, x4}, E = {E1, E2, E3, E4}), where E1 = {x1, x2, x4}, E2 =
{x2, x3}, E3 = {x1, x2} and E4 = {x2, x3, x4}.

x1

x2

x3

x4

e3

e2

e4

e1

I X ′E ′

α

Fig. 1. Construction of bipartite graph G from the hypergraph H.

Now, we show that ρgr(H) ≥ k if and only if γ×2
gr (G) ≥ n + m + k + 1, for

k ≥ 3. First, let (Ei1 , Ei2 , . . . , Eik′ ) be an edge covering sequence of size at least
k in H. Then the sequence (x1, x2, . . . , xn, v1, v2, . . . , vm, α, ei1 , ei2 , . . . , eik′ ) is a
double dominating sequence of size at least n + m + k + 1 in G. So, we have
γ×2

gr (G) ≥ n + m + k + 1.
For the converse part, we give a claim first.

Claim 1� There exists a double dominating sequence of G of size at least n +
m + k + 1 in which the first vertex from E ′ is the vertex α.
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Let S be a double dominating sequence of size at least n + m + k + 1 in G
satisfying Claim 1. Note that |Ŝ ∩ E ′| ≥ k + 1.

As k ≥ 3, let e be the second vertex coming from E ′ in S. Now, let A denotes
the set of vertices appearing before the vertex α in S, B denotes the set of
vertices appearing after the vertex α and before the vertex e. Finally, C denotes
the set of vertices appearing after the vertex e in S.

Claim 2� |I ∩ (A ∪ B)| ≥ 2.

Claim 3� There exists a double dominating sequence S0 of G of size at least
n + m + k + 1 satisfying Claim 1 such that ̂S0 ∩ X ′ = X ′ and all vertices of X ′

appear before the vertex e in the sequence S0.

Claim 3 ensures that we can assume that ̂S ∩ X ′ = X ′ and all vertices of X ′

appear before the vertex e in the sequence S. Combining all claims, we get that
|Ŝ∩(E ′\{α})| ≥ k and these vertices of (E ′\{α}) are appearing only to dominate
vertices of X ′ second time. So, these vertices of Ŝ ∩ (E ′ \ {α}) correspond to a
legal hyperedge sequence of size at least k in the hypergraph H. So, ρgr(H) ≥ k.

Therefore, the GD2D problem is NP-complete for bipartite graphs. ��

3.2 Co-bipartite Graphs

In this subsection, we prove that the problem also remains NP-complete for co-
bipartite graphs. For this, we give a polynomial reduction from the GDD problem
in general graphs when k ≥ 4, which is already known to be NP-complete [1].
Given a graph G = (V,E) with V = {v1, v2, . . . , vn} (n ≥ 2), we construct an
instance G′ = (V ′, E′) of the GD2D problem in the following way.

Define the vertex set V ′ as V ′ = V1 ∪ V2 ∪ V3, where Vr = {vr
i : i ∈ [n]} for

each r, 1 ≤ r ≤ 3. Add the edges in G′ in the following way. (i) Add the edges
so that G′[V1] and G′[V2 ∪ V3] are complete subgraphs of G′. (ii) If vj ∈ NG[vi],
then add an edge between v1

i and v2
j . (iii) For each i ∈ [n], add the edge v1

i v3
i

in G′. Formally, define E′ = {v1
i v1

j , v2
i v2

j , v3
i v3

j : 1 ≤ i < j ≤ n} ∪ {v2
i v3

j : 1 ≤
i ≤ j ≤ n} ∪ {v1

i v2
j : vj ∈ NG[vi]} ∪ {v1

i v3
i : i ∈ [n]}. Clearly, G′ is a co-bipartite

graph. Figure 2 illustrates the construction of G′ from a graph G.
To prove the NP-hardness of the GD2D problem in co-bipartite graphs, it is

enough to prove the following theorem.

Theorem 2.� Let G′ be the co-bipartite graph constructed from a graph G =
(V,E) with V = {v1, v2, . . . , vn} (n ≥ 2) as explained above. Then, γgr(G) ≥ k
if and only if γ×2

gr (G′) ≥ n + k, for k ≥ 4.

4 Algorithm for Chain Graphs

In this section, we present a linear-time algorithm to solve the GD2 prob-
lem in chain graphs. Let G = (X,Y,E) denotes a chain graph and P
is the partition of V (G) obtained by the relation R. Recall that, P =
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v33

v31
v32

v35
v36

v34

G′[V2 ∪ V3] ∼= K12

V1

V2

V3
G

G′

G′[V1] ∼= K6

Fig. 2. Construction of co-bipartite graph G′ from the graph G.

(X1,X2, . . . , Xk, Y1, Y2, . . . , Yk). Let |X| = n1 and |Y | = n2. For i ∈ [k], xi

denotes the vertex of Xi having minimum index in the chain ordering of G. Sim-
ilarly, yi denotes the vertex of Yi having maximum index in the chain ordering
of G. Below, we give a result which gives the Grundy double domination number
of a complete bipartite graph.

Proposition 1.� Let G = (X,Y,E) be a complete bipartite graph. Then
γ×2

gr (G) = max{|X|, |Y |} + 1.

For technical reasons, we actually consider a slightly more generalized prob-
lem in chain graphs. Let G = (X,Y,E) be a chain graph and M ⊆ V (G).
Vertices of M are called marked vertices of G. All remaining vertices of G are
called unmarked vertices. We denote the set of unmarked vertices of G by V0

and the subgraph of G induced on the set V0 by G0. The set of marked vertices
satisfy all the conditions written in Eq. 1.

M ⊆ (Xk ∪ Y1), |M ∩ Xk| ≤ 1, |M ∩ Y1| ≤ 1, |Xk \ M | ≥ 1, |Y1 \ M | ≥ 1 (1)

A sequence S = (v1, v2, . . . , vk), where vi ∈ V0 for each i ∈ [k], is called an
M-double neighborhood sequence of (G,M) if for each i, the vertex vi dominates
at least one vertex u of G which is dominated at most once by its preceding
vertices in the sequence S. In addition, if Ŝ is a double dominating set of G0,
then we call S an M-double dominating sequence of (G,M). Note that Ŝ may
not be a double dominating set of G. An M-double dominating sequence with
maximum length is called a Grundy M-double dominating sequence of (G,M).
The length of a Grundy M-double dominating sequence of (G,M) is called the
Grundy M-double domination number of (G,M) and is denoted by γ×2

grm(G,M).
Given a chain graph G and M ⊆ V (G) satisfying Eq. 1, the Grundy M-Double
Domination (GMD2) problem asks to compute a Grundy M-double dominating
sequence of (G,M).

Throughout this section, G = (G,M) denotes an instance of the GMD2
problem, where G = (X,Y,E) is a chain graph and M is a subset of V (G)
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satisfying Eq. 1. Let S be a Grundy M-double dominating sequence of G. If
M = ∅ then, S is also a Grundy double dominating sequence of G. So, the GD2
problem is a special case of the GMD2 problem.

Now, we state two important lemmas. The proofs of these lemmas are easy
and, hence are omitted.

Lemma 1. Let M �= ∅. Then, γ×2
grm(G) ≤ γ×2

gr (G).

Lemma 2. For any Grundy M-double dominating sequence S of G, we have that
Xk ∩ Ŝ �= ∅ and Y1 ∩ Ŝ �= ∅.

We prove a lemma for complete bipartite graphs that forms the basis of our
algorithm.

Lemma 3. γ×2
grm(G) ∈ {max{n1, n2},max{n1, n2}+1}, for a complete bipartite

graph G.

Proof. There are four cases to consider.

Case 1: M = ∅:
In this case, γ×2

grm(G) = γ×2
gr (G). Using Proposition 1, we have γ×2

grm(G) =
max{n1, n2} + 1.

Case 2: M ∩ Xk = {xn1} and M ∩ Y1 = ∅:
Since |M ∩ Xk| = 1, we have that n1 ≥ 2. We consider two subcases now.

Subcase 2.1: n1 = max{n1, n2}:
Here, we have that γ×2

gr (G) = n1+1. Now, if n2 = 1, γ×2
grm(G) ≤ |X|−1+|Y | = n1.

As the sequence (x1, x2, . . . , xn1−1, y1) is an M-double dominating sequence of
G of length n1. So, γ×2

grm(G) = n1 = max{n1, n2}. Otherwise, if n2 > 1, the
sequence (x1, x2, . . . , xn1−1, y1, y2) is an M-double dominating sequence of G of
length n1 + 1. Thus, we have that γ×2

grm(G) = n1 + 1 = max{n1, n2} + 1 using
Lemma 1.
Subcase 2.2: n2 = max{n1, n2}:
Here, we have that γ×2

gr (G) = n2 + 1. Since n1 ≥ 2, we have that n2 ≥ 2. The
sequence (y1, y2, . . . , yn2 , x1) is an M-double dominating sequence of G of length
n2 + 1. Thus, we have γ×2

grm(G) = n2 + 1 = max{n1, n2} + 1 using Lemma 1.

Case 3: M ∩ Y1 = {y1} and M ∩ Xk = ∅:
This case is similar to case 2.

Case 4: M ∩ Xk = {xn1} and M ∩ Y1 = {y1}:
Clearly, n1 ≥ 2 and n2 ≥ 2. We again consider two subcases.

Subcase 4.1: n1 = max{n1, n2}:
Here, we have that γ×2

gr (G) = n1 + 1. If n2 ≥ 3, the sequence
(x1, x2, . . . , xn1−1, y2, y3) is an M-double dominating sequence of G of length
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n1 − 1 + 2 = n1 + 1. So, γ×2
grm(G) = n1 + 1 = max{n1, n2} + 1 using Lemma 1.

But, if n2 = 2, the sequence (x1, x2, . . . , xn1−1, y2) is an M-double dominating
sequence of G of length n1 − 1 + 1 = n1. So, γ×2

grm(G) = n1 = max{n1, n2} using
the fact that γ×2

grm(G) ≤ |X| − 1 + |Y | − 1 = n1 − 1 + 2 − 1 = n1.
Subcase 4.2: n2 = max{n1, n2}:
Similar to the subcase 4.1, we can prove that γ×2

grm(G) is either n2 or n2 + 1. ��
Algorithm 1 computes a Grundy M-double dominating sequence of G based

on the Lemma 3, when G is a complete bipartite graph. Next, we state some
lemmas for G, when G is not a complete bipartite graph, that is, k ≥ 2.

Lemma 4.� If there exists a Grundy M-double dominating sequence S∗ of G
such that |Xk ∩ ̂S∗| ≥ 3, then exactly one of the following is true:

(1) γ×2
grm(G) = |X| + k.

(2) γ×2
grm(G) = |X| + k − 1.

Similar to Lemma 4, we state another lemma for the Y side of G. Proof of
Lemma 5 is simlar to the Lemma 4.

Lemma 5. If there exists a Grundy M-double dominating sequence S∗ of G such
that |Y1 ∩ ̂S∗| ≥ 3, then exactly one of the following is true:

(1) γ×2
grm(G) = |Y | + k.

(2) γ×2
grm(G) = |Y | + k − 1.

Lemma 6.� Let G be an instance of the GMD2 problem such that there is no
Grundy M-double dominating sequence S∗ of G satisfying |Xk ∩ ̂S∗| ≥ 3 or
|Y1 ∩ ̂S∗| ≥ 3. Assume that S is a Grundy M-double dominating sequence of G
such that |Xk ∩ Ŝ| = 2. Then either |Y1 ∩ Ŝ| = 1 or there exists another Grundy
M-double dominating sequence S′ of G satisfying one of the following:
(1) |Xk ∩ ̂S′| = 2 and |Y1 ∩ ̂S′| = 1. (2) |Xk ∩ ̂S′| = 1 and |Y1 ∩ ̂S′| = 2.

The proof of the next lemma is easy and, hence is omitted.

Lemma 7. Let G be an instance of the GMD2 problem such that there is no
Grundy M-double dominating sequence S∗ of G satisfying |Xk ∩ ̂S∗| ≥ 3 or
|Y1 ∩ ̂S∗| ≥ 3. Assume that S is a Grundy M-double dominating sequence of G
such that |Xk ∩ Ŝ| = 1. Then Yk ⊆ Ŝ.

Similar to Lemma 7, we state another lemma for G.

Lemma 8. Let G be an instance of the GMD2 problem such that there is no
Grundy M-double dominating sequence S∗ of G satisfying |Xk ∩ ̂S∗| ≥ 3 or
|Y1 ∩ ̂S∗| ≥ 3. Assume that S is a Grundy M-double dominating sequence of G
such that |Y1 ∩ Ŝ| = 1. Then X1 ⊆ Ŝ.

Using Lemmas 6, 7 and 8, we can directly state the following result.
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Algorithm 1: S = GrundyM1(G,M)
Input: G = (G,M), where G = (X,Y,E) is a complete bipartite graph and

M ⊆ V (G) satisfying equation 1,
X = {x1, . . . , xn1} and Y = {y1, . . . , yn2}.

Output: A Grundy M-double dominating sequence S of G.
if M = ∅ then

if n1 ≥ n2 then
S = (x1, x2, . . . , xn1 , y1)

else
S = (y1, y2, . . . , yn2 , x1)

if M ∩ Xk = {xn1} and M ∩ Y1 = ∅ then
if n1 ≥ n2 then

if n2 = 1 then
S = (x1, x2, . . . , xn1−1, y1)

else
S = (x1, x2, . . . , xn1−1, y1, y2)

else
S = (y1, y2, . . . , yn2 , x1)

if M ∩ Y1 = {y1} and M ∩ Xk = ∅ then
if n2 ≥ n1 then

if n1 = 1 then
S = (y2, y3, . . . , yn2 , x1)

else
S = (y2, y3, . . . , yn2 , x1, x2)

else
S = (x1, x2, . . . , xn2 , y2)

if M ∩ Xk = {xn1} and M ∩ Y1 = {y1} then
if n1 ≥ n2 then

if n2 ≥ 3 then
S = (x1, x2, . . . , xn1−1, y2, y3)

else
S = (x1, x2, . . . , xn1−1, y2)

else
if n1 ≥ 3 then

S = (y2, y3, . . . , yn2 , x1, x2)

else
S = (y2, y3, . . . , yn2 , x1)

return S.

Lemma 9. Let G be an instance of the GMD2 problem such that there is no
Grundy M-double dominating sequence S∗ of G satisfying |Xk ∩ ̂S∗| ≥ 3 or
|Y1 ∩ ̂S∗| ≥ 3. Then one of the following is true:
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(1) There exists a Grundy M-double dominating sequence S of G such that |Xk ∩
̂S| = 1 and Yk ⊆ Ŝ.
(2) There exists a Grundy M-double dominating sequence S of G such that |Y1 ∩
̂S| = 1 and X1 ⊆ Ŝ.

Let G be an instance of the GMD2 problem such that there is no Grundy
M-double dominating sequence S∗ of G satisfying |Xk ∩ ̂S∗| ≥ 3 or |Y1 ∩ ̂S∗| ≥ 3.
We call a Grundy M-double dominating sequence S of G as a type 1 optimal
sequence of G if it satisfies that |Xk ∩ Ŝ| = 1 and Yk ⊆ Ŝ. Similarly, We call a
Grundy M-double dominating sequence S of G, a type 2 optimal sequence of G
if it satisfies that |Y1 ∩ Ŝ| = 1 and X1 ⊆ Ŝ.

Lemma 10.� Let G be an instance of the GMD2 problem. Then one of the
following is true:
(1) There exists a type 1 optimal sequence of G.
(2) There exists a type 2 optimal sequence of G.

Finally, we state the lemma which completely characterizes the structure of
an optimal solution for an instance of the GMD2 problem. The proof is easy and
hence, is omitted.

Lemma 11. Let G be an instance of the GMD2 problem. Then one of the fol-
lowing is true:
(1) There exists a type 1 optimal sequence S of G in which the vertex of Xk ∩ Ŝ
appear in the last.
(2) There exists a type 2 optimal sequence S of G in which the vertex of Y1 ∩ Ŝ
appear in the last.

We use a dynamic programming approach to solve the GMD2 problem for an
instance G in Algorihtm 2. Through Lemma 11, we characterized the structure of
an optimal solution. Next, we define the optimal solution of the problem recur-
sively in terms of the optimal solutions to subproblems. For GMD2 problem, we
pick the subproblems as the problem of finding a Grundy M-double dominat-
ing sequence of G′ = (G′,M ′), where G′ is a subgraph of G and M ′ ⊆ V (G′)
satisfying Eq. 1.

Let S be a Grundy M-double dominating sequence of G which is a type 1
optimal sequence of G and the vertex of Xk ∩ Ŝ appear in the last. We also
assume that all vertices of Yk appear together just before the vertex of Xk. Let
G1 denotes the subgraph of G induced on the set of vertices (X \Xk)∪{xt+1}∪
(Y \Yk), where t = |X|−|Xk|. Let M1 = {xt+1}∪(M∩Y1). Then the subsequence
of S obtained by removing the last |Yk| + 1 vertices of S is a Grundy M-double
dominating sequence of (G1,M1).

Similarly, if S is a type 2 optimal sequence of G having the vertex of Y1 ∩ Ŝ
in the last and G2 denotes the subgraph of G induced on the set of vertices
(Y \Y1)∪{yt}∪ (X \X1), where t = |M ∩Y1|+1. Again, assume that all vertices
of X1 appear together just before the vertex of Y1. Let M2 = {yt} ∪ (M ∩ Xk).
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Then the subsequence of S obtained by removing the last |X1| + 1 vertices of S
is a Grundy M-double dominating sequence of (G2,M2).

Now, we give the algorithm to compute a Grundy M-double dominating
sequence of G.

Algorithm 2: S = GrundyM(G,M)
Input: G = (G,M), where G = (X,Y,E) is a chain graph and M ⊆ V (G)

satisfying equation 1. X = {x1, . . . , xn1} and Y = {y1, . . . , yn2}.
Output: A Grundy M-double dominating sequence S of G.
if k = 1 then

S = GrundyM1(G,M);
return S;

else
t = |X| − |Xk|, X ′

k−1 = Xk−1 ∪ {xt+1};
if k ≥ 3 then

X ′ = ∪k−2
i=1 Xi ∪ X ′

k−1;

else
X ′ = X ′

k−1;

G1
k−1 = G[X ′ ∪ (Y \ Yk)], M ∩ Xk = {xt+1};

S1 = GrundyM(G1
k−1,M) ⊕ (Yk) ⊕ xt+1;

t = |M ∩ Y1| + 1, Y ′
1 = Y2 ∪ {yt};

if k ≥ 3 then

Y ′ = ∪k
i=3Yi ∪ Y ′

1 ;

else
Y ′ = Y ′

1 ;

G2
k−1 = G[(X \ X1) ∪ Y ′], M ∩ Y1 = {yt};

S2 = GrundyM(G2
k−1,M) ⊕ (X1) ⊕ yt;

if |̂S1| ≥ |̂S2| then
return S1;
else

return S2;

Algorithm 2 computes a Grundy M-double dominating sequence of G =
(G,M) by recursively appending some vertices at the end of the Grundy M-
double dominating sequence of (G′,M ′), where G′ is a subgraph of G. Note that
this task can be performed in linear-time.

Based on the above discussion, we directly state the following theorem.

Theorem 3. Algorithm 2 outputs a Grundy M-double dominating sequence of
G = (G,M) in linear-time, where G is a chain graph.

To solve the GD2 problem in a chain graph G, we compute a Grundy M-double
dominating sequence of (G, ∅) using Algorithm 2. So, we can state the following
theorem.
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Theorem 4. A Grundy double dominating sequence of a chain graph G can be
computed in linear-time.

5 Conclusion

We studied the GD2D problem in this paper. We proved that the problem is NP-
complete for bipartite graphs and co-bipartite graphs. We also proved that the
GD2D problem is efficiently solvable for chain graphs. We solved this problem in
chain graphs using a dynamic programming approach. Since the class of chain
graphs is a subclass of bipartite graphs, the gap between the efficient algorithms
and NP-completeness in the subclasses of bipartite graphs has been narrowed a
little. To find the status of the problem in the graph classes such as bipartite
permutation graphs, convex bipartite graphs and chordal bipartite graphs can
be the next research direction. These graph classes are subclasses of bipartite
graphs and superclasses of chain graphs. Various types of vertex sequences were
proposed for which computational complexities are still unknown in many graph
classes [6]. These kind of vertex sequences are open for further research.
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work on this problem. We are also grateful to him for providing many useful comments
leading to the improvements in the paper.
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Abstract. For a graph G = (V, E) with a vertex set V and an edge set
E, a function f : V → {0, 1, 2, ..., diam(G)} is called a broadcast on G.
For each vertex u ∈ V , if there exists a vertex v in G (possibly, u = v)
such that f(v) > 0 and d(u, v) ≤ f(v), then f is called a dominating
broadcast on G. The cost of the dominating broadcast f is the quantity∑

v∈V f(v). The minimum cost of a dominating broadcast is the broad-
cast domination number of G, denoted by γb(G).

A multipacking is a set S ⊆ V in a graph G = (V, E) such that for
every vertex v ∈ V and for every integer r ≥ 1, the ball of radius r
around v contains at most r vertices of S, that is, there are at most
r vertices in S at a distance at most r from v in G. The multipacking
number of G is the maximum cardinality of a multipacking of G and is
denoted by mp(G).

It is known that mp(G) ≤ γb(G) and that γb(G) ≤ 2 mp(G)+3 for any
graph G, and it was shown that γb(G) − mp(G) can be arbitrarily large
for connected graphs (as there exist infinitely many connected graphs G
where γb(G)/ mp(G) = 4/3 with mp(G) arbitrarily large). For strongly
chordal graphs, it is known that mp(G) = γb(G) always holds.

We show that, for any connected chordal graph G, γb(G) ≤⌈
3
2

mp(G)
⌉
. We also show that γb(G) − mp(G) can be arbitrarily large

for connected chordal graphs by constructing an infinite family of con-
nected chordal graphs such that the ratio γb(G)/ mp(G) = 10/9, with
mp(G) arbitrarily large. This result shows that, for chordal graphs, we
cannot improve the bound γb(G) ≤ ⌈

3
2

mp(G)
⌉

to a bound in the form
γb(G) ≤ c1 · mp(G) + c2, for any constant c1 < 10/9 and c2.
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1 Introduction

Covering and packing problems are fundamental in graph theory and algo-
rithms [6]. In this paper, we study two dual covering and packing problems
called broadcast domination and multipacking. The broadcast domination prob-
lem has a natural motivation in telecommunication networks: imagine a network
with radio emission towers, where each tower can broadcast information at any
radius r for a cost of r. The goal is to cover the whole network by minimiz-
ing the total cost. The multipacking problem is its natural packing counterpart
and generalizes various other standard packing problems. Unlike many standard
packing and covering problems, these two problems involve arbitrary distances
in graphs, which makes them challenging. The goal of this paper is to study the
relation between these two parameters in the class of chordal graphs, which are
those graphs that do not contain any induced cycle of a length at least 4.

For a graph G = (V,E) with a vertex set V , an edge set E and the diameter
diam(G), a function f : V → {0, 1, 2, ..., diam(G)} is called a broadcast on G.
Suppose G be a graph with a broadcast f . Let d(u, v) = the length of a shortest
path joining the vertices u and v in G. We say v ∈ V is a tower of G if f(v) > 0.
Suppose u, v ∈ V (possibly, u = v) such that f(v) > 0 and d(u, v) ≤ f(v), then
we say v broadcasts (or dominates) u and u hears the broadcast from v.

For each vertex u ∈ V , if there exists a vertex v in G (possibly, u = v)
such that f(v) > 0 and d(u, v) ≤ f(v), then f is called a dominating broadcast
on G. The cost of the broadcast f is the quantity σ(f), which is the sum of
the weights of the broadcasts over all vertices in G. So, σ(f) =

∑
v∈V f(v).

The minimum cost of a dominating broadcast in G (taken over all dominating
broadcasts) is the broadcast domination number of G, denoted by γb(G). So,
γb(G) = min

f∈D(G)
σ(f) = min

f∈D(G)

∑

v∈V

f(v), where D(G) = set of all dominating

broadcasts on G.
Suppose f is a dominating broadcast with f(v) ∈ {0, 1} ∀v ∈ V (G), then

{v ∈ V (G) : f(v) = 1} is a dominating set on G. The minimum cardinality of a
dominating set is the domination number which is denoted by γ(G).

An optimal broadcast or optimal dominating broadcast on a graph G is a
dominating broadcast with a cost equal to γb(G). A dominating broadcast is
efficient if no vertex hears a broadcast from two different vertices. So, no tower
can hear a broadcast from another tower in an efficient broadcast. There is
a theorem that says, for every graph there is an optimal efficient dominating
broadcast [7]. Define a ball of radius r around v by Nr[v] = {u ∈ V (G) : d(v, u) ≤
r}. Suppose V (G) = {v1, v2, v3, . . . , vn}. Let c and x be the vectors indexed by
(i, k) where vi ∈ V (G) and 1 ≤ k ≤ diam(G), with the entries ci,k = k and
xi,k = 1 when f(vi) = k and xi,k = 0 when f(vi) �= k. Let A = [aj,(i,k)] be a
matrix with the entries

aj,(i,k) =

{
1 if vj ∈ Nk[vi]
0 otherwise.
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Hence, the broadcast domination number can be expressed as an integer
linear program:

γb(G) = min{c.x : Ax ≥ 1, xi,k ∈ {0, 1}}.
The maximum multipacking problem is the dual integer program of the above

problem. Moreover, multipacking is a generalization of packing problems. A mul-
tipacking is a set M ⊆ V in a graph G = (V,E) such that |Nr[v] ∩ M | ≤ r for
each vertex v ∈ V (G) and for every integer r ≥ 1. The multipacking number
of G is the maximum cardinality of a multipacking of G and it is denoted by
mp(G). A maximum multipacking is a multipacking M of a graph G such that
|M | = mp(G). If M is a multipacking, we define a vector y with the entries
yj = 1 when vj ∈ M and yj = 0 when vj /∈ M . So,

mp(G) = max{y.1 : yA ≤ c, yj ∈ {0, 1}}.
Broadcast domination is a generalization of domination problems and mul-

tipacking is a generalization of packing problems. Erwin [8,9] introduced broad-
cast domination in his doctoral thesis in 2001. Multipacking was introduced in
Teshima’s Master’s Thesis [15] in 2012 (also see [3,6,7,14]). For general graphs,
an optimal dominating broadcast can be found in polynomial-time O(n6) [12].
The same problem can be solved in linear time for trees [4]. However, until now,
there is no known polynomial-time algorithm to find a maximum multipacking
of general graphs (the problem is also not known to be NP-hard). However,
polynomial-time algorithms are known for trees and more generally, strongly
chordal graphs [4]. See [10] for other references concerning algorithmic results
on the two problems.

It is known that mp(G) ≤ γb(G), since broadcast domination and multi-
packing are dual problems [5]. It is known that γb(G) ≤ 2mp(G) + 3 [1] and
it is a conjecture that γb(G) ≤ 2mp(G) for every graph G [1]. Hartnell and
Mynhardt [11] constructed a family of connected graphs such that the differ-
ence γb(G) − mp(G) can be arbitrarily large and in fact, for which the ratio
γb(G)/mp(G) = 4/3. Therefore, for general connected graphs,

4
3

≤ lim
mp(G)→∞

sup

{
γb(G)
mp(G)

}

≤ 2.

A natural question comes to mind: What is the optimal bound on this ratio for
other graph classes? It is known that γb(G) = mp(G) holds for strongly chordal
graphs [4]. Thus, a natural class to study is the class of chordal graphs.

In this paper, we establish an improved relation between γb(G) and mp(G)
for connected chordal graphs by showing that γb(G) ≤ ⌈

3
2 mp(G)

⌉
. We then

construct a family of connected chordal graphs such that the difference γb(G) −
mp(G) can be arbitrarily large and the ratio γb(G)/mp(G) = 10/9 for every
member G of that family. Thus, for chordal connected graphs G, we have:

10
9

≤ lim
mp(G)→∞

sup

{
γb(G)
mp(G)

}

≤ 3
2
.
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We also make a connection with the fractional versions of the two concepts,
as introduced in [2].

In Sect. 2, we show that for any connected chordal graph G, γb(G) ≤⌈
3
2 mp(G)

⌉
and there is a polynomial-time algorithm to construct a multipacking

of G of size at least
⌈ 2mp(G)−1

3

⌉
. In Sect. 3, we prove our main result which says

that the difference γb(G)−mp(G) can be arbitrarily large for connected chordal
graphs, and we conclude in Sect. 4.

2 An Inequality Linking Broadcast Domination
and Multipacking Numbers of Chordal Graphs

In this section, we use results from the literature to show that the general
bound connecting multipacking number and broadcast domination number can
be improved for chordal graphs.

Theorem 1 ([11]). If G is a connected graph of order at least 2 having diameter
d and multipacking number mp(G), where P = v0, . . . , vd is a diametral path of
G, then the set M = {vi : i ≡ 0 (mod 3), i = 0, 1, . . . , d} is a multipacking of G
of size

⌈
d+1
3

⌉
and

⌈
d+1
3

⌉ ≤ mp(G).

Theorem 2 ([9,15]). If G is a connected graph of order at least 2 having radius
r, diameter d, multipacking number mp(G), broadcast domination number γb(G)
and domination number γ(G), then mp(G) ≤ γb(G) ≤ min{γ(G), r}.
Theorem 3 ([13]). If G is a connected chordal graph with radius r and diam-
eter d, then 2r ≤ d + 2.

Proposition 1. If G is a connected chordal graph, then γb(G) ≤ ⌈
3
2 mp(G)

⌉
.

Proof. From Theorem 1,
⌈
d+1
3

⌉ ≤ mp(G) which implies that d ≤ 3mp(G) −
1. Moreover, from Theorem 2 and Theorem 3, γb(G) ≤ r ≤ ⌊

d+2
2

⌋ ≤
⌊ (3mp(G)−1)+2

2

⌋
=

⌊
3
2 mp(G) + 1

2

⌋
. Therefore, γb(G) ≤ ⌊

3
2 mp(G) + 1

2

⌋
=⌈

3
2 mp(G)

⌉
. �

The proof of Proposition 1 has the following algorithmic application.

Proposition 2. If G is a connected chordal graph, there is a polynomial-time
algorithm to construct a multipacking of G of size at least

⌈ 2mp(G)−1
3

⌉
.

Proof. If P = v0, . . . , vd is a diametrical path of G, then the set M = {vi : i ≡
0 (mod 3), i = 0, 1, . . . , d} is a multipacking of G of size

⌈
d+1
3

⌉
by Theorem 1.

We can construct M in polynomial-time since we can find a diametral path
of a graph G in polynomial-time. Moreover, from Theorem 1, Theorem 2 and
Theorem 3,

⌈2mp(G)−1
3

⌉ ≤ ⌈
2r−1

3

⌉ ≤ ⌈
d+1
3

⌉ ≤ mp(G). �

Example 1. The connected chordal graph S3 (Fig. 1) has mp(S3) = 1 and
γb(S3) = 2. So, here γb(S3) =

⌈
3
2 mp(S3)

⌉
.
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m1

S3

2

Fig. 1. S3 is a connected chordal graph with γb(S3) = 2 and mp(S3) = 1

F

m1 m2

3

Fig. 2. F is a connected chordal graph with γb(F ) = 3 and mp(F ) = 2

Example 2. The connected chordal graph F (Fig. 2) has mp(F ) = 2 and
γb(F ) = 3. So, here γb(F ) =

⌈
3
2 mp(F )

⌉
.

Example 3. The connected chordal graph H (Fig. 3) has mp(H) = 4 and
γb(H) = 6. So, here γb(H) =

⌈
3
2 mp(H)

⌉
.

We could not find an example of connected chordal graph with mp(G) = 3
and γb(G) =

⌈
3
2 mp(G)

⌉
= 5.

3 Unboundedness of the Gap Between Broadcast
Domination and Multipacking Numbers of Chordal
Graphs

Here we prove that the difference between broadcast domination number and
multipacking number of connected chordal graphs can be arbitrarily large. We
state the theorem formally below.

Theorem 4. The difference γb(G)−mp(G) can be arbitrarily large for connected
chordal graphs.

Consider the graph G1 as in Fig 4. Let B1 and B2 be two isomorphic copies
of G1. Join b1,21 of B1 and b2,1 of B2 by an edge (Fig. 5 and 6). We denote this
new graph by G2 (Fig. 5). In this way, we form Gk by joining k isomorphic copies
of G1: B1, B2, · · · , Bk (Fig. 6). Here Bi is joined with Bi+1 by joining bi,21 and
bi+1,1. We say that Bi is the i-th block of Gk. Bi is an induced subgraph of Gk as
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m1

m2

m4

m3

H

2 2

2

Fig. 3. H is a connected chordal graph with γb(H) = 6 and mp(H) = 4

G1

m1 m2 m3

2

1

2
b1,1 b1,21

m4

m5

Fig. 4. G1 is a connected chordal graph with γb(G1) = 5 and mp(G1) = 5. M1 = {mi :
1 ≤ i ≤ 5} is a multipacking of size 5.

given by Bi = Gk[{bi,j : 1 ≤ j ≤ 21}]. Similarly, for 1 ≤ i ≤ 2k−1, we define Bi∪
Bi+1, induced subgraph of G2k, as Bi ∪ Bi+1 = G2k[{bi,j , bi+1,j : 1 ≤ j ≤ 21}].
We prove Theorem 4 by establishing that γb(G2k) = 10k and mp(G2k) = 9k.
Then we can say, for all natural numbers k, γb(G2k) − mp(G2k) = k, so the
difference can be arbitrarily large.

3.1 Proof of Theorem 4

Our proof of Theorem 4 is accomplished through a set of lemmas which are stated
and proved below. We begin by observing a basic fact about multipacking in a
graph. We formally state it in Lemma 1 for ease of future reference.

Lemma 1. Suppose M is a multipacking in a graph G. If u, v ∈ M and u �= v,
then d(u, v) ≥ 3.

Proof. If d(u, v) = 1, then u, v ∈ N1[v] ∩ M , then M cannot be a multipacking.
So, d(u, v) �= 1. If d(u, v) = 2, then there exists a common neighbour w of u
and v. So, u, v ∈ N1[w] ∩ M , then M cannot be a multipacking. So, d(u, v) �= 2.
Therefore, d(u, v) > 2. �

Lemma 2. mp(G2k) ≥ 9k, for each positive integer k.

Proof. Consider the set M2k = {b2i−1,1, b2i−1,7, b2i−1,13, b2i−1,18, b2i−1,21, b2i,4,
b2i,8, b2i,14, b2i,18 : 1 ≤ i ≤ k} (Fig. 6) of size 9k. We want to show that M2k is a
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G2

m1 m2 m3

2

1

2

2

1

2
b2,1

b1,21

m4

m5

m6

m7 m8

m9

Fig. 5. Graph G2 with γb(G2) = 10 and mp(G2) = 9. M = {mi : 1 ≤ i ≤ 9} is a
multipacking of size 9.

multipacking of G2k. So, we have to prove that, |Nr[v]∩M2k| ≤ r for each vertex
v ∈ V (G2k) and for every integer r ≥ 1. We prove this statement using induction
on r. It can be checked that |Nr[v]∩M2k| ≤ r for each vertex v ∈ V (G2k) and for
each r ∈ {1, 2, 3, 4}. Now assume that the statement is true for r = s, we want
to prove that, it is true for r = s+4. Observe that, |(Ns+4[v]\Ns[v])∩M2k| ≤ 4
for every vertex v ∈ V (G2k). Therefore, |Ns+4[v] ∩ M2k| ≤ |Ns[v] ∩ M2k| + 4 ≤
s + 4. So, the statement is true. Therefore, M2k is a multipacking of G2k. So,
mp(G2k) ≥ |M2k| = 9k. �

Lemma 3. mp(G1) = 5.

Proof. V (G1) = N3[b1,7] ∪ N2[b1,17]. Suppose M is a multipacking on G1 such
that |M | = mp(G1). So, |M ∩ N3[b1,7]| ≤ 3 and |M ∩ N2[b1,17]| ≤ 2. Therefore,
|M ∩ (N3[b1,7] ∪ N2[b1,17])| ≤ 5. So, |M ∩ V (G)| ≤ 5, that implies |M | ≤ 5.
Let M1 = {b1,1, b1,7, b1,13, b1,18, b1,21}. Since |Nr[v] ∩ M | ≤ r for each vertex
v ∈ V (G1) and for every integer r ≥ 1, so M1 is a multipacking of size 5. Then
5 = |M1| ≤ |M |. So, |M | = 5. Therefore, mp(G1) = 5. �

So, now we have mp(G1) = 5. Using this fact we prove that mp(G2) = 9.

Lemma 4. mp(G2) = 9.

Proof. As mentioned before, Bi = Gk[{bi,j : 1 ≤ j ≤ 21}], 1 ≤ i ≤ 2. So, B1 and
B2 are two blocks in G2 which are isomorphic to G1. Let M be a multipacking
of G2 with size mp(G2). So, |M | ≥ 9 by Lemma 2. Since M is a multipacking of
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Bi

Bi−1

Bi+1

Gk

bi,2

bi,1 bi,3

bi,4

bi,5

bi,6 bi,7 bi,8

bi,9

bi,10

bi,11

bi,12

bi,13 bi,14 bi,15

bi,16

bi,17

bi,18

bi,19

bi,20 bi,21

bi−1,21

bi+1,1

Fig. 6. Partial depiction of graph Gk.

G2, so M ∩V (B1) and M ∩V (B2) are multipackings of B1 and B2, respectively.
Let M ∩ V (B1) = M1 and M ∩ V (B2) = M2. Since B1

∼= G1 and B2
∼= G1, so

mp(B1) = 5 and mp(B2) = 5 by Lemma 3. This implies |M1| ≤ 5 and |M2| ≤ 5.
Since V (B1) ∪ V (B2) = V (G2) and V (B1) ∩ V (B2) = φ, so M1 ∩ M2 = φ and
|M | = |M1| + |M2|. Therefore, 9 ≤ |M | = |M1| + |M2| ≤ 10. So, 9 ≤ |M | ≤ 10.

We establish this lemma by using contradiction on |M |. In the first step, we
prove that if |M1| = 5, then the particular vertex b1,21 ∈ M1. Using this, we can
show that |M2| ≤ 4. In this way we show that |M | ≤ 9.

For the purpose of contradiction, we assume that |M | = 10. So, |M1|+|M2| =
10, and also |M1| ≤ 5, |M2| ≤ 5. Therefore, |M1| = |M2| = 5.

Claim 4.1. If |M1| = 5, then b1,21 ∈ M1.

Proof of Claim. Suppose b1,21 /∈ M . Let S = {b1,7, b1,14}, S1 = {b1,r : 1 ≤
r ≤ 6}, S2 = {b1,r : 8 ≤ r ≤ 13}, S3 = {b1,r : 15 ≤ r ≤ 20}. If u, v ∈ St, then
d(u, v) ≤ 2, this holds for each t ∈ {1, 2, 3}. So, by Lemma 1, u, v together cannot
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be in a multipacking. Therefore |St ∩ M1| ≤ 1 for t = 1, 2, 3 and |S ∩ M1| ≤
|S| = 2. Now, 5 = |M1| = |M1 ∩ [V (G1) \ {b1,21}| = |M1 ∩ (S ∪ S1 ∪ S2 ∪ S3)| =
|(M1 ∩ S) ∪ (M1 ∩ S1) ∪ (M1 ∩ S2) ∪ (M1 ∩ S3)| ≤ |M1 ∩ S| + |M1 ∩ S1| + |M1 ∩
S2| + |M1 ∩ S3| ≤ 2 + 1 + 1 + 1 = 5. Therefore, |St ∩ M1| = 1 for t = 1, 2, 3 and
|S ∩ M1| = 2, so b1,7, b1,14 ∈ M1. Since |S2 ∩ M1| = 1, there exists w ∈ S2 ∩ M1.
Then N2[b1,10] contains three vertices b1,7, b1,14, w of M1, which is not possible.
So, this is a contradiction. Therefore, b1,21 ∈ M1. �

Claim 4.2. If |M1| = 5, then |M2| ≤ 4.

Proof of Claim. Let S′ = {b2,14, b2,21}, S4 = {b2,r : 1 ≤ r ≤ 6}, S5 = {b2,r : 8 ≤
r ≤ 13}, S6 = {b2,r : 15 ≤ r ≤ 20}. By Lemma 1, |St ∩ M2| ≤ 1 for t = 4, 5, 6
and also |S′ ∩ M2| ≤ |S′| = 2.

Observe that, if S4∩M2 �= φ, then b2,7 /∈ M2 (i.e. if b2,7 ∈ M2, then S4∩M2 =
φ). [Suppose not, then S4 ∩ M2 �= φ and b2,7 ∈ M2, so, there exists u ∈ S4 ∩ M2.
Then N2[b2,3] contains three vertices b1,21, b2,7, u of M , which is not possible.
This is a contradiction].

Suppose S4 ∩ M2 �= φ, then b2,7 /∈ M2. Now, 5 = |M2| = |M2 ∩ [V (B2) \
{b2,7}]| = |M2∩(S′∪S4∪S5∪S6)| = |(M2∩S′)∪(M2∩S4)∪(M2∩S5)∪(M2∩S6)| ≤
|M2 ∩ S′| + |M2 ∩ S4| + |M2 ∩ S5| + |M2 ∩ S6| ≤ 2 + 1 + 1 + 1 = 5. Therefore
|St ∩ M2| = 1 for t = 4, 5, 6 and |S′ ∩ M2| = 2. Since |M2 ∩ S6| = 1, so there
exists u1 ∈ M2 ∩ S6. Then N2[b2,17] contains three vertices b2,14, b2,21, u1 of M2,
which is not possible. So, this is a contradiction.

Suppose S4 ∩ M2 = φ, then either b2,7 ∈ M2 or b2,7 /∈ M2. First consider
b2,7 /∈ M2, then 5 = |M2| = |M2 ∩ (S′ ∪ S5 ∪ S6)| = |(M2 ∩ S′) ∪ (M2 ∩ S5) ∪
(M2 ∩ S6)| ≤ |M2 ∩ S′| + |M2 ∩ S5| + |M2 ∩ S6| ≤ 2 + 1 + 1 = 4. So, this is a
contradiction. And if b2,7 ∈ M2, then 5 = |M2| = |M2 ∩ (S′ ∪S5 ∪S6 ∪{b2,7})| =
|(M2∩S′)∪(M2∩S5)∪(M2∩S6)∪(M2∩{b2,7})| ≤ |M2∩S′|+ |M2∩S5|+ |M2∩
S6| + |M2 ∩ {b2,7}| ≤ 2 + 1 + 1 + 1 = 5. Therefore |St ∩ M2| = 1 for t = 5, 6 and
|S′ ∩ M2| = 2. Since |M2 ∩ S6| = 1, so there exists u2 ∈ M2 ∩ S6. Then N2[b2,17]
contains three vertices b2,14, b2,21, u2 of M2, which is not possible. So, this is a
contradiction. So, |M1| = 5 =⇒ |M2| ≤ 4. �

Recall that for contradiction, we assume |M | = 10, which implies |M2| = 5. In
the proof of the above claim, we established |M2| ≤ 4, which in turn contradicts
our assumption. So, |M | �= 10. Therefore, |M | = 9. �

Notice that graph G2k has k copies of G2. Moreover, we have mp(G2) =
9. If mp(G2k) > 9k, then we will use the Pigeonhole principle to show that
mp(G2k) = 9k.

Lemma 5. mp(G2k) = 9k, for each positive integer k.

Proof. For k = 1 it is true by Lemma 4. Moreover, we know mp(G2k) ≥ 9k by
Lemma 2. Suppose k > 1 and assume mp(G2k) > 9k. Let M̂ be a multipacking of
G2k such that |M̂ | > 9k. Let B̂j be a subgraph of G2k defined as B̂j = B2j−1∪B2j

where 1 ≤ j ≤ k. So, V (G2k) =
⋃k

j=1 V (B̂j) and V (B̂p) ∩ V (B̂q) = φ for all
p �= q and p, q ∈ {1, 2, 3, . . . , k}. Since |M̂ | > 9k, so by the Pigeonhole principle
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there exists a number j ∈ {1, 2, 3, . . . , k} such that |M̂ ∩B̂j | > 9. Since M̂ ∩B̂j is
a multipacking of B̂j , so mp(B̂j) > 9. But B̂j

∼= G2 and mp(G2) = 9 by Lemma
4, so mp(B̂j) = 9, which is a contradiction. Therefore, mp(G2k) = 9k. �

R. C. Brewster and L. Duchesne [2] introduced fractional multipacking in
2013 (also see [16]). Suppose G is a graph with V (G) = {v1, v2, v3, . . . , vn} and
w : V (G) → [0,∞) is a function. So, w(v) is a weight on a vertex v ∈ V (G).
Let w(S) =

∑
u∈S w(u) where S ⊆ V (G). We say w is a fractional multipacking

of G, if w(Nr[v]) ≤ r for each vertex v ∈ V (G) and for every integer r ≥ 1.
The fractional multipacking number of G is the value max

w
w(V (G)) where w is

any fractional multipacking and it is denoted by mpf (G). A maximum fractional
multipacking is a fractional multipacking w of a graph G such that w(V (G)) =
mpf (G). If w is a fractional multipacking, we define a vector y with the entries
yj = w(vj). So,

mpf (G) = max{y.1 : yA ≤ c, yj ≥ 0}.

So, this is a linear program which is the dual of the linear program min{c.x :
Ax ≥ 1, xi,k ≥ 0}. Let,

γb,f (G) = min{c.x : Ax ≥ 1, xi,k ≥ 0}.

Using the strong duality theorem for linear programming, we can say that

mp(G) ≤ mpf (G) = γb,f (G) ≤ γb(G).

Lemma 6. If k is a positive integer, then mpf (Gk) ≥ 5k.

Proof. We define a function w : V (Gk) → [0,∞) where w(bi,1) = w(bi,6) =
w(bi,7) = w(bi,8) = w(bi,13) = w(bi,14) = w(bi,15) = w(bi,20) = w(bi,21) = 1

3
and w(bi,4) = w(bi,11) = w(bi,18) = 2

3 for each i ∈ {1, 2, 3, . . . , k} (Fig. 7). So,
w(Gk) = 5k. We want to show that w is a fractional multipacking of Gk. So,
we have to prove that w(Nr[v]) ≤ r for each vertex v ∈ V (Gk) and for every
integer r ≥ 1. We prove this statement using induction on r. It can be checked
that w(Nr[v]) ≤ r for each vertex v ∈ V (Gk) and for each r ∈ {1, 2, 3, 4}. Now
assume that the statement is true for r = s, we want to prove that it is true
for r = s + 4. Observe that, w(Ns+4[v] \ Ns[v]) ≤ 4, ∀v ∈ V (Gk). Therefore,
w(Ns+4[v]) ≤ w(Ns[v])+4 ≤ s+4. So, the statement is true. So, w is a fractional
multipacking of Gk. Therefore, mpf (Gk) ≥ 5k. �

Lemma 7. If k is a positive integer, then mpf (Gk) = γb(Gk) = 5k.

Proof. Define a broadcast f on Gk as f(bi,j) =

⎧
⎪⎨

⎪⎩

2 if 1 ≤ i ≤ k and j = 6, 17
1 if 1 ≤ i ≤ k and j = 12
0 otherwise

.

Here f is an efficient dominating broadcast and
∑

v∈V (Gk)
f(v) = 5k. So,

γb(Gk) ≤ 5k, ∀k ∈ N. So, by the strong duality theorem and Lemma 6, 5k ≤
mpf (Gk) = γb,f (Gk) ≤ γb(Gk) ≤ 5k. Therefore, mpf (Gk) = γb(Gk) = 5k. �
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Fig. 7. Fractional multipacking of Gk.

So, γb(G2k) = 10k by Lemma 7 and mp(G2k) = 9k by Lemma 5. So, we
can say that for all positive integers k, γb(G2k) − mp(G2k) = k. Therefore, this
proves Theorem 4. So, the difference γb(G) − mp(G) can be arbitrarily large for
connected chordal graphs.

Corollary 1. The difference mpf (G) − mp(G) can be arbitrarily large for con-
nected chordal graphs.

Proof. We get mpf (G2k) = 10k by Lemma 7 and mp(G2k) = 9k by Lemma 5.
Therefore, mpf (G2k) − mp(G2k) = k for all positive integers k. �
Corollary 2. For every integer k ≥ 1, there is a connected chordal graph G2k

with mp(G2k) = 9k, mpf (G2k)/mp(G2k) = 10/9 and γb(G2k)/mp(G2k) = 10/9.

Corollary 3. For connected chordal graphs G,

10
9

≤ lim
mp(G)→∞

sup

{
γb(G)
mp(G)

}

≤ 3
2
.
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4 Conclusion

We have shown that the bound γb(G) ≤ 2mp(G) + 3 for general graphs G can
be improved to γb(G) ≤ ⌈

3
2 mp(G)

⌉
for connected chordal graphs. It is known

that for strongly chordal graphs, γb(G) = mp(G), we have shown that this is
not the case for connected chordal graphs. Even more, γb(G) − mp(G) can be
arbitrarily large for connected chordal graphs, as we have constructed infinitely
many connected chordal graphs G where γb(G)/mp(G) = 10/9 and mp(G) is
arbitrarily large.

It remains an interesting open problem to determine the best possible value of

lim
mp(G)→∞

sup
{

γb(G)
mp(G)

}

for general connected graphs and for chordal connected

graphs. This problem could also be studied for other interesting graph classes.
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Abstract. Graph Searching games are extensively studied in the litera-
ture for their vast number of applications in artificial intelligence, robot
motion planning, game planning, distributed computing, and graph the-
ory. In particular, Cops and Robber is one of the most well-studied
graph searching game, where a set of cops try to capture the position of
a single robber. The cop number of a graph is the minimum number of
cops required to capture the robber on the graph.

In an oriented graph
−→
G , the push operation on a vertex v reverses the

orientation of all arcs incident on v. We define and study a variant of the
game of Cops and Robber on oriented graphs, where the players also
have the ability to push the vertices of the graph.

1 Introduction

The first formulation of graph searching games is due to Parsons [31,32], who
formulated pursuit-evasion in graphs to model the search for a person trapped
in a complicated system of dark caves. Since then, graph searching and pursuit-
evasion have been studied extensively, having applications in artificial intelli-
gence [20,24], constrained satisfaction problems and database theory [14,15],
distributed computing [3,6] and network decontamination [30], and significant
implications in graph theory and algorithms [1,36].

Cops and Robber is one of the most intensively studied graph searching
game played on graphs, where a set of cops pursue a single robber. In this article,
we study the game of Cops and Robber on oriented graphs. Classically, the
game in the oriented setting has the following rules. The game starts with the
cops placing themselves on the vertices of an oriented graph

−→
G . More than

one cop may simultaneously occupy the same vertex of the graph. Then the
robber chooses a vertex to start. Now the cops and the robber make alternating
moves beginning with the cops. In a cop move, each cop can either stay on the
same vertex or move to a vertex in its out-neighborhood. In the robber move,

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Bagchi and R. Muthu (Eds.): CALDAM 2023, LNCS 13947, pp. 309–320, 2023.
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the robber can either stay on the same vertex or move to a vertex in its out-
neighborhood. If at some point in the game, one of the cops occupies the same
vertex as the robber, we call it the capture. If the cops can ensure the capture,
then we say that the cops win, and if the robber can evade the capture forever,
then the robber wins.

Next, we define a few necessary parameters. The cop number c(
−→
G) of an

oriented graph
−→
G is the minimum number of cops needed by the Cop Player

to have a winning strategy. We say that an oriented graph
−→
G is k-copwin if k

cops have a winning strategy in
−→
G . For brevity, we say that

−→
G is cop-win if

−→
G

is 1-copwin. Most research in oriented (or directed) graphs considers the model
defined above. However, there is some research concerning variations of the game
in oriented graphs [8].

Let −→uv be an arc of an oriented1 graph
−→
G . We say that u is an in-neighbor

of v and v is an out-neighbor of u. Let N−(u) and N+(u) denote the set
of in-neighbors and out-neighbors of u, respectively. Moreover, let N+[v] =
N+(v) ∪ {v} and N−[v] = N−(v) ∪ {v}. A vertex without any in-neighbor is a
source and a vertex without any out-neighbor is a sink. A vertex v is said to be
dominating if N+[v] = V (

−→
G). For a vertex v, the push operation on v, denoted

by push(v), reverses the orientation of each arc incident on v. Notice that the
push operation is a well-studied modification operation on directed or oriented
graphs [10,25,26,28,29,33–35]. In this work, for convenience and for the sake
of better readability, we retain the name of an oriented graph even after some
vertices have been pushed, allowing a slight abuse of notation. However, there is
no scope of confusion to the best of our knowledge.

In this paper, we consider the game of Cops and Robber on oriented
graphs with respect to the push operation. We define some variations of the
game where the agents might have the ability to push the vertices of the graph.
For that purpose, we define two kinds of push ability.

1. Weak push: Let A be an agent (cop/robber) having the weak push ability,
and let A be on a vertex v. Then in its turn, A can either move to a vertex
u ∈ N+[v] or can push the vertex v.

2. Strong push: Let A be an agent (cop/robber) having the strong push ability,
and let A be on a vertex v. Then in its turn, A can either move to a vertex
u ∈ N+[v] or can push any vertex of the graph.

We have the following immediate observation.

Observation 1. Let
−→
G be an oriented graph without a dominating vertex. Then

one cop, even with the strong push ability, cannot win if the robber has the weak
push ability.

Proof. We give a strategy for R to evade the capture forever. Let the cop, say,
C, starts at a vertex v. Since

−→
G does not have a dominating vertex, there is a

1 An oriented graph is a directed graph without self-loops and 2-cycles.
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vertex u ∈ V (−→) such that u /∈ N+[v]. Then, R enters at a u and stays on u
forever. Now, whenever R is attacked by C (i.e., C is on a vertex w such that
u ∈ N+(w)), R pushes the vertex u (to make u ∈ N−(w)). Now, C cannot
capture R immediately, and either has to move to some other vertex from where
it is attacking R or push its current vertex. In any case, R pushes u whenever
it is attacked, and this goes on forever. Hence one cop can never capture R. ��

Hence, in this work, we restrict our attention to the variations where the
robber does not have the push ability, but the cops either have the strong push
ability or the weak push ability. We would also like to note here that if neither
cops nor the robber has the push ability, then this game is equivalent to the
classical Cops and Robber game on oriented graphs.

Let csp(
−→
G) be the cop number of

−→
G when the cops have the strong push

ability and let cwp(
−→
G) be the cop number of

−→
G when the cops have the weak

push ability. The following observation is obvious.

Observation 2. Let
−→
G be an oriented graph. Then csp(

−→
G) ≤ cwp(

−→
G).

Our Contribution. In this paper, we consider the game of cops and robber on
oriented graphs where cops either have the weak push or the strong push ability.

In Sect. 3, we consider the game where the cop player has the strong push
ability. We consider multiple graph classes that are cop-win in this game variant
but have higher cop number in classical Cops and Robber. We begin by show-
ing, in Theorem 1, that if

−→
G is an orientation of a complete multipartite graph,

then csp(
−→
G) = 1. Second, we show that for a graph

−→
G such that its underlying

graph G is a subcubic graph, csp(
−→
G) = 1 in Theorem 2. Finally, we show, in

Theorem 3, that for a graph
−→
G such that its underlying graph G is an interval

graph, csp(
−→
G) = 1.

Related Work. The Cops and Robber game is well studied on both directed
and undirected graphs. Hamidoune [17] considered the game on Cayley digraphs.
Frieze et al. [11] studied the game on digraphs and gave an upper bound of
O

(
n(log log n)2

log n

)
for cop number in digraphs. Loh and Oh [27] considered the game

on strongly connected planar digraphs and proved that every n-vertex strongly
connected planar digraph has cop number O(

√
n). Moreover, they constructively

proved the existence of a strongly connected planar digraph with cop number
greater than three, which is in contrast to the case of undirected graphs where the
cop number of a planar graph is at most three [2]. The computational complexity
of determining the cop number of a digraph (and undirected graphs also) is a
challenging question in itself. Goldstein and Reingold [13] proved that deciding
whether k cops can capture a robber is EXPTIME-complete for a variant of
Cops and Robber and conjectured that the same holds for classical Cops and
Robber as well. Later, Kinnersley [22] proved that conjecture and established
that determining the cop number of a graph or digraph is EXPTIME-complete.
Kinnersley [23] also showed that n-vertex strongly connected cop-win digraphs
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can have capture time Ω(n2), whereas for undirected cop-win graphs the capture
time is at most n − 4 moves [12].

Hahn and MacGillivray [16] gave an algorithmic characterization of the cop-
win finite reflexive digraphs and showed that any k-cop game can be reduced
to 1-cop game, resulting in an algorithmic characterization for k-copwin finite
reflexive digraphs. However, these results do not give a structural character-
ization of such graphs. Darlington et al. [7] tried to structurally characterize
cop-win oriented graphs and gave a conjecture that was later disproved by Kha-
tri et al. [21], who also studied the game in oriented outerplanar graphs and line
digraphs.

Recently, the cop number of planar Eulerian digraphs and related families
was studied in several articles [9,18,19]. In particular, Hosseini and Mohar [19]
considered the orientations of integer grid that are vertex-transitive and showed
that at most four cops can capture the robber on arbitrary finite quotients of
these directed grids. De la Maza et al. [9] considered the straight-ahead orienta-
tions of 4-regular quadrangulations of the torus and the Klein bottle and proved
that their cop number is bounded by a constant. They also showed that the cop
number of every k-regularly oriented toroidal grid is at most 13.

Bradshaw et al. [5] proved that the cop number of directed and undirected
Cayley graphs on abelian groups has an upper bound of the form of O(

√
n).

Modifying this construction, they obtained families of graphs and digraphs with
cop number Θ(

√
n). The family of digraphs thus obtained has the largest cop

number in terms of n of any known digraph construction.

2 Preliminaries

For a natural number �, let [�] denote the set {1, . . . , �}.

Graph Theory. In this paper, we consider the game on oriented graphs whose
underlying graph is simple, finite, and connected. Let

−→
G be an oriented graph

with G as the underlying undirected graph of
−→
G . We say that

−→
G is an orien-

tation of G. We consider the push operation on the vertices of
−→
G , and hence

the orientations of arcs in
−→
G might change. So, what we refer to

−→
G is the graph

with the current orientations. Note that although the orientations of the arcs
in

−→
G might change, the underlying graph G remains the same. Moreover, it is

worth noting that given
−→
G and

−→
H such that

−→
G and

−→
H have the same underlying

graph, it might be possible that there is no sequence of pushing vertices in
−→
G

that yields
−→
H .

A graph G is subcubic if each vertex v ∈ V (G) has degree at most three.
An interval representation of a graph G is a set I = {[x−

u , x+
u ] : u ∈ V (G)} of

intervals where each interval in I corresponds to a vertex, and two intervals
intersect if and only if the corresponding vertices share an edge. A graph is an
interval graph if it has an interval representation. A k-partite graph is a graph
whose vertex set can be partitioned into k independent sets. A complete k-partite
graph is a k-partite graph such that there is an edge between every pair of vertices
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from different independent sets. A complete multipartite graph is a graph that is
complete k-partite for some k > 1.

Let v be vertex of
−→
G and S is a subset of vertices of

−→
G (i.e., S ⊆ V (

−→
G)).

Then, we say that v is a source in S if S ⊆ N+[v]. Moreover, we say that |N+(v)|
is the out-degree of v, |N−(v)| is the in-degree of v, and |N+(v)| + |N−(v)| is
the degree of v.

The Game. We say that a vertex v is safe if no vertex in N−[v] is occupied by
a cop. A vertex v is said to be attacked if there is some cop in N−(v). When we
have a single cop, we denote the cop by C. We denote the robber by R throughout
the paper. Let V ′ ⊆ V (G) be a set of vertices. We say that R is restricted to
V ′ if R cannot move to a vertex u ∈ V (G) \ V ′ without getting captured in the
next cop move.

2.1 Preliminary Results

First, we have the following easy (but useful) observation.

Observation 3. Let
−→
G be an oriented graph. Then a cop with strong push ability

can make any vertex v a source vertex.

Proof. C can achieve this by pushing every vertex in N−(v). ��
A corollary of Observation 3 is that the tournaments are cop-win in the

strong cop model. This is in contrast to the fact that the normal cop number
of even strongly connected tournaments is unbounded [37]. Next, we have the
following definition.

Definition 1 (Trapping R). If R is at a vertex v such that |N+(v)| = 0, then
we say that R is trapped at v.

In the following lemma, we show that if R can be trapped at a vertex v, then
R will be captured by C (having either the strong push or the weak push ability)
in a finite number of rounds.

Lemma 1. Let
−→
G be an oriented graph and R is trapped at a vertex v ∈ V (

−→
G).

Then R will be captured by C, having push ability, in a finite number of rounds.

Proof. Let C be at a vertex u when R gets trapped at v. If u ∈ N−(v), then C
can capture R in the next move of C. So, we suppose that u /∈ N−(v). Since G

(underlying graph of
−→
G) is a connected graph, there is a shortest u, v-path, say,

P , in G. Moreover, observe that there is a vertex w ∈ N−(v) such that w lies on
this path. Now, C will move along this path to the vertex w in a manner so that
it neither pushes v or a vertex in N−(v) (hence, ensuring that R stays trapped
at v).

Let u = u1, . . . , u� = w be an ordering of vertices of path P , along the path
P from u to w. If −−−−→uiui+1 (for i ∈ [� − 1]) is an arc, then C moves along this arc
from ui to ui+1. Else, −−−−→ui+1ui is an arc and C pushes the vertex ui to reverse the
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orientation of the arc to get the arc −−−−→uiui+1, and move along it to ui+1 in the
next cop move. Using this strategy, note that C will reach w in a finite number
of (at most 2n) cop moves. Moreover, since P is a shortest path, observe that
P contains at most one vertex from N−(v). Hence, the way C pushes vertices,
no vertex in N−[v] is pushed, and therefore, R stays trapped at v. Thus, C will
reach w in a finite number of rounds and capture R in the next cop move. ��

3 Cop-Win Classes Under Strong Push

In this section, we consider the game where the cops have the ability of strong
push. In this regard, we consider various graph classes that have high cop number
in classical Cops and Robber game on oriented graphs and show that these classes
are cop-win if the cop has the ability of strong push. For brevity, in this section,
if a graph

−→
G is cop-win, given that C has the ability of strong push, we simply

call
−→
G cop-win. We mention here that we do not have any construction of an

oriented graph that is not cop-win under this model. We have the following
positive results.

3.1 Complete Multipartite Graphs

In this section, we consider the orientations of complete multipartite graphs and
show that they are cop-win in the strong push model. In particular, we have the
following theorem.

Theorem 1. Let
−→
G be an oriented graph such that the underlying graph G of

−→
G

is a complete multipartite graph with partitions A1, . . . , Ak. Then, csp(
−→
G) = 1.

Proof. We give a strategy for C. C chooses a vertex v ∈ A1 and makes it a source
vertex (by Observation 3). Once v is a source vertex, observe that the only safe
place for R is to be on vertices of A1 and R cannot move out of A1 as long as
v is a source vertex and C is on v.

Let R be on a vertex u ∈ A1. For each vertex w ∈ N+(u), C pushes w. We
remark that during this process, C might push a vertex w ∈ N+(u) such that
w ∈ N+(v), and then v is no longer a source vertex, but this does not hurt
the strategy of C because, at every instance, N+(u) ⊆ N+(v). Note that once
C finishes pushing all vertices in N+(u), R gets trapped at u since N+(u) = ∅.
Since R is trapped at a vertex u ∈ V (

−→
G), due to Lemma 1, C can capture R in

a finite number of cop moves. ��

3.2 Subcubic Graphs

In this section, we show that the orientations of subcubic graphs are cop-win
if the cop has the strong push ability. Due to Lemma 1, to show that subcubic
graphs are cop-win, it is sufficient to show that one cop can trap R in a graph−→
G , such that the underlying graph G is subcubic. First, we have the following
lemma that we will use to prove Theorem 2.
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Lemma 2. Let v be a vertex of an oriented graph
−→
G such that |N+(v)| +

|N−(v)| ≤ 3. Moreover, let
−→
H be an induced subgraph of

−→
G we get after deleting

v. If
−→
H is cop-win, then

−→
G is cop-win.

Proof. Let C have a winning strategy in
−→
H . We will use this strategy in

−→
G when

R is on a vertex u �= v. We show that if R is on/moves to vertex v, then (in the
next move of R) we can either trap R or force R to move out of v while keeping
the orientation of each arc that does not have v as an endpoint same as it was
before R moved to v. We have the following cases depending on the in-degree of
v when R moves to v:

1. |N−(v)| = 3 : In this case, v is a sink vertex, and if R enters v, then R cannot
move from v and is trapped at v. Hence, due to Lemma 1, C can move to
capture R in a finite number of rounds.

2. |N−(v)| = 2 : In this case, observe that |N+(v)| ≤ 1. If |N+(v)| = 0, then R
is trapped at v and C can move to capture R. If |N+(v)| = 1, then let u be
the unique out-neighbor of v. If R moves to v, then C simply pushes u. This
traps R at the vertex v (since |N+(v)| = 0 now). Hence, due to Lemma 1, C
can move to capture R in a finite number of rounds.

3. |N−(v)| = 1 : In this case, first, we show that C can force R to move out of v
in the next move of R while keeping the orientation of each arc not incident
on v the same. Moreover, once R has moved out of v, in the next move of R,
R cannot move to v. Later, we show how C can use this step and the winning
strategy for

−→
H to get a winning strategy for

−→
G . We have the following two

cases:
(a) R begins the game at the vertex v: In this case, C pushes the vertex v.

Now, observe that |N+(v)| = 1. Let N+(v) = {u}. Now, if R does not
move to the vertex u in this robber turn, then C can push u to trap R at
v. This leads to the capture of R (due to Lemma 1). So, assume R moves
the vertex u. Note that for each arc −→a such that v is not an endpoint of−→a , the orientation of −→a is not changed (reversed) in this step. Now, C
will use the winning strategy of

−→
H as long as R does not move to v.

(b) R moves to the vertex v from some vertex u: In this case also C pushes the
vertex v. Note that this operation does not change the orientation of any
arc that do not have v as an endpoint. Now, observe that N+(v) = {u}.
Similarly to the previous case (Case 3a), if R does not move to the vertex
u in this robber turn, then C can push u to trap R at v. This leads to
the capture of R (due to Lemma 1). So, assume R moves the vertex u.
Now, R is back to the vertex u, and C again continues with its winning
strategy for

−→
H . Moreover, in the next move of R, R cannot move to v

(as u ∈ N+(v) now). So, the next move of R will be to a vertex (possibly
staying at u) that is also present in

−→
H .

Let C have a strategy to win in
−→
H using at most � moves. In

−→
G , each time

R moves to the vertex v from some vertex u (u is also a vertex in
−→
H ), in the

next robber move, it has to move back to u. Moreover, to force C out of v
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(unless C traps or captures R) C never pushes a vertex that is not v. Thus,
the orientation of each arc that do not have v as an endpoint remains the
same after these two moves (R moving to v from u and then coming back to u
from v). Moreover, in the next robber move, R cannot move to v. Therefore,
the next move of R in

−→
G can be translated to a valid move of R in

−→
H as well.

Hence, by moving to v, the best R can do is to waste at most two moves of
the cop. Therefore, R will be captured in

−→
G using at most 3� cop moves.

4. |N−(v)| = 0. In this case, notice that the vertex v is not accessible to R.

Therefore, if
−→
H is cop-win, then

−→
G is cop-win as well. ��

Theorem 2. Let
−→
G be an oriented graph such that its underlying graph G is a

subcubic graph. Then csp(
−→
G) = 1.

Proof. We will prove this using contradiction arguments. Consider a minimal
graph

−→
G such that its underlying graph G is subcubic and

−→
G is not cop-win

(i.e., every induced subgraph of
−→
G we get after deleting at least one vertex is

cop-win). Note that
−→
G contains at least two vertices as a single vertex graph

is trivially cop-win. Let
−→
H be the induced subgraph of

−→
G we get after deleting

a vertex v ∈ V (
−→
G). By our assumption that

−→
G is a minimal graph having

cop number at least two, we have that csp(
−→
H ) = 1. Then, due to Lemma 2,

csp(
−→
G) = 1, which contradicts our assumption that

−→
G is not cop-win.

Therefore, any oriented graph
−→
G such that its underlying graph G is subcubic

is cop-win. ��

3.3 Interval Graphs

In this section, we show that if graph
−→
G is an orientation of an interval graph

G, then csp(
−→
G) = 1. To prove this result, we use nice path decomposition, a

well-known tool for designing dynamic programming algorithms for graphs of
bounded pathwidth. For an interval graph, the nice path decomposition can be
computed in linear time [4].

Definition 2. A nice path decomposition of an interval graph G is a path T =
(t1, . . . , tk) where each node ti is associated to a subset Bi of V (G) called a
bag, and each internal node ti has exactly two neighbors ti−1 and ti+1, with the
following properties.

1. The nodes of T containing a given vertex of G form a nonempty connected
subpath of T .

2. Any two adjacent vertices of G appear in the bag of a common node of T .
3. For each node ti of T , Bi is a clique.
4. Each node of T belongs to one of the following types: introduce, forget, or

leaf.
5. An introduce node ti is such that Bi \ {v} = Bi−1, for some vertex v ∈ Bi.
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6. A forget node ti is such that Bi = Bi−1 \ {v}, for some vertex v ∈ Bi−1.
7. A leaf node ti is a leaf of T with Bi = {v} for some vertex v of G.
8. There are two leaf nodes in T : t1 and tk.
9. Each vertex v ∈ V (G) is introduced exactly once (in some introduce node)

and forgotten exactly once (in some forget node).

For a nice path decomposition and a node ti of T , we define V≤ti as the
union of all bags corresponding to nodes in the (t1, . . . , ti−1) subpath of T .
More formally, V≤ti =

⋃
j∈[i−1] Bj . We can similarly define V<ti = V≤ti \ Bi,

V≥ti = V (G) \ V<ti , and V>ti = V (G) \ V≤ti .
First, we present an overall idea of our winning strategy for C. We define an

image of the cop C, denoted by IC. We will think of C moving over the vertices
of G and IC moving over the nodes of T . If C is on a vertex u ∈ V (G), then we
fix a node ti ∈ T as the position of IC such that u ∈ Bi. We note that a graph
vertex v might be contained in multiple bags {Bj+1, . . . , Bj+�}, but we always
specify which node t ∈ {tj+1, . . . tj+�} is occupied by IC. To begin with, IC will
start at the node t1 and C at the graph vertex in B1. Now, after every finite
number of rounds, we will move IC from a node ti to the node ti+1 such that
the following invariant is maintained: When IC is on a node s, R is restricted
to V≥s. Finally, using this strategy, IC will reach the node tk, and since Bk is
a single vertex, say, u, R is restricted to u. Since C is also on u, R is finally
captured. Now, we discuss these ideas more formally.

First, we have the following lemma.

Lemma 3. Let
−→
G be an oriented graph such that its underlying graph G is an

interval graph. Let T be a nice path decomposition of G. If IC is at a node ti
(i < k), C at a vertex v ∈ Bi such that N+[v] = Bi, and R is restricted to
V>ti , then after a finite number of rounds, we can move IC to the node ti+1,
C to a vertex u ∈ Bi+1 such that N+[u] = Bi+1, and R is restricted to V>ti+1 .
Moreover, during this whole procedure, R is restricted to V≥ti .

Proof. We have the following cases depending on the type of the node ti.

1. Introduce node: Let the vertex introduced in the bag Bi+1 be x (i.e., Bi+1 =
Bi ∪ {x}). Since Bi+1 is a clique, there is an edge between v and x in G.
Therefore, either −→vx is an arc in

−→
G , or −→xv is an arc in

−→
G . If the arc is oriented

as −→vx, then C does nothing. Otherwise, if the arc is oriented −→xv, then the cop
pushes x to orient the arc −→vx. Note that now v is a source in Bi+1 as well.
Observe that during these moves of the cop, R cannot enter a vertex of Bi

since C is present at a vertex v such that N+[v] = Bi. Finally, we move IC
to the node ti+1 and set u = v. Note that at this point, since C is at a source
vertex of Bi+1, R is restricted to V>ti+1 . Hence, all the required conditions
of the lemma are satisfied.

2. Forget node: Let the vertex forgotten in the bag Bi+1 be x (i.e., Bi+1 =
Bi \ {x}). If x �= v, then C does nothing. We simply move IC to node ti+1

and set u = v. Observe that all the conditions of the lemma are satisfied.
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If x = v, then we do the following. Let u be a vertex in Bi+1 such that
if u was introduced in the node Bj , then any vertex y ∈ Bi+1 \ {u} was
introduced in some node Bj′ where j′ > j (i.e., for each � ≤ i, if y ∈ B�, then
u ∈ B�). Since each bag Bi is a clique, note that for any vertex y ∈ Bi+1\{u},
N(y) ∩ V<ti+1 ⊆ N(u) ∩ V<ti+1 . Now, for each vertex z ∈ N−(u) such that z
has been forgotten, push z. This makes u dominate all the vertices that have
been forgotten before Bi and are adjacent to some vertex in Bi+1 \ {u}. Now
C moves to u. Observe that R cannot move directly to v from some vertex in
w ∈ V>ti because u and w cannot be adjacent.
Note that though in this round, R can move to a vertex in Bi+1, we will
ensure that it is restricted to V≥ti (i.e., it cannot move to a vertex in V<ti).
In the next move of C, C pushes v. Now, again R cannot move to v without
getting captured (as C is on u and −→uv is an arc). Moreover, R cannot move
to a vertex z ∈ V<ti from a vertex y ∈ Bi+1 without getting captured in the
next cop move (because we ensured that N(y) ∩ V<ti+1 ⊆ N(u) ∩ V<ti+1).
Hence, though R can move to a vertex of Bi, it cannot move to a vertex in
V<ti . In next few cop moves, for each vertex y ∈ Bi+1\{u}, if the arc between
u and y is not oriented as −→uy, then C pushes y. Thus, after a finite number of
rounds, u is a source in Bi+1 (and Bi as well). Moreover, at this point, if R
is on a vertex in Bi or Bi+1, then R will be captured in the next cop move.
Hence, R is restricted to V>ti+1 . Finally, we move IC from ti to ti+1. Note
that all the conditions of our lemma are satisfied.

This completes the proof of our lemma. ��
Next, we use Lemma 3 to get the following theorem.

Theorem 3. Let
−→
G be an oriented graph such that its underlying graph G is an

interval graph. Then csp(
−→
G) = 1.

Proof. Consider a nice path decomposition T of the interval graph. Let T =
(t1, . . . , tk) and let bag Bi be associated with node ti.

We have the following winning strategy for C. Let B1 = {v}. Then, C starts
at vertex v and IC starts at t1. Observe that all the conditions for Lemma 3 are
satisfied. Now, we use Lemma 3 to move IC from ti to ti+1. Finally, using this
strategy, IC reaches tk. Let Bk = {u}. Observe that at this point C is on u, and
due to Lemma 3, R is restricted to u. Thus, R gets captured.

Hence, C can follow this strategy to capture R. ��

4 Conclusion

We studied Cops and Robber on oriented graphs with respect to push oper-
ation. In particular, we studied the game between a single cop C and a single
robber R where R has the ability of strong push. We established that if the
underlying graph G of an oriented graph

−→
G is either a complete multipartite

graph, a subcubic graph, or an interval graph, then csp(
−→
G) = 1. We do not have
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any construction of an oriented graph
−→
G that is not cop-win when the cop has

strong push ability. This might be an interesting question to either construct an
oriented graph that is not cop-win in the strong push model or to give a winning
strategy for the cop with strong push ability for any oriented graph.

Other exciting research directions might be to extend these results for further,
more general graph classes. In particular, does a cop C with strong push ability
always have a winning strategy in the orientations of planar graphs? Moreover,
if G is an undirected cop-win graph, does C with strong push ability always
have a winning strategy in any orientation

−→
G of G? Another interesting research

direction might be to generalize these results for the weak-push cop.
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Abstract. Motivated by applications in urban planning, network anal-
ysis, and data visualization, we introduce center selection problems in
graphs where the centers are represented by edges. This is in contrast to
classic center selection problems where centers are usually placed at the
nodes of a graph. Given a weighted graph G(V, E) and a budget k ∈ N,
the goal is to select k edges from E such that the maximum distance from
any point of interest in the graph to its nearest center is minimized. We
consider three different problem variants, based on defining the points of
interest either as the edges of G, or the nodes, or all points on the edges.
We provide a variety of hardness results and approximation algorithms.
A key difficulty of edge center selection is that the underlying distance
function may not satisfy the triangle inequality, which is crucially used
in approximation algorithms for node center selection. In addition, we
introduce efficient heuristics that produce solutions of good quality even
in large graphs, as demonstrated in our experimental evaluation.

Keywords: Facility location · Edge facility · K-center

1 Introduction

Center selection problems are well studied in geometric contexts as well as in
graphs. In the classic k-Center problem, one has to select k out of n given
points in the plane such that the maximum Euclidean distance from any of the
n points to the nearest selected point is minimized [8]. In graphs, the analogue
problem is to select k nodes as centers (e.g. for warehouses or hospitals) with
the goal of minimizing the maximum shortest path distance from any node in
the graph to its closest center [18]. The geometric version can also be phrased
as graph problem by creating a complete graph on the point set with Euclidean
edge weights. The geometric and the graph problem are both NP-hard, but a
simple greedy selection strategy yields a 2-approximaton algorithm [3,7]. Many
extensions of the problem have been investigated, including restrictions on the
center locations, node weights that model center (“facility”) opening costs, or
capacities that limit how many customers can be served by a single center [1,4,9].

In this paper, we consider a family of center selection problems where the
centers are represented by edges instead of nodes. There are several possible
application scenarios where edge centers are desirable:
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– Urban planning. Facilities with substantial areal impact in urban areas, such
as parks or street parking zones, are inadequately modelled by node centers
because they are not only accessible from a single entry point. Edge centers
represent this aspect more faithfully [11].

– Network analysis and design. Computing the set of the top-k edge centers
is a means to identify important connections in a given network. This com-
plements work on group centrality measures which are typically focused on
identifying important node sets [12].

– Graph data visualization. Displaying large amounts of graph data in digital
maps is often too time-consuming for interactive usage and hence data reduc-
tion is applied first. One widely used reduction concept is graph simplifica-
tion, e.g., by replacing long paths with single edges. However, these additional
edges may induce topological inconsistencies and increase the drawing com-
plexity over all zoom levels. Therefore, it was suggested in [17] to use graph
sampling instead by choosing a proper subset of the edges to draw.

In all these applications, the goal is to choose an edge set which is in some sense
nicely spread over the graph and hence there are no graph elements that are too
far from the nearest chosen edge. The goal of the paper is to investigate such
edge center selection problems from a theoretical and practical perspective.

1.1 Contribution

In this paper, we introduce and analyze k-Edge-Center-Selection (ECS)
problems in graphs, where the goal is to select a set of k edges such that the
maximum distance of any point of interest in the graph to its nearest selected
edge is as small as possible. We consider edges, nodes, and points on edges as
possible locations of interest, and provide the following results for the three
resulting problem variants, abbreviated as EECS, NECS, and PECS:

– We prove that NECS and PECS are NP-hard to approximate to a constant
factor. For EECS, we prove the stronger result that it is NP-hard to get an
f -approximation for any computable function f . A fine-grained complexity
analysis shows that the hardness depends on the edge budget k. We identify
for EECS and NECS thresholds for k for which the respective optimization
problem becomes solvable in polytime.

– We instrument parametric pruning to design a 3-approximation algorithm for
NECS and a 4-approximation algorithm for PECS.

– Inspired by the geometric setting, we also present a simple greedy algorithm
for all three variants where the quality depends on ψ, which is defined as the
ratio of the longest and the shortest edge in the input graph. We show that
under assumptions that are sensible for the application of center selection in
road networks, the greedy algorithm is a 3-approximation.

– In the experimental evaluation, we assess the running time and the solution
quality of the greedy algorithm as well as heuristic approaches in dependency
of the input graph type and the edge budget k, and show that sensible ECS
solutions can be computed even in large graphs.
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1.2 Related Work

In the geometric version of the problem, line segments serving as facilities,
instead of points, have been considered in [11], motivated by a transportation
network design problem. However, they allow to choose any line segment in the
plane as facility while we have to choose an edge subset of a given graph. In
[13–15], point, line segment and even polygonal facilities were discussed. But
here again, facility location is permissible anywhere in continuous space, and
geometric distance measures are used to assess the quality of the solution.

For graph settings, continuous center selection problems on graphs were inves-
tigated in [5]. There, nodes are weighted and centers may be chosen from the
nodes of the graph and interior points of edges. A set of centers has to be chosen
such that the weighted sum of all nodes to their nearest centers is minimized. It
is shown that in this case it is sufficient to consider node centers.

In [16], several so called activation edge-cover problems were discussed.
There, each edge is equipped with an activation function which depends on
the values assigned to the nodes. The goal is then to find an assignment of small
total cost, such that the edges activated by that assignment fulfill a certain
cover constraint. Relationships to facility location problems were shown there;
but only considering node facilities.

The problem of choosing a representative subset of edges of a given graph was
thoroughly discussed in [10]. However, the problem is not phrased as a formal
optimization problem there. Instead, several criteria of a good graph sample are
listed, and then sampling strategies (mostly relying on random selection) are
empirically evaluated and compared. In [17], algorithms for gap minimization
in polylines (or path graphs) were introduced. The generalization to arbitrary
graphs was left there as an open problem.

2 Edge Center Selection Problems

In this section, we formally define edge center selection problems in graphs. As a
prerequisite, we generalize the geometric k-center problem from point locations
to segment locations.

Definition 1 (k-Segment-Center). Given a set S of line segments in R2

and k ∈ N, find a set of k segments F ⊆ S such that the maximum Euclidean
distance of any segment to its nearest segment in S is minimized.

The distance between two segments is determined by the Euclidean length of
the shortest connection between them. Just like the k-Center problem, we can
rephrase the k-Segment-Center problem as a graph problem. Here, we create
again a complete graph in which now every segment is represented by a node,
and the edge weights depend on the pairwise segment distances. In contrast
to the k-Center problem, the resulting graph for k-Segment-Center might
not be metric, though. In particular, the triangle inequality might be violated
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Fig. 1. k-Segment-Center example with three segments (blue) and their pairwise
Euclidean distances (black). The right image shows the graph representation, illustrat-
ing that the triangle inequality is not obeyed. (Color figure online)

as shown in Fig. 1. We will discuss how that affects the applicability of the 2-
approximation algorithm for k-Center, where the quality guarantee relies on
the triangle inequality, in Sect. 4.

However, for many application scenarios (as e.g. urban planning), the dis-
tances to facilities stem more realistically from (driving) distances in an under-
lying graph than from Euclidean distances in the plane. Therefore, we next define
three problem variants that directly use a weighted graph as a basis. For that,
we first need the notion of distance towards an edge in a given graph. Let c(a, b)
denote the shortest path cost from node a to b in G. Then the distance of a
node a towards an edge e = {v, w} is defined as c(a, e) := min{c(a, v), c(a,w)}
and the distance of an edge e = {v, w} towards another edge e′ = {v′, w′} as
c(e, e′) := min{c(v, e′), c(w, e′)}.

Definition 2 (k-Edge/Node/Point-Edge-Center). Given a connected,
undirected, weighted graph G(V,E, c) and a parameter k ∈ N, find a set of k
edges F of G such that the maximum shortest path distance from an edge/a
node/any point on an edge to the nearest edge in F is minimized.

So as the base definition, we consider distances between edges and edge centers
(EECS). But if necessary for the application we can make the model more fine-
grained by considering the distances between nodes and edge centers (NECS).
And if one wants to take into account the driving distance from each individual
address towards the next edge center without having to subsample long edges
(and consequentially increase the graph size severely), the point-edge center
selection model (PECS) can be used. The distance of a point to the end of an
edge is thereby obtained by linear interpolation of the edge weight.

We note that in graphs with metric edge weights, we have OPTEECS ≤
OPTNECS ≤ OPTPECS by definition. Figure 2 shows that even on small example
graphs the problem variants might produce different outcomes.

Fig. 2. Differing optimal solutions for k-Node-Edge-Center (left, OPT = 1) and
k-Point-Edge-Center (right, OPT = 2) for k = 2.
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3 Hardness and Tractability Results

In the geometric setting, the k-Segment-Center problem naturally inherits
the hardness of k-Center as it is a sound generalization thereof given that we
can simply interpret points as segments of length zero.

For the k-Edge-Center problems in graphs, we establish NP-hardness by
reductions that also show APX-hardness.

Theorem 1. It is NP-hard to approximate NECS (PECS) to a factor of 2 − ε
(4/3 − ε) for any ε > 0.

Proof. Sketch. Per reduction from Set Cover. Let ((U,F), k) be an instance of
Set Cover. Construct a NECS/PECS instance (G(V,E,w)), k′) as follows. V :=
{r} ∪ F ∪ U , E := {{r, S} | S ∈ F} ∪ {{S, e} | S ∈ F , e ∈ S}, w := 1, k′ := k.

If there is a set cover of size at most k, then there is a solution for the NECS
(PECS) instance with maximum distance at most 1 (1.5). If there is no set cover
of size at most k, then the optimum solution for the NECS/PECS instance has
distance at least 2. Hence, the claim holds. ��
For EECS we reduce the Minimum Edge Dominating Set (MEDS) problem.

Definition 3 (Minimum Edge Dominating Set). In a graph G(V,E), a set
D ⊆ E is called an edge dominating set if every edge not in D is adjacent to an
edge in D. The optimization goal is to find a smallest set D with that property.

As proven in [2], it is NP-hard to approximate MEDS to a factor < 7/6. A
MEDS of size k is a EECS with distance d = 0. So it is NP-hard to decide for
an EECS instance whether d = 0 is achievable and because any (mulitplicative)
approximation has to return 0 in that case (and necessarily a value larger than
0 otherwise), approximation is also NP-hard.

Theorem 2. It is NP-hard to f-approximate EECS for any computable func-
tion f of n.

Proof. Assume there is an f -approximation algorithm for k-Edge-Edge-
Center for a computable function f . Then, given an instance of MEDS, we
use binary search to find the smallest k such that the f -approximation com-
putes a set of k edges with a maximum edge-edge distance of d = 0. This set
of edges then forms a MEDS. Hence, we could determine the cardinality of an
optimal MEDS in polytime which contradicts the NP-hardness of MEDS. ��

Next, we conduct a more fine-grained complexity analysis to show that
despite the general hardness there are ranges for the edge budget k for which
the respective ECS problems become tractable.

Lemma 1. For k ≥ 2|D|, where D is an optimal MEDS solution, EECS can be
solved to optimality in polytime.
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Proof. If k is at least 2|D|, then we can use the following algorithm to find
the optimal solution: Every maximal matching in a given graph G is an edge
dominating set by definition and a minimum maximal matching is a MEDS. We
can thus simply compute any maximal matching (which then contains at most
twice the number of edges as the optimum) to get an optimal solution for EECS
with at most k centers and distance 0. ��
For |D| ≤ k < 2|D|, the optimum distance for EECS is 0 as well. However,
as proven in Theorem 2 (utilizing the hardness of MEDS) we cannot find an
approximate solution for EECS for k < 7/6|D| if P 	= NP. For the range between
7/6|D| and 2|D|, a finite approximation factor might be possible, though.

For the fine-grained analysis of NECS, we relate it to the Minimum Edge
Cover (MEC) problem.

Definition 4 (Minimum Edge Cover). In a graph G(V,E), an edge cover
is a set of edges S such that every node in the graph is incident to at least one
edge in S. The Minimum Edge Cover problem demands to find the smallest
set S.

An optimal MEC can be found in polytime by first computing a maximum
matching and then extending it greedily to cover remaining uncovered nodes [3].

Lemma 2. For k ≥ |S|, where S is an optimal MEC solution, NECS can be
solved to optimality in polytime.

Proof. If k ≥ |S|, then the optimal solution distance is 0, as every node can have
at least one incident center. As MEC can be solved to optimality in polytime,
the same then is true for NECS. ��
The argument does not apply to PECS, as there even a MEC does not result in
an objective function value of zero. But we will show in the next section, that
PECS can be approximated within a constant factor for any edge budget k.

4 Approximation Algorithms

Motivated by the hardness results, we next investigate whether we can find
approximate solutions for those edge center selection problems.

For k-Center, several algorithms exist which guarantee an approximation
factor of 2, most prominently a parametric pruning and a greedy approach. As
the problem cannot be approximated by a factor of 2 − ε for any ε > 0 unless
P = NP [6], those algorithms provide the best possible guarantee for k-Center.
In the following, we discuss how these two approaches can be instrumented for
ECS and analyze the resulting guarantees for each problem variant.

4.1 Parametric Pruning

The parametric pruning algorithm conducts a systematic search for a k-Center
solution in a given complete, weighted graph G(V,E) with edge costs c : E → R+
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as follows. The distance value OPT induced by the optimal selection of the
k center nodes has to coincide with the cost value of some edge. Let R with
|R| ∈ O(n2) be the respective set of all edge costs. Then for any r ∈ R, a
subgraph Gr(V,Er) of G is constructed where Er := {e ∈ E | c(e) ≤ r}. If
a Dominating Set (DS) of size at most k exists in Gr, then it follows that
OPT ≤ r. The goal is hence to find the smallest r for which a sufficiently small
DS exists. But as computing a DS of minimum size is an NP-hard problem itself,
another step is needed to find an approximate solution in polytime. For that,
the graph G2

r is considered, which contains an edge between two nodes if there
is a path of hop length at most two in Gr. It can be proven that any Maximal
Independent Set (MIS) in G2

r has a size of at most the size of a DS in Gr. At
the same time for any node in G there is a node in the MIS at distance at most
2r. Hence, returning the MIS for the smallest value r ∈ R for which it has size
at most k results in a 2-approximation for k-Center.

For ECS, we do not necessarily assume that the given graph is complete. Here,
the set R is formed by the possible shortest path distances from the locations
of interest towards the potential edge centers. Nevertheless, for NECS we can
instrument parametric pruning to design a 3-approximation.

We compute R and for each r ∈ R (in ascending order) we do the following:
We construct G2

r and find a maximal independent set I in G2
r. Then, we construct

a graph F = (I, E′) with an initially empty edge set: For each edge e ∈ E, find
e′ := {z ∈ I | c(z, e) ≤ r} and add it to E′ if |e′| ≥ 1. (Every constructed edge e′

has at most two incident nodes because the neighborhoods of its corresponding
edge’s endpoints contain at most one node of I each. So, e′ can be a simple edge
or a loop.) Compute a minimum edge cover S′ for F and return S := {e ∈ E |
e′ ∈ S′}, i.e. the edges in the original graph corresponding to the edges in the
edge cover, if it has at most k edges.

Theorem 3. The parametric pruning algorithm for NECS guarantees an
approximation factor of 3.

Proof. The returned solution S contains at most k edges by design. Every node
v ∈ V has distance at most 3r from an edge e ∈ S: The distance of any node v
to its nearest node z ∈ I in the independent set is at most 2r by construction.
The distance from any node z ∈ I to its nearest chosen edge e ∈ S is at most r
because e′ is incident to z in F . Hence, the total distance is at most 2r + r = 3r.

r ≤ OPT: We show |S′| ≤ k if r ≥ OPT. Let S∗ be an optimum solution to
the NECS instance, and assume r ≥ OPT. For every node z ∈ I there is an edge
ez ∈ S∗ at distance at most OPT. So the corresponding edge e′

z contains at least
one node (namely z) and is contained in E′. Define the set S′

∗ := {e′
z | z ∈ I}.

We have |S′
∗| ≤ |S∗| = k and S′

∗ is a valid edge cover of F (because r ≥ OPT).
Therefore, the minimum edge cover S′ has at most k edges, too; so the algorithm
returns when r = OPT at the latest.

To sum up, the algorithm returns a set S of at most k edges such that every
node has distance at most 3r to it and r ≤ OPT. ��
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This parametric pruning algorithm can be adjusted to give a 4-approximation
for PECS. See the appendix for details.

Theorem 4. There is a 4-approximation algorithm for PECS.

We remark that the parametric pruning technique is mostly interesting from a
theoretical perspective unless the input graph and OPT are very small. Other-
wise, already the construction of G2

r is quite time consuming despite the overall
polynomial running time.

4.2 Greedy Selection

The arguably simplest algorithm for approximating k-Center is the greedy
approach (GREEDY). It starts by selecting an arbitrary point as center in the
first round. In every subsequent round, it always selects the point with maximum
Euclidean distance to the already selected centers.

We can easily adapt the algorithm to deal with segments in the plane or edges
in a graph, by always selecting the segment/edge with largest distance to the
already selected ones. But now the question arises what quality guarantee can
be shown. The proof of the approximation factor of 2 for k-Center relies on the
triangle inequality. However, as shown in Fig. 1, distances between segments or
edges do not have to obey the triangle inequality. To upper bound the violation
that might occur, we will use the paramater ψ := L

� in our analysis, where L
is the length of the longest segment/edge in the input, and � the length of the
shortest segment/edge, respectively.

Theorem 5. GREEDY is a (ψ + 2)-approximation algorithm for k-Segment-
Center.

Proof. The proof follows the argumentation for the k-Center greedy algorithm.
Suppose there is a segment with a distance larger than (2 + ψ) · OPT to the
nearest selected segment. By construction, this means that the pairwise distance
between selected segments is also larger than (2 + ψ) · OPT. So we have a set S
of k +1 segments with pairwise distances larger than (2+ψ) ·OPT. At least two
segments a, b ∈ S are assigned to the same segment s in the optimum solution
(pigeonhole principle). It holds:

c(a, b) ≤ c(a, s) + L + c(s, b) ≤ L + 2OPT

=
(

L

OPT
+ 2

)
· OPT ≤

(
L

�
+ 2

)
· OPT = (ψ + 2) · OPT

This is a contradiction; hence the largest distance is at most (ψ + 2) · OPT. ��
We observe that the proof works whenever we can ensure that � lower bounds

OPT. Next, we investigate for the three ECS problems for which values of k this
observation can be exploited.

Lemma 3. For EECS, if k < |D| where D is an optimal MEDS solution, then
GREEDY guarantees a ψ + 2 approximation.
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Proof. Clearly, � is a lower bound as long as k is smaller than the optimal MEDS
as then there needs to be at least one edge which is not adjacent to any centre,
and hence the distance of that edge to its nearest center is lower bounded by
the length of the shortest edge in the graph. ��
Lemma 4. NECS can be approximated within a factor of ψ + 2 for any k.

Proof. Let S be an optimal MEC solution. For NECS, � is a valid lower bound
for the maximum distance of a node to its nearest center if k < |S| as then there
needs to exist a node which is not incident to a center. For k ≥ |S|, a MEC
constitutes an optimal ECS solution anyway, see Lemma 2. ��
Lemma 5. PECS can be approximated within a factor of ψ + 2 for any k.

Proof. If k is smaller than the optimal MEC solution S, then � is a lower bound
for the optimal PECS solution based on the same argument as given above for
NECS and hence GREEDY provides the desired approximation guarantee. If
k ≥ |S|, then we can simply compute a MEC in polynomial time. This MEC
yields a distance of at most L/2 while the optimum is at least �/2 as long as not
all edges are allowed to be selected (then the problem would become trivial).
Accordingly, also for large edge budgets, a PECS solution with distance at most
ψ + 2 times the optimum can be computed in polytime. ��

Taking the length L of the longest (instead of shortest) edge as a lower bound
on the optimum solution in the proof of Theorem 5 leads to the following:

Corollary 1. For all ECS variants, if OPT > L, GREEDY guarantees a 3-
approximation.

The requirement that OPT ≥ L might appear to be rather restrictive at first
glance and it would indeed be of no use if the input graph is complete. However,
in our envisioned application scenario where we want to place facilities as parks
on edges of a (typically sparse) road network, it seems to be reasonable to assume
that the maximum driving distance to the nearest facility exceeds the maximum
edge cost in the network.

5 Practical Computation

The greedy algorithm has a running time of O(k(n log n + m)) as we need to
run Dijkstra’s algorithm in every round to identify the edge furthest from the
previously selected centers. This is viable in practice as long as the edge budget k
is sufficiently small. Furthermore, we can accelerate the computation in practice
by not always starting a completely new Dijkstra run in each round. Instead,
we always keep the distance table but push the end nodes of the newly selected
edge center with a distance of 0 in the priority queue and continue the search
from there. This ensures that only nodes that are closer to the newly selected
center than to the previous selected ones will be updated.
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However, for large values of k, the algorithm might still take too long on
large networks. Therefore, we next discuss two heuristics that are efficient for
large edge budgets.

Random selection. As we strive for a set of centers that are nicely spread over the
graph, random edge selection is actually a decent and fast approach; in particular
for a large edge budget k. We will refer to this selection strategy as RAND and
will use it as a baseline in the experiments.

MEC-based heuristic. For a more involved heuristic, we reconsider the concept
of a MEC, see Definition 4. As an optimal MEC solution S can be computed
in polytime, it is a good starting point for selecting a large set of centers. As
already shown in the previous section, for NECS, this yields an optimal solution
whenever k ≥ |S|. For EECS, the same applies as a MEC always constitutes an
edge dominating set and hence for k ≥ |S| we have distance of 0 from every edge
to its nearest MEC center. For PECS, though, a budget k > |S| might allow
for a quality gain by adding centers to the MEC until the budget is exceeded.
We select those additional edges again in a greedy fashion, but here simply by
always choosing the longest edge that is not yet a center. This is the best possible
extension strategy for a MEC, as the longest distance towards a center is always
induced by the middle point of the currently longest non-center edge. We refer
to this approach as MEC+.

6 Experiments

The algorithms proposed for practical application were implemented in Rust
1.54.0. Experiments were conducted on a single core of an AMD Ryzen Thread-
ripper 3970X 32-Core Processor clocked at 3.7 GHz with 256 GB RAM. We use
two types of graph data sets in our evaluation: Real-world road networks from
the 9th DIMACS Implementation challenge1 and generated grids with given row
and column number, randomly chosen edge weights and some random deletion
of edges to not only deal with full grids. The characteristics of some selected
instances are provided in Table 1 and Fig. 3.

Table 1. Benchmark data samples.

Name Type n m ψ

NY Road 264236 365050 36046

CAL Road 1890815 2315222 215354

USA Road 23947347 28854312 368855

100 × 80 Grid 8000 14238 7.5

200 × 150 Grid 30000 53685 1.25

Fig. 3. Edge weight distribution
in the NY instance.

1 www.diag.uniroma1.it//challenge9/download.shtml.

www.diag.uniroma1.it//challenge9/download.shtml
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6.1 Results for Small Edge Budgets

We first evaluated the RAND and the GREEDY algorithm for the ECS problems
using edge budgets k = 10, 50, 100, 500, 1000. Compared to the RAND baseline,
the greedy algorithm produces on average solutions that come with a distance
that is only about 48% of the RAND distance on road networks and 51% on
grids. In general, for larger k the performance gain of greedy in comparison to
RAND was more pronounced.

The objective function values for EECS and NECS turned out to be very
similar across all instances. However, we observe that the existence of long edges
in the graphs tends to lead to a huge discrepancy between the solution distances
of EECS/NECS and PECS due to the fact that long edges which do not become
centers automatically lead to large driving distances for PECS but not necessarily
for the other ones.

Regarding the running times of GREEDY, we observe that the algorithm
actually scales better than linear in k. This is based on our Dijkstra imple-
mentation that does not reset the whole distance table but only relevant parts.
The number of nodes that have to be settled in each round hence decreases sig-
nificantly with growing k. For example, for the USA instance (the largest one
considered), the computation took 106 s for k = 10, 263 s for k = 100 and 1338 s
for k = 1000. While the latter is of course quite time-consuming, it’s much better
than the extrapolated time from k = 10, which would predict a running time
around 10600 s for k = 1000.

6.2 Results for Large Edge Budgets

For sufficiently large edge budgets k, we know from our theoretical considera-
tions that we can simply compute the optimal solution for EECS and NECS in
polytime based on maximal matchings or MECs. For PECS, we use the MEC+
approach when the budget exceeds the size of the MEC. The MEC could be
computed on all considered instances in at most one second; and much faster on
the smaller instances. The MEC+ approach only demands to sort the remaining
edges by weight and then performing a linear sweep. Hence MEC(+) is vastly
faster than GREEDY. Furthermore, MEC+ also produces much better solutions
on average for PECS. For example, for the NY instance, GREEDY produced a
maximum distance of 15467 (in 7500 s), while using MEC+ resulted in a distance
of 938.5 (in about 8 milliseconds), which is quality-wise better by a factor of over
15 (and in terms of running time better by about six orders of magnitude). For
the CAL and USA instances, GREEDY has not produced a result after several
hours, while MEC+ finished in 0.08 s and 0.96 s, respectively.

7 Conclusions and Future Work

We have studied several edge center selection problems in graphs and identified
commonalities and differences. For NECS and PECS, we designed constant factor
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approximations, for EECS we ruled out the existence of one. Still, there is a gap
between the lower and upper approximation bounds. We also designed a greedy
algorithm suitable for practical purposes. In future work it would be interesting
to consider extended problem settings, as e.g., capacitated edge facilities.

Appendix

Appendix A: Omitted Proof

Theorem 4. There is a 4-approximation algorithm for PECS.

Proof. We use an adjusted version of the parametric pruning algorithm described
in Subsect. 4.1. We first need to argue that the set R of possible solution distance
values is still polynomially bounded despite for PECS all points on edges are
considered as locations of interest. To accomplish that we use the following
observation: For any edge e = {v, w} ∈ E the maximum distance of a point p on
e towards the nearest center is determined either by c(p, v) or c(p,w) plus the
cost of the respective end point towards its nearest center. Hence for any pair
of edges ev, ew ∈ E (including ev = ew) where ev is assumed to be the nearest
center for v and ew the nearest center for w, the point on e which has maximum
distance to ev and ew can be easily computed and the respective distance is
added to R. Accordingly, we get |R| ∈ O(n3).

Next, we make the crucial observation that if OPT = r, then all edges e ∈ E
with c(e) > 2r have to be included in the PECS solution, as otherwise the
midpoint of the edge would already have a too large distance to the end points.
Hence only if the number of these heavy edges does not already exceed k, a
PECS solution with the requested size can exist. Based on this observation, we
propose the following modification: We identify the set of edges H := {e ∈ E |
c(e) > 2r}. After computing F we find the smallest edge cover that contains all
edges H ′ := {e′ | e ∈ H} by first removing all nodes incident to H ′ from F ,
computing a smallest edge cover on the resulting graph, adding H ′ and adding
any incident edge for uncovered nodes (nodes are still not covered iff they became
isolated by removing H ′ from F ). As before, any node v ∈ V has distance at
most 3r from the set S containing the corresponding edges, and any point on an
edge has distance at most r to its nearest node. Hence, this is a 4-approximation
algorithm. ��

Appendix B: Omitted Experimental Results

First, a remark about the benchmark instances: The ψ-values for the shown
road networks are huge. It is important to note, though, that a small percentage
of the edges is very short (length of 1) or very long (L = ψ) in these graphs,
see Fig. 3 for an illustration of the edge weight distribution in NY. Considering
the applications mentioned in the introduction, as placing parks in an urban
area, such overly short or long edges would be non-sensical facilities. Hence
when modelling suitable instances for such applications, merging short edges on
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degree-2 chains or subdividing long edges would be meaningful, and accordingly
the ψ value would decrease. The grid instances hence better reflect the kind of
input we would expect for facility placement in a city road network.

In the main text we observe that GREEDY works quite fast even on large
graphs given that the edge budget is sufficiently small. And for graphs with small
ψ value (e.g. grid instances), it also comes with a proper quality guarantee. For
example, for the 200× 150 grid instance, the approximation factor is at most
3.25.

But we also observe a disadvantage of using GREEDY for road networks. As
the algorithm always selects the edge with the furthest distance to the previously
chosen ones, it often chooses centers in dead-ends, as illustrated in Fig. 4. (The
same would happen with node centers in the classical setting.) Obviously, if
the path to the dead-end is not too long, then it would make more sense to
select the center at the beginning of that path instead of the end, as this would
decrease the driving distance from all non-path edges towards the center. One
could hence improve the solution with a postprocessing step or integrate the
observation directly into the algorithm.

Fig. 4. Cutout of a road network with edge centers (blue) chosen by the greedy approx-
imation algorithm. Note that many chosen edges in this cutout are at the end of dead-
end streets. (Color figure online)

References

1. Batta, R., Lejeune, M., Prasad, S.: Public facility location using dispersion, pop-
ulation, and equity criteria. Eur. J. Oper. Res. 234(3), 819–829 (2014)
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Abstract. Let G = (V, E) be a simple graph with no isolated vertices.
A dominating set S of G is said to be a cosecure dominating set of G if
for every vertex v ∈ S there exists a vertex u ∈ V \ S such that uv ∈ E
and (S \ {v}) ∪ {u} is a dominating set of G. The Minimum Cosecure
Domination Problem is to find a minimum cardinality cosecure domi-
nating set of G. Given a graph G and a positive integer k, the Cosecure
Domination Decision Problem is to decide whether G has a cosecure
dominating set of cardinality at most k. The Cosecure Domination
Decision Problem is known to be NP-complete for bipartite, planar,
and chordal graphs. In this paper, we show that the Cosecure Dom-
ination Decision Problem remains NP-complete for split graphs, an
important subclass of chordal graphs. On the positive side, we present
a linear-time algorithm to compute the cosecure domination number of
cographs. In addition, we also study the approximation aspects of the
Minimum Cosecure Domination Problem. We show that the problem
can be approximated within an approximation ratio of (Δ+1) for perfect
graphs with maximum degree Δ. We also prove that the problem cannot
be approximated within an approximation ratio of (1− ε)ln(|V |) for any
ε > 0, unless P = NP. Moreover, we prove that the Minimum Cosecure
Domination Problem is APX-hard for bounded degree graphs.

Keywords: Cosecure Domination · Perfect Graphs · Cographs ·
NP-complete · APX-hard

1 Introduction

Throughout this paper, we consider finite, simple and undirected graphs. A set
D ⊆ V is said to be a dominating set of a graph G = (V,E), if every vertex in
V is either in D or is adjacent to some vertex in D. The minimum cardinality
of a dominating set of G is called the domination number of G and is denoted
by γ(G). Given a graph G, the Minimum Domination problem is to find a
dominating set of cardinality γ(G). The decision version of this problem is the
Domination Decision problem which takes a graph G and a positive integer
k as an instance and asks whether there exists a dominating set of cardinality
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at most k. The Minimum Domination problem and many of its variations are
vastly studied in the literature and a detailed survey of these can be found in
the books [12,13].

One of the important variations of the Minimum Domination problem is
the secure domination which is defined as follows. A dominating set S ⊆ V of
G is called a secure dominating set of G, if for every u ∈ V \ S, there exists
a vertex v ∈ S adjacent to u such that (S \ {v}) ∪ {u} is a dominating set of
G. The problem of finding a minimum cardinality secure dominating set of a
graph is known as the Minimum Secure Domination Problem. The concept
of the secure domination was first introduced by Cockayne et al. [7] in 2005.
This problem and its many variants have been extensively studied by several
researchers in [2,5,7,15,16,21,22] and elsewhere. A detailed survey on the secure
domination and its variant can be found in the book by Haynes et al. [12].

In 2014, another related variation of domination known as cosecure domina-
tion was introduced by Arumugam et al. [3]. The concept of cosecure domina-
tion was further studied in [14,19,25]. For a graph G = (V,E), a dominating
set S ⊆ V is called a cosecure dominating set, abbreviated as CSDS of G, if for
every u ∈ S there exists a vertex v ∈ V \S adjacent to u such that (S \{u})∪{v}
is a dominating set of G. The minimum cardinality of a cosecure dominating set
of G is called the cosecure domination number of G and is denoted by γcs(G).
Note that if a graph G has isolated vertices then no cosecure dominating set
exists for G. Therefore, we will consider graphs without any isolated vertices.
Also, observe that the whole vertex set V is never a cosecure dominating set of
graph G.

Given a graph G without an isolated vertex, the Minimum Cosecure Dom-
ination Problem (MCSD problem) is to find a minimum cardinality cosecure
dominating set of G. The decision version of this problem is the Cosecure
Domination Decision Problem (CSDD problem) that takes a graph G with-
out isolated vertices and a positive integer k as an instance and asks whether
G has a cosecure dominating set of cardinality at most k. Since every cosecure
dominating set is a dominating set, we have γ(G) ≤ γcs(G).

In [3], Arumugam et al. initiated the study of the Minimum Cosecure
Domination Problem and determined the cosecure domination number for
some families of the standard graph classes such as paths, cycles, wheels and
complete t-partite graphs. Further, they proved that the CSDD problem is NP-
complete even when restricted to bipartite, chordal and planar graphs. In [14],
Joseph et al. gave few bounds on the cosecure domination number for certain
families of graphs. Later in [19], Manjusha et al. characterized the Mycielski
graphs with the cosecure domination number 2 or 3 and gave a sharp upper
bound for γcs(μ(G)), where μ(G) is the mycielski of a graph G. Later in [25],
Zou et al. proved that the cosecure domination number of proper interval graphs
can be computed in linear-time.

In this paper, we extend the existing literature by investigating some algo-
rithmic and approximation-related results for the Minimum Cosecure Dom-
ination Problem. To the best of our knowledge, there is no result in the
literature regarding the approximation aspects of this problem. The paper is
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organised as follows. In Sect. 2, we give some pertinent definitions and prelim-
inary results. In Sect. 3, we show that the CSDD problem is NP-complete for
split graphs. In Sect. 4, we present a linear-time algorithm for computing the
cosecure domination number of cographs. In Sect. 5, we present some approx-
imation related results for the Minimum Cosecure Domination Problem.
We give an approximation algorithm for the problem with an approximation
ratio (Δ + 1) for perfect graphs with maximum degree Δ. We also show that
the MCSD problem cannot be approximated within an approximation ratio of
(1− ε)ln(|V |) for any ε > 0, unless P = NP. Moreover, we prove that the MCSD
problem is APX-hard for bounded degree graphs. Finally, Sect. 6 concludes the
paper.

2 Preliminaries

2.1 Definitions and Notations

Let G = (V,E) be a graph with the vertex set V = V (G) and the edge set
E = E(G). For graph theoretic definitions and notations, we refer to [23]. Let
G and H be two graphs such that V (G) ∩ V (H) = ∅. The disjoint union of
G and H is denoted by G ∪ H and is defined as the graph with the vertex set
V (G ∪ H) = V (G) ∪ V (H) and edge set E(G ∪ H) = E(G) ∪ E(H). The join
of G and H is the graph G + H with V (G + H) = V (G) ∪ V (H) as the vertex
set and E(G + H) = E(G) ∪ E(H) ∪ {uv | u ∈ V (G), v ∈ V (H)} as the edge
set. For S ⊆ V , G[S] = (S,ES) denotes the subgraph induced by S, where the
vertex set is S and edge set is ES = {uv | u, v ∈ S and uv ∈ E}.

A set S ⊆ V is an independent set if for every pair of distinct vertices u, v ∈
S, uv /∈ E. An independent set of maximum cardinality is called a maximum
independent set of G. A graph G = (V,E) is said to be a complete graph if
for any u, v ∈ V , uv ∈ E. Given a graph G = (V,E), a set C ⊆ V is said to
be a clique if G[C] forms a complete graph. A graph G = (V,E) is said to be
a split graph, if V can be partitioned into two sets K and I such that K is a
clique and I is an independent set, respectively. We represent a split graph G as
G = (K ∪ I, E). A cograph is a graph that can be constructed recursively using
the following rules:

1. K1 is a cograph.
2. Join of two cographs is a cograph.
3. Disjoint union of cographs is a cograph.

A k-coloring of a graph G = (V,E) is a function c from V to S, where S is
a set of k colors. Here, c(u) represents the color assigned to a vertex u ∈ V . A
k-coloring is said to be a proper k-coloring if for every uv ∈ E, c(u) �= c(v). A
graph G is k-colorable if it has a proper k-coloring. The chromatic number of G
is the least k such that G is k-colorable and is denoted by χ(G). The order of
a largest clique in G is called the clique number of G and is denoted by ω(G).
A graph is said to be a perfect graph if the chromatic number of every induced
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subgraph is same as the clique number of that subgraph. That is, G = (V,E) is
a perfect graph if and only if for every subset S ⊆ V , χ(G[S]) = ω(G[S]).

For a dominating set S of G and a vertex u ∈ S, if there exists a vertex
v ∈ V \ S such that uv ∈ E and (S \ {u}) ∪ {v} is a dominating set of G, then
we say that v is a replacement of u for the set S. If there does not exist any
vertex which is a replacement of u, then we say that the replacement of u does
not exist. Note that S is a CSDS, if every vertex of S has a replacement.

Let G = C1∪C2∪· · ·∪Ck be a disconnected graph, where C1, C2, . . . , Ck are
the connected components of G. Then, γcs(G) =

∑k
i=1 γcs(Ci). Thus, throughout

this manuscript, we will consider only connected graphs.
Proofs of the results marked with � are omitted due to space con-

straints.

2.2 Preliminary Results

In this section, we list out some results which are already known in the literature
and will be helpful in proving some results in this paper.

Lemma 1 [3]. If G = (X,Y,E) is a complete bipartite graph with |X| ≤ |Y |
then

γcs(G) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|Y | if |X| = 1;
2 if |X| = 2;
3 if |X| = 3;
4 otherwise.

(1)

Lemma 2 [3]. In a graph G = (V,E), let s be a support vertex and Ps be the
set of pendant vertices adjacent to s. If |Ps| ≥ 2, then every cosecure dominating
set S of G contains Ps and does not contain s.

The following corollary directly follows from the above result.

Corollary 1. Let G = (X,Y,E) be a star graph having order at least 3, where
Y is the set of pendant vertices of G and x ∈ X is the center of G. Then, every
cosecure dominating set S of G contains P and x /∈ S.

We know that a cosecure dominating set only exists for graphs without any
isolated vertices. The following lemma shows the existence of a cosecure domi-
nating set for any graph with no isolated vertices.

Lemma 3 [3]. Let G = (V,E) be a graph without any isolated vertices. Then,
any maximum independent set of G is also a cosecure dominating set of G.

3 NP-completeness Result for Split Graphs

In this section, we establish the NP-completeness of CSDD problem for con-
nected split graphs. To prove this result, we make a polynomial-time reduc-
tion from the Domination Decision problem, which is already known to be NP-
complete for split graphs [4].
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First, we present a lemma that tells about some properties of a dominating
set of a split graph.

Lemma 4.� Let G = (K∪I, E) be a connected split graph and D be a dominating
set of G of cardinality k. Then, there exists a dominating set D′ of cardinality at
most k such that D′ ⊆ K and D′ satisfies at least one of the following conditions:

1. for every vertex u ∈ D′, there exists v ∈ I such that uv ∈ E.
2. D′ ⊂ K, that is, D′ is properly contained in K.

With the help of the above lemma, we prove that the decision version of the
MCSD problem is NP-complete for connected split graphs.

Theorem 1. The CSDD problem is NP-complete for connected split graphs.

Proof. Clearly, the CSDD problem is in NP. Now, to prove the NP-hardness, we
provide a reduction from the Domination Decision problem for split graphs to the
CSDD problem for split graphs in the following way. Consider a connected split
graph G = (K ∪ I, E) and a positive integer k as an instance of the Domination
Decision problem. Assume that I = {v1, v2, . . . , vr}. We construct a graph H =
(V H , EH) from G as follows. We consider two copies I ′ and I ′′ of I, where
I ′ = {v′

1, v
′
2, . . . , v

′
r} and I ′′ = {v′′

1 , v′′
2 , . . . , v′′

r }, respectively. Define V H = K ∪
I ∪ I ′ ∪ I ′′ and EH = E ∪ {uv | u ∈ K and v ∈ I ′} ∪ {v′

iv
′
j | 1 ≤ i < j ≤

r} ∪ {viv
′
i, v

′
iv

′′
i | 1 ≤ i ≤ r}. Take C = K ∪ I ′ and J = I ∪ I ′′. Note that

V H = C ∪ J , where C is a clique and J is an independent set. Therefore, H is
a connected split graph. Note that H can be constructed from G in polynomial
time. Now, we only need to prove the following claim.

Claim 1.� G has a dominating set of cardinality at most k if and only if H has
a cosecure dominating set of cardinality at most k + |I|.

Hence, the theorem is proved. ��

4 Algorithm for Cographs

In this section, we present a linear-time algorithm to find the cosecure domina-
tion number of a given cograph. Recall that a cograph is a graph that can be
constructed recursively using the following rules:

1. K1 is a cograph.
2. Join of two cographs is a cograph.
3. Disjoint union of cographs is a cograph.

Corresponding to every cograph, there exists a unique rooted tree (cotree)
representation upto isomorphism [17]. For a connected cograph G, let the corre-
sponding cotree be denoted by TG. This cotree TG satisfies the following prop-
erties [18]:
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R
G TG

Fig. 1. Illustrating a cograph G and its cotree representation TG.

P1 Every internal vertex has at least two children.
P2 Each internal vertex of TG is either labelled as a 1-node or 0-node such that

root R is a 1-node and no two adjacent internal vertices get the same label.
P3 Leaves in TG correspond to the vertices of G. Two vertices x and y are

adjacent in G if and only if the lowest common ancestor of x and y is a
1-node in TG.

First, we give an example illustrating a cograph G and its cotree represen-
tation TG in Fig. 1. As the leaves in TG correspond to the vertices of G, we
remark that the label is same for the leaf in TG and the corresponding vertex
in G. Now, we define some notations related to the cotree TG of a cograph G.
Let R be the root vertex of TG. For a vertex x ∈ V (TG), chTG

(x) denotes the
set of children of x in TG and TG(x) denotes the subtree of TG rooted at x. The
set of leaves in TG(x) is denoted by L(x), where x ∈ V (TG). We define GTG(x)

as the subgraph of G induced on L(x). An internal vertex x of TG with label
0-node (1-node) corresponds to the induced subgraph GTG(x) of G formed by
disjoint union (join) of the induced subgraphs GTG(xi) : 1 ≤ i ≤ k of G, where
chTG

(x) = {x1, x2, . . . , xk}. Observe that GTG(R) is nothing but the cograph G
itself. The readers interested in more detailed illustration of the cotree repre-
sentation corresponding to a cograph may refer to [8,11,17,18]. Now, we prove
some lemmas that will help us in proposing the algorithm which determines the
cosecure domination number of a given connected cograph.

Consider a connected cograph G and the cotree TG corresponding to it. Let
R be the root vertex of the cotree TG. Observe that each subtree of TG represents
an induced subgraph of the graph G. The following lemma directly follows from
the properties of the cotree of a cograph.
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Lemma 5. If G is a cograph formed by the join of G1, G2, . . . , Gk, then for each
i ∈ [k], Gi is either K1 or a disconnected graph.

Note that any connected cograph G with at least two vertices can be writ-
ten as the join of k cographs G1, G2, . . . , Gk, where k ≥ 2. Observe that each
Gi corresponds to a subtree of the cotree TG. In the next lemma, we give a
characterization for the graph G to have domination number one.

Lemma 6.� Let G = G1+G2+· · ·+Gk be a cograph with k ≥ 2. Then, γ(G) = 1
if and only if there exists at least one i ∈ [k] such that Gi = K1.

Note that if x is an internal vertex of the cotree TG which is a 1-node then
using Lemma 6, it follows that γ(GTG(x)) = 1 if and only if at least one of vertex
in chTG

(x) is a leaf in the cotree TG. Now in Lemma 7, we give a characterization
for cographs to have the cosecure domination number one.

Lemma 7.� Let G = G1+G2+· · ·+Gk be a cograph with k ≥ 2. Then γcs(G) = 1
if and only if there exist p, q ∈ [k] (p �= q) such that Gp = Gq = K1.

Consider a cograph G which is the join of G1, G2, . . . , Gk, where k ≥ 3. In
the next lemma, we obtain a sufficient condition for the cographs having the
cosecure domination number two.

Lemma 8.� Let G = G1 + G2 + · · · + Gk, k ≥ 3 be a cograph. If there exist at
most one i ∈ [k] such that Gi = K1, then γcs(G) = 2.

Let G be a cograph formed by the join of two cographs G1 and G2. We first
prove an upper bound on the cosecure domination number of G, when both G1

and G2 contain at least two vertices. Later in Lemma 10, we assume that x1

is a leaf in cotree TG and obtain that the cosecure domination number of G is
equal to the domination number of G2, which is the cograph corresponding to
the subtree rooted at vertex x2 in the cotree TG.

Lemma 9.� If G = G1 + G2 is a cograph with |V (G1)|, |V (G2)| ≥ 2, then
γcs(G) ≤ 4.

Lemma 10.� If G = G1 +G2 is a cograph with G1 = K1, then γcs(G) = γ(G2).

Let G be a cograph formed by the join of two disconnected graphs G1 and
G2. In Lemma 11, we assume all the possible cases and determine the cosecure
domination number of G in each case. Observe that each connected component
of Gi corresponds to either a subtree rooted at a 1-node or a leaf in the cotree
TG.
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Lemma 11.� Let G = G1 + G2 be a cograph where G1 and G2 are disconnected
graphs. If G1 = C1 ∪ C2 ∪ · · · ∪ Cr and G2 = C ′

1 ∪ C ′
2 ∪ · · · ∪ C ′

p where Ci: i ∈ [r]
and C ′

j: j ∈ [p] are the connected components of G1 and G2, respectively. Then,
one of the following is true.

1. If |V (Ci)|, |V (C ′
j)| = 1 for all i ∈ [r] and j ∈ [p], then G is a complete

bipartite graph.
2. If there exists i ∈ [r] and j ∈ [p] such that |V (Ci)|, |V (C ′

j)| ≥ 2 then γcs(G) =
2.

3. Let there exist i ∈ [r] such that |V (Ci)| ≥ 2 and |V (C ′
j)| = 1 for all j ∈ [p].

If γ(G1) = 2 or γ(G2) = 2 then γcs(G) = 2. Otherwise, if γ(G1) ≥ 3 and
γ(G2) ≥ 3 then γcs(G) = 3.

4. Let there exist j ∈ [p] such that |V (C ′
j)| ≥ 2 and |V (Ci)| = 1 for all i ∈ [r].

If γ(G1) = 2 or γ(G2) = 2 then γcs(G) = 2. Otherwise, if γ(G1) ≥ 3 and
γ(G2) ≥ 3 then γcs(G) = 3.

Based on the above lemmas, we design an efficient algorithm Algorithm 1,
which computes the cosecure domination number of a connected cograph.
Observe that a connected cograph G = (V,E) is join of some k cographs, say
G1, G2, . . . , Gk, where k is at least 2. Using the above fact as a key, we design our
algorithm in which depending on the value of k and structure of these k cographs,
we consider different cases and compute the value of the cosecure domination
number of G (sometimes, using the domination number of Gi’s).

A cograph can be recognised in linear-time and its cotree representation can
also be computed in linear-time [8,11]. Also, it is also known that the domination
number of cographs can be computed in linear-time [20]. Thus, we have the
following result.

Theorem 2. Given a connected cograph G, the cosecure domination number of
G can be computed in linear-time.

Proof. The correctness of Algorithm 1 directly follows from Lemma 7, Lemma 8,
Lemma 10 and Lemma 11. Since, the cotree representation of a cograph can be
computed in linear-time and all the steps of the Algorithm 1 can be executed
in linear-time, the cosecure domination number of a cograph can be computed
in linear-time. ��
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Algorithm 1: Cosecure Domination Number of a Cograph
Input: A connected cograph G = (V, E) with the cotree representation TG of G.
Output: The cosecure domination number of G, γcs(G).
Let R be the root of the cotree TG and chTG(R) = {x1, x2, . . . , xk};
if (k ≥ 3) then

if (there are at least two leaves in chTG(R)) then
γcs(G) = 1;

else
γcs(G) = 2;

if (k = 2) then
Let chTG(R) = {x1, x2};
if (both x1 and x2 are leaves) then

γcs(G) = 1;

else if (exactly one of x1 or x2 is a leaf) then
Let x1 is a leaf and x2 is an internal vertex;
γcs(G) = γ(GTG(x2));

else if (both x1 and x2 are internal vertices) then
if ( both chTG(x1) and chTG(x2) has at least one 1-node ) then

γcs(G) = 2;

else if (exactly one of chTG(x1) or chTG(x2) has at least one 1-node)
then

if ( γ(GTG(x1)) = 2 or γ(GTG(x2)) = 2) then
γcs(G) = 2;

else
γcs(G) = 3;

else if (both chTG(x1) and chTG(x2) are leaves) then
Let p =min{|chTG(x1)|, |chTG(x2)|} and
q =max{|chTG(x1)|, |chTG(x2)|};
γcs(G) can be obtained using Lemma 1;

return γcs(G);

5 Approximation Results

In this section, we find the lower and upper bound on the approximation ratio
of the Minimum Cosecure Domination Problem. We also show that the
problem is APX-hard for graphs with maximum degree 4.

5.1 Upper Bound on Approximation Ratio

In this subsection, we prove that there exists a (Δ + 1)-approximation algo-
rithm for the MCSD problem for the graphs having maximum degree Δ where
a maximum independent set can be computed in polynomial time.
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Theorem 3.� Let G be a graph with maximum degree Δ. If a maximum inde-
pendent set I of G can be computed in polynomial time, then the MCSD problem
can be approximated within an approximation ratio of (Δ + 1).

Note that the MISP problem is solvable in polynomial time for perfect graphs
[10]. Using this and Theorem 3, the following corollary directly follows.

Corollary 2. The MCSD problem can be approximated within an approximation
ratio of (Δ + 1) for perfect graphs with maximum degree Δ.

5.2 Lower Bound on Approximation Ratio

In order to obtain a lower bound on the approximation ratio of the MCSD
problem, we propose an approximation preserving reduction from the Minimum
Domination problem. Before doing that let us recall a result from the litera-
ture regarding the lower bound on the approximation ratio of the Minimum
Domination problem.

Theorem 4 [6,9]. Given a graph G = (V,E), the Minimum Domination prob-
lem cannot be approximated within an approximation ratio of (1 − ε)ln(n) for
any ε > 0 unless P = NP , where n = |V |.
Theorem 5. Given a graph G = (V,E), the MCSD problem cannot be approxi-
mated within an approximation ratio of (1−ε)ln(n) for any ε > 0 unless P = NP ,
where n = |V |.
Proof. We prove this result using contradiction. First, we propose an approxima-
tion preserving reduction from the Minimum Domination problem to the MCSD
problem as follows. Suppose that a graph G = (V,E) is a given instance of
the Minimum Domination problem, where |V | = n and V = {v1, v2, . . . , vn}. We
construct a new graph G′ = (V ′, E′) from G by adding 3 new vertices x, y and z,
and making x adjacent to every vertex of V ∪{y, z}. Formally, V ′ = V ∪{x, y, z}
and E′ = E ∪ {xvi : vi ∈ V , 1 ≤ i ≤ n} ∪ {xy, xz}. Note that |V ′| = |V | + 3 and
|E′| = |E| + |V | + 2.

We claim that G has a dominating set of cardinality at most k if and only if
G′ has a cosecure dominating set of cardinality at most k + 2. To see this, first
suppose that G has a dominating set D and |D| ≤ k. Let S = D ∪ {y, z}. As x
is a replacement for every vertex of S, S is a cosecure dominating set of G′ and
|S| ≤ k + 2. Conversely, assume that G′ has a cosecure dominating set S and
|S| ≤ k + 2. Using Lemma 2, it follows that y, z ∈ S and x /∈ S. Define a set
D = S ∩ V . Clearly, D is a dominating set of G and |D| ≤ k. Hence, the claim
follows.

Now, suppose that Approx CSDS is an approximation algorithm that runs in
polynomial time and solves the MCSD problem within an approximation ratio
of α = (1 − ε)ln(|V ′|), for some fixed ε > 0. Let t be a fixed integer. Now, we
propose the following algorithm Approx DS to find a dominating set of a given
graph G.
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Algorithm 2: Approx DS
Input: A graph G = (V, E).
Output: A dominating set of G.
if there exists an optimal dominating set D of G of cardinality at most t then

return D;

else
Construct a new graph G′ using G;
Compute a cosecure dominating set S of G′ using Approx CSDS;
Define D = S ∩ V ;
return D;

Note that the Approx DS is a polynomial-time algorithm, as the algorithm
Approx CSDS runs in polynomial-time for G′ and every other step of Approx DS
can be computed in polynomial-time. If |D| ≤ t then D is an optimal dominating
set of G. Now, assume that |D| > t.

Suppose that D∗ is an optimal dominating set of G and S∗ is an optimal
cosecure dominating set of G′. Using the above reduction and discussion, it
follows that |S∗| = |D∗| + 2. Note that |D∗| > t. For a graph G, let Approx DS
computes a dominating set D of G and Approx CSDS computes a cosecure
dominating set S of G′. Here, |D| = |S|−2 ≤ α|S∗|−2 ≤ α|S∗| = α(|D∗|+2) ≤
α(1 + 2

|D∗| )|D∗| < α(1 + 2
t )|D∗|. Thus, |D| ≤ α(1 + 2

t )|D∗|. Let t be an integer
that satisfies t > 2

ε . Also note that ln(n) � ln(n+3), for sufficiently large values
of n. Thus, |D| ≤ α(1 + 2

t )|D∗| ≤ (1 − ε)ln(|V |)(1 + ε)|D∗| ≤ (1 − ε′)ln(|V |)|D∗|
where ε′ = ε2. Therefore, Approx DS approximates the Minimum Domination
problem within an approximation ratio of (1 − ε′)ln(|V |) for some ε′ > 0, which
is a contradiction to Theorem 4. Hence, the result follows. ��

5.3 APX-hardness

In this subsection, we show that the Minimum Cosecure Domination Prob-
lem is APX-hard for graphs with maximum degree 4. To prove this result, we
give an L-reduction from the Minimum Domination problem for graphs with
maximum degree 3, which is already known to be APX-hard [1]. For the defini-
tion of L-reduction, we refer to [24].

Now, we define a reduction f from an instance of the Minimum Domination
problem to an instance of the MCSD problem in the following way. Given a
connected graph G = (V,E) where V = {v1, v2, . . . , vn}, define a graph H =
(V H , EH) as described below. We consider two copies of V , V ′ = {v′

1, v
′
2, . . . , v

′
n}

and V ′′ = {v′′
1 , v′′

2 , . . . , v′′
n}. The vertex set of H is V H = V ∪ V ′ ∪ V ′′ and the

edge set of H is EH = E ∪ {viv
′
i, v

′
iv

′′
i |1 ≤ i ≤ n}. Here, |V H | = 3n and

|EH | = |E|+2n. Note that if the maximum degree of G is 3, then the maximum
degree of H is 4 and H can be constructed from G in polynomial time. The
following result is obtained by Arumungum et al. [3].
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Lemma 12 [3]. If H is the graph constructed from G using above construction
f , then γcs(H) = γ(G) + |V (G)|.

Next, to prove that the MCSD problem is APX-hard for graphs with maxi-
mum degree 4, we show that the reduction f is an L-reduction.

Claim 2.� f is an L-reduction.

Now, the following theorem directly follows.

Theorem 6. The MCSD problem is APX-hard for graphs with maximum
degree 4.

The proof of the following corollary directly follows from Theorem 6 and
Theorem 3.

Corollary 3. The MCSD problem is APX-complete for perfect graph with max-
imum degree 4.

6 Conclusion

In this paper, we focused on the algorithmic complexity of the Minimum Cose-
cure Domination Problem on different graph classes. It is known that the
decision version of the MCSD problem is NP-complete for bipartite, planar and
chordal graphs. We proved that the problem remains NP-complete even when
restricted to split graphs. We also proposed a linear-time algorithm to compute
the cosecure domination number of cographs. Further, we studied the approx-
imation aspects of the Minimum Cosecure Domination Problem and we
showed that the problem can be approximated within an approximation ratio
of (Δ + 1) for perfect graphs. In addition, we proved that the MCSD problem
cannot be approximated within an approximation ratio of (1 − ε)ln(|V |) for any
ε > 0, unless P = NP. Moreover, we proved that the MCSD problem is APX-
complete for bounded degree perfect graphs. The complexity status of the Min-
imum Cosecure Domination Problem is still unknown in many important
subclasses of bipartite and chordal graphs. It would be an interesting research
direction to work on some of these graph classes.
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Abstract. We introduce a system of Latin rectangles that is a combination of
finite number of Latin rectangles that are given by either concrete Latin rectan-
gles or variables representing a Latin rectangle. Using such systems, we prove the
existence of a combinatorial object which is considered as a generalization of a
Latin square. It is defined on the surface of a regular hexahedron so that any sub-
array of any net of the hexahedron is a Latin rectangle. Second, we introduce two
combinatorial objects, the existence of which are equivalent to 1-factorizations
of the complete tripartite graph K2n,2n,2n and the complete quadripartite graph
Kn,n,n,n, respectively. We also show how to construct 1-factorizations of K2n,2n,2n
and Kn,n,n,n.

Keywords: Latin square · Regular hexahedron · Sudoku puzzle ·
1-factorization · Complete tripartite graph · Complete quadripartite graph

1 Intoroduction

Let A be an n×m matrix filled with integers in {1,2,3, . . . ,k}, where k = max(n,m).
If no integer appears more than once in any row or column, then A is called a Latin
rectangle. A Latin square of order n is an n× n Latin rectangle [4]. A Latin square
can be considered as the multiplication table of a quasigroup, and vice versa. It has
been studied from the standpoint of theoretical interests and applications to statistics
and experimental designs. In this paper, we study a generalization of a Latin square that
is defined on the surface of a regular hexahedron. A sudoku puzzle is an example of a
Latin square. Our generalization can be applied to construct another puzzle similar to
a sudoku puzzle. In addition, the construction is strongly related to 1-factorization of
tripartite graph K2n,2n,2n and the complete quadripartite graph Kn,n,n,n.

A subgraph of a graph G= (V,E) is called a factor of G if it includes all of the ver-
tices ofG. If every vertex of a factor has degree h, then it is called an h-factor. Therefore,
a 1-factor of G is a spanning 1-regular subgraph of G. If E can be partitioned into dis-
joint 1-factors, then G is called 1-factorizable [7,9]. For example, a complete bipartite
graph Kn,n is 1-factorizable because the existence of a 1-factorization is equivalent to
that of a Latin square of order n. It is conjectured that every regular graph of order 2n
is 1-factorizable if degree is λ × 2n where λ ≥ 1

2 by Chetwynd-Hilton [2]. Strong [8]
shows that every connected Cayley graph on a finite even order Abelian group is 1-
factorizable. The complete tripartite graphs K2n,2n,2n is the Cayley graph Γ (S : G) with
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Bagchi and R. Muthu (Eds.): CALDAM 2023, LNCS 13947, pp. 351–362, 2023.
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the cyclic group G of order 6n and S = G \H with the subgroup H of G generated by
the element of order 2n. The complete qadripartite graph Kn,n,n,n is the Cayley graph
Γ (S : G) with the cyclic group G of order 4n and S = G\H with the subgroup H of G
generated by the element of order n. Therefore, K2n,2n,2n and Kn,n,n,n are 1-factorizable.
However, no concrete construction of a 1-factorization of K2n,2n,2n and Kn,n,n,n is pro-
vided in [8]. In this paper, we provide a concrete construction of a 1-factorization of
K2n,2n,2n and Kn,n,n,n.

2 Latin Hexahedra

A system of Latin rectangles filled with integers in {1,2,3, . . . ,n} is a finite set of Latin
rectangles so that each of them is a combination of concrete Latin rectangles filled with
integers in {1,2,3, . . . ,n} and variables representing Latin rectangles. We say that a sys-
tem of Latin rectangles has a solution if we can obtain Latin rectangles by substituting
a certain Latin rectangle for each variable appearing in the system.

Example 1. Consider a system of Latin rectangles (1) filled with integers in {1,2,3,4},
where A and B are 2×2 Latin rectangles and X is a variable representing an 2×2 Latin
rectangle.

A X B X (1)

The system of Latin rectangles (1) has a solution if there exists a 2×2 Latin rectangleC
filled with integers in {1,2,3,4} so that both A C and B C are 2×4 Latin rectangles.

Suppose A and B are arrays
1 2
3 4

and
2 1
4 3

, respectively. LetC be an array
3 4
1 2

. Then

C makes both A C and B C Latin rectangles and soC is a solution of (1). On the other

hand, suppose A and B are arrays
1 2
3 4

and
4 3
2 1

, respectively. Then (1) has no solution.

Example 2. Consider a system of Latin rectangles (2) filled with integers in {1,2,3,4},
where A is a 2×2 Latin rectangle. We denote the array obtained from A by rotating π

2
counterclockwise by A.

A X A X (2)

Suppose A is an array
1 2
3 1

. Then A is the array
2 1
1 3

. LetC be an array
3 4
4 2

. ThenC

makes both A C and A C Latin rectangles and so C is a solution of (2). On the other

hand, if A is an array
1 2
3 4

, then (2) has no solution.

A regular hexahedron of order n is a polyhedron consisting of six faces, each of
which forms an n×n matrix filled with integers in {1,2,3, . . . ,4n}. A net of a hexahe-
dron is an arrangement of a non-overlapping edge-joined polygon which can be folded
along edges to become faces of the hexahedron. A circuit of a regular hexahedron of
order n is a 1× 4n subarray in one of its nets. A circuit of a regular hexahedron of
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order 2 is shown in Fig. 1. We note that there exist precisely 3n circuits on a regular
hexahedron of order n.

A regular hexahedron of order n is called Latin if every integer in {1,2,3, . . . ,4n}
appears exactly once in every circuit. A Latin regular hexahedron of order 2 and its net
are shown in Fig. 2.

Fig. 1. Circuit of a regular hexahedron of order 2

21
43

14
32

3

1
24

6
7 5

8
5

7 6
8

8
6 5

7

1 2

4 3

2 4 1 3 8 6 5 7

3 1 2 4 5 7 6 8

5 6

8 7

Fig. 2. Latin regular hexahedron of order 2 and its net

A Sudoku Latin square is a 9×9 matrix filled with integers in {1,2,3,4,5,6,7,8,9}
such that each column, each row, and each of the nine 3×3 sub-matrices contain all of
the integers from 1 to 9. It appears in the number-placement puzzle. We introduce a sim-
ilar property into Latin regular hexahedra. Let L be a Latin regular hexahedron of order
n. We say L is a Latin sudoku regular hexahedron if every integer in {1,2,3, . . . ,4n}
appears exactly once on each face. For example, a net in Fig. 3 gives a Latin sudoku
regular hexahedron of order 4. We also say that L is a Latin quasi-sudoku regular hex-
ahedron with multiplicity m if every integer in {1,2,3, . . . ,4n} appears exactly m times
on each face.

1513 4 14
8 9 6 7
11 5 2 10
1216 1 3
10141112 9 1615 2 13 8 3 7 1 5 6 4
1 6 151613 7 4 8 2 1211 5 3 14 9 10
13 2 3 9 11 1 12 5 4 1410 6 7 16 8 15
4 8 7 5 6 14 3 10 1 1615 9 111312 2
14 7 5 8
3 4 1315
2 1 1011
1612 9 6

Fig. 3. Net of a Latin sudoku regular hexahedron of order 4
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Two circuits of a regular hexahedron L are called parallel if they do not intersect. On
the other hand, any two distinct non-parallel circuits intersect at exactly two cells on L.
Let p be a cell on L. There are precisely two distinct circuits which include p. The other
cell in which the two circuits intersect is called the contraposition of p and denoted by
p. Therefore, the contraposition p is uniquely determined for each cell p. We say two
faces A and B of L are in contraposition if each cell of A has its contraposition on B.
Cells p,q and r and their contrapositions are displayed on a net of regular hexahedron
of order 2 in Fig. 4.

p

r r

q q

p

Fig. 4. Contrapositions on a net

We have seen a Latin regular hexahedron of order 2 and a Latin sudoku regular
hexahedron of order 4 in Fig. 2 and 3, respectively, however, we do not know whether
such objects exist in general. The lemma below gives necessary conditions for such
objects to exist.

Lemma 1. (1) If a Latin regular hexahedron of order k exists, then k is even. (2) If a
Latin quasi-sudoku regular hexahedron of order k with multiplicity m exists, then we
have k = 4m. (3) If a Latin sudoku regular hexahedron of order k exists, then k = 4.

Proof. (1) Let L be a Latin regular hexahedron of order k. Note that L has six faces and
each face is filled with integers in {1,2, . . . ,4k}. Suppose L has faces A,B,C,D,E,F
and that one of its nets is given below.

A
C D E F
B

Let x be the number of appearance of 1 in A or B, y the number of appearance of 1 inC
or E, and z the number of appearance of 1 in D or F , respectively. Note that C D E F
is a Latin rectangle by the definition of a Latin regular hexahedron. Since each row
contains exactly one 1 and there exist k rows, we have y+ z = k. Similarly, we obtain
x+ y= k and x+ z= k. Then we obtain x = y= z= k/2. Since each of x,y and z is an
integer, k must be even.
(2) Let L be a Latin quasi-sudoku regular hexahedron of order k with multiplicity m.
We have already shown x = y = z = k/2. Since x is the number of appearance of 1 in
either A or B and the number of appearance of 1 in A and the number of appearance of
1 in B are equal, 1 appears k/4 times in A. Therefore, k = 4m.
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(3) Let L be a Latin sudoku regular hexahedron of order k. Since 1 appears k/4 times in
each face by (2) and 1= m= k/4, we have k = 4. �

To prove the existence of a Latin regular hexahedron of order 2n and a Latin quasi-
sudoku regular hexahedron of order 4m with multiplicity m, we relate a Latin regular
hexahedron to systems of Latin rectangles.

Lemma 2. Let n be any positive integer. A system of Latin rectangles with a variable
Y , which represents a 2n×2n array filled with integers in {1,2, . . . ,4n},

Y

Y

Y

Y

(3)

has a solution, where Y,

Y

and

Y

stand for the arrays obtained by rotating Y counter-
clockwise π

2 , π and 3π
2 , respectively.

Proof. Suppose A1,A2,A3 and A4 are Latin squares of order n such that |Ai|∩|Aj|= /0 if
i �= j and |A1|∪|A2|∪|A3|∪|A4|= {1,2, . . . ,4n}, where |A| stands for the set of integers
appearing on A. Let A be a 2n×2n array

A1 A2

A4 A3
obtained by pasting A1,A2,A3, and A4.

Obviously, the arrays A

A

and A

A

are Latin rectangles and so A is a solution of (3).
�

Theorem 1. Let n be any positive integer. A system of Latin rectangles with vari-
ables (R,T,U,V,W,Y ), each of which represents a 2n× 2n array filled with integers
in {1,2, . . . ,8n},

U V W Y

R U T

W

Y

R V

T
(4)

has a solution. If a sextuple (A,B,C,D,E,F) is a solution of (4), then

A
C D E F
B

(5)

provides a net of a Latin regular hexahedron of order 2n.
Conversely, if (5) is a net of a Latin regular hexahedron of order 2n, then the sextuple

(A,B,C,D,E,F) is a solution of (4).

Proof. Suppose A and B are 2n× 2n arrays that are solutions of (3) such that |A| =
{1,2, . . . ,4n} and |B| = {4n+1,4n+2, . . . ,8n}. We start with a 4n×8n array given by
(6).

A B

AB

B

A B

A

(6)

Since A and B are solutions of (3) and |A|∩ |B|= /0, (6) is a 4n×8n Latin rectangle with
{1,2, . . . ,8n}. Adding a new row to (6) by Hall’s marriage theorem, we obtain a Latin
rectangle. Suppose the newly added row is formed by four 1×2n arrays G, J, K and L
as in (7).

A B

AB

B

A B

A

G J K L
(7)
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We note that |G| ∩ |K| = /0= |J| ∩ |L|. Adding a new row formed by four 1×2n arrays

K

,

L

,

G

, and

J

above the array (7), we obtain a (4n+2)×8n array (8).

K L G J

A B

AB

B

A B

A

G J K L

(8)

Since (4n+1)×2n arrays
A
B
G

and

A
B

K
are Latin rectangles and |G| ∩ |K| = /0, the (4n+

2)× 2n array

K

A
B
G

is also a Latin rectangle. Likewise, the (4n+ 2)× 2n arrays

L

B

A

J

,

G
A
B

K

and

J

B

A

L

are Latin rectangles. Since the 1× 8n array G J K L is a Latin rectangle, so

is the array

K L GJ

. It follows that the array (8) is a Latin rectangle. Adding a new
row formed by four 1×2n arraysM, N, P and Q to (8) by Hall’s marriage theorem, we
similarly obtain a Latin rectangle (9).

K L G J

A B

AB

B

A B

A

G J K L
M N P Q

(9)

Adding a new row formed by four 1× 2n arrays

P

, Q,

M

,

N

above the array (9), we
obtain a (4n+4)×8n array (10).

P Q M N
K L G J

A B
AB

B

A B

A

G J K L
M N P Q

(10)

As we have seen above, the array (10) is a Latin rectangle. We continue this processes
2n times and obtain a Latin square of order 8n shown in (11), where C,D,E and F are
2n×2n arrays, respectively. E F C D

A B

AB

B

A B

A

C D E F

(11)
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Then, the 8n×2n arrays

E

A
B
C

and

F

B

A

D

are Latin rectangles and so the arrays

C D E F

A C B

E
F

A D

B

are 2n×8n Latin rectangles. Thus, the sextuple (A,B,C,D,E,F) is a solution (4). It is
easy to see that (5) is a net of a Latin regular hexahedron of order 2n. The converse is
obvious. �

We remark that not every Latin regular hexahedron is constructed in the way given
by the proof of Theorem 1. It follows from Lemma 1 (1) and Theorem 1 that a Latin
regular hexahedron of order k exists if and only if k is even. Next, we shall prove the
existence of a Latin quasi-sudoku regular hexahedron of order 4m with multiplicity m.

Lemma 3. Let L be a Latin regular hexahedron of order 2n. Every integer appears
exactly n times on each pair of faces in contraposition and so it appears exactly 3n
times on L in total.

Proof. We use the same notation in the proof of Lemma 1. Since k = 2n, we have
x= y= z= k/2= n. Hence, every integer appears exactly n times on each pair of faces
in contrapositions. The total number of appearance of each integer on L is x+ y+ z.
Consequently, each integer appears exactly 3n times on L in total. �

Lemma 4. Let L be a Latin regular hexahedron. Suppose an integer i appears on a
cell p and an integer j appears on its contraposition p. Let L′ be a regular hexahedron
obtained from L by replacing i by j on p and j by i on p, respectively. Then L′ is also a
Latin regular hexahedron.

Proof. Every circuit not passing p or p on L′ contains the same integers as the corre-
sponding circuits on L because no cells except for p or p are altered. On the other hand,
the circuits passing p and p on L′ contain the same integers as the corresponding circuits
on L because p and p are located on these two circuits. Therefore every integer appears
exactly once on any circuit of L′, and therefore, L′ is a Latin regular hexahedron. �

Lemma 5. Suppose k1,k2, . . . ,kl are positive integers and k = k1+ k2+ · · ·+ kl . Let A
be a 2× k array on which every integer i in {1,2, . . . , l} appears exactly 2ki times. By
transposing integers on columns of A, we can obtain a 2× k array so that every integer
i in {1,2, . . . , l} appears exactly ki times on both the first and the second row.

Proof. We prove by induction on k. If k = k1 = 1, then 1 appears exactly once on both
the first and second row. Suppose the theorem is true for any positive integer less than k.
Let A be a 2× k array on which each integer i appears exactly 2ki times. Suppose there
exists a column of A such that a certain integer i appears on both the first and second
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row of the column. Let A′ be a 2×(k−1) array obtained from A by deleting the column.
By the inductive hypothesis, A′ can be rearranged to a 2× (k−1) array on which each
integer appears exactly same times in the first row and the second row by transposing
integers on a column of A′. Applying the corresponding transpositions to A, we obtain a
2×k array on which each integer i appears exactly ki times on both the first and second
row.

Next suppose that there exists no column of A such that a same integer is placed on

both the first and second row. Choose any column
x1
x2

of A, where x1,x2 ∈ {1,2, . . . , l}.
Note that x1 �= x2 by our assumption. There exists another column of A on which x2 is

placed because x2 appears 2k2 times on A. It must be either of the forms
x2
x3

or
x3
x2

. If a

column of the form
x3
x2

is found, then we transpose x2 and x3 on the column to obtain

x2
x3

. Therefore, we may assume that we found a column of the form
x2
x3

. If x3 = x1,

then we have two distinct columns
x1
x2

and
x2
x1

of A. Deleting these two columns from

A, we obtain a 2× (k− 2) array A′. By inductive hypothesis, A′ can be rearranged by
transposing integers on columns so that each integer appears exactly same times in the
first and second row. Applying the corresponding rearrangement to A, we obtain a new
2× k array such that each integer i appears exactly ki times both in the first and second
row.

Nowwe suppose x3 �= x1. Then x1,x2,x3 are distinct from one another. There exists a
column in A on which x3 is placed since x3 appears 2k3 times in A. We can choose a col-

umn of the form
x3
x4

by transposing the first row and the second row if necessary, where

x4 ∈ {1,2, . . . , l}. Note that x3 �= x4. If x4 /∈ {x1,x2}, then we analogously choose a col-
umn

x4
x5

. We continue similar selection of columns. Suppose we have chosen columns

x1
x2

,
x2
x3

,
x3
x4

, . . .,
xi−2

xi−1
and

xi−1

xi
, where x1,x2,x3, . . . ,xi−1 are distinct from one another

and xi−1 �= xi, however, xi ∈ {x1,x2,x3, . . . ,xi−2}. Suppose xi = x j (1 ≤ j ≤ i−2). Then

we have columns
x j
x j+1

,
x j+1

x j+2
,
x j+2

x j+3
, . . .,

xi−2

xi−1
and

xi−1

x j
. In these columns the integers

x j,x j+1, . . . ,xi−1 appears exactly once in both the first and the second row. Deleting
these columns from A, we obtain a new 2× (k− i+ j) array A′. By inductive hypoth-
esis, A′ can be rearranged by transposing numbers on columns so that each number i
appears exactly same times in the first and second row. Applying the corresponding
operations to A, we obtain a new 2× k array so that each number i appears exactly ki
times in the first and second row. �

Theorem 2. There exists a Latin quasi-sudoku regular hexahedron of order 4n with
multiplicity n for every positive integer n. In particular, there exists a Latin sudoku
regular hexahedron of order 4.
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Proof. Let L be a Latin regular hexahedron of order 4n, where n is a positive inte-
ger. The existence of a Latin regular hexahedron of order 4n has been proven in
Theorem 1. Every integer appears exactly 2n times in each pair of faces in contrapo-
sition by Lemma 3. Transposing integers on a cell and its contraposition does not harm
the property of a Latin regular hexahedron by Lemma 4. We assume that a pair of faces
in contraposition forms a 2× 16n2 array in which the first row consists of a face and
the second row consists of its contraposition. Then we can obtain a new Latin regular
hexahedron of order 4n so that each integer appears exactly n times in every face by
transposing integers on one face and another in contraposition by Lemma 5. �

3 Latin Three-Axis Design and Latin Four-Axis Design

Applying systems of Latin rectangles, we prove the existence of a 1-factorization of the
complete tripartite graph K2n,2n,2n and the complete quadripartite graph Kn,n,n,n for any
positive integer n.

3.1 1-Factorizations

We consider a system of Latin rectangles (12) with variables (V,W,Y ), whereV ,W and
Y represent an n×n array filled with integers in {1,2,3, . . . ,2n}.

V W W Y V Y (12)

If a triple (A,C,D) is a solution of (12), then we say that (A,C,D) is a Latin three-axis
design of order n. The triple (A,C,D) is considered as a complex with three axes op,
oq and or shown in Fig. 5. Each face is coordinated by two of its axes. This implies that
any subarray of any net of the complex in Fig. 5 is a Latin rectangle.

o
p q

r

A

C D
A
C D

A
C

D

Fig. 5. Latin three-axis design and its net

Equivalently, if every array in (13) is a Latin rectangle, then a triple (A,C,D) is a
Latin three-axis design.

A C C D A D (13)

Next, we consider a system of Latin rectangles (14) with variables (R,T,U,V,W,Y ),
where R,T,U,V,W andY represent an n×n array filled with integers in {1,2,3, . . . ,3n}.
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R T U U Y W T V Y R W V (14)

If a sextuple (A,B,C,D,E,F) is a solution of (14), then we say that (A,B,C,D,E,F)
is a Latin four-axis design of order n. The sextuple (A,B,C,D,E,F) is considered as a
complex with four axes op, oq, or and os shown in Fig. 6.

A
C

B

F
D

E

o

p

q

r

s

Fig. 6. Latin four-axis design

Each face is coordinated by two of its axes. This implies that if every array in (15) is a
Latin rectangle, then a sextuple (A,B,C,D,E,F) is a Latin four-axis design.

A B C C F E B D F A E D (15)

Lemma 6. (1) There exists no Latin three-axis design of order 2n−1 for every positive
integer n. (2) There exists a Latin three-axis design of order 2n for every positive integer
n. (3) There exists a Latin four-axis design of order n for every positive integer n.

Proof. (1) Let (A,C,D) be a solution of (12). Each cell of A,C and D are filled with
integers in {1,2,3, . . . ,2n}. Suppose x,y and z are the numbers of appearance of 1 in

A C , C D , A D , respectively. Every row of A C contains exactly one appearance of
1 and so x= n. Likewise, we have y= z= n. Therefore, 1 appears 3n

2 times in A,C and
D in total and so n must be even.
(2) Suppose that A1,C1,D1,A2,C2,D2,A3,C3,D3,A4,C4 and D4 are Latin squares of
order n, |A1| = |C1| = |D1|, |A2| = |C2| = |D2|, |A3| = |C3| = |D3|, |A4| = |C4| = |D4|
and |A1| ∩ |A2| = |A1| ∩ |A3| = |A1| ∩ |A4| = |A2| ∩ |A3| = |A2| ∩ |A4| = |A3| ∩ |A4| = /0.

We set A =
A1 A2

A4 A3
, C =

C2 C4

C3 C1
and D =

D1 D3

D2 D4
. Then every array in (13) is a Latin

rectangle and so (A,C,D) is a Latin three-axis design.

(3) Let A,B,C,D,E and F be Latin squares of order n satisfying |A| = |F |, |B| =
|E|, |C| = |D| and |A| ∩ |B| = |B| ∩ |C| = |C| ∩ |A| = /0. It is obvious that every array
in (15) is a Latin rectangle and so (A,B,C,D,E,F) is a Latin four-axis design.

�

Lemma 7. Let n be any positive integer. (1) K2n,2n,2n is 1-factorizable if and only if
there exists a Latin three-axis design of order 2n. (2) Kn,n,n,n is 1-factorizable if and
only if there exists a Latin four-axis design of order n.
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Proof. (1) Let (A,C,D) be a Latin three-axis design of order 2n with axes op,oq,or
like in Fig. 5. Suppose op,oq and or are coordinated by disjoint sets X ,Y and Z,
respectively. We label edges of K2n,2n,2n with independent sets X ,Y and Z. Suppose
X = {x1,x2, . . . ,x2n}, Y = {y1,y2, . . . ,y2n} and Z = {z1,z2, . . . ,z2n}. We label the edge
xiy j by the (xi,y j) entry of A, the edge y jzk by the (y j,zk) entry of D, and the edge xizk
by the (xi,zk) entry of C. Then the subgraph consisting of edges labeled by an integer
a ∈ {1,2, . . . ,4n} is a 1-factor of K2n,2n,2n, and hence, K2n,2n,2n is partitioned into dis-
joint 1-factors. Conversely we suppose that K2n,2n,2n is 1-factorizable. Let X ,Y and Z be
the independent sets of K2n,2n,2n, where X = {x1,x2, . . . ,x2n}, Y = {y1,y2, . . . ,y2n} and
Z = {z1,z2, . . . ,z2n}. Every edge is labeled by an integer in {1,2,3, . . . ,4n}. We now
define a Latin three-axis design (A,C,D) as follows. Let A be a 2n×2n array obtained
by coordinating X and Y ; if the edge xiy j is labeled by an integer p in {1,2,3, . . . ,4n},
then we place p on the (xi,y j)-cell of A. Similarly, let C be a 2n× 2n array obtained
by coordinating X and Z and let D be a 2n× 2n array obtained by coordinating Y and
Z. It is easy to see that the triple (A,C,D) is a three-axis design. Similarly, we relate a
Latin four-axis design (A,B,C,D,E,F) and a 1-factorization of Kn,n,n,n by coordinating
A by X andW , B by Y andW , C byW and Z, D by X and Y , E by X and Z and F by
Y and Z as op is coordinated byW , oq by Z, or by Y and os by X . This implies that a
1-factorization of Kn,n,n,n gives a Latin four-axis design and vice versa. �

Theorem 3. K2n,2n,2n and Kn,n,n,n are 1-factorizable for every positive integer n.

We show a 1-factorization of K2,2,2 and the corresponding Latin three-axis design
which is constructed by the method given in the proof of Lemma 6 (2) in Fig. 7. We
remark that Lemma 6 and 7 show how to construct 1-factorizations of K2n,2n,2n and
Kn,n,n,n for any positive integer n.

y1

x1 x2

y2 z2

z1

A
x1
x2

y1 y2

1 2

4 3

C
z1
z2

y1 y2

2 4

3 1

D
z1
z2

x2 x1

1 3

2 4

Fig. 7. 1-factorization of K2,2,2 and corresponding Latin three-axis design

3.2 Construction of a Latin Regular Hexahedron Using Latin Three-Axis
Designs

The existence of a Latin regular hexahedron of order 2n is proved in Theorem 1. We
shall provide another construction of a Latin regular hexahedron of order 2n using Latin
three-axis designs. Suppose L1 and L2 are Latin three-axis designs such that |L1| =
{1,2,3, . . . ,4n} and |L2| = {4n+ 1,4n+ 2,4n+ 3, . . . ,8n}, nets of which are given in
(16), where A,B,C,D,E and F are 2n×2n arrays, respectively.
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L1 :
A
C D

L2 :
E

BF (16)

We can obtain a Latin regular hexahedron pasting L1 and L2. Its nets are shown in Fig. 8.
The Latin regular hexahedron given in Fig. 2 is constructed in this fashion. Transposing
integers on cells in contraposition by Lemma 4, we can construct more Latin regular
hexahedra.

C
A

D E

FB

C
A

D E F
B

Fig. 8. Nets of Latin regular hexahedron obtained by pasting L1 and L2
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Abstract. A matching is called stable if it has no blocking pair, where
a blocking pair is a man-woman pair, say (m, w), such that m and w are
not matched with each other in the matching but if they get matched
with each other, then both of them become better off. A matching is
called non-crossing if it does not admit any pair of edges that cross
each other when all men and women are arranged in two parallel verti-
cal lines with men on one line and women on the other. Two notions of
matchings that are stable as well as non-crossing have been identified in
the literature, namely (i) weakly stable non-crossing matching (WSNM)
and (ii) strongly stable non-crossing matching (SSNM). An SSNM is a
non-crossing matching which is stable in the classical sense, whereas in a
WSNM, a blocking pair satisfies an extra condition that it must not cross
any matching edge. It is known that the problem of finding a WSNM,
which always exists in an SMI instance, is polynomial time solvable. How-
ever, the problem of determining the existence of an SSNM in SMTI is
known to be NP-complete. We show that this problem is fixed-parameter
tractable (FPT) when parameterized by total length of ties. We intro-
duce a new notion of stable non-crossing matching, namely semi-strongly
stable non-crossing matching (SSSNM). We prove that the problem of
determining the existence of an SSSNM in SMI is NP-complete even if
size of every man’s preference list is at most two. On the positive side,
we show that this problem is polynomial time solvable if every man’s
preference list contains at most one woman.

Keywords: Stable non-crossing matching · Polynomial time
algorithm · NP-complete · Fixed-parameter tractable (FPT)

1 Introduction

An instance of the classical Stable Marriage problem (SM) consists of n men
and n women with every member (man or woman) having a preference list that
contains all members of opposite gender in a strict order of preference. A match-
ing is a set of man-woman pairs such that no two pairs have a man or woman in
common. Our task is to find a matching such that there are no two members of
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the opposite gender who would both prefer each other over their current part-
ners. Such a matching is known as stable matching. The variant of SM where
preference lists may be incomplete, that is, the preference lists may not con-
tain all members of opposite gender, is denoted by SMI. Note that the members
which are not present in some person a’s preference list are unacceptable to a,
that is, a can not be matched with them. A tie is a set of members which are
preferred equally by some person. The variant of SM where the preference lists
may contain ties as well as may be incomplete, is denoted by SMTI.

A matching is called non-crossing if it does not admit any pair of edges that
cross each other when all men and women are arranged in two vertical lines.
The notion of stable non-crossing matchings has been recently introduced by
Ruangwises and Itoh [16]. In their setting, all the members are arranged on two
parallel vertical lines with men arranged on one line and women on the other.
They established two notions of stability with non-crossingness, namely strongly
stable non-crossing matching (SSNM) and weakly stable non-crossing matching
(WSNM). An SSNM is a non-crossing matching which is stable in the classical
sense, whereas in a WSNM, a blocking pair satisfies an extra condition that it
must not cross any matching edge.

The famous Rural Hospitals theorem [6,14,15] guarantees that “once
matched, always matched”, that is, if a member is matched in one stable match-
ing of an SMI instance, then it remains matched in all stable matchings of that
instance. So, while defining blocking pair for the notion of stable non-crossing
matching, it is reasonable to always consider those members which are already
matched. But a WSNM ignores a blocking pair (if that crosses any edge of the
matching), even if it involves already matched members. Therefore, we define a
new variant of stable non-crossing matching, namely semi-strongly stable non-
crossing matching (SSSNM), that takes matched members into consideration as
well and hence is stronger than a WSNM in the sense of stability and an alter-
native to SSNM. We define it formally in the next section. In Sect. 4, we provide
an SMI instance in which SSNM does not exist, but an SSSNM exists.

Ruangwises and Itoh [16] have presented an O(n2)-time algorithm to find a
WSNM, which always exists in an SMI instance. Subsequently, Hamada et al.
[9] have shown that the problem of determining the existence of an SSNM in
an SMI instance is polynomial time solvable. In contrast, they have proved that
the problem of determining the existence of an SSNM, given an SMTI instance,
is NP-complete (for the weak stability [10]), even for a restricted case when ties
are present on only one side and size of each preference list is at most two.
Stable non-crossing matchings have not been studied from the parameterized
complexity point of view in the literature, but there is some other research
dealing with the parameterized complexity of stable matching problems [1,13].

In this paper, we initiate the first study of parameterized complexity of sta-
ble non-crossing matchings. Further, we introduce a new variant of stable non-
crossing matching, namely semi-strongly stable non-crossing matching (SSSNM),
an alternative to SSNM and WSNM. The main contributions of the paper are
as follows:
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1. We establish that the problem of determining the existence of an SSSNM,
given an SMI instance, is NP-complete, even if every man contains at most
two women in the preference list.

2. We present a linear time algorithm for finding an SSSNM in an SMI instance
for the case when every man contains at most one woman in the preference
list. We deduce that an SSSNM always exists in such an instance.

3. We show that the problem of determining the existence of an SSNM in an
SMTI instance (for the weak stability) is FPT when parameterized by total
length of ties.

2 Preliminaries

Let M = {m1,m2,m3, . . . , mn} and W = {w1, w2, w3, . . . , wn} be two sets con-
sisting of n men and n women, respectively. Every man (resp. woman) has a
preference list in which he (resp. she) ranks the women (resp. men) in a decreas-
ing order of preference. The rank of an individual b in a’s preference list is
denoted by ranka(b). A tie in a person a’s preference list is a set of individuals
among which a is indifferent, that is, whom a prefers equally. The length of a
tie Ti, denoted by l(Ti), is the number of persons in Ti. We say that m prefers
w1 to w2 if w1 and w2 are not tied, and w1 proceeds w2 in m’s preference list.
A pair (m,w) is said to be admissible if w ’s preference list contains m, and m’s
preference list contains w. We may use the terms “pair” and “edge” correspon-
dently because a man-woman pair can also be viewed as an edge on the plane.
A matching M

′
is a set of disjoint pairs of M × W . A blocking pair of a match-

ing M
′

is an admissible pair (mi, wj) ∈ (M × W ) \ M
′

such that mi is either
unmatched or prefers wj to his current matched partner, and in return wj also
is either unmatched or prefers mi to her current matched partner. A matching
M

′
is said to be stable if it does not admit any blocking pair. Note that when

ties are involved, three notions of stability, named weak, strong, and super, are
identified in the literature [10]. In this paper, we refer to the weak notion of
stability [10] whenever ties are present. We do not mention this exclusively in
the rest of the paper to avoid confusion with the term ‘weakly’ in WSNM. For
additional details on matching with preferences, see [7,11].

Next, we define crossingness. For this, we assume that all men and women are
arranged in two vertical lines, with mi (resp. wi) lying immediate above to mi+1

(resp. wi+1). Two edges cross each other if they cut at an internal point of both
segments. Formally, two edges (mi, wj) and (mk, wl) are said to cross each other
if (k − i)(l − j) < 0. A matching is called non-crossing if it does not admit any
pair of edges that cross each other. A blocking pair of M

′
is called a non-crossing

blocking pair, abbreviated as n.c.b.p., of M
′

if it does not cross any matching
edge. A matching M

′
is called a strongly stable non-crossing matching (SSNM) if

(i) M
′
is non-crossing and (ii) M

′
does not admit any blocking pair. A matching

M
′

is called a weakly stable non-crossing matching (WSNM) if (i) M
′

is non-
crossing and (ii) M

′
does not admit any non-crossing blocking pair. Note that

an SSNM is stable in the classical sense, whereas a WSNM need not be. Next, a
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blocking pair (m,w) of M
′
is called a matched crossing blocking pair, abbreviated

as m.c.b.p., of M
′

if (i) (m,w) crosses some edge (one or more) of M
′

and (ii)
both m and w are matched in M

′
. We define a new variant of stable non-crossing

matching, namely semi-strongly stable non-crossing matching (SSSNM).

Definition 1. A matching M
′

is called a semi-strongly stable non-crossing
matching (SSSNM) if (i) M

′
is non-crossing, (ii) M

′
does not admit any non-

crossing blocking pair (n.c.b.p.), and (iii) M
′
does not admit any matched cross-

ing blocking pair (m.c.b.p.).

A parameterized problem is a pair (Π, k) resulted by associating an integer
k known as parameter, to each instance of a decision problem Π. Further, a
parameterized problem is said to be fixed-parameter tractable (FPT) if there is
an algorithm that solves it in O(f(k) · nc) time for some constant c, where f is
a computable function depending only on the parameter k, and n is the input
size. For further details on parameterized complexity theory, see [3,4].

3 Strongly Stable Non-crossing Matchings

In this section, we study strongly stable non-crossing matchings from the param-
eterized complexity point of view. In particular, we show that the problem of
finding a strongly stable non-crossing matching in an SMTI instance is fixed-
parameter tractable if total length of ties is considered as the parameter. Our
proof technique is based on the proof given in [13]. First, we extend the propo-
sition 1 of [8] to show the uniqueness of an SSNM in an SMI instance, whenever
exists.

Proposition 1. Strongly stable non-crossing matching in an SMI instance, if
exists, is unique.

Proof. Let there be more than one SSNM in an SMI instance I. Since every
SSNM is stable in the classical sense. So if a member is matched in one SSNM,
then it remains matched in every SSNM because of the Rural Hospitals theorem
[6,14,15]. By using the fact that these members can be matched in a non-crossing
way in a unique manner only, we get that a strongly stable non-crossing matching
in an SMI instance, if exists, is unique. ��
Tie-breaking procedure: Assume that the instance I contains r ties T1, T2,
. . . , Tr. First, we arrange members of every tie in a fixed order. Let tij denote
the j th element of tie Ti. For every i = 1 to r, we define a bijection αi,j : Ti →
{1, 2, . . . , l(Ti)} ∀ j = 1 to l(Ti), such that αi,j ranks tij at the first place among
all the members of tie Ti, and αi,j ranks the members of Ti \ {tij} arbitrarily
in a strict order succeeding tij . We break ties according to each element of∏r

i=1{αi,1, αi,2, . . . , αi,l(Ti)}.

Lemma 1. Suppose a matching M is stable in an SMTI instance I. Then M
remains stable in the instance I

′
created from I by improving the rank of one or

more matched persons of M in their matched partner’s preference list.
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Proof. This is an immediate consequence of the fact that a blocking pair of M
in I

′
also blocks M in I. ��

Next, let I be an SMTI instance. Let M be a matching of I. We obtain a
corresponding SMI instance IM using M, by breaking ties in I as follows: If for
some ki ∈ {1, 2, . . . , l(Ti)}, the ki-th element of tie Ti is matched in M with the
person whose preference list contains the tie Ti, then we break the ties using
the element (α1,k1 , α2,k2 , . . . , αr,kr

). Note that, if none of the element of some
tie Ti is matched with the person whose preference list contains Ti, then we
arbitrarily select a ki to get the corresponding bijection αi,ki

for breaking the
tie Ti. We call such an SMI instance IM an SMIM instance, owing to the fact
that IM is created by using the matching M. The following lemma due to [12]
shows that the stability of a matching, say M, in an SMTI instance carries over
to the corresponding SMIM instance and vice-versa.

Algorithm 1. SSNM in SMTI
Input: An SMTI instance I with M = {m1, m2, . . . , mn} and W = {w1, w2, . . .
, wn} as the sets of men and women, respectively. Without loss of generality, let I
contains r ties T1, T2, . . . , Tr.
Output: A strongly stable non-crossing matching in I or reports that none exists.
begin

Set k =
r∏

i=1

l(Ti), where l(Ti) denotes the length of tie Ti;

Obtain the k SMI instances from I by applying the tie-breaking procedure described
before Lemma 1, and order them arbitrarily as I1, I2, . . . , Ik;
Initialize p = 0 ;
for j = 1 to k+1 do

if p=k then
return No SSNM;

else
Run Gale-Shapley algorithm [5] on instance Ij to obtain a stable matching,
say M1;
Let M

′
= M \ {mu | mu is unmatched in M1} and W

′
= W \ {wv | wv

is unmatched in M1};

Sort the members of M
′

and W
′

in increasing order of indices to obtain
permutations α and β, respectively;
Match lth (l = 1 to |M ′ |) member of α with lth member of β. Let the
matching so obtained be M2;
if M2 is stable in Ij then

return M2;

else
p = p + 1;

Lemma 2. A matching M is stable in an SMTI instance I iff M is stable in the
corresponding SMIM instance IM .
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Proof. Let M be a stable matching in I (resp. IM ). Suppose, M is not stable in
IM (resp. I ). Let (mi, wj) be a blocking pair of M in IM (resp. I ). Then (mi, wj)
is a blocking pair of M in I (resp. IM ) as well, a contradiction. Therefore,
matching M is stable in IM (resp. I ). ��
Theorem 1. Algorithm 1 gives an SSNM in an SMTI instance, say I, or reports
that none exists, in O(kk · n2) time, where k is the total length of ties.

Proof. Suppose there exists an SSNM, say M, in the instance I. Then, by
Lemma 2, M remains stable and hence strongly stable in the corresponding
SMIM instance, say IM . Also, non-crossingness carries over to IM as well. There-
fore, M is an SSNM in the instance IM , created by breaking ties according to
some element of

∏r
i=1{αi,1, αi,2, . . . , αi,l(Ti)}. Also, by proposition 1, SSNM M

is unique in IM . Now, since our algorithm runs through all instances created
using every element of

∏r
i=1{αi,1, αi,2, . . . , αi,l(Ti)} to find an SSNM until one is

established. So, if the algorithm establishes an SSNM in some instance which is
checked earlier than IM , it reports the established SSNM and terminates. Oth-
erwise, it reduces to the instance IM . The Gale-Shapley algorithm [5] is applied
to IM . Let the matching so obtained be M1. Due to the Rural Hospitals theorem
[6,14,15], the set of matched members in every stable matching of IM is same
as in M1. Then by using proposition 1 and the fact that the members which are
matched in M1 can be re-matched in a non-crossing manner in only one way, we
get that M2 is same as M, where M2 is the matching obtained after re-matching
the agents of M1 in the non-crossing manner. Since M is strongly stable, so is
M2 and hence the algorithm outputs M2, an SSNM.

Conversely, let the algorithm reports a matching, say S. We prove that there
exists an SSNM in the instance I. It is sufficient to show that S is an SSNM
in I. Since, S is reported by the algorithm, so S is non-crossing and stable in
some SMI instance, say Id, created by breaking ties according to some element
of

∏r
i=1{αi,1, αi,2, . . . , αi,l(Ti)}. So, by Lemma 1, S is stable in I

′
d, where I

′
d is

created from Id as follows: If in Id, (gi, hk) ∈ S, and hk is present in some tie Tz of
gi’s preference list in the original instance I, then we obtain I

′
d by interchanging

hk in gi’s preference list in Id with that element of Tz which is best ranked in
Id among all the elements of Tz, say with hj . This process is repeated for every
matched agent with respect to S which is present in some tie of his/her matched
partner’s preference list in the original instance I. Rest of the members of the
preference list remain at their respective places as in Id. The construction is
shown below.

I gi : . . . . . . (hj . . . hk . . . hl). . . . . .
Id gi : . . . . . . hj . . . hk . . . hl . . . . . .

I
′
d gi : . . . . . . hk . . . hj . . . hl . . . . . .

Coming back to the proof, since S is stable in I
′
d, so by Lemma 2, S is

stable in I. Furthermore, S is non-crossing in Id implies S is non-crossing in I.
Therefore, S is a strongly stable non-crossing matching in I.

Next, we analyse the time complexity of the algorithm. For every instance
created from I, we run Gale-Shapley algorithm which takes O(n2) time. Further,
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the required sorting in our case can be done in time less than O(n2). Subse-
quently, the matching M2 can be obtained in O(n) time and further it can be
checked for stability in O(n2) time. We need to repeat this process for at most
l(T1).l(T2). . . . .l(Tr) ≤ kr ≤ kk many instances. So, overall time complexity for
the algorithm is O(kk · n2). ��

This theorem leads us to the following corollary.

Corollary 1. The problem of determining the existence of an SSNM in an
SMTI instance is fixed-parameter tractable with ‘total length of ties’ as the
parameter.

4 Semi-strongly Stable Non-crossing Matchings

In this section, we introduce a new variant of stable non-crossing matching,
namely semi-strongly stable non-crossing matching (SSSNM), an alternative to
SSNM and WSNM. As defined in Sect. 2, we say a matching M

′
is semi-strongly

stable non-crossing matching (SSSNM), if M
′

is non-crossing and M
′

neither
admits any non-crossing blocking pair nor any matched crossing blocking pair.
Consider the following SMI instance involving 4 men, m1, m2, m3, m4, and 4
women, w1, w2, w3, w4:

m1 : w1 w4 w1 : m1

m2 : w2 w2 : m4 m2

m3 : w3 w3 : m3

m4 : w2 w4 w4 : m4 m1

This instance has no SSNM, but contains a SSSNM of size 2, {(m1, w1),
(m4, w2)}, and a WSNM of size 4, {(m1, w1), (m2, w2), (m3, w3), (m4, w4)}.

We show that the problem of finding a semi-strongly stable non-crossing
matching in an SMI instance is NP-complete, even if size of every man’s pref-
erence list is at most two, whereas linear time solvable if size of every man’s
preference list is at most one. We denote by (p,q)-SMI, a variant of SMI in
which size of every man’s preference list is at most p, and size of every woman’s
preference list is at most q. Note that, p ≤ n and q ≤ n. If p = n (resp. q = n),
then we say that men’s (resp. women’s) preference list is unrestricted in size.

4.1 (2,n)-SMI

We prove that the problem of finding an SSSNM in a (2,n)-SMI instance is NP-
complete by giving a polynomial reduction from the 3-SAT problem which is
known to be NP-complete [2].

Theorem 2. The problem of determining the existence of an SSSNM, given a
(2,n)-SMI instance, is NP-complete.

Proof. First, we show that the problem is in NP. Note that checking whether an
edge is n.c.b.p. or m.c.b.p. can be done in O(n2) time. So, given a matching M of
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an SMI instance containing n men m1,m2, . . . , mn and n women w1, w2, . . . , wn,
one can easily verify in polynomial time that M is non-crossing, and does not
have any n.c.b.p. as well as does not have any m.c.b.p. Hence, the problem of
determining the existence of an SSSNM in a (2,n)-SMI instance lies in NP. To
show hardness, we give a polynomial reduction from the 3-SAT problem which
is known to be NP-complete [2].

Let g be a 3-SAT instance with k clauses Cj (1 ≤ j ≤ k) and n variables xi

(1 ≤ i ≤ n). We create an SMI instance I from g as follows.

Construction of Men and Women: Corresponding to each clause Cj , we
create two women aj , bj and five men c1j , c2j , c3j , d1j , d2j . Corresponding to each
variable xi, we create four women w−

i , w+
i , q−

i , q+i and four men m−
i , m+

i , p−
i ,

p+i . So, I consists of 2k+4n women and 5k+4n men. Also, we create 3k dummy
women to equalise the number of men and women in I.

Construction of Preference Lists: Assume that there are ni negative occur-
rences of the variable xi in g. Thus for each l (1 ≤ l ≤ ni), let xi appear lth
time negatively in the ri

lth literal (1 ≤ ri
l ≤ 3) of the si

lth clause Csi
l
. Simi-

larly, assume that there are pi positive occurrences of the variable xi in g. Thus
for each l (1 ≤ l ≤ pi), let xi appear lth time positively in the ui

lth literal
(1 ≤ ui

l ≤ 3) of the vi
lth clause Cvi

l
. Next, for each α (1 ≤ α ≤ 3), assume that

the α-th literal of Cj is xjα
. If xjα

appears positively in Cj then let σjα
= ‘+’,

otherwise if xjα
appears negatively in Cj then let σjα

= ‘−’. Create preference
list for each person as follows.

(1 ≤ i ≤ n) m+
i : w+

i w−
i : p−

i c
ri
1

si
1

c
ri
2

si
2

. . . c
ri

ni

si
ni

m−
i

m−
i : w−

i w+
i : p+i c

ui
1

vi
1

c
ui
2

vi
2

. . . c
ui

pi

vi
pi

m+
i

p+i : q+i w+
i q+i : p+i

p−
i : q−

i w−
i q−

i : p−
i

(1 ≤ j ≤ k) c1j : w
σj1
j1

bj aj : d2j d1j

c2j : w
σj2
j2

bj bj : c1j c2j c3j

c3j : w
σj3
j3

bj

d1j : aj

d2j : aj

Note that we take preference list of each dummy woman as empty. Next,
alignment of the members is shown in part (a) of Fig. 1. Note that, we can place
all the dummy women below the woman bk. But since their preference lists are
empty, so we do not consider them in the alignment and hence in the rest of the
proof.
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Clearly, the above construction can be completed in polynomial time. Also,
we can easily note that the above created instance is an SMI instance. An illus-
tration of the construction of instance I from an example formula g is shown in
Fig. 2 in the appendix.

m+
1

m−
1

m+
n

m−
n

p−1
p+1

p−n
p+n
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c21

c31
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c2k

c3k

d1k

d2k

(a)

w−
1

w+
1

w−
n

w+
n

q−1
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q−n
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a1
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(b)

c1jcjc

c2jcjc

c3jcjc

d1jdjd

d2jdjd bj
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Type I

c1jcjc

c2jcjc

c3jcjc

d1jdjd

d2jdjd bj

aj

Type II

c1jcjc

c2jcjc

c3jcjc

d1jdjd

d2jdjd bj

aj

Type III

Fig. 1. (a) Alignment of members. (b) Matching of crj ’s in M.

Claim. g is satisfiable iff I admits a semi-strongly stable non-crossing matching.

Proof. (⇒) Let g be satisfiable. Let S be the satisfying assignment of g. We
construct an SSSNM M of I using S.

For 1 ≤ i ≤ n, 1 ≤ j ≤ k,

1. Add (m−
i , w−

i ) to M if xi = 1 with respect to S, otherwise add (m+
i , w+

i ) to
M if xi = 0 with respect to S.

2. Next, add the edges (p−
i , q−

i ) and (p+i , q+i ) to M.
3. Finally, if Cj is satisfied by the first literal, then add (c1j , bj) to M . Otherwise

if Cj is satisfied by the second (resp. third) literal, then add the edges (c2j , bj)
and (d1j , aj) (resp. (c3j , bj) and (d2j , aj)) to M . If Cj is satisfied by more than
one literal, then select one literal among the satisfying ones arbitrarily.
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One can easily observe using the alignment of the members in Fig. 1 that the
matching M is non-crossing. It remains to show that M is semi-strongly stable.
Note that the men m+

i and m−
i can not form an m.c.b.p. because either they are

unmatched or matched with the first preference. Also, m+
i (resp. m−

i ) can not
form any n.c.b.p. because either that is matched with the first preference or if it
is unmatched then it can be matched to his only possible partner via a crossing
with the edge (m−

i , w−
i ) (resp. (m+

i , w+
i )). Furthermore, the men p−

i and p+i can
participate neither in any n.c.b.p. nor in any m.c.b.p. as they are matched with
their first preference.

Next, we show that none of the cr
j ’s (r = 1, 2, 3) can form an n.c.b.p. Note

that in M, cr
j ’s are matched in exactly one of the three types as shown in part (b)

of Fig. 1. In type I, c2j and c3j can not form an n.c.b.p. because their only possible
non-crossing partner bj is matched with her first preference. In type II, c3j can
not form an n.c.b.p. because its only possible non-crossing partner bj is matched
with c2j , a better choice than c3j . Also, in type II, c1j can not form an n.c.b.p.
because both the members in his preference list can be matched with him only
via a crossing. Further, in type III, both c1j and c2j can not form an n.c.b.p.
because all the members in their preference lists can be matched with them only
via a crossing. So, no unmatched cr

j can form an n.c.b.p. Also, no matched cr
j

can form any n.c.b.p. as such a cr
j is matched with his second preference bj and

it is not possible to match that cr
j with a better choice, i.e., with w

σjr
jr

without
crossing the edges (p−

i , q−
i ) and (p+i , q+i ) (i = 1 to n).

We further show that none of the cr
j ’s (r = 1, 2, 3) can form an m.c.b.p. First,

note that matched cr
j can not form any m.c.b.p. because if cr

j is matched, then
Cj is satisfied by rth literal. If that rth literal of Cj is xi (resp. −xi), then first
member of cr

j ’s preference list is w+
i (resp. w−

i ) for some i ∈ {1, 2, . . . , n}. Then
cr
j would like to get matched with this w+

i (resp. w−
i ). But such a w+

i (resp. w−
i )

is unmatched in M (because Cj is satisfied by xi (resp. −xi) =⇒ xi = 1 (resp.
xi = 0) =⇒ w−

i (resp. w+
i ) is matched in M =⇒ w+

i (resp. w−
i ) is unmatched

in M ). Therefore, cr
j (r = 1, 2, 3) can not form any m.c.b.p.

Next, ds
j (s = 1, 2) can not form any n.c.b.p., as from part (b) of Fig. 1 one can

note that either (i) both d1j and d2j have to cross an edge to form a blocking pair
(Type I) or (ii) d1j is already matched to his first preference, and d2j has to cross
an edge to form a blocking pair (Type II), or (iii) d2j is already matched to his first
preference, and the only possible partner of d1j , that is, aj is matched with her
first preference (Type III). Also, ds

j (s = 1, 2) can not participate in an m.c.b.p.
because either they are unmatched or matched with the first preference. Hence
no men can form an n.c.b.p. or an m.c.b.p. So, matching M is semi-strongly
stable.
(⇐) Suppose I admits a semi-strongly stable non-crossing matching, say M. We
show that g has a satisfying assignment.

Claim. w’s can not be matched with c’s or with p’s in M. Hence, for l = ‘−’, ‘+’
and 1 ≤ i ≤ n, pl

i must match with ql
i in M.
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Proof. First we show that w’s can not be matched with c’s in M. Let if possible,
wl

t (t ∈ {1, 2, . . . , n}) be the topmost (according to the alignment) among w’s
which are matched with c’s in M. But then (wl

t, p
l
t) is an n.c.b.p. of M, a con-

tradiction. So, w’s can not be matched with c’s in M. Next, suppose some p’s
(one or more) are matched with w’s. Let pl

b (b ∈ {1, 2, . . . , n}) be the bottomest
(according to the alignment) among p’s which are matched with w’s in M. This
implies (pl

b, q
l
b) is an n.c.b.p. of M, a contradiction. So, p’s can not be matched

with w’s in M. Therefore, for l = ‘−’, ‘+’, pl
i must match with ql

i in M for every
i = 1 to n, else (pl

i, q
l
i) will be an n.c.b.p. of M. ��

In the above claim, we have shown that w’s can not be matched with c’s or
with p’s in M. But since matching M is semi-strongly stable, so exactly one of
(m−

i , w−
i ) and (m+

i , w+
i ) must be in M , and for each j (1 ≤ j ≤ k), either (i)

(c1j , bj) ∈ M or (ii) (c2j , bj), (d1j , aj) ∈ M, or (iii) (c3j , bj), (d2j , aj) ∈ M.
Now, we construct a satisfying assignment S for g as follows: If (m−

i , w−
i ) ∈

M then set xi = 1 in S, otherwise if (m+
i , w+

i ) ∈ M then set xi = 0 in S.

Claim. S satisfies g.

Proof. Suppose S does not satisfy g. Let Cj be the unsatisfied clause. Suppose
the rth (r ∈ {1, 2, 3}) literal of Cj is xi (resp. −xi). But Cj is unsatisfied, so
xi = 0 (resp. xi = 1) with respect to S. This implies (m+

i , w+
i ) ∈ M (resp.

(m−
i , w−

i ) ∈ M) due to construction of S. Now, since for each j (1 ≤ j ≤ k),
exactly one of the three (i) (c1j , bj) ∈ M, (ii) (c2j , bj), (d1j , aj) ∈ M, and (iii)
(c3j , bj), (d2j , aj) ∈ M holds. If case (i) holds, then (c1j , w

+
i ) (resp. (c1j , w

−
i )) forms

an m.c.b.p. of M if the first literal of Cj is xi (resp. −xi), a contradiction as the
matching M is semi-strongly stable. Similarly, if case (ii) holds, then (c2j , w

+
i )

(resp. (c2j , w
−
i )) forms an m.c.b.p. of M if the second literal of Cj is xi (resp.

−xi), a contradiction. Finally, if case (iii) holds, then (c3j , w
+
i ) (resp. (c3j , w

−
i ))

forms an m.c.b.p. of M if the third literal of Cj is xi (resp. −xi), a contradiction.
So, g has no unsatisfied clause with respect to S. Therefore, S satisfies g. ��

��
Hence, the theorem is proved. ��

4.2 (1,n)-SMI

We present a polynomial time algorithm to find a semi-strongly stable non-
crossing matching in a (1,n)-SMI instance, which always exists.

Theorem 3. Algorithm 2 gives a semi-strongly stable non-crossing matching in
a (1,n)-SMI instance in O(n) time.

Proof. Without loss of generality, we assume that there is at least one admissible
pair in the instance. Since every man has at most one woman in his preference
list, so there are at most n proposals. Hence the algorithm terminates with a
matching, say M, and the overall time complexity for the algorithm is O(n).
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Algorithm 2. SSSNM in (1,n)-SMI
Input: A (1,n)-SMI instance I containing n men m1, m2, . . . , mn and n women w1,
w2, . . . , wn.
Output: A semi-strongly stable non-crossing matching in I.
begin

Initialize M = φ, max = 0, and j = 1;
while j ≤ n do

if preference list of wj is empty then
j = j + 1;

else Let mi be the highest ranked man in wj ’s preference list
if i > max then

M = M ∪ {(mi,wj)};
max = i ;
j = j + 1;

else if i < max
Delete mi from wj ’s preference list;

return M

We show that the matching M, returned by the algorithm is semi-strongly
stable non-crossing. Note that, we add an edge to M only if the condition “i >
max” is satisfied. This implies that the newly added edge does not cross any of
the previously added edges of M. This proves that M is non-crossing. Next, M
does not have any m.c.b.p. because every matched man is matched with his first
preference. It remains to show that M does not have any n.c.b.p. For the sake of
contradiction, suppose (mi, wj) is an n.c.b.p. of M. Therefore, wj prefers mi to
her matched partner. Note that wj prefers mi even if she is unmatched because
an individual always prefers being matched rather than remaining unmatched.
Thus mi must have been deleted from wj ’s preference list during the execution
of the algorithm. This implies (mi, wj) crosses some edge of M, a contradiction.
So, M does not have any n.c.b.p. and hence M is SSSNM. ��
This theorem leads us to the following corollary.

Corollary 2. Semi-strongly stable non-crossing matching always exists in a
(1,n)-SMI instance.

5 Conclusion

We have shown that the problem of finding an SSNM in an SMTI instance is
fixed-parameter tractable (FPT) when parameterized by total length of ties.
Further, we have introduced a new variant of stable non-crossing matching,
namely semi-strongly stable non-crossing matching (SSSNM). We have shown
that the problem of determining the existence of an SSSNM, given a (2,n)-SMI
instance, is NP-complete. On the positive side, we have presented a linear time
algorithm to find an SSSNM in a (1,n)-SMI instance, which always exists. It
remains open to consider SSSNM on other alignments than vertical lines.
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A Illustration of Construction of Instance in the Proof
of Theorem 2
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Fig. 2. An illustration of the construction of instance I from a formula g in the proof
of Theorem 2. The matching edges corresponding to a satisfying assignment for g, say
x1 = 1, x2 = 0, x3 = 0, are shown in blue colour. (Color figure online)
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Abstract. Given a graph G, Min-Max-Acy-Matching is the problem
of finding a maximal matching M in G of minimum cardinality such
that the set of M -saturated vertices induces an acyclic subgraph in G.
The decision version of Min-Max-Acy-Matching is known to be NP-
complete even for planar perfect elimination bipartite graphs. In this
paper, we give the first positive algorithmic result for Min-Max-Acy-
Matching by presenting a linear-time algorithm for computing a mini-
mum cardinality maximal acyclic matching in proper interval graphs.

Keywords: Matching · Acyclic matching · Minimum maximal acyclic
matching · Linear-time algorithm

1 Introduction

All graphs considered in this paper are simple, connected, and undirected. For
a positive integer k, let [k] denote the set {1, . . . , k}. For any graph G, let V (G)
denote its vertex set and E(G) denote its edge set. For any graph G, the subgraph
of G induced by S ⊆ V (G) is denoted by G[S]. For a graph G and a set X ⊆ V (G),
we use G − X to denote G[V (G) \ X]. A subset M ⊆ E(G) of edges of a graph
G is a matching if no two edges of M share a common vertex. Given a matching
M of G, a vertex v ∈ V (G) is M -saturated if there exists an edge e ∈ M incident
on v. Given a graph G and a matching M , we use the notation VM to denote the
set of M -saturated vertices of G. For a matching M , if uv ∈ M , then v is the M -
mate of u and vice versa. A matching M in a graph G is an acyclic matching if
the subgraph G[VM ] is acyclic (a forest). Given a graph G, Acy-Matching asks
to find an acyclic matching of maximum cardinality in G [7]. An acyclic matching
M of G is a maximal acyclic matching if M is not properly contained in any other
acyclic matching of G. Given a graph G, Min-Max-Acy-Matching asks to find
a maximal acyclic matching of minimum cardinality in G.

The minimum maximal acyclic matching number of G is the minimum cardi-
nality of a maximal acyclic matching among all maximal acyclic matchings in G,
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https://doi.org/10.1007/978-3-031-25211-2_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25211-2_29&domain=pdf
https://doi.org/10.1007/978-3-031-25211-2_29


378 J. Chaudhary et al.

and we denote it by μ′
ac(G). For an example, consider the graph G with vertex

set V (G) = {a, b, c, d, e, f} and edge set E(G) = {ab, bc, cd, de, ae, bd, af, ef}.
M1 = {ab} and M2 = {af, bc} are two maximal acyclic matchings of G and M1

is a minimum maximal acyclic matching of G. Therefore, μ′
ac(G) = 1.

Related Work. Max-Min and Min-Max versions of many important opti-
mization problems like Domination [1], Feedback Vertex Set [6], Vertex
Cover [2], and Hitting Set [5] have recently attracted much interest from
many researchers. Considering the Min-Max (resp. Max-Min) version of max-
imization (resp. minimization) problems, that is, minimizing (resp. maximizing)
the size of a maximal (resp. minimal) solution of the corresponding problem is
a natural approach. The initial motivation for studying such problems was an
attempt to analyze the worst possible performance of a naive heuristic; however,
these problems have gradually been revealed to possess a rich combinatorial
structure that makes them interesting in their own right.

Interestingly, unlike the classical Max-Matching problem, the Min-Max
version of matching is known to be NP-hard, as it is equivalent to the Inde-
pendent Edge Domination problem [15]. Apart from that, over the years,
the Min-Max version of many well-known variants of restricted matchings like
induced matching and uniquely restricted matching have also been considered
in the literature [4,9–11,14].

In 2005, Goddard et al. [7] introduced the concept of minimum maximal
acyclic matching and proved that Min-Max-Acy-Matching is NP-hard for
general graphs. Recently, we proved that the decision version of Min-Max-
Acy-Matching is NP-complete for planar perfect elimination bipartite graphs
[3]. We also proved that Min-Max-Acy-Matching cannot be approximated
within a ratio of n1−ε, for any ε > 0 unless P = NP, even for bipartite graphs,
and Min-Max-Acy-Matching is APX-hard for 4-regular graphs [3].

Our Contribution. In Sect. 2, we propose a linear-time algorithm to compute
a minimum cardinality maximal acyclic matching in proper interval graphs. The
brief idea behind our greedy algorithm is given below. Proper interval graphs
admit a vertex ordering that has been useful in the past in designing many
linear-time algorithms. Apart from this, note that acyclic matchings also admit
an ordering in proper interval graphs. In other words, if M = {e1, . . . , ek} is
an acyclic matching in a proper interval graph G, then it is possible to define
an ordering on M such that the endpoints of edges in M are also ordered with
respect to the “given” vertex ordering of G. To design our algorithm, we exploit
this property of acyclic matchings and characterize the “first edge” that belongs
to some minimum maximal acyclic matching of the given connected proper inter-
val graph.

Here we note without proof that the decision version of Min-Max-Acy-
Matching is NP-complete for dually chordal graphs which is a superclass of
proper interval graphs. Proofs of the results marked with (∗) are omitted due to
lack of space.
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2 Algorithm for Proper Interval Graphs

Given a graph G, where V (G) = {v1, . . . , vn}, a vertex vi ∈ V (G) is simplicial in
G, if G[N [vi]] is a clique in G. An ordering α = (v1, . . . , vn) of V (G) is a perfect
elimination ordering (PEO) of G if vi is simplicial in Gi = G[{vi, vi+1, . . . , vn}]
for each i ∈ [n]. A PEO α = (v1, . . . , vn) of G is a bi-compatible elimination
ordering (BCO) if α−1 = (vn, . . . , v1), i.e., the reverse of α, is also a PEO of
G. It has been characterized in [8] that a graph is a proper interval graph if and
only if it has a BCO. Furthermore, given a proper interval graph G, a BCO of
G can be computed in linear time [13].

Consider the following observation, which shows that acyclic matchings in
proper interval graphs admit an ordering with respect to a given BCO.

Observation 1 [12]. Let G be a connected proper interval graph with a BCO
σ(G) = (v1, . . . , vn) and let M be an acyclic matching of G. If vavb, vcvd ∈ M
such that va < vb and vc < vd in σ(G), then either vb < vc or vd < va in σ(G).

Notations Used. Given a proper interval graph G, let σ(G) = (v1, . . . , vn) be
a BCO of G. For each i ∈ [n] and integer k ≥ 2, let L[vi](= L1[vi]) denote the
maximum indexed neighbor of vi in σ(G), and let Lk[vi] denote the maximum
indexed neighbor of Lk−1[vi] in σ(G). Furthermore, let v− (resp. v+) denote the
consecutive vertex just before (resp. after) a vertex v in σ(G). Note that v+

n = vn

and v−
1 = v1 in σ(G). Also, let L[vn] = vn. For each e ∈ E(G), let l(e) and r(e)

denote the two endpoints of e. Without loss of generality, for every e ∈ E(G),
assume that l(e) < r(e) in σ(G). By Observation 1, if Mk = {e1, . . . , ek} is an
acyclic matching of G, then, without loss of generality, we assume that r(ei) <
l(ei+1) in σ(G) for each i ∈ [k − 1]. Here, we say that for each j ∈ [k], ej is the
jth edge in Mk with respect to σ(G). In other words, given a proper interval
graph G with a BCO σ(G), the edge e ∈ Mk is said to be the first edge of Mk

with respect to σ(G) if r(e) < l(e′) for every e′(�= e) ∈ Mk. Let us name such a
matching Mk a standard acyclic matching.

Overview. Given a connected proper interval graph G, we use a BCO of G
to define an ordering on its vertices. We then check whether L[v1] = L2[v1]
or not. If L[v1] = L2[v1], then by Lemma 5, we say that G is a clique, and
picking any one edge in matching is sufficient. So we assume without loss of gen-
erality that throughout this section, G is not a clique, i.e., L[v1] �= L2[v1] (see
Lemma 5). Next, we consider two cases based on whether L[v1] = L[v2] or not.
If L[v1] = L[v2], then in Theorem 19, we show that L[v1]L2[v1] is the first edge
of some minimum maximal acyclic matching of G. Otherwise, if L[v1] �= L[v2],
then in Theorem 20, we show that either L[v1]L2[v1] or L[v2]−L[v2] is the first
edge of some minimum maximal acyclic matching of G. Moreover, Theorem 23
characterizes the conditions under which L[v1]L2[v1] or L[v2]−L[v2] is chosen
(as the first edge in our desired minimum maximal acyclic matching). Once the
first edge of some minimum maximal acyclic matching is chosen, Lemmas 21
and 22 help us in getting rid of those vertices that cannot be saturated by our
desired matching later in the algorithm. In this way, we obtain a subgraph of the
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Theorem 24

Theorem 19 Theorem 23 Lemma 10Lemma 22Lemma 21

Lemma 13 Theorem 20

Lemma 12

Lemma 9

Lemma 14

Lemma 11

Lemma 8

Lemma 15Lemma 16 Lemma 17

Observation 18

Fig. 1. Roadmap of proof of Theorem 24. The rest of the observations and lemmas are
used throughout this section and has not been shown in the roadmap.

given proper interval graph, which, by the hereditary property (of proper interval
graphs), is again a proper interval graph. We then again compute the first edge
of some minimum maximal acyclic matching in this subgraph. Finally, Theorem
24 shows that combining the first edge and the matching edges obtained recur-
sively by applying the same procedure to the subgraph obtained after carefully
removing the vertices from G gives an optimal matching of G. A roadmap of
proof of Theorem 24 is given in Fig. 1.

Now, let us describe everything discussed above in a formal manner.
The next two observations (Observations 2 and 3) follow from the definitions

of a BCO and an acyclic matching.

Observation 2 [12]. Let G be a proper interval graph with a BCO σ(G) =
(v1, . . . , vn). Then, the following hold.

(a) If vivj ∈ E(G), then vkvj ∈ E(G) for all k, i ≤ k ≤ j − 1.
(b) If vi < vj in σ(G), then L[vi] ≤ L[vj ] in σ(G).

Observation 3 [12]. Let G be a proper interval graph with a BCO σ(G) =
(v1, . . . , vn). For each i ∈ [n], let Si = {vi, vi+1, . . . , L[vi]}. If M is an acyclic
matching of G, then |VM ∩ Si| ≤ 2 for each i ∈ [n].

The following lemma characterizes the condition under which two edges in a
proper interval graph form an acyclic matching.

Lemma 4. Let G be a proper interval graph with a BCO σ(G) = (v1, . . . ,
vn) and let vavb, vcvd ∈ E(G) such that va < vb < vc < vd in σ(G). Then,
M = {vavb, vcvd} is an acyclic matching of G if and only if vavc, vbvd /∈ E(G).



Minimum Maximal Acyclic Matching in Proper Interval Graphs 381

Proof. Let M = {vavb, vcvd} be an acyclic matching of G. Targeting a contra-
diction, suppose that vavc ∈ E(G) (resp. vbvd ∈ E(G)). By Observation 2(a),
vbvc ∈ E(G). This implies that va, vb, vc, va (resp. vb, vc, vd, vb) forms a cycle in
G[VM ], a contradiction to the fact that M is an acyclic matching of G.

Conversely, since vavb, vcvd ∈ E(G) and vavc, vbvd /∈ E(G), G[VM ] is either
a P4

1 or a 2K2 depending on whether vbvc ∈ E(G) or not, respectively. This is
true because by Observation 2(a), vavd /∈ E(G) as vbvd /∈ E(G). Thus M is an
acyclic matching of G. 	


The next lemma characterizes proper interval graphs, which are also a clique.

Lemma 5. Let G be a connected proper interval graph with a BCO σ(G) =
(v1, . . . , vn). Then, G is a complete graph if and only if L[v1] = L2[v1].

Proof. If G is a complete graph, then v1vn ∈ E(G). This implies that L[v1] = vn.
Also, L2[v1] = L[L[v1]] = L[vn] = vn.

Conversely, let L[v1] = vk. If k = n, then, by Observation 2(a), we are done.
So assume that k < n. Since L[v1] = vk and L[v1] = L2[v1], vkvk+1 /∈ E(G).
By Observation 2(a), vivj /∈ E(G) for any i ≤ k and j ≥ k + 1. It leads to a
contradiction to our assumption that G is a connected graph. Thus k = n, which
implies that G is a complete graph. 	


Consider the following lemma, which is crucial to proceed further.

Lemma 6. Let G be a proper interval graph with a BCO σ(G) = (v1, . . . , vn).
Let ei, ej , ek be distinct edges in G such that l(ei) ≤ l(ej) ≤ l(ek) and r(ei) ≤
r(ej) ≤ r(ek) in σ(G). If {ei, ek} is not an acyclic matching of G, then neither
{ei, ej} nor {ej , ek} is an acyclic matching of G.

Proof. We will prove the contrapositive statement of Lemma 6. Let {ei, ej} be an
acyclic matching of G. By Lemma 4, l(ei)l(ej), r(ei)r(ej) /∈ E(G). By Observa-
tion 2, note that l(ei)l(ek), r(ei)r(ek) /∈ E(G). Since G[{l(ei), l(ek), r(ei), r(ek)}]
is an acyclic graph, {ei, ek} is an acyclic matching of G. Note that the discussion
for {ej , ek} is similar. 	


The next lemma is a generalization of Lemma 6.

Lemma 7. Let G be a proper interval graph with a BCO σ(G) = (v1, . . . , vn).
Let Mk = {e1, . . . , ek} be a standard acyclic matching of G. Then, the following
hold.

(a) If r(ek) < l(e) < r(e) for some e ∈ E(G), then {ek, e} is an acyclic matching
of G if and only if Mk ∪ {e} is an acyclic matching of G.

(b) If l(e) < r(e) < l(e1) for some e ∈ E(G), then {e, e1} is an acyclic matching
of G if and only if Mk ∪ {e} is an acyclic matching of G.

1 Let Kn and Pn denote a complete graph and a path graph on n vertices, respectively.
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Proof. Proof of (a) Since Mk is an acyclic matching, {ei, ej} is an acyclic match-
ing for every distinct i, j ∈ [k]. If {ek, e} is an acyclic matching of G, then by
Lemma 6, {ei, e} is an acyclic matching for each i ∈ [k − 1]. This implies that
Mk ∪ {e} is an acyclic matching of G. Conversely, if Mk ∪ {e} is an acyclic
matching, then since {ek, e} ⊆ Mk ∪ {e}, {ek, e} is an acyclic matching of G.

Proof of (b) If {e, e1} is an acyclic matching of G, then by Lemma 6, {e, ei} is
an acyclic matching for each i ∈ [k]. This implies that Mk ∪ {e} is an acyclic
matching of G. Next, if Mk∪{e} is an acyclic matching of G, then since {e, e1} ⊆
Mk ∪ {e}, {e, e1} is an acyclic matching of G. 	


The following two lemmas (Lemmas 8 and 9) are used to describe the situ-
ation where a particular edge of a given acyclic matching is replaced with some
specific edge in a proper interval graph.

Lemma 8 (∗). Let G be a connected proper interval graph with a BCO σ(G) =
(v1, . . . , vn). Let Mk = {e1, . . . , ek} be a standard acyclic matching of G. For
some j ∈ [k − 1] and v ∈ V (G) such that l(ej)v ∈ E(G) and r(ej) < v in σ(G),
let M = (Mk\{ej})∪{l(ej)v}. Then, M is acyclic if and only if vr(ej+1) /∈ E(G).
Moreover, if M is not an acyclic matching, then G[VM ] has only one cycle of
the form v, l(ej+1), r(ej+1), v.

Lemma 9 (∗). Let G be a connected proper interval graph with a BCO σ(G) =
(v1, . . . , vn). Let Mk = {e1, . . . , ek} be a standard acyclic matching of G. For
some u ∈ V (G) such that l(e1) < u < r(e1) in σ(G), let M = (Mk \ {e1}) ∪
{ur(e1)}. Then, M is acyclic if and only if ul(e2) /∈ E(G). Moreover, if M is not
an acyclic matching, then G[VM ] has only one cycle of the form u, r(e1), l(e2), u.

Lemma 10 (∗). Let G be a connected proper interval graph with a BCO σ(G) =
(v1, . . . , vn). If Gi = G[{vi, vi+1, . . . , vn}] and Gi′ = G[{vi′ , vi′+1, . . . , vn}], where
i < i′, then μ′

ac(Gi′) ≤ μ′
ac(Gi).

The following three lemmas (Lemmas 11–13) describe the conditions under
which we can replace the first edge of a given minimum maximal acyclic matching
of a proper interval graph with our desired edge.

Lemma 11 (∗). Let G be a connected proper interval graph with a BCO σ(G) =
(v1, . . . , vn) and let ab, ab′ ∈ E(G) such that a < b < b′ in σ(G). Let ab be the
first edge in some minimum maximal acyclic matching M of G and ab′ be the
first edge in some maximal acyclic matching of G. Then, there exists a minimum
maximal acyclic matching Mac of G such that ab′ is the first edge in Mac with
respect to σ(G).

Lemma 12 (∗). Let G be a connected proper interval graph with a BCO
σ(G) = (v1, . . . , vn) and let ab, a′b ∈ E(G) such that a < a′ < b in σ(G).
Let ab be the first edge in some minimum maximal acyclic matching M of G
and a′b be the first edge in some maximal acyclic matching of G. Then, there
exists a minimum maximal acyclic matching Mac of G such that a′b is the first
edge in Mac with respect to σ(G).
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Lemma 13 (∗). Let G be a connected proper interval graph with a BCO
σ(G) = (v1, . . . , vn) and let ab, a′b′ ∈ E(G) such that a < a′ and b < b′ in
σ(G). Let ab be the first edge in some minimum maximal acyclic matching M of
G and a′b′ be the first edge in some maximal acyclic matching of G. Then, there
exists a minimum maximal acyclic matching Mac of G such that a′b′ is the first
edge in Mac with respect to σ(G).

Note that in order to apply Lemmas 11–13, we need to show that our desired
edge (i.e., the edge that we want to show is the first edge of some minimum
maximal acyclic matching) is also the first edge of some maximal (not necessarily
minimum) acyclic matching of G. Therefore, we need the following lemma.

Lemma 14 Let G be a connected proper interval graph with a BCO σ(G) =
(v1, . . . , vn). Then, there exists a maximal acyclic matching M of G such that
the following hold.

(a) L[v1]L2[v1] is the first edge in M with respect to σ(G).
(b) L[v2]−L[v2] is the first edge in M with respect to σ(G).

Proof. To prove (a), we only need to show that there does not exist any edge,
say e ∈ E(G), such that i) {e, L[v1]L2[v1]} is an acyclic matching of G, and ii)
l(e) < r(e) < L[v1] < L2[v1] in σ(G). Let M1 = {v1v2, L[v1]L2[v1]}. By Lemma
6, it is enough to show that M1 is not an acyclic matching of G. Note that if M1

is an acyclic matching of G, then it contradicts Observation 3. 	

To prove (b), we only need to show that there does not exist any edge, say

e ∈ E(G), such that i) {e, L[v2]−L[v2]} is an acyclic matching of G, and ii)
l(e) < r(e) < L[v2]− < L[v2] in σ(G). If we show that M1 = {v1v2, L[v2]−L[v2]}
is not an acyclic matching of G, then by Lemma 6, we are done. Note that if M1

is an acyclic matching of G, then it contradicts Observation 3. 	

Now. consider the following lemma.

Lemma 15. Let G be a connected proper interval graph with a BCO σ(G) =
(v1, . . . , vn). Furthermore, let M be a maximal acyclic matching of G. If e is the
first edge in M with respect to σ(G), then l(e), r(e) ∈ N(L[v1]).

Proof. Without loss of generality, let l(e) = a, r(e) = b and a < b in σ(G). If
a, b ∈ N(L[v1]), then we are done. So, assume that either a /∈ N(L[v1]) or b /∈
N(L[v1]). First, suppose that a /∈ N(L[v1]). This implies that L2[v1] < a in σ(G).
Since a < b in σ(G), L2[v1] < b in σ(G). This implies that b /∈ N(L[v1]). Now,
define M ′ = {v1L[v1]}∪M . Since v1a, L[v1]b /∈ E(G), by Lemma 4, {v1L[v1], ab}
is an acyclic matching of G. By Lemma 7, M ′ is an acyclic matching of G. This
leads to a contradiction to the fact that M is maximal in G. Hence, a ∈ N(L[v1]).

Next, suppose that a ∈ N(L[v1]) and b /∈ N(L[v1]). If a ∈ N(v1), then
v1 ≤ a ≤ L[v1] < L2[v1] < b in σ(G). By Observation 2(b), there is no edge
between a and b, which is absurd. Hence, a /∈ N(v1), and thus L[v1] < a ≤
L2[v1] < b in σ(G). Next, define M ′ = M ∪ {v1L[v1]}. Since v1a, L[v1]b /∈ E(G),
by Lemma 4, {v1L[v1], ab} is an acyclic matching of G. By Lemma 7, M ′ is an
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acyclic matching of G. It leads to a contradiction to the fact that M is maximal
in G. Hence, b ∈ N(L[v1]). 	


Next, we discuss some results depending on whether L[v1] = L[v2] or not.

Lemma 16. Let G be a connected proper interval graph with a BCO σ(G) =
(v1, . . . , vn) such that L[v1] = L[v2]. Furthermore, let M be a maximal acyclic
matching of G. If e is the first edge in M with respect to σ(G), then l(e) ∈ N(v1).

Proof. Without loss of generality, let l(e) = a, r(e) = b and a < b in σ(G). If
a ∈ N(v1), then we are done. So assume that a /∈ N(v1). Define M ′ = M∪{v1v2}.
Since v1 < v2 < L[v1] = L[v2] < a < b in σ(G), v1a, v2b /∈ E(G). Thus, by
Lemma 4, {v1v2, ab} is an acyclic matching. By Lemma 7, M ′ is an acyclic
matching of G, a contradiction to the fact that M is maximal in G. Hence,
a ∈ N(v1). 	

Lemma 17. Let G be a proper interval graph with a BCO σ(G) = (v1, . . . ,
vn) such that L[v1] �= L[v2], and let M be a maximal acyclic matching of G.
If e is the first edge in M with respect to σ(G), then either l(e) ∈ N(v1) or
r(e) ∈ N(v2).

Proof. Without loss of generality, let l(e) = a, r(e) = b and a < b in σ(G).
By Observation 2(b) and the assumption that L[v1] �= L[v2], it is clear that
L[v1] < L[v2] in σ(G). If either a ∈ N(v1) or b ∈ N(v2), then we are done. So
assume that a /∈ N(v1) and b /∈ N(v2). This implies that L[v1] < a and L[v2] < b
in σ(G). Define M ′ = M∪{v1v2}. Since v1a, v2b /∈ E(G), by Lemma 4, {v1v2, ab}
is an acyclic matching. By Lemma 7, M ′ is an acyclic matching, a contradiction
to the fact that M is maximal in G. Hence, either a ∈ N(v1) or b ∈ N(v2). 	

Observation 18. Let G be a connected proper interval graph with a BCO
σ(G) = (v1, v2, . . . , vn) such that L[v1] �= L[v2]. Then, v1 < v2 ≤ L[v1] ≤
L[v2]− < L[v2] ≤ L2[v1] in σ(G).

Proof. By Observation 2(b), L[v1] ≤ L[v2] in σ(G). Since L[v1] �= L[v2], L[v1] <
L[v2] in σ(G). Since v2 ≤ L[v1], L[v2] ≤ L2[v1] (by Observation 2(b)). Further,
note that L[v2]− �= L2[v1]. Else, if L[v2]− = L2[v1], then L2[v1] < L[v2] in σ(G),
a contradiction. 	


Now, we are ready to prove one of the main theorems in this section.

Theorem 19. Let G be a connected proper interval graph with a BCO σ(G) =
(v1, . . . , vn) such that L[v1] = L[v2]. Then, there exists a minimum maximal
acyclic matching Mac of G such that L[v1]L2[v1] is the first edge in Mac with
respect to σ(G).

Proof. Let M be a minimum maximal acyclic matching of G, and let ab be the
first edge in M with respect to σ(G). Without loss of generality, let a < b in σ(G).
If ab = L[v1]L2[v1], then we are done. So let us assume that ab �= L[v1]L2[v1].
By Lemma 16, a ∈ N(v1), so a ≤ L[v1] in σ(G). By Lemma 15, b ∈ N(L[v1]), so
b ≤ L2[v1] in σ(G). Also, by Lemma 14, there exists a maximal acyclic matching
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of G containing L[v1]L2[v1] as the first edge with respect to σ(G). Therefore, by
Lemmas 11 to 13, there exists a minimum maximal acyclic matching Mac of G
such that L[v1]L2[v1] is the first edge in Mac with respect to σ(G). 	


Now, consider the following theorem.

Theorem 20. Let G be a connected proper interval graph with a BCO σ(G) =
(v1, . . . , vn) such that L[v1] �= L[v2]. Then, there exists a minimum maximal
acyclic matching Mac of G such that either L[v1]L2[v1] or L[v2]−L[v2] is the
first edge in Mac with respect to σ(G).

Proof. Let M be a minimum maximal acyclic matching of G, and let ab be the
first edge in M with respect to σ(G). Without loss of generality, let a < b in
σ(G). By Lemma 17, it is clear that either a ∈ N(v1) or b ∈ N(v2). Now, consider
the following cases:

Case 1: a ∈ N(v1) and b /∈ N(v2). Since a ∈ N(v1) and b /∈ N(v2), a ≤ L[v1]
and L[v2] < b in σ(G). By Lemma 15, b ≤ L2[v1] in σ(G). Since L[v1] �= L[v2],
by Observation 2(b), L[v1] < L[v2] in σ(G). Therefore, a ≤ L[v1] ≤ L[v2]− <
L[v2] < b ≤ L2[v1] in σ(G). By Lemmas 11–14, there exists a minimum maximal
acyclic matching Mac of G such that L[v1]L2[v1] is the first edge in Mac with
respect to σ(G).

Case 2: a /∈ N(v1) and b ∈ N(v2). Since a /∈ N(v1) and b ∈ N(v2), L[v1] < a
and b ≤ L[v2] in σ(G). Note that in this case L[v1] �= L[v2]−, else it will imply
that L[v2]− < a < b ≤ L[v2] in σ(G). This is not possible as L[v2]− and L[v2] are
consecutive in σ(G). Therefore, L[v1] < a ≤ L[v2]− < L[v2] ≤ L2[v1] in σ(G).
By Lemmas 11–14, there exists a minimum maximal acyclic matching Mac of G
such that L[v2]−L[v2] is the first edge in Mac with respect to σ(G).

Case 3: a ∈ N(v1) and b ∈ N(v2). Since a ∈ N(v1) and b ∈ N(v2), a ≤ L[v1]
and b ≤ L[v2] in σ(G). Further, by Observation 18, a ≤ L[v1] ≤ L[v2]− < L[v2] ≤
L2[v1] in σ(G). Now, by Lemmas 11–14, there exist minimum maximal acyclic
matchings M1 and M2 of G such that L[v1]L2[v1] is the first edge in M1 and
L[v2]−L[v2] is the first edge in M2 with respect to σ(G). 	


Next, Lemma 21 (resp. Lemma 22) helps us in characterizing those vertices
that can be “safely” removed from the input graph under the assumption that
L[v1]L2[v1] (resp. L[v2]−L[v2]) is the first edge with respect to a BCO in some
minimum maximal acyclic matching Mac of G.

Lemma 21. Let G be a connected proper interval graph with a BCO σ(G) =
(v1, . . . , vn). Let Mac be a minimum maximal acyclic matching of G such
that L[v1]L2[v1] is the first edge in Mac with respect to σ(G). If S1 =
{v1, v2, . . . , L

2[v1]} and S2 = {vj | vj > L2[v1] and L[vj ] = L3[v1]}, then none
of the vertices from the set (S1 ∪ S2) \ {L[v1], L2[v1]} is saturated by Mac.

Proof. By Observation 3, it is clear that to maintain the acyclic property of
Mac, none of the vertices from the set S1 = {v1, v2, . . . , L

2[v1]} \ {L[v1], L2[v1]}
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is saturated by Mac. Next, let us assume that vj ∈ S2 is saturated by Mac.
Let vj′ be the Mac-mate of vj . Since L[vj ] = L3[v1], vj′ ≤ L3[v1]. It leads
to a contradiction to Observation 3. Thus, none of the vertices from the set
(S1 ∪ S2) \ {L[v1], L2[v1]} is saturated by Mac. 	


Algorithm 1. MMAM-PIG(G)

Input: A proper interval graph G with BCO σ(G) = (v1, . . . , vn);
Output: A Min-Max-Acy-Matching M ;
M ← ∅, i ← 1, k ≥ 2;
G1 ← G;
v+ = vertex next to vertex v in σ(Gi), i ≥ 1;
α(Gi)= first vertex in the BCO σ(Gi), i ≥ 1;
β(Gi)= second vertex in the BCO σ(Gi), i ≥ 1;
L[v]= maximum indexed neighbor of vertex v in σ(Gi), i ≥ 1;
Lk[v]= maximum indexed neighbor of vertex Lk−1[v] in σ(Gi), i ≥ 1;

if (|V (Gi)| ≤ 1) then
return M ;

else
if (L[α(Gi)] = L2[α(Gi)]) then

M ← M ∪ {α(Gi)L[α(Gi)]};
i ← i + 1;
Gi ← Gi−1 − {α(Gi−1), . . . , L2[α(Gi−1)]};

else
if (L[α(Gi)] �= L[β(Gi)] and L3[α(Gi)] �= L2[L[β(Gi)]−])) then

M ← M ∪ {L[β(Gi)]−L[β(Gi)]};
i ← i + 1;
Gi ← Gi−1 − {α(Gi−1), . . . , L[L[β(Gi)]−]};
while (L2[β(Gi−1)] = L[α(Gi)]) do

x ← α(Gi);
α(Gi) ← α+(Gi);
Gi ← Gi − {x};

else
M ← M ∪ {L[α(Gi)]L2[α(Gi)]};
i ← i + 1;
Gi ← Gi−1 − {α(Gi−1), . . . , L2[α(Gi−1)]};
while (L3[α(Gi−1)] = L[α(Gi)]) do

x ← α(Gi);
α(Gi) ← α+(Gi);
Gi ← Gi − {x};

Lemma 22. Let G be a connected proper interval graph with a BCO σ(G) =
(v1, . . . , vn). Let Mac be a minimum maximal acyclic matching of G such that



Minimum Maximal Acyclic Matching in Proper Interval Graphs 387

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13 v14

v15

v16 v17 v18

Fig. 2. A proper interval graph G. The dashed edges represent a minimum maximum
acyclic matching obtained by algorithm MMAM-PIG(G).

L[v2]−L[v2] is the first edge in Mac with respect to σ(G). If S1 = {v1, v2, . . . ,
L[L[v2]−]} and S2 = {vj | vj > L[L[v2]−] and L[vj ] = L2[v2]}, then none of the
vertices from the set (S1 ∪ S2) \ {L[v2]−, L[v2]} is saturated by Mac.

Proof. By Observation 3, it is clear that to maintain the acyclic property of
Mac, none of the vertices from the set S1 = {v1, v2, . . . , L[L[v2]−]} is saturated
by Mac. Next, let us assume that vj ∈ S2 is saturated by Mac. Let vj′ be the
Mac-mate of vj . Since L[vj ] = L2[v2], vj′ ≤ L2[v2]. It leads to a contradiction to
Observation 3. Thus, none of the vertices from the set (S1 ∪S2)\{L[v2]−, L[v2]}
is saturated by Mac. 	


Now, we are ready to prove the following theorem.

Theorem 23 (∗). Let G be a connected proper interval graph with a BCO
σ(G) = (v1, . . . , vn) such that L[v1] �= L[v2]. Then, there exists a minimum
maximal acyclic matching M of G such that the following hold.

(a) If L3[v1] = L2[L[v2]−], then L[v1]L2[v1] ∈ M .
(b) If L3[v1] �= L2[L[v2]−], then L[v2]−L[v2] ∈ M .

Based on the lemmas and theorems discussed above, we present a linear-
time algorithm (MMAM-PIG(G)) to compute a maximal acyclic matching of
minimum cardinality in a proper interval graph G in Algorithm 1.

Theorem 24 (∗). Given a proper interval graph G with a BCO σ(G), Algo-
rithm 1 correctly computes a minimum maximal acyclic matching of G.

We illustrate the execution of algorithm MMAM-PIG(G) on the proper
interval graph G shown in Fig. 2 in Table 1.

Table 1. Illustration of algorithm MMAM-PIG(G) on graph G shown in Fig 2.

i |Gi| ≤ 1 σ(Gi) L[α(Gi)]
=L2[α(Gi)]

L[α(Gi)] =
L[β(Gi)]

L3[α(Gi)] =
L2[L[β(Gi)]−]

Update of M Remove vertices

1 No (v1, . . . , v18) No Yes - Add v3v5 {v1, . . . , v5}
2 No (v6, . . . , v18) No No Yes Add v8v11 {v6, . . . , v12}
3 No (v13, . . . , v18) No No No Add v15v16 {v13, . . . , v18}
4 Yes - - - - - -
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3 Conclusion

The main approach used by us in this paper was to characterize an edge with
respect to some vertex ordering that belongs to some minimum maximal acyclic
matching of G, and we believe that this approach can be extended to other graph
classes as well. Also, since many recent papers talk about the parameterized
complexity of restricted matchings, it is a promising direction for future research.
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Abstract. Let G = (V, E) be a graph, where V and E are the vertex
and edge sets, respectively. For two disjoint subsets A and B of V , we
say A dominates B if every vertex of B is adjacent to at least one ver-
tex of A in G. A vertex partition π = {V1, V2, . . . , Vk} of G is called a
transitive k-partition if Vi dominates Vj for all i, j, where 1 ≤ i < j ≤ k.
The maximum integer k for which the above partition exists is called
transitivity of G and it is denoted by Tr(G). The Maximum Transi-
tivity Problem is to find a transitive partition of a given graph with
the maximum number of partitions. It was known that the decision ver-
sion of Maximum Transitivity Problem is NP-complete for chordal
graphs [Iterated colorings of graphs, Discrete Mathematics, 278, 2004]. In
this paper, we first prove that this problem can be solved in linear time
for split graphs and for the complement of bipartite chain graphs, two
subclasses of chordal graphs. We also discuss Nordhaus-Gaddum type
relations for transitivity and provide counterexamples for an open prob-
lem posed by J. T. Hedetniemi and S. T. Hedetniemi [The transitivity
of a graph, J. Combin. Math. Combin. Comput, 104, 2018]. Finally, we
characterize transitively critical graphs having fixed transitivity.

Keywords: Transitivity · Split graphs · Complement of bipartite chain
graphs · Nordhaus-Gaddum relations · Transitively critical graphs

1 Introduction

Graph partitioning is one of the classical problems in graph theory. In a partition-
ing problem, the goal is to partition the vertex set (or edge set) into some parts
with desired properties, such as independence, having minimum edges across
partite sets, etc. In this article, we are interested in partitioning the vertex set
into some parts such that the partite sets follow some domination relation among
themselves. For a graph G = (V,E), the neighbourhood of a vertex v ∈ V is the
set of all adjacent vertices of v and is denoted as NG(v). The degree of a vertex
v in G, denoted as degG(v), is the number of edges incident to v. A vertex v
is said to dominate itself and all its neighbouring vertices. A dominating set of
G = (V,E) is a subset of vertices D such that every vertex x ∈ V \ D has a
neighbour y ∈ D, that is, x is dominated by some vertex y of D. For two disjoint
subsets A and B of V , we say A dominates B if every vertex of B is adjacent to
at least one vertex of A.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Bagchi and R. Muthu (Eds.): CALDAM 2023, LNCS 13947, pp. 391–402, 2023.
https://doi.org/10.1007/978-3-031-25211-2_30
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Graph partitioning problems, based on a domination relation among the par-
tite sets, have been extensively studied in literature. Cockayne and Hedetniemi,
in 1977, introduced the notion of domatic partition of a graph G = (V,E), where
the vertex set is partitioned into k parts, π = {V1, V2, . . . , Vk}, such that each
Vi is a dominating set of G [3]. The maximum order of such a domatic partition
is called domatic number of G and it is denoted by d(G). Another similar type
of partitioning problem is the Grundy partition. Christen and Selkow introduced
a Grundy partition of a graph G = (V,E) in 1979 [2]. In the Grundy parti-
tioning problem, the vertex set is partitioned into k parts, π = {V1, V2, . . . , Vk},
such that each Vi is an independent set and for all 1 ≤ i < j ≤ k, Vi domi-
nates Vj . The maximum order of such a partition is called the Grundy number
of G and it is denoted by Γ (G). In 2004, Hedetniemi et al. introduced another
such partitioning problem, namely upper iterated domination partition [4]. In an
upper iterated domination partition, the vertex set is partitioned into k parts,
π = {V1, V2, . . . , Vk}, such that for each 1 ≤ i ≤ k, Vi is a minimal dominating
set of G\(∪i−1

j=1Vj). The upper iterated domination number, denoted by Γ ∗(G), is
equal to the maximum order of such a vertex partition. Recently, in 2018, Haynes
et al. generalized the idea of domatic partition and introduced the concept of
upper domatic partition of a graph G, where the vertex set is partitioned into k
parts, π = {V1, V2, . . . , Vk}, such that for each i, j, with 1 ≤ i < j ≤ k, either
Vi dominates Vj or Vj dominates Vi or both [7]. The maximum order of such an
upper domatic partition is called upper domatic number of G and it is denoted
by D(G). All these problems, domatic number [1], Grundy number [9,15], upper
iterated number [4], upper domatic number [7] have been extensively studied
both from an algorithmic and structural point of view.

In this article, we study a similar graph partitioning problem, namely tran-
sitive partition. In 2018, Hedetniemi et al. [8] have introduced this notion as
a generalization of Grundy partition. A transitive k-partition is defined as a
partition of the vertex set into k parts, π = {V1, V2, . . . , Vk}, such that for all
1 ≤ i < j ≤ k, Vi dominates Vj . The maximum order of such a transitive
partition is called transitivity of G and is denoted by Tr(G). The Maximum
Transitivity Problem (MTP) is to find a transitive partition of a given
graph with the maximum number of parts. Note that a Grundy partition is a
transitive partition with the additional restriction that each partite set must be
independent. In a domatic partition π = {V1, V2, . . . , Vk} of G, since each partite
set is a dominating set of G, we have domination property in both directions,
that is, Vi dominates Vj and Vj dominates Vi for all 1 ≤ i < j ≤ k. However, in
a transitive partition π = {V1, V2, . . . , Vk} of G, we have domination property in
one direction, that is, Vi dominates Vj for 1 ≤ i < j ≤ k. In an upper domatic
partition π = {V1, V2, . . . , Vk} of G, for all 1 ≤ i < j ≤ k, either Vi domi-
nates Vj or Vj dominates Vi or both. The definition of each vertex partitioning
problem ensures the following inequalities for any graph G. For any graph G,
1 ≤ Γ (G) ≤ Γ ∗(G) ≤ Tr(G) ≤ D(G) ≤ n.

In the introductory paper, J. T. Hedetniemi and S. T. Hedetniemi [8] showed,
that the upper bound on the transitivity of a graph G is Δ(G) + 1, where Δ(G)
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is the maximum degree of G. They also gave two characterizations for graphs
with Tr(G) = 2 and for graphs with Tr(G) ≥ 3. They further showed that
transitivity and Grundy number are the same for trees. Therefore, the linear-
time algorithm for finding the Grundy number of a tree, presented in [9], implies
that we can find the transitivity of a tree in linear time as well. Also, for a
subclass of bipartite graphs, namely bipartite chain graphs, MTP can be solved
in linear time [13]. Moreover, for any graph, transitivity is equal to upper iterated
domination number, that is, Γ ∗(G) = Tr(G) [8], and the decision version of
the upper iterated domination problem is known to be NP-complete for chordal
graphs [10]. Therefore, MTDP is NP-complete for chordal graphs as well. MTDP
is also known to be NP-complete for perfect elimination bipartite graphs [13]. It
is also known that every connected graph G with Tr(G) = k ≥ 3 has a transitive
partition π = {V1, V2, . . . , Vk} such that |Vk| = |Vk−1| = 1 and |Vk−i| ≤ 2i−1 for
2 ≤ i ≤ k − 2 [6]. This implies that MTP is fixed-parameter tractable [6]. Also,
graphs with transitivity at least t, for some integer t, have been characterized in
[13].

In this article, we study the computational complexity of the transitivity
problem in subclasses of chordal graphs. The organization and main contribu-
tions of this article are summarized as follows. Section 2 contains basic definitions
and notations that are followed throughout the article. Sections 3 and 4 describe
two linear-time algorithms for split and for the complement of bipartite chain
graphs, respectively. Section 5 deals with Nordhaus-Gaddum type relations for
transitivity. In Sect. 6, we present a characterization of transitively vertex-edge
critical graphs having fixed transitivity. Finally, Sect. 7 concludes the article.

2 Notation and Definition

Let G = (V,E) be a graph with V and E as its vertex and edge sets, respectively.
A graph H = (V ′, E′) is said to be a subgraph of a graph G = (V,E), if and only
if V ′ ⊆ V and E′ ⊆ E. For a subset S ⊆ V , the induced subgraph on S of G is
defined as the subgraph of G whose vertex set is S and edge set consists of all
of the edges in E that have both endpoints in S and it is denoted by G[S]. The
complement of a graph G = (V,E) is the graph G = (V ,E), such that V = V
and E = {uv|uv /∈ E}.

A subset of S ⊆ V , is said to be an independent set of G, if every pair of
vertices in S are non-adjacent. A subset of K ⊆ V , is said to be a clique of G, if
every pair of vertices in K are adjacent. The cardinality of a clique of maximum
size is called clique number of G and it is denoted by ω(G). A graph G = (V,E)
is said to be a split graph if V can be partitioned into an independent set S and
a clique K.

A graph is called bipartite if its vertex set can be partitioned into two inde-
pendent sets. A bipartite graph G = (X ∪ Y,E) is called a bipartite chain graph
if there exists an ordering of vertices of X and Y , say σX = (x1, x2, . . . , xn1) and
σY = (y1, y2, . . . , yn2), such that N(xn1) ⊆ N(xn1−1) ⊆ . . . ⊆ N(x2) ⊆ N(x1)
and N(yn2) ⊆ N(yn2−1) ⊆ . . . ⊆ N(y2) ⊆ N(y1). Such ordering of X and Y is
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called a chain ordering and it can be computed in linear time [11]. A graph G
is said to be a 2K2-free, if it does not contain a pair of independent edges as an
induced subgraph. It is well-known that the class of bipartite chain graphs and
2K2-free bipartite graphs are the same. An edge between two non-consecutive
vertices of a cycle is called a chord. If every cycle in G of length at least four has
a chord, then G is called a chordal graph.

3 Transitivity in Split Graphs

In this section, we design a linear-time algorithm for finding the transitivity of
a given split graph. To design the algorithm, we first prove that the transitivity
of a split graph G can be either ω(G) or ω(G) + 1, where ω(G) is the size
of a maximum clique in G. Further, we characterize the split graphs with the
transitivity equal to ω(G) + 1.

Lemma 1. Let G = (S ∪K,E) be a split graph, where S and K are an indepen-
dent set and a clique of G, respectively. Also, assume that K is the maximum
clique of G, that is, ω(G) = |K|. Then ω(G) ≤ Tr(G) ≤ ω(G) + 1. Further,
Tr(G) = ω(G) + 1 if and only if every vertex of K has a neighbour in S.

Proof. Note that Tr(G) ≥ ω(G). As we can make a transitive partition π =
{V1, V2, . . . , Vω(G)} of size ω(G) by considering each Vi contains exactly one
vertex from maximum clique and all the other vertices in V1. To prove that
Tr(G) ≤ ω(G) + 1, suppose Tr(G) ≥ ω(G) + 2. Let π = {V1, V2, . . . , Vω(G)+2}
be a transitive partition of G. Since |K| = ω(G), there exist at least two sets in
π, say Vi and Vj with i < j, such that Vi and Vj contains only vertices from S.
Note that, in this case Vi cannot dominate Vj as S is an independent set of G.
Therefore, we have a contradiction. Hence, ω(G) ≤ Tr(G) ≤ ω(G) + 1.

Let every vertex of K have a neighbour in S. Now consider a vertex partition
of G, say π = {V1, V2, . . . , Vω(G)+1}, such that V1 = S and for each i > 1, Vi

contains exactly one vertex from K. Since every vertex of K has a neighbour
in S, V1 dominates every other partition in π. Moreover, as K is a clique, each
Vi, with i > 1 dominates Vj for all 2 ≤ i < j ≤ ω + 1. Hence, π is a transitive
partition of G. Now, since Tr(G) ≤ ω(G) + 1, we have Tr(G) = ω(G) + 1.

Conversely, let Tr(G) = ω(G) + 1 and π = {V1, V2, . . . , Vω(G)+1} be a tran-
sitive partition of G. Note that if there exist two sets in π, that contain only
vertices from S, then using similar arguments as before, we have a contradiction.
Therefore, there exists exactly one set in π, say Vl, that contains only vertices
from S as ω(G) = |K|. Hence, each set of π, except Vl, contains exactly one
vertex from K. Suppose there exists a vertex, say x, in K that has no neighbour
in S and also let x ∈ Vp for some set Vp in π. Note that there is no edge between
the vertices of Vp and Vl. Therefore, neither Vp dominates Vl nor Vl dominates
Vp. This contradicts the fact that π is a transitive partition. Hence, every vertex
of K has a neighbour in S.
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Based on the above lemma, we have the following algorithm for finding tran-
sitivity of a given split graph.

Algorithm 1. Transitivity_Split(G)
1: Input: A split graph G = (V, E)
2: Output: The transitivity of G, that is, Tr(G)
3: Find a vertex partition of V into S and K, where S and K are an independent set

and a clique of G, respectively and ω(G) = |K|.
4: for all v ∈ K do
5: if v has no neighbour in S then
6: t = |K|.
7: break
8: t = |K| + 1.
9: return (t)

Note that the required vertex partition in line 3 of Algorithm 1 can be com-
puted in linear time [5]. Also, the for loop in line 4 − 7 runs in O(n+m) time.
Hence, we have the following theorem:

Theorem 2. The Maximum Transitivity Problem can be solved in linear
time for split graphs.

4 Transitivity in the Complement of Bipartite Chain
Graphs

In this section, we find the transitivity of the complement of a bipartite chain
graph, say G, by showing that the transitivity of G is equal to the Grundy
number of G. To do that, first, we show two essential properties, one of the
transitive partitions and the second of the Grundy partitions for the complement
of a bipartite chain graph. The proofs of these lemmas are omitted due to space
constraints.

Lemma 3. Let G = (X ∪ Y,E) be the complement of a bipartite chain graph
and Tr(G) = k. Then there exists a transitive partition π = {V1, V2, . . . , Vk} of
G such that either |V1| = 1 or V1 = {x, y}, where x ∈ X and y ∈ Y .

Lemma 4. Let G = (X ∪ Y,E) be the complement of a bipartite chain graph.
Also, let π = {V1, V2, . . . , Vk} be a Grundy partition of G with Γ (G) = k and
X ′

G = {x ∈ X|x ∈ Vi and |Vi| = 1} and Y ′
G = {y ∈ Y |y ∈ Vi and |Vi| = 1}. Then

exactly one of the following two cases is true:

(i) Both |X ′
G| and |Y ′

G| cannot be empty simultaneously.
(ii) The graph G is the disjoint union of K|X| and K|Y | and |X| = |Y |.
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Now, we are ready to show that the transitivity and the Grundy number are
equal for the complement of a bipartite chain graph.

Theorem 5. Let G = (X ∪ Y,E) be the complement of a bipartite chain graph.
Then Γ (G) = Tr(G).

Proof. We use induction on n, where n is the number of vertices of G. If n = 1,
then Γ (G) = Tr(G) = 1 trivially. For n = 2, G is either K2 or K2 and therefore,
Γ (G) = Tr(G). Let us assume that the induction hypothesis is true, that is,
Γ (G) = Tr(G) for the complement of every bipartite chain graph having less
than n vertices. Let us consider a transitive partition π = {V1, V2, . . . , Vk} of G
with Tr(G) = k. By Lemma 3, we can assume that |V1| = 1 or V1 = {x, y} for
some x ∈ X and y ∈ Y . Let H = G \ V1. Note that H is also the complement of
a bipartite chain graph, since deleting a vertex from X (or Y ) does not change
the chain ordering of the remaining vertices. By induction hypothesis, we have
Γ (H) = Tr(H). Moreover, note that Tr(H) = k − 1. Hence, we have Γ (H) =
Tr(H) = k − 1. Let π′ = {V ′

1 , V
′
2 , . . . , V ′

k−1} be a Grundy partition of H. Now,
if V1 = {x} (or {y}), then x (correspondingly y) is adjacent to every vertex of G
because π is a transitive partition of G. Therefore, π′′ = {V1, V

′
1 , V

′
2 , . . . , V

′
k−1}

forms a Grundy partition of G which implies Γ (G) ≥ k = Tr(G). Also, for any
graph we know that Γ (G) ≤ Tr(G), hence Γ (G) = Tr(G). So, let us assume
that V1 = {x, y} for some x ∈ X and y ∈ Y . Now, if xy /∈ E, that is, V1

is an independent set, then from a Grundy partition of H of order (k − 1)
we can construct a Grundy partition of G of order k by appending V1. Then
by similar argument, we have Γ (G) = Tr(G). So, we assume that xy ∈ E.
Since, H = G \ V1 is the complement of a bipartite chain graph, by induction
hypothesis Γ (H) = Tr(H). Now, by Lemma 4, we can assume that H has a
Grundy partition, say π′ = {V ′

1 , V
′
2 , . . . , V

′
k−1}, such that either |X ′

H | �= φ or
|Y ′

H | �= φ, where X ′
H and Y ′

H is defined in a similar way as in Lemma 4 or H is
the disjoint union of K|XH | and K|YH | and |XH | = |YH |, where XH = X ∩H and
YH = Y ∩ H. If H is the disjoint union of K|XH | and K|YH | and |XH | = |YH |,
then π′′ = {V ′

1 , V
′
2 , . . . , V

′
k−1, {x}, {y}} forms a transitive partition of G of order

(k+1). This is a contradiction to the fact that Tr(G) = k. So, we assume that H
has a Grundy partition, say π′ = {V ′

1 , V
′
2 , . . . , V

′
k−1}, such that either |X ′

H | �= φ
or |Y ′

H | �= φ. The remaining proof is done by dividing into the following four
cases:

Case 1. Every vertex of X ′
H and Y ′

H are adjacent to y and x, respectively

In this case, consider the vertex partition π′′ = {V ′
1 , V

′
2 , . . . , V

′
k−1, {x}, {y}}.

Clearly, π′′ is a transitive partition of G of order (k+1). This is a contradiction
to the fact that Tr(G) = k.

Case 2. Every vertex of X ′
H is adjacent to y but there exists a vertex yt ∈ Y ′

H

such that xyt /∈ E

Let yt ∈ V ′
p . In this case, let us consider the vertex partition π′′ =

{U1, U2, . . . , Uk}, where U1 = {x, yt}, Ui = V ′
i−1, for 2 ≤ i ≤ p, Up+1 = {y} and
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Uj = V ′
j−1, for all p+2 ≤ j ≤ k. Clearly, the partition π′′ forms a Grundy parti-

tion of G which implies Γ (G) ≥ k = Tr(G). Since, for any graph Γ (G) ≤ Tr(G),
therefore, Γ (G) = Tr(G).

Case 3. There exists a vertex xs ∈ X ′
H such that yxs /∈ E but every vertex of

Y ′
H is adjacent to x

This case is similar to Case 2.

Case 4. There exists a vertex xs ∈ X ′
H such that yxs /∈ E and there exists a

vertex yt ∈ Y ′
H such that xyt /∈ E

In this case, {x, yt, y, xs} induces a 2K2 in G. This is a contradiction to the fact
that G is a bipartite chain graph.

Hence, for the complement of a bipartite chain graph G, Γ (G) = Tr(G).
It was proved in [15] that for the complement of a bipartite graph, Γ (G) =

n−p, where n is the number of vertices of G and p is the cardinality of a minimum
edge dominating set of G. We also know that the minimum edge dominating set
of a bipartite chain graph can be computed in linear time [14]. Therefore, we
have the following corollary:

Corollary 6. The transitivity of the complement of bipartite chain graphs can
be computed in linear time.

Remark 1. Identifying graphs with equal transitivity and Grundy number was
posed as an open question in [8]. Theorem 5 partially answers this question by
showing that the complement of bipartite chain graphs form such a graph class.

5 Nordhaus-Gaddum Type Bounds for Transitivity

Let G = (V,E) be a simple graph. A proper k-coloring of G is a function c from
V to {1, 2, . . . , k} such that c(u) �= c(v) if and only if uv ∈ E. The minimum
value of k for which a proper coloring exists is called chromatic number of G
and it is denoted by χ(G). In 1956, Nordhaus and Gaddum [12] studied the
chromatic number of a graph G and its complement G. They established lower
and upper bound for the product and the sum of χ(G) and χ(G) in terms of the
number of vertices of G. Since then, any bound on the sum or the product of
a parameter of a graph G and its complement G is called a Nordhaus-Gaddum
type inequality. In this section, we study Nordhaus and Gaddum type relations
for transitivity.

From [13], it is known that for a bipartite chain graph G, Tr(G) = t + 1,
where t is the maximum integer such that G contains either Kt,t or Kt,t − {e}
as an induced subgraph. Let σX = (x1, x2, . . . , xn1) and σY = (y1, y2, . . . , yn2)
be the chain ordering of G. Because of this chain ordering if xpyp ∈ E for some
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p, then {x1, x2, . . . , xp} and {y1, y2, . . . , yp} induces a complete bipartite graph.
Therefore, it follows that if j is the maximum index such that xjyj ∈ E, then

Tr(G) =

{
j + 2 xj+1yj , xjyj+1 ∈ E

j + 1 otherwise

We know that for the complement of a bipartite graph G, Γ (G) = n − p, where
n is the number of vertices of G and p is the cardinality of a minimum edge
dominating set of G [15]. Therefore, from Theorem 5 we have, for a bipartite
chain graph G, Tr(G) = n − p, where n is the number of vertices of G and p
is the cardinality of a minimum edge dominating set of G. Also from [14], we
know that for a bipartite chain graph, p is equal to the maximum index j such
that xjyj ∈ E. Therefore, we have the following Nordhaus-Gaddum relation for
transitivity in bipartite chain graphs:

Theorem 7. Let G = (X ∪ Y,E) be a bipartite chain graph with the ordering
σX = (x1, x2, . . . , xn1) and σY = (y1, y2, . . . , yn2) as its chain ordering, that is,
N(xn1) ⊆ N(xn1−1) ⊆ . . . ⊆ N(x2) ⊆ N(x1) and N(yn2) ⊆ N(yn2−1) ⊆ . . . ⊆
N(y2) ⊆ N(y1). Also assume that j is the maximum index such that xjyj ∈ E.
Then,

Tr(G) + Tr(G) =

{
n + 2 xj+1yj , xjyj+1 ∈ E

n + 1 otherwise

Based on Lemma 1 and the fact that the complement of a split graph is also
a split graph, we have the following Nordhaus-Gaddum relation for transitivity
in split graphs, whose proof is omitted due to space constraints.

Theorem 8. Let G = (S ∪ K,E) be a split graph, where S and K are the inde-
pendent set and clique of G, respectively. Also, assume that K is the maximum
clique of G, that is, ω(G) = |K|. Then,

Tr(G) + Tr(G) =

{
n + 2 if, in G, every vertex of K has a neighbour in S
n + 1 otherwise

Remark 2. In [8], Hedetniemi and Hedetniemi posed the following open ques-
tion about the sum of Tr(G) and Tr(G): for any graph G, is Tr(G) + Tr(G) =
n + 1 if and only if G = Kn or G = Kn? Theorem 7 and 8 show the exis-
tence of some bipartite chain graph and split graph, respectively, for which
Tr(G) + Tr(G) = n + 1. Moreover, also for Kn,n, Tr(G) + Tr(G) = 2n + 1
which shows another counter example for the above mentioned open question.

6 Transitively Critical Graphs

The concept of transitively critical graph was introduced by Haynes et al. in
[6]. A graph G = (V,E) is said to be transitively vertex critical (transitively
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edge critical) if deleting any vertex from V (respectively, edge from E) results
in a graph whose transitivity is less than Tr(G). A transitively vertex critical
(transitively edge critical) graph G with Tr(G) = k is called by Trv

k-critical
(respectively, Tre

k-critical). Characterizations of vertex critical graph have been
studied in [6]for some small values of k. In this section, we introduce a gener-
alization of transitively critical graphs, namely transitively vertex-edge critical
graphs and give characterization of such graphs for every fixed value of k. Using
this characterization, we then characterize transitively edge critical graphs for
every fixed value of k.

A transitively vertex-edge critical graph is basically a graph which is both
transitively vertex and edge critical. The formal definition is as follows:

Definition 9. A graph G = (V,E) is said to be a transitively vertex edge-critical
graph if deleting any element from V ∪ E results in a graph whose transitivity is
less than Tr(G). A transitively vertex edge-critical graph G with Tr(G) = k is
called Tr

(v,e)
k -critical.

Note that unlike transitively edge critical graphs, every transitively vertex-
edge critical graph is connected. The graph K1 is the only connected graph with
Tr(G) = 1 and it is both transitively edge and vertex critical. Therefore, the
only Tr

(v,e)
1 -critical is K1.

The following proposition characterizes the Tr
(v,e)
2 -critical graphs.

Proposition 10. The only Tr
(v,e)
2 -critical graph is K2.

Proof. Clearly, transitivity of K2 is 2. Also, if we remove any edge or any vertex
from K2, we are left with K2 or K1 and transitivity of those graphs is 1. Hence,
K2 is a Tr

(v,e)
2 -critical.

Let G be a Tr
(v,e)
2 -critical graph with n vertices. Since Tr(G) = 2, G is a

disjoint union of stars which is shown by Hedetniemi et al. [8]. As G is a vertex
critical graph, which implies G must be a connected graph [6]. Therefore, G
is a star. Now, if G contains more than one edge, then removal of that edge
from G does not decrease the transitivity, which contradicts the fact that G
is a transitively edge-critical. Therefore, G can only be K2. Hence, the only
Tr

(v,e)
2 -critical graph is K2.

Next, we generalize the characterization for Tr
(v,e)
k -critical graphs for k ≥ 3.

To this end, we recall the concept of t-atom, which was introduced by Zaker in
[15]. For the sake of completeness, we give the definition of t-atom here.

Definition 11 ([15]). A t-atom is defined in a recursive way as follows:

1. The only 1-atom is K1.
2. Let H = (V,E) be any (t− 1)-atom with n vertices. Consider an independent

set Ir on r vertices for any r ∈ {1, 2, . . . n}. For that fixed r, consider a r
vertex subset W of V and add a perfect matching between the vertices of Ir

and W . Then join an edge between each vertex of V \W and an (and to only
one) arbitrary vertex of Ir. The resultant graph G is a t-atom.
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The set of t-atoms is denoted by At. The following lemma describes the
transitively vertex edge-critical graph with transitivity k.

Lemma 12. If G is Tr
(v,e)
k -critical, then G ∈ Ak.

Proof. For an integer t, Tr(G) ≥ t if and only if G contains a t-atom as a
subgraph, which is shown by Paul and Santra [13]. Since the transitivity of G is
k, therefore, G contains a k-atom as a subgraph. Let H ∈ Ak and G contains
H as a subgraph. Since the Tr(H) ≥ k and Tr(G) ≥ Tr(H), then Tr(H) = k.
If G has an edge other than edges of H, then removal of that edge from G does
not decrease the transitivity, which contradicts the fact that G is a transitively
edge-critical. Also, G cannot contain more vertex than H, as G is a transitively
vertex critical graph too. Therefore, G = H.

The only 3-atoms are K3 and P4. Also the graphs K3 and P4 are both Trv
3 -

critical and Tre
3-critical. Therefore, the converse of Lemma 12 is true for k = 3.

Hence, we have the following corollary.

Corollary 13. The only Tr
(v,e)
3 -critical graphs are K3 or P4.

β1

β2 β3 β4 β5 β6

β7 β8 β9 β10

β11

α1 α2 α3

Fig. 1. The class A4.

For k = 4, the converse of Lemma 12 is not true. The class of graphs A4

is illustrated in Fig. 1. Note that every graph in A4, has transitivity equal to
4 but only β2 is not transitively edge-critical. Therefore, we have the following
corollary.

Corollary 14. A graph G is Tr
(v,e)
4 -critical if and only if G ∈ A′

4 = (A4\{β2}).
Generalizing this result, we have the following main theorem.



Transitivity on Subclasses of Chordal Graphs 401

Theorem 15. Let Ak be the set of all k-atoms and Bk be the set of k-atoms
which are neither Tr

(v,e)
k -critical nor have transitivity equal to k. A graph G is

Tr
(v,e)
k -critical if and only if G ∈ A′

k = (Ak \ Bk).

Proof. Let G be a Tr
(v,e)
k -critical. Since the transitivity of G is k, then G contains

a k-atom as a subgraph, as for an integer t, Tr(G) ≥ t if and only if G contains a
t-atom as a subgraph, which is shown by Paul and Santra [13]. Let H be a k-atom
and G contains H as a subgraph. Since the Tr(H) ≥ k and Tr(G) ≥ Tr(H),
then Tr(H) = k. If G has an edge other than edges of H, then removal of that
edge from G does not decrease the transitivity, which contradicts the fact that
G is a transitively edge critical. Also, G cannot contain more vertex than H, as
G is also a transitively vertex critical graph. Hence, G ∈ A′

k = Ak \ Bk.

Next, we characterize the Tre
k-critical graphs for a fixed value of k. For this

characterization, we first show the following relation between Tr
(v,e)
k -critical and

Tre
k-critical graphs. The proof is omitted due to space constraints.

Theorem 16. A graph G with n vertices and Tr(G) = k is Tre
k-critical if and

only if G = H ∪ Kn−nH
, where H is a Tr

(v,e)
k -critical graph having nH vertices.

The characterization of Tre
k-critical graphs follows immediately from the

above theorem.

Corollary 17. Let Ak be the set of k-atoms and Bk be the set of k-atoms which
are neither Tr

(v,e)
k -critical nor have transitivity equal to k. A graph G with n

vertices, is Tre
k-critical if and only if G = H ∪Kn−nH

, where H ∈ A′
k = Ak \Bk.

7 Conclusion

In this paper, we have proved that the transitivity of a given split and the
complement of bipartite chain graphs can be computed in linear time. Then, we
have discussed Nordhaus-Gaddum type relations for transitivity in split graphs
and bipartite chain graphs and have given counter-examples to an open question
posed in [8]. We have also studied transitively vertex-edge critical graphs. It
would be interesting to investigate the complexity status of this problem in
other subclasses of chordal graphs. Designing an approximation algorithm for
this problem would be another challenging open problem.

Acknowledgements. Subhabrata Paul is supported by the SERB MATRICS
Research Grant (No. MTR/2019/000528). The work of Kamal Santra is supported
by the Department of Science and Technology (DST) (INSPIRE Fellowship, Ref No:
DST/INSPIRE/ 03/2016/000291), Govt. of India.



402 S. Paul and K. Santra

References

1. Chang, G.J.: The domatic number problem. Discret. Math. 125(1-3), 115–122
(1994)

2. Christen, C.A., Selkow, S.M.: Some perfect coloring properties of graphs. J. Comb.
Theory Ser. B 27(1), 49–59 (1979)

3. Cockayne, E.J., Hedetniemi, S.T.: Towards a theory of domination in graphs. Net-
works 7(3), 247–261 (1977)

4. Erdös, P., Hedetniemi, S.T., Laskar, R.C., Prins, G.C.E.: On the equality of the
partial Grundy and upper ochromatic numbers of graphs. Discret. Math. 272(1),
53–64 (2003)

5. Hammer, P.L., Simeone, B.: The splittance of a graph. Combinatorica 1(3), 275–
284 (1981)

6. Haynes, T.W., Hedetniemi, J.T., Hedetniemi, S.T., McRae, A., Phillips, N.: The
transitivity of special graph classes. J. Comb. Math. Comb. Comput. 110, 181–204
(2019)

7. Haynes, T.W., Hedetniemi, J.T., Hedetniemi, S.T., McRae, A., Phillips, N.: The
upper domatic number of a graph. AKCE Int. J. Graphs Comb. 17(1), 139–148
(2020)

8. Hedetniemi, J.T., Hedetniemi, S.T.: The transitivity of a graph. J. Comb. Math.
Comb. Comput. 104, 75–91 (2018)

9. Hedetniemi, S.M., Hedetniemi, S.T., Beyer, T.: A linear algorithm for the Grundy
(coloring) number of a tree. Congr. Numer. 36, 351–363 (1982)

10. Hedetniemi, S.M., Hedetniemi, S.T., McRae, A.A., Parks, D., Telle, J.A.: Iterated
colorings of graphs. Discret. Math. 278(1–3), 81–108 (2004)

11. Heggernes, P., Kratsch, D.: Linear-time certifying recognition algorithms and for-
bidden induced subgraphs. Nordic J. Comput. 14(1–2), 87–108 (2007)

12. Nordhaus, E.A., Gaddum, J.W.: On complementary graphs. Am. Math. Mon.
63(3), 175–177 (1956)

13. Paul, S., Santra, K.: Transitivity on subclasses of bipartite graphs. J. Comb. Optim.
45, 27 (2022)

14. Verma, S., Panda, B.S.: Grundy coloring in some subclasses of bipartite graphs
and their complements. Inf. Process. Lett. 163, 105999 (2020)

15. Zaker, M.: Results on the Grundy chromatic number of graphs. Discret. Math.
306(23), 3166–3173 (2006)



Maximum Subgraph Problem
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Abstract. The maximum subgraph problem (MSP) of a graph is the
estimation of the greatest number of edges in the induced subgraph of all
subsets of the vertex set of the same cardinality. The Knödel graph WΔ,n

of n vertices and the highest degree Δ lies in [1, �log2(n)�], where n is
even, is a minimum linear gossip graph and with minimum broadcasting.
In this paper, we will obtain the maximum subgraph of the 3-regular
Knödel graph W3,n, n ≥ 16, n is even, and thereby obtain its wirelength.

Keywords: Maximum subgraph problem · Edge congestion ·
Wirelength · Linear arrangement · Knödel graph

1 Introduction

Graph theory has wide applications in computer science. Mainly, in multipro-
cessor architectures graphs are used as the interconnection topology. Graph
databases are used in database designing. Graphs are also used for designing
communication networks. In image processing, graph search algorithms are used
to find edge boundaries, and graphs are used to calculate the alignment of the
picture. The symmetry and regularity of graphs simplify the algorithms for dif-
ferent network-related problems.

For a graph G(V,E), two versions of the edge isoperimetric problem are given
in the literature [1] and the problems are NP -complete [4]. They are applied in
solving the exact wirelength of graph embeddings for parallel networks, data
structures, and biological models. It is also applied in computing the bisection
width of a network and graph partitioning problems. In this paper, we focus
on the Maximum Subgraph Problem (MSP) and it is defined as follows: For
a given graph, find a subset of vertices so that the induced subgraph of this
subset has the maximum number of edges when taken over all subgraphs having
the same number of vertices. That is, for a given �, find S ⊆ V such that if
IG(�) = max

S⊆V,|S|=�
|IG(S)| where IG(S) = {(x, y) ∈ E : x, y ∈ S}, then |S| = �
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and IG(�) = |IG(S)| [10]. A subset of vertices S ⊆ V is called optimal if |S| = �
and |IG(S)| = IG(�) for a given � with � = 1, 2, . . . , n [10].

The paper is organised as follows. The next section contains some prelimi-
naries. Section 3 gives an introduction about the Knödel graphs, its properties,
and labeling of its vertices. In Sect. 4, we solve the maximum subgraph problem
of 3-regular Knödel graphs W3,n, n ≥ 16, n is even. Also, we obtain its minimum
linear arrangement and the wirelength of embedding W3,2n , n ≥ 4, n is even into
1-rooted complete binary tree T 1

n . Finally, the paper is concludes with an open
problem in Sect. 6 .

2 Preliminaries

The process of mapping a guest graph A into a host graph B (usually an inter-
connection network) is called a graph embedding. Consider two finite graphs A
and B. An embedding of A into B is a pair (g, Pg) stated as below [8]:

1. g is a 1 − 1 map from V (A) to V (B).
2. Pg is a 1 − 1 map from E(A) to {Pg(e) : Pg(e) is a path in B joining g(u)

and g(v) where e = (uv) ∈ E(A)}.

For brevity, we use g to denote the pair (g, Pg). For an edge e ∈ E(B), the count
of edges (uv) ∈ E(A) such that e ∈ Pg(uv) between g(u) and g(v) in B is known
as the edge congestion of e, denoted by ECg(e) [8]. Then

ECg(A,B) = max
e∈E(B)

ECg(e), and

EC(A,B) = min
g:A−→B

ECg(A,B).

Also, the edge congestion of any subset T of E(B) is given by

ECg(T ) =
∑

e∈T

ECg(e).

For an embedding g of A into B, the wirelength [8] is defined as

WLg(A,B) =
∑

e∈E(B)

ECg(e).

Therefore, the wirelength of A embedded into B is,

WL(A,B) = min
g:A−→B

WLg(A,B).

Lemma 1 (Modified Congestion Lemma [8]). Consider an embedding g of A
into B. Assume that X is an edge cut of B such that when removing the edges
of X, B breaks into two components B1 and B2 and let A1 = G[g−1(V (B1))]
and A2 = G[g−1(V (B2))]. Further, X fulfills the below conditions:

(i) For all (uv) ∈ E(Ai), i = 1, 2, Pg(uv) has no edges in X.
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(ii) For all (uv) ∈ E(A), where u ∈ V (A1) and v ∈ V (A2), Pg(uv) contains
strictly an edge in X.

(iii) V (A1) and V (A2) are optimal sets.

Then ECg(X) is minimum throughout all embeddings g from A into B and

ECg(X) =
∑

a∈V (A1)

degA(a) − 2|E(A1)| =
∑

a∈V (A2)

degA(a) − 2|E(A2)|.

Remark 1 [8]. When A is regular, in Modified Congestion Lemma it is sufficient
to find out that either V (A1) or V (A2) will be an optimal set.

Lemma 2 (Partition Lemma [8]). Consider an embedding g of A into B. Let
E(B) have the partition X1,X2, . . . , Xq where each Xi is an edge cut of B. Let
Xi fulfill all three conditions of Modified Congestion Lemma. Then

WLg(A,B) =
q∑

i=1

ECg(Xi).

Remark 2 [8]. For an embedding g of A into B which fulfills the Partition
Lemma, we have

WL(A,B) = WLg(A,B).

3 The Knödel graphs

In 1975, W. Knödel [7] introduced the Knödel graph as the topology underlying
a time optimal algorithm for gossipping among n vertices, where n is even, while
Fraigniaud and Peters defined the family of Knödel graphs [3]. The Knödel
graphs, denoted by WΔ,n, are regular graphs with order n, where n is even, and
the highest degree Δ lies in [1, �log2(n)�]. The Knödel graph WΔ,2Δ have become
competitors for the hypercubes and recursive circulant graphs of the same order
and degree, mainly in the field of gossiping and broadcasting.

Definition 1 [3]. The Knödel graph, denoted by WΔ,n, contains n ≥ 2 vertices,
where n is even, and the highest degree Δ lies in [1, �log2(n)�]. The vertices are
denoted by (a, b) where a = 1, 2 and 0 ≤ b ≤ n

2 − 1. The vertices (1, b) and
(2, b + 2k − 1 mod(n

2 )) will be connected by an edge for every b, 0 ≤ b ≤ n
2 − 1,

k = 0, . . . , Δ − 1.

In WΔ,n, the edge which joins the vertices (1, b) and (2, b + 2k − 1 mod(n
2 ))

is said to have dimension k, for 0 ≤ k ≤ Δ − 1. For Δ = 1, W1,n is made up of
n
2 disjoint copies of K2. When Δ ≥ 2, a Hamiltonian cycle is generated by the
alternate edges in dimensions 0 and 1. Hence WΔ,n is connected iff Δ ≥ 2. The
edge connectivity is λ(WΔ,n) = Δ, vertex connectivity is 2Δ

3 < κ(WΔ,n) ≤ Δ
and it is vertex-transitive for any even n and 1 ≤ Δ ≤ �log2(n)�. Also WΔ+1,2n

can be formed from two copies of WΔ,n [3].
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Fig. 1. Labeling of Knödel graph W3,n

In this paper, we compute the maximum subgraph of 3-regular Knödel graphs
W3,n, n ≥ 16, n is even. The vertex set of the Knödel graph is partitioned
into V1 and V2, since it is bipartite, where V1 consist of vertices of the form
(1, x), 0 ≤ x ≤ n

2 −1 and V2 consist of vertices of the form (2, y), 0 ≤ y ≤ n
2 −1.

They are labeled as follows: The vertices of V1 will be labeled as f((1, x)) =
1 + 2x, 0 ≤ x ≤ n

2 − 1 and the vertices of V2 will be labeled as f((2, 0)) = n
and f((2, y)) = 2y, 1 ≤ y ≤ n

2 − 1. In Fig. 1 the labeling of W3,32 is shown. The
vertex set V1 consists of vertices with odd label (denoted in red) and the set V2

consists of vertices with even label (denoted in blue). We use the above labeling
for our entire study.

The Knödel graph WΔ,n, n ≥ 2Δ+1 and n is even, of any dimension has a
6-cycle. This is the smallest cycle contained in the graph; hence the girth of the
graph is 6. Also, every 6-cycle begins from a vertex with odd label when taken in
an increasing order (a set A = {a1, a2, . . . , an} is said to be an increasing order
if ap < aq for all p < q, p, q ∈ {1, 2, . . . , n}). Note that Fig. 1 and 2(a) are isomor-
phic by taking f(i) = i,∀ i ∈ {1, 2, . . . , n}. Further, in Fig. 2(a), the consecutive
vertices in increasing order are in the outer cycle with a clockwise direction.

4 Results

In this section, we will initially solve the maximum subgraph problem for the 3-
regular Knödel graph W3,n, n ≥ 16, n is even. Then we will compute its minimum
linear arrangement. Later we will obtain the wirelength of embedding W3,2n , n ≥
4 into 1-rooted complete binary tree T 1

n .

4.1 Maximum Subgraph Problem

Consider a graph G(V,E) with a non-empty subset of the vertex set S ⊆ V .
Then, the subgraph of G having S as the vertex set and edge set consisting of
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edges of G having both ends in S is called subgraph induced by S, denoted by
G[S] [11].

Lemma 3. Let K1 be a subset of the vertex set of the 3-regular Knödel graph
W3,n, n ≥ 16, n is even, consists of k1 consecutive vertices taken in increasing
order and starting from a vertex with an odd label. Let K2 be another subset of
the vertex set of W3,n, n ≥ 16, n is even, consists of k2 consecutive vertices taken
in increasing order and starting from a vertex with even label, so that k1 = k2.
Then |E(G[K2])| ≤ |E(G[K1])|.

Fig. 2. (a) When k1(= k2) is even (b) When k1(= k2) is odd

Proof. We prove this lemma with the following two cases.

Case 1 (k1(= k2) is even): Let the set K1 consist of k1 consecutive vertices
of the 3-regular Knödel graph W3,n, n ≥ 16, n is even, taken in increasing order
and starting from a vertex with an odd label. Since k1 is even, the end vertex
will have even label, see Fig. 2(a). Let the set K2 contain k2 consecutive vertices
of W3,n, n ≥ 16, n is even, taken in increasing order and starting from a vertex
with an even label. Since k2 is even, the end vertex will have an odd label.
For k1 = k2 = 2, 4, the subgraph induced is a path since the girth is 6. Here
|E(G[K1])| = |E(G[K2])|. When k1 = k2 = 6, the subgraph induced by K1 is a
6-cycle, but K2 is not. Therefore, |E(G[K2])| < |E(G[K1])|.

Consider k1 = k2 > 6. When k1 and k2 are increased to next even number
step-by-step, three edges are added to both G[K1] and G[K2] in each step. Hence
the number of edges in the induced subgraphs G[K1] and G[K2] depends only on
the number of edges induced by the first six vertices. Therefore, |E(G[K2])| <
|E(G[K1])|. Since the last vertex of K2 is odd, if we take in the reverse order
we get a subset of vertices, say {ak2 , ak2−1, . . . , a1} starting with an odd label.
However, the induced subgraph on the first six vertices doesn’t form a cycle C6,
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since the girth is obtained only when the vertices are taken in increasing order.
Therefore, |E(G[K2])| ≤ |E(G[K1])|.
Case 2 (k1(= k2) is odd): Let K1 be the set containing k1 consecutive vertices
of the 3-regular Knödel graph W3,n, n ≥ 16, n is even, taken in an increasing
order and starting from a vertex with an odd label. Since k1 is odd, the end
vertex will have odd label, see Fig. 2(b). Let the set K2 consist of k2 consecutive
vertices of W3,n, n ≥ 16, n is even, taken in increasing order and starting from a
vertex with an even label. Since k2 is also odd, the end vertex will have an even
label. For k1 = k2 = 3, 5, the subgraph induced is a path since the girth of W3,n

is 6. Here |E(G[K1])| = |E(G[K2])|. Consider k1 = k2 > 5. When k1 and k2 are
increased to next odd number step-by-step, three edges are added to both G[K1]
and G[K2] in each step. Thus the induced subgraphs G[K1] and G[K2] contain
the same number of edges. Hence, we conclude that |E(G[K2])| = |E(G[K1])|.
Lemma 4. Let K be a subset of the vertex set of the 3-regular Knödel graph
W3,n, n ≥ 16, n is even, containing k consecutive vertices. Let K1 and K2 be
two disjoint subsets of the vertex set of W3,n, n ≥ 16, n is even, containing k1
and k2 consecutive vertices respectively such that k1 + k2 = k and k1, k2 ≥ 1.
Then |E(G[K1 ∪ K2])| ≤ |E(G[K])|.

Fig. 3. (a) The subset K, K1 and K2 in W3,n (b) The subset K1\{v} and K2 in W3,n

Proof. We prove this result by the method of induction on k. Let k = 2, K is
a subset of 2 consecutive vertices, and it is easy to see that |E(G[K])| = 1. If
k1 = 1 and k2 = 1, then k1 + k2 = 2. By the labeling of Knödel graphs, there is
no edge between two vertices with odd labels as well as two vertices with even
labels in a Knödel graph since the graph is bipartite. In this case, G[K1 ∪ K2]
is a disconnected subgraph of the 3-regular Knödel graph W3,n, n ≥ 16, n is
even, and we have |E(G[K1 ∪ K2])| = 0. If K1 has a vertex with an odd label
and K2 has a vertex with an even label or vice versa, then there is a chance
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of an edge between K1 and K2. Thus we get |E(G[K1 ∪ K2])| = 1. Therefore,
|E(G[K1 ∪ K2])| ≤ |E(G[K])|.

Assume that the result is true for the case of k − 1 consecutive vertices.
Now consider the case when K is a subset of k consecutive vertices. Then K1

and K2 are two disjoint subsets of k1 and k2 consecutive vertices respectively
such that k1 + k2 = k, see Fig. 3(a). Without loss of generality, let v be the
last vertex of K1 having degG[K1∪K2](v) ≤ 3. Deletion of the vertex v from
K1 ∪K2 will obtain K

′
1 ∪K2 which contains k−1 vertices, as shown in Fig. 3(b).

By induction hypothesis we have |E(G[K
′
1 ∪ K2])| ≤ |E(G[K

′
])|, where K

′
is

a subset of W3,n, n ≥ 16, n is even, on k − 1 consecutive vertices. Therefore,
|E(G[K1 ∪K2])| = |E(G[K

′
1 ∪{v}∪K2])| = |E(G[K

′
1 ∪K2])|+degG[K1∪K2](v) ≤

|E(G[K
′
])| + degG[K1∪K2](v) ≤ |E(G[K])|, since any vertex of K except the end

vertices have degree 3.

Proceeding with a similar argument, we obtain the following result.

Lemma 5. Let K be a subset of the vertex set of the 3-regular Knödel graph
W3,n, n ≥ 16, n is even, containing k consecutive vertices. Let K1,K2, . . . , K� be
� disjoint subsets of the vertex set of the Knödel graph containing k1, k2, . . . , k�

consecutive vertices respectively such that k1 + k2 + . . . + k� = k and
k1, k2, . . . , k� ≥ 1. Then |E(G[K1 ∪ K2 ∪ . . . ∪ K�])| ≤ |E(G[K])|.
Theorem 1. A set of k, 1 ≤ k ≤ n, consecutive vertices of the 3-regular Knödel
graph W3,n, n ≥ 16, n is even, taken in increasing order and starting from a
vertex with an odd label, induces a maximum number of edges.

Proof. Let K be the set of k consecutive vertices of the 3-regular Knödel graph
W3,n, n ≥ 16, n is even, taken in increasing order and starting from a vertex with
an odd label. Let K ′ be the set of k non-consecutive vertices of W3,n, n ≥ 16, n

is even, such that K ′ =
p⋃

i=1

Ki, p ≥ 2, where Ki’s are disjoint sets of consecutive

vertices, taken in increasing order and each starting from a vertex with an odd
label which gives

∑p
i=1 |Ki| = k.

Now we will prove this result by induction on p. Let p = 2, then by Lemma 4,

the result is true. Let L′ =
�⋃

i=1

Ki, where |L′| =
�∑

i=1

|Ki| and L is the set of
�∑

i=1

|Ki|
consecutive vertices. Then by assumption for p = � and by Lemma 5, we have
|E(G[L′])| ≤ |E(G[L])|. Let L′′ = L′ ∪K�+1. By induction hypothesis |E(G[L′])|
is not maximum. Again by Lemma 4, G[L′′] will not induce a maximum number
of edges on |L′′| = |K1| + |K2| + · · · + |K�+1| vertices. Hence the proof.

Remark 3. For k ≤ 5, the maximum subgraph of k vertices of the 3-regular
Knödel graph W3,n, n ≥ 16, n is even, contains k − 1 edges, irrespective of
taking the vertex subset starting with an odd or even label.

Corollary 1. The number of edges in a maximum subgraph on k vertices of the
3-regular Knödel graph W3,n, n ≥ 16, n is even, where 2 ≤ k < n, is given by
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IG(k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k − 1 if k = 2, 3, 4, 5
1
2 (3k − 6) if 6 ≤ k ≤ n − 4 and k is even
1
2 (3k − 7) if 7 ≤ k ≤ n − 5 and k is odd
3n
2 − 2i − 1 if k = n − i, i = 1, 2, 3.

Proof. Label the vertices of the 3-regular Knödel graph W3,n, n ≥ 16, n is even,
according to the labeling given in Sect. 3. Let K be the subset of the vertex set
of the Knödel graph W3,n, n ≥ 16, n is even, consisting of k consecutive vertices,
2 ≤ k < n, taken in increasing order and starting from a vertex with an odd
label. Then we have the following cases:
Case 1 (k = 2, 3, 4, 5): Clearly, the induced subgraph is a path for k = 2, 3, 4,
and 5 since the girth of the W3,n, n ≥ 16, n is even, is 6. Therefore, IG(k) = k−1
when k = 2, 3, 4 and 5.
Case 2 (7 ≤ k ≤ n−5 and k is odd): For any odd k, 7 ≤ k ≤ n−5, the subgraph
induced by k vertices consist of one pendant vertex, five vertices of degree 2 and
k − 6 vertices of degree 3. Then the number of edges induced by k vertices is
given by

IG(k) =
1
2

∑

v∈K

degG[K](v) =
1
2
(1 · 1 + 2 · 5 + 3 · (k − 6)) =

1
2
(3k − 7).

Case 3 (6 ≤ k ≤ n − 4 and k is even): When k = 6, the induced subgraph is a
cycle, which is the girth of W3,n, n ≥ 16, n is even. Therefore, IG(6) = 6. When
k is even and 6 ≤ k ≤ n−4, the induced subgraph contains six vertices of degree
2 and k − 6 vertices of degree 3. Therefore,

IG(k) =
1
2

∑

v∈K

degG[K](v) =
1
2
(3k − 6).

Case 4 (k = n− i, i = 1, 2, 3): For i = 1, let v be the last vertex of W3,n, n ≥ 16,
n is even. Remove v from the graph so that the resultant subgraph has n − 1
consecutive vertices, starting from a vertex with an odd label. Let this subset of
vertices be K. Then,

IG(n − 1) = |E| − degW3,n
(v) =

3n

2
− 3.

Consider k = n−2. Here we remove the last vertex v′ from the subgraph G[K]
such that the resultant subgraph consists of n − 2 consecutive vertices starting
from a vertex with an odd label. Let this subset of vertices be K ′. Then,

IG(n − 2) = |E(G[K])| − degG[K](v′) =
3n

2
− 5.

Similarly for k = n − 3, we have

IG(n − 3) =
3n

2
− 7.

Hence, we can conclude that for k = 2n − i, i = 1, 2, 3

IG(k) = |E| − (2i + 1) =
3n

2
− 2i − 1.
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4.2 Minimum Linear Arrangement

Consider an undirected graph G(V,E) having n vertices. A bijective mapping
g : V → {1, 2, . . . , n} [6] is called a linear of G. The minimum linear arrangement
(MinLA) is defined as finding a linear arrangement g which minimises the sum of
values of |g(u)−g(v)| for every edges (uv) in G [5]. The particular case of embed-
ding graphs into k-dimensional grids is a linear arrangement. The wirelength of
embedding any graph G into a path is called the minimum linear arrangement of
G, denoted by MinLA(A) [6]. Mathematically, WL(A,B) = MinLA(A) when
B is a path with |V (A)| = |V (B)|.
Theorem 2. Let A be the 3-regular Knödel graph W3,n, n ≥ 16, n is even, and
B be the path on n vertices Pn. Then

MinLA(A) = WL(A,B) =
13n

2
− 22.

Proof. Since the host graph is a path on n vertices, the vertices can be labeled
from left to right as 1, 2, . . . , n. Let g(u) = u for every u ∈ V (A) and for (xy) ∈
E(A), let Pg(xy) be the shortest path from g(x) to g(y) in Pn.

Fig. 4. The edge cut of Pn

Let Xj be an edge cut of Pn given as Xj = {j, j + 1}, 1 ≤ j ≤ n − 1,
see Fig. 4. For 1 ≤ j ≤ n − 1, E(Pn) \ Xj has components Bj and Bj . Let
V (Bj) = {1, 2, . . . , , j}. Let Aj = G[V (g−1(Bj))] and Aj = G[V (g−1(Bj))]. By
Lemma 1, Aj is optimal with j vertices. Therefore, Xj fulfills the three conditions
of Modified Congestion Lemma. Then, for 1 ≤ j ≤ n − 1, ECg(Xj) is minimum
and is given by

ECg(Xj) = 3j − 2IA(j).

Thus, the wirelength is minimum by Partition Lemma and we have

WL(A,B) =
n−1∑

j=1

ECg(Xj) =
n−1∑

j=1

(3 · j − 2IA(j))

= 3 ·
n−1∑

j=1

j − 2

(
5∑

j=2

(j − 1) +
n−4∑

j=6
& j is even

1
2
(3j − 6)

+
n−5∑

j=7
& j is odd

1
2
(3j − 7) +

9n

2
− 15

)

=
13n

2
− 22.
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4.3 Wirelength of Embedding W3,2n , n ≥ 4 into 1-rooted Complete
Binary Tree T 1

n

The complete binary tree (CBT) Tn [9] having n levels is a binary tree which has
n levels where n is any non-negative integer. Each level j, 1 ≤ j ≤ n, contains
2j−1 vertices in such a way that all the leaves lie at the same level and there
will be exactly two children for each internal vertex. Therefore, Tn has exactly
2n − 1 vertices. By joining a pendant vertex to the root of a complete binary
tree Tn we get a 1-rooted complete binary tree, denoted by T 1

n . Now, the root
of T 1

n is the new vertex, say t, and it is at level 0. Clearly, |V (T 1
n)| = 2n, n ≥ 1.

Fig. 5. Cut edges of 1-rooted complete binary tree T 1
n

Theorem 3. Let A be the 3-regular Knödel graph W3,2n , n ≥ 4, n is even, and
B be the 1-rooted complete binary tree T 1

n . Then

WL(A,B) = 9 · 2n−1 − 11.

Proof. Using inorder traversal [2], we label the vertices of T 1
n from 1 to 2n. Let

g(a) = a for all a ∈ V (W3,2n) and let Pg(uv) be a shortest path joining g(u) and
g(v) in T 1

n , for every (uv) ∈ E(W3,2n).

Let X2r−1
m , r = 1, 2, . . . , n, m = 1, 2, . . . , 2n−r, be the cut edge of T 1

n , see
Fig. 5. Then the end vertices of X2r−1

m lies in (n − r)th level and (n − r + 1)th

level. Thus when X2r−1
m is removed, T 1

n separates into two components B2r−1
m

and B2r−1
m with V (B2r−1

m ) = {2r(m − 1) + 1, 2r(m − 1) + 2, . . . , 2r(m − 1) +
2r − 1}. Let G[g−1(V (B2r−1

m ))] = A2r−1
m and G[g−1(V (B2r−1

m ))] = A2r−1
m . By

Lemma 1, A2r−1
m is optimal with 2r − 1 vertices. Therefore, the conditions of

Modified Congestion Lemma are satisfied by X2r−1
m . Then, for r = 1, 2, . . . , n,

m = 1, 2, . . . , 2n−r, ECg(X2r−1
m ) is minimum and is given by

ECg(X2r−1
m ) = 3(2r − 1) − 2IA(2r − 1).
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Thus, the wirelength is minimum by Partition Lemma and

WL(A,B) =
n∑

r=1

2n−r∑

m=1

ECg(X2r−1
m ) =

n∑

r=1

2n−r∑

m=1

(3(2r − 1) − 2IA(2r − 1))

= 3 (1 + (n − 1)2n) − 2
n∑

r=1

2n−rIA(2r − 1)

= 9 · 2n−1 − 11.

5 Implementation

Harper established the minimum linear arrangement problem in 1964 [5] as a
method for developing error-correcting codes with the fewest possible average
absolute errors. The problem is used extensively in software diagram layout,
entity relationship models, UML sequence diagram layout, and data flow dia-
gram layout. It is also used to resolve wiring problems and the single-machine job
scheduling problem. An application of minimum linear arrangement in compu-
tational biology is an oversimplified model of some neural activity in the cortex.

Fig. 6. Comparison of wirelengths of embedding path P2n and 1-rooted complete
binary tree T 1

n into 3-regular Knödel graph W3,2n , n ≥ 4, n is even

A good presentation of a graph relies on the total length of all edges. The
field of a graph drawing is where the minimum linear arrangement finds its most
widespread application. To provide a graph representation with good compre-
hension and readability, we have to reduce the number of crossing edges. The
bipartite graphs are represented using bipartite drawing in which the vertex
partitions form two parallel lines and the straight line between them will form
the edges. The bipartite crossing number is the least number of edge crossings
over all bipartite drawings. This is similar to the minimum linear arrangement
problem in that it can be simplified by minimizing the total edge length. Hence,
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the solution to the bipartite crossing number problem can be approximated from
the solution of the minimum linear arrangement problem.

In Fig. 6, the wirelengths for embedding the Knödel graph W3,2n , n ≥ 4 into
the path and 1-rooted complete binary tree is shown and we have observed
that when the number of pendent vertices in a graph increases, the wirelength
becomes small.

6 Concluding Remarks

In this article, we have solved the maximum subgraph problem for 3-regular
Knödel graph W3,n, n ≥ 16, n is even and we obtained the minimum linear
arrangement. Further we calculated the wirelength of embedding W3,n, n ≥
16, n is even into 1-rooted complete binary tree T 1

n . Finding the wirelength
of embedding Knödel graphs into other host graphs are under investigation.
Solving the maximum subgraph problem for the Knödel graph WΔ,n, n ≥ 2Δ+1

is challenging for 4 ≤ Δ ≤ �log2 n�.

References
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Abstract. A variant of graph covering problem demands to find a set
of sub-graphs when the union of sub-graphs contain all the edges of G.
Another variant of graph covering problem requires finding a collection of
subgraphs such that the union of the vertices of subgraphs forms a vertex
cover. We study the later version of the graph covering problem. The
objective of these problems is to minimize the size/cost of the collection
of subgraphs. Covering graphs with the help of a set of edges, set of
vertices, tree or tour has been studied extensively in the past few decades.
In this paper, we study a variant of the graph covering problem using
two special subgraphs. The first problem is called bounded component
forest cover problem. The objective is to find a collection of minimum
number of edge-disjoint bounded weight trees such that the vertices of the
forest, i.e., collection of edge-disjoint trees, cover the graph. The second
problem is called bounded size walk cover problem. It asks to minimize
the number of bounded size walks which can cover the graph. Walks
allow repetition of vertices/edges. Both problems are a generalization
of classical vertex cover problem, therefore, are NP-hard. We give 4ρ
and 6ρ factor approximation algorithm for bounded component forest
cover and bounded size walk cover problems respectively, where ρ is an
approximation factor to find a solution to the tree cover problem.

Keywords: Graph Covering · Vertex Cover Problem · Tree Cover
Problem · Approximation Algorithm

1 Introduction

A set of vertices are said to cover an edge if at least one end vertex of that edge
is present in that set of vertices. Graph covering problems aim to find a subset
of graph vertices such that all edges are covered by that subset while minimizing
some objective function. The classical vertex cover problem is a graph covering
problem which requires finding a minimum size/cost subset of graph vertices that
covers all the edges of a given graph. The problem of covering graphs with specific
subgraphs is studied by several researchers in the past four decades [1–3,5]. The
objective in such problems is to determine an optimal size/cost collection of
subgraphs of a graph such that the union of vertices of the subgraphs covers
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all edges of the original graph. Based on the topology of subgraphs, several
variations of the problem are defined. As most of these variations are NP-hard,
the main goal is to design efficient approximation schemes.

In this paper, we aim to study two variants of graph covering with bounded
size subgraphs. The problems aim to cover the graph with a minimum number
of subgraphs each of whose weight is bounded by a given real number. Formally,
let G = (V,E,w) be a weighted graph where w : E → R+. A forest cover of G is
a collection of disjoint trees {T1, T2, · · · , Tj} such that the union of the vertices
in all the trees in the collection will be a vertex cover. Note that disjoint trees
do not have any common vertices/edges. The cardinality of a forest cover is j,
the number of trees in the forest cover. We define a problem named bounded
component forest cover (BCFC) problem as follows.

Definition 1. For a given weighted graph G = (V,E,w), and a non-negative
real number λ, find a forest cover of minimum cardinality such that the weight
of each tree in the forest cover is at most λ.

Note that when λ = 0, the problem is reduced to the minimum vertex cover
problem. Hence, we have the following result.

Theorem 1. The BCFC problem over (G,λ) is NP-hard.

The second problem is motivated by a real-life application problem monitor-
ing a large art gallery. A guard can see the entire corridor from one of its end
junction points. The objective is to place a minimum number of mobile guards
in such a way that every corridor can be under the scrutiny of at least one guard
in t time period, for a given time t > 0. If every guard moves with a constant
average velocity v, then the movement routes of the guards decompose the graph
into subgraphs, each of which has a length at most vt, and the set of vertices
covered by the guards must form a vertex cover. In this case, each subgraph is
a walk of length at most vt, and the walks in the solution may be intersecting,
i.e., may have common edges/vertices.

Formally, let G = (V,E) be a weighted graph with the weight function
w : E → R+. A walk cover of G is a collection of walks {P1, P2, · · · , Pj} which
are allowed to intersect, i.e., may have common edges/vertices such that the
union of the vertices on all the walks in the collection, forms a vertex cover. The
cardinality of a walk cover is j, the number of walks in the walk cover. Analo-
gous to BCFC, we define a problem named bounded size walk cover (BSWC) as
follows.

Definition 2. For a given weighted graph G = (V,E,w), and a non-negative
real number λ, find a walk cover of minimum cardinality such that the weight of
each walk in the walk cover is at most λ.

If λ = 0, BSWC problem is reduced to the minimum vertex cover problem.
Therefore, the following result holds.

Theorem 2. The BSWC problem over (G,λ) is NP-hard.
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2 Related Work

In this section, we briefly mention works related to BCFC, BSWC and graph cov-
ering problems. The tree(tour) cover problem was first defined by Arkin et al. [1]
in 1993. The tree(tour) cover problem of an edge weighted graph deals with
finding a minimum weight tree(tour) in the graph such that the vertices of
the tree(tour) are the vertices of some vertex cover of the graph. These two
problems are NP-hard as an instance of vertex cover problem, and traveling
salesperson problem [6] can be reduced to an instance of tree and tour cover
problem, respectively. Arkin et al. have designed a 3.55 and 5.5-factor approxi-
mation algorithm for tree cover and tour cover problems, respectively. In [2,3],
researchers have studied the tree cover problem and proposed improved approx-
imation algorithms. Koneman et al. [2] gave a linear programming formulation
for the tree cover problem and derived a 3-factor rounding algorithm. Fujito [3]
gave a 2-factor approximation algorithm to find a minimum tree cover. Viet
Hung Nguyen [4] established a 3.5 approximation factor for the tour cover using
a compact linear program which is weaker as compared to 3-factor proposed by
Konemann et al. [2]. Researchers have studied a similar problem called edge dom-
inating set problem [5,7,8] that finds a subset of edges E1 in a graph G = (V,E)
such that for each edge not in E1 has at least one common end vertex with some
edges of E1. It is a minimization problem.. This problem is a special case of
BSWC problem when λ = 1 and the graph is unweighted. Researchers [5,7,8]
have proposed various approximation algorithms to solve the edge dominating
set problem and the best-known algorithm has an approximation factor 2 [5].
Fujito and Nagamochi [5] and Parekh [9] have proposed 2-factor approxima-
tion algorithms to find minimum vertex cover, minimum edge dominating set,
and some related problems. Monien and Speckeumeyer [11] have established an
approximation factor ≤ 1.8 for finding a minimum vertex cover in all graphs
with ≤ 146000 nodes. To find a minimum vertex cover in graphs authors [12,13]
have proposed different approximation algorithms whose approximation factors
are lesser than 2. In [14], authors have proved that it is NP-hard to establish an
approximation factor lesser than 1.36067 for a vertex cover problem in a graph.

The problem of graph covering using walks is related to a well-studied prob-
lem of graph exploration by mobile agents. If the mobile agents have to monitor
the edges of the network by visiting at least one of its end vertices, they have
to visit walks containing all vertices of some vertex cover of the graph. The
optimal number of agents required for edge exploration is a related problem to
BSWC; therefore, we briefly mention a few results on edge exploration. In a graph
exploration problem single or multiple mobile agents have to visit the nodes or
edges of a graph. Many research works are concerned with the exploration of
the graph by a single mobile agent, as discussed in [15–18,20]. In [21], authors
have assumed that in the deterministic exploration of the graph by multiple
agents, the movement of the agents are coordinated centrally. In [22], authors
have designed different approximation algorithms for the collective exploration
of an arbitrary graph by a group of mobile agents. In [19], authors have studied
the problem graph exploration where starting from a node, a mobile agent has to
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visit all the vertices of an anonymous graph where the nodes do not have ids, but
the edges incident on a node are labeled with port numbers. Dhar et al. [23,24]
studied the edge exploration of an anonymous graph by a mobile agent.

3 Results

In this section, we present constant factor approximation schemes for both con-
sidered problems.

3.1 Constant Factor Approximation Algorithm for BCFC

Recall a tree cover problem in an edge weighted graph deals with finding a
minimum weight tree such that the vertices of the tree form a vertex cover of the
graph. First, we show that a constant factor approximation algorithm for the tree
cover problem can be used to design a constant factor approximation algorithm
to BCFC. The general idea is to find a tree cover of a given graph and then split
the tree into bounded size components such that all vertices of the tree cover are
preserved in the process of splitting. The resulting forest is a solution of BCFC
problem on the given graph. The tree cover problem is NP-Hard; therefore, the
proposed scheme obtains an approximated tree cover solution using some ρ-
factor approximation algorithm. The following lemma from [25] helps us to find
a solution of BCFC from a given solution of tree cover problem.

Lemma 1 ([25]). Let β > 0 be a positive real number and let T be any tree with
vertex set VT and the edge set ET . If for each e ∈ ET , w(e) ≤ β, then T can be
split into sub-trees ζ1, ζ2, · · · , ζk where k ≤ max{�w(T )

β �, 1} such that w(ζi) ≤ 2β
for each 1 ≤ i ≤ k.

The procedure of how to split the tree into sub-trees is explained in [26].
Let G = (V,E,w) be a given weighted graph. We define a weight function

w 1
2

as follows:

w 1
2
(e) =

{
2w(e)

λ if w(e) ≤ λ
2 ,

1 otherwise.

Let G′ = (V,E,w 1
2
) where G = (V,E,w). Let w 1

2
(X) denote the sum of the

weights of the edges in a subgraph X of graph G′. Similarly, w(X) is defined for a
subgraph X of graph G. The following lemma establishes a relationship between
the optimal tree cover of G′ and the number of trees in the optimal solution of
BCFC.

Lemma 2. Let OPTBCFC be the number of sub-trees in the optimal solution of
BCFC problem over (G,λ) and let OPTTC be the optimal tree cover of G′. Then
w 1

2
(OPTTC) ≤ 4OPTBCFC − 2.
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Proof. Let ξ1, ξ2, · · · , ξOPTBCF C
be the trees in an optimal solution of BCFC for

(G,λ). Then by the definition of w 1
2
, w 1

2
(ξi) ≤ 2, for each i, 1 ≤ i ≤ OPTBCFC .

Construct a graph H = (VH , EH) with OPTBCFC many vertices as follows.
For every tree ξi, take a vertex ui in VH . Add an edge (ui, uj) ∈ EH , if

there exists a vertex vi ∈ Vξi
and there exist a vertex vj ∈ Vξj

such that vi and
vj are connected by a path with at most two edges in G. Assign w(ui, uj) =

min
{Pxy|x∈Vξi

,y∈Vξj
}
{w(Pxy)}, where Pxy is a path between x and y with at most

two edges in G. Since G is connected, and the vertices of OPTBCFC forms a
vertex cover, therefore the graph H is also connected. Let τ be the minimum
spanning tree of H with respect to w and Eτ be the set of edges in the τ .
Note that for every edge in e ∈ Eτ , w 1

2
(e) ≤ 2, as there can be at most two

edges in G corresponding to one edge in τ and the weight of an edge in G with

respect to w 1
2

is at most 1. Let Z = (
OPTBCF C⋃

i=1

ξi)
⋃

τ . Clearly, Z is a tree cover

of G and w 1
2
(Z) ≤ ∑OPTBCF C

i=1 w 1
2
(ξi) +

∑
e∈Eτ

w 1
2
(e). Recall, w 1

2
(ξi) ≤ 2 and

|Eτ | = |Vτ | − 1 = |VH | − 1 = OPTBCFC − 1, therefore, we have w 1
2
(Z) ≤

2OPTBCFC + 2(OPTBCFC − 1) = 4OPTBCFC − 2.
Since, OPTTC is an optimal tree cover of G′, we have w 1

2
(OPTTC) ≤

w 1
2
(Z) ≤ 4OPTBCFC − 2 ��
Next, we describe our approach to find a solution for BCFC problem over

(G,λ). Let A̧ be an approximation algorithm with ρ-factor approximation guar-
antee for the tree cover problem. Let APXTC be the tree cover returned by A̧
for the input graph G′ = (v,E,w 1

2
). First, we obtain an approximated tree cover

APXTC of G′. Then each edge e in APXTC for which w(e) > λ
2 is deleted from

APXTC . After deletion of such edges, let APXTC splits into h sub-trees χ1, χ2,
· · · , χh. For i = 1 to h, a set of sub-trees Si is computed from χi using the tree
splitting strategy proposed in [26] such that weight of each sub-tree in Si has
weight at most 2. Finally, forest cover APXBCFC =

⋃h
i=1 Si is returned as the

solution to the BCFC problem.

Theorem 3. Let |APXBCFC | be the number of trees in the forest cover
APXBCFC , then |APXBCFC | ≤ 4 · ρ · OPTBCFC , when we have a ρ-factor
approximation algorithm for the tree cover problem.

Proof. Let T be a sub-tree in a set of sub-trees Si ⊆ APXBCFC . Then,
w 1

2
(T ) ≤ 2. Furthermore, for each edge e ∈ T , w(e) ≤ λ

2 and w(T ) ≤
λ. According to Lemma 1, the number of trees in the set of sub-trees
Si, |Si| ≤ max{�w 1

2
(χi)�, 1} = max{� 2w(χi)

λ �, 1} ≤ w 1
2
(χi) + 1. Recall,

APXBCFC =
⋃h

i=1 Si, therefore, |APXBCFC | =
∑h

i=1 |Si| ≤ ∑h
i=1(w 1

2
(χi) +

1) =
∑h

i=1 w 1
2
(χi)+h. Note that, w 1

2
(APXTC) =

∑h
i=1 w 1

2
(χi)+h−1, therefore,

we have APXBCFC ≤ w 1
2
(APXTC) + 1 ≤ ρ · w 1

2
(OPTTC) + 1. Using Lemma 2,

we have APXBCFC ≤ 4ρ · OPTBCFC . ��
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Theorem 4 ([3]). There exist a 2 factor approximation algorithm for tree cover
problem.

In view of Theorem 3 and Theorem 4 we have the final result in this subsec-
tion.

Theorem 5. There exists an 8-factor approximation algorithm for BCFC.

3.2 Constant Factor Approximation Algorithm for BSWC

Recall that a solution to BCFC can be easily converted to a solution of BSWC by
doubling the edges in each component of the forest cover, breaking the tour into
two bounded size walks, which may intersect. Let |APXBCFC | be the number
of trees in the forest cover APXBCFC , which is a solution of BCFC given by the
approximation algorithm given in the above section. Then, after doubling the
trees in APXBCFC and cutting the formed tour due to doubling into two walks,
we would have 2|APXBCFC | walks. Therefore, the number of walks would be
less than or equal to 8 · ρ · OPTBCFC when we have a ρ factor approximation
algorithm for the tree cover problem.

In this section, we show that an approximation scheme for the tree cover prob-
lem can be used to design a constant factor approximation scheme for BSWC.
The general idea is to find a tree cover of a given graph and then delete high-
cost edges. This process may result in a forest. The edges in the resulting forest
are doubled to form tours over vertices in all respective components of the for-
est. Splitting these tours into bounded-size walks results in a collection of walks
which is a feasible solution for BSWC. We prove that this approximation app-
roach guarantees to give 6 · ρ · OPTBSWC solution for BSWC problem.

Let G = (V,E,w) be a weighted undirected graph, where every edge e ∈ E
has a positive real weight. We define a weight function w′ on the graph G such
that for each edge e ∈ G, w′(e) = w(e)

λ if w(e) ≤ λ else w′(e) = 1. Let G′ =
(V,E,w′) where G = (V,E,w). Let λ be a non-negative real number. Note that
two walks may intersect and may have common vertices/edges. A set of walks
{P1, P2, · · · , Pj}, such that each walk is of weight at most λ, is called bounded
size walk cover if union of vertices in all the walks forms a vertex cover of G.
For any real λ ≥ 0, the objective of BSWC problems is to find the minimum
cardinality walk cover of G such that the weight of each walk in the walk cover
is at most λ.

The above problem is NP-hard. To solve this problem, we design an approx-
imation algorithm that finds a tree cover of the graph and splits the tree cover
into sub-trees of smaller size by deleting high-weight edges, but all the vertices
of the tree cover must be present in the sub-trees. Deletion of high-weight edges
is a classical mechanism to break a tree in problems that have bounded size
constraints [26]. The proposed algorithm finds walk cover from a tree cover fol-
lowing the idea of constructing sub-trees from a minimum spanning tree given
in the Algorithm 1 in the paper [27]. We have modified Algorithm 1 from [27]
according to our requirement to result walks which may intersect. For the sake
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Algorithm 1: Bounded Size Walk Cover Algorithm
1 Find an approximate tree cover APXTC in G′ using ρ-approximation tree cover

algorithm .
2 From the tree cover APXTC delete each edge e with cost w(e) ≥ λ. Let k be the

number of edges deleted from APXTC . It splits APXTC into k + 1 sub-trees
denoted as T0, T1, · · · , Tk.

3 for i = 0 to k do
4 Find a tour ETi on Ti by doubling the edges.
5 Delete an arbitrary edge from ETi, to get a path Ci.

6 end
7 Define APXBSWC = ∅.
8 for i = 0 to k do
9 while w(Ci) > λ do

10 Let Ci = u1
iu

2
i · · · u|V (Ci)|

i }.

11 Let uj
i be the first vertex on Ci such that w(u1

i · · · uj+1
i ) > λ.

12 APXBSWC = APXBSWC

⋃
(u1

i · · · uj
i ), Ci = Ci \ (u1

i · · · uj
iu

j+1
i ).

13 Delete all edges of the path (u1
i · · · uj

iu
j+1
i ) from Ci. To delete the path

(u1
i · · · uj

iu
j+1
i ), we delete the vertices {u1

i , · · · , uj
i} and the edges

{(u1
i , u

2
i ), · · · , (uj−1

i , uj
i )} from Ci.

14 end
15 APXBSWC = APXBSWC

⋃
Ci

16 end
17 Return APXBSWC .

of completeness, the modified algorithm is summarized as Algorithm 1 in this
paper and its working procedure is explained as follows. The algorithm finds an
approximated tree cover APXTC in the graph G using some ρ-factor approxima-
tion algorithm. It deletes all heavy edges with weight more than λ from APXTC .
Let k number of edges are deleted which splits APXTC into k +1 different com-
ponents T0, · · · , Tk. In each Ti, i = 0, · · · , k, the algorithm finds a tour ETi by
doubling edges of Ti and at the end, it deletes one arbitrary edge from ETi to get
a walk Ci. Note that an edge may appear more than one time in such tour. For
i = 1, · · · , k, each walk Ci, is split into sub-walks of weight less than or equal to
λ and those sub-walks are added to the solution APXBSWC . Let the walk Ci is
represented as a sequence of vertices (u1

i u
2
i · · · u|V (Ci)|

i ). In the walk Ci let uj
i be

the first vertex such that w(u1
i · · · uj+1

i ) > λ, then it adds the walk (u1
i · · · uj

i ) to
the set APXBSWC and deletes the walk (u1

i · · · uj
iu

j+1
i ) from Ci. To delete any

walk (u1
i · · · uj

iu
j+1
i ) from Ci , the algorithm deletes the vertices {u1

i · · · uj
iu

j
i}

and the edges {(u1
i , u

2
i ) · · · (uj

i , u
j+1
i )}. It continues this process until w(Ci) ≤ λ.

Finally, we add the truncated walk Ci to the set APXBSWC .
The execution steps of the Algorithm 1 are depicted with the help of an

example, as shown in Fig. 1. Let G = (V,E,w) be a positive edge-weighted graph
as shown in Fig. 1a and let the bound on the weight of each walk be λ = 20. The
algorithm first computes an approximate tree cover APXTC in the graph G using
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Fig. 1. Example: Construction of bounded size walk cover.

some existing tree cover algorithm. Let Fig. 1b be the approximated tree cover
APXTC . Then, the algorithm deletes the edge (v1, v3) whose weight is greater
than λ = 20 from APXTC . Deletion of (v1, v3) splits APXTC into two different
sub-trees T1 and T2 as shown in Fig. 1c. Next, the algorithm doubles the edges
of sub-trees T1 and T2 and finds tours ET1 and ET2, respectively, as depicted in
Fig. 1d. From each tour ET1 and ET2, the algorithm deletes an arbitrary edge
and gets open walks C1 and C2 as shown in Fig. 1e. In this example (v2, v7) and
(v3, v6) are deleted from ET1 and ET2 respectively. Note that an edge may occur
twice in these walks due to doubling. In the walk C1, the algorithm starts from
node v7 and visits up to the node v1. Since the walk P1 = (v7, v2, v1) is the largest
visited walk with weight at most 20, it adds the sub-walk P1 = (v7, v2, v1) into
the solution and deletes the walk P1 along with the edge (v1, v8) from C1. Then
it finds the sub-walk P2 = (v8, v1, v2) from the remaining walk of P1. Similarly,
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it finds sub-walk P3 from the walk C2. All the walks have a weight at most 20
as shown in Fig. 1f. Note that P1 and P2 are intersecting and have a common
edge (v1, v2).

The following Lemmas and Theorem give correctness and derive the approx-
imation factor of Algorithm 1. Recall APXBSWC is the output of Algorithm 1,
which is a set of walks.

Lemma 3. APXBSWC is a bounded size walk cover of graph G.

Proof. The walks in APXBSWC are constructed by deleting some edges of a
tree cover of the graph G. So the walks in APXBSWC include all the vertices of
the tree cover of G. Therefore, the vertices of all the walks in APXBSWC still
form a vertex cover of graph G. According to Algorithm 1, the weight of each
walk in APXBSWC are bounded to be less or equal to λ. Hence, APXBSWC is
a feasible solution to BSWC problem in the graph G. ��

To establish the approximation factor of Algorithm 1, we define certain vari-
ables. Let OPTBSWC be the minimum number of bounded size walks, which
forms the optimal solution of BSWC problem over a graph G. Let OPTTC

be the optimal tree cover of the graph G′. We establish a relation between
OPTBSWC and w′(OPTTC).

Lemma 4. w′(OPTTC) ≤ 3.OPTBSWC − 2

Proof. Let {Q1, Q2, · · · , QOPTBSW C
} be the set of walks which forms the optimal

solution of BSWC as shown in Fig. 2. Weight of each Qi is less than or equal
to λ, i.e. w(Qi) ≤ λ and w′(Qi) ≤ 1. We construct a graph H = (VH , EH),
similarly to how we constructed a graph H in the proof of Lemma 2. The graph
H contains all walks Q1, · · · , QOPTBSW C

as a subgraph and contains a few extra
edges/vertices from G to connect these walks into a single connected component.
In the graph G, if two walks Qi and Qj have common vertices or edges, then
join them into a single component by taking the union of those walks so that
each edge/vertex appears exactly once. We start with graph G, and then, we
contract each component from the previous step, which is a subgraph of G, into
a single vertex by contracting all the edges and respective vertices to obtain a
graph Gc = (Vc, Ec). Afterward, we find a minimum spanning tree MST T on
the contracted graph Gc. Graph H is constructed from MST T by reversing the
contraction of the components. The graph H is a sub-graph of G containing all
the vertices of walks in the set {Q1, Q2, · · · , QOPTBSW C

}. The sub-graph H is a
tree cover of G as depicted in Fig. 3.

Fig. 2. Q1, · · · , QOPTBSW C be the walks in the optimal solution of BSWC
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Fig. 3. Sub-graph H of G formed by edges of Qi and MST T on Gc

In the graph Gc, consider two nodes ux and uy that represent two components
that may be formed by union of few walks from the set {Q1, Q2, · · · , QOPTBSW C

}.
Let ux and uy are connected in Gc through a path pxy, which is also present in
MST T . Then, the number of edges on path pxy is at most two. Otherwise, if
three edges are present in pxy, then any end vertex of middle edge can not be
covered by any vertex of Qi, for 1 ≤ i ≤ OPTBSWC , and hence the covering of all
edges is not guaranteed. Therefore, weight of each such path pxy in G′, w′(pxy) ≤
2. Note that the vertices H form a vertex cover of G. As per the construction,
the graph H contains all walks from the set {Q1, Q2, · · · , QOPTBSW C

} and at
most OPTBSWC − 1 many paths (of pxy type) to connect all walks. The weight
of each walk Qi in G′ is w′(Qi) ≤ 1. Hence, the weight of sub-graph H in G′

is given as w′(H) ≤ OPTBSWC + 2.(OPTBSWC − 1) ≤ 3OPTBSWC − 2. Since
H is also a tree cover of the graph G, weight of the optimal tree cover in G′,
w′(OPTTC) ≤ w′(H) ≤ 3OPTBSWC − 2. ��
Theorem 6. Let Y = |APXBSWC | be the number of walks of a bounded weight
in the set APXBSWC resulted by Algorithm 1. Then, Y ≤ 6 · ρ · OPTBSWC ,
when we have a ρ-factor approximation algorithm for the tree cover problem.

Proof. The proposed algorithm obtains an approximate tree cover APXTC of
G′ using some ρ-factor approximation algorithm, i.e. weight of APXTC in G′

is w′(APXTC) ≤ ρ.w′(OPTTC), where OPTTC is the optimal tree cover of G′.
The algorithm deletes the edges from APXTC whose weight is greater than λ
in G. After deletion of heavy edges, let APXTC be split into {T1, T2, ..., Tm}
sub-trees. The algorithm doubles all edges in each sub-tree for a set of sub-
tours {ET1, ET2, ..., ETm}. After the deletion of an arbitrary edge from each
sub-tour, the algorithm finds open walks {C1, C2, ..., Cm}. Each walk Ci is then
splitted into bounded size sub-walks which are kept in the solution as walks
that may intersect. Note that Y ≤ ∑m

i=1�w′(Ci)� ≤ ∑m
i=1

w(Ci)
λ + m. We have

w′(APXTC) =
∑m

i=1 w′(Ti) + m − 1 which can be rewritten as 2w′(APXTC) ≥∑m
i=1

w(Ci)
λ +2m−2. Hence Y ≤ 2w′(APXTC)−m+2 ≤ 2ρ·w′(OPTTC)−m+2.

Using Lemma 4, we have Y ≤ 6 · ρ · OPTBSWC , as ρ > 1. ��
In view of Theorem 6 and Theorem 4, we have the final result in this sub-

section.

Theorem 7. There exists a 12-factor approximation algorithm for BSWC.
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4 Conclusion and Future Work

In this paper, we have studied two graph covering problems: bounded component
forest cover (BCFC) problem and bounded size walk cover (BSWC) problem.
The problems are NP-hard due to a trivial reduction to the classical vertex
cover problem when the bound on weight is 0. We designed 4.ρ factor approxi-
mation algorithm for the bounded component forest cover problem, where ρ is
the approximation factor for finding a solution of tree cover problem. We further
give a 6.ρ factor approximation algorithm for bounded size walk cover problem.
Using 2-factor approximation algorithm given by Fujito [3] for tree cover prob-
lem, we have 8-factor and 12-factor approximation algorithm for BCFC and
BSWC respectively.

Reducing these approximation factors is the first obvious direction to work
on. One possible such improvement may be due to starting of with a subgraph
other than a solution to the tree cover problem, which may bring down the
final approximations factors. Studying bounded size path cover and bounded
size intersecting sub-tour cover are other alternatives that we plan to look in
future. Another future direction is to study the graph covering problem using
other types of bounded size subgraphs.
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Abstract. A toll walk W = w1 . . . wk in a graph G is a walk in which
w1 is adjacent only to w2 and wk is adjacent only to wk−1 among all
vertices of W . The toll walk interval T (u, v) between u, v ∈ V (G) con-
sists of all vertices that belong to a toll walk that starts in u and ends
in v. We consider several standard axioms with respect to T (u, v) and
characterize some graph classes defined by forbidden induced subgraphs.
In particular, we present a new characterization of interval graphs and
some subclasses of asteroidal triples-free graphs.

Keywords: Transit function · Toll walk · AT -free graphs · Interval
graphs · Axiomatic characterization

1 Introduction

A toll walk W from a vertex u to a different vertex v of a graph G is a special
walk that contains exactly one neighbor of u, the second vertex of W , and exactly
one neighbor of v, the for-last vertex of W . One can model a toll walk with the
entrance fee or toll that is payed only once, that is at the first vertex when
entering the rest of a system, that is represented by a graph. Similar one exit
out of the system exactly once, at the neighbor of the final vertex.

Toll walks were first introduced by Alcon [1] as a tool to characterize domi-
nating pairs in interval graphs. Later (despite the publication year), Alcon et al.
[2] observed all vertices that belong to toll walks between u and v as the toll inter-
val T (u, v). This gives rise to the toll walk function T : V (G)×V (G) → 2V (G) of
a graph G and to toll convexity. The main result from [2] is that G is a convex
geometry (i.e. satisfies the Minkowski-Krein-Milman property stating that any
convex subset is the convex hull of its extreme vertices) with respect to toll con-
vexity if and only if G is an interval graph. Beside that also toll convexity on the
standard products was studied and some classic convexity connected invariants
were considered. Later, Gologranc and Repolusk [11,12] studied the toll number
of standard graph products. Recently Dourado [10] considered the hull number
for toll convexity.
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In this work, we study the toll walk function T of a graph from axiomatic
point of view. More accurately, we consider several well-known betweenness
axioms and axioms connected with the induced path function together with
some new axioms connected with the toll walk function. For the toll walk func-
tion we show the connection between the mentioned axioms and the forbidden
induced subgraphs, which gives rise to a new axiomatic characterization of inter-
val graphs and of subclass of asteroidal triples-free graphs.

2 Preliminaries

Let G be a graph with vertex set V (G) and edge set E(G). We consider only
finite simple connected graphs, that is graphs without multiple edges and loops.
The open neighborhood N(v) of v ∈ V (G) is the set {u ∈ V (G) : uv ∈ E(G)}
and the closed neighborhood N [v] is N(v) ∪ {v}. The complement graph of G
is denoted as usual by G. A walk Wk in a graph G is a sequence of k vertices
w1, . . . , wk where wiwi+1 ∈ E(G) for every i ∈ {1, . . . , k − 1}. We simply write
Wk = w1 · · ·wk. Notice that some vertices of Wk can repeat in Wk. If all vertices
of a walk differ, then we say that Wk is a path Pk of G. A path Pk = v1 · · · vk will
be also denoted as v1, vk-path and we say that Pk starts in v1 and ends in vk and
u

P−→ x denotes the subpath of a path P with end vertices u and x. The distance
d(u, v) between u, v ∈ V (G) is the minimum number of edges on a u, v-path or
infinite if such a path does not exists. Any u, v-path of length d(u, v) is called a
u, v-geodesic.

A set of three vertices in a graph G such that each pair is joined by a path
that avoids the neighborhood of the third vertex is known as an asteroidal triple
in G. Graph G is called as AT-free graph if G has no asteroidal triple.

A join of graphs G1 and G2 is a graph G1 ∨ G2 that is obtained by disjoint
copies of G1 and G2 together with all the possible edges between the mentioned
copies. Several well known graph families are joins, like a complete bipartite
graph Km,n

∼= Km ∨ Kn and wheels Wn
∼= K1 ∨ Cn. In particular, for n ≥ 1,

we will be interested in joins Fn+1
2

∼= K1 ∨ Pn+1 that are also called fans and
Fn
3

∼= K2 ∨ Pn and Fn
4

∼= K2 ∨ Pn.

2.1 Transit Functions and Axioms

A transit function on a set V is a function R : V ×V −→ 2V such that for every
u, v ∈ V the following three conditions hold:

(t1) u ∈ R(u, v);
(t2) R(u, v) = R(v, u);
(t3) R(u, u) = {u}.

The underlying graph GR of a transit function R is a graph with vertex set V ,
where distinct vertices u and v are adjacent if and only if R(u, v) = {u, v}.
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The well studied transit functions in graphs are the interval function IG,
induced path function JG and the all path function AG. The interval function
IG of a connected graph G is defined with respect to the standard distance d in
G as I : V × V −→ 2V where

IG(u, v) = {w ∈ V (G) : w lies on some u, v-geodesic in G}

which can also be expressed by the distances as

IG(u, v) = {w ∈ V (G) : d(u,w) + d(w, v) = d(u, v)}.

An induced path is a chordless path, where a chord of a path is an edge joining
two non-consecutive vertices of a path. The induced path transit function J(u, v)
of G is a natural generalization of the interval function and is defined as J(u, v) =
{w ∈ V (G) : w lies on an induced u, v-path}. Well known is also the all-paths
transit function A(u, v) = {w ∈ V (G) : w lies on some u, v-path}, which consists
of the vertices lying on all u, v-paths. For any two vertices u and v of a connected
graph G, it is clear that I(u, v) ⊆ J(u, v) ⊆ A(u, v).

Probably first approach to axiomatic description of a transit function IG for
a tree G goes back to Sholander [17]. His work was later improved by Chvátal
et al. [8]. A full characterization of IG for a connected graph G was presented
by Mulder and Nebeský [15]. The argument x ∈ R(u, v) can be interpreted as x
is between u and v. All the above mentioned characterizations are framed using
a set of first order axioms on a transit function. It is proved in [7] that the all
paths function A of a connected graph G also possess a first order axiomatic
characterization similar to that of the interval function I. In this paper, we
consider only first order axioms on a transit function R.

Axiom (b1). If there exists elements u, v, x ∈ V such that x ∈ R(u, v), x 	= v,
then v /∈ R(x, u).

Axiom (b2). If there exists elements u, v, x ∈ V such that x ∈ R(u, v), then
R(u, x) ⊆ R(u, v).

These two Axioms are enough to assure the connectedness of GR of a transit
function R as shown in [6].

Lemma 1. [6] If the transit function R on a non-empty set V satisfies Axioms
(b1) and (b2), then GR is connected.

It is proved by Nebeský [16] that a first order axiomatic characterization
of the induced path function J of an arbitrary connected graph G in a similar
fashion to that of the interval function I is not possible. For a transit function
satisfying the betweenness Axioms (b1) and (b2) axiomatic characterizations are
presented in [6] with the additional axioms defined as follows.

Axiom (J0). If there exist different elements u, x, y, v ∈ V such that x ∈ R(u, y)
and y ∈ R(x, v), then x ∈ R(u, v).
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Axiom (J2). If there exist elements u, v, x ∈ V such that R(u, x) = {u, x},
R(x, v) = {x, v}, u 	= v and R(u, v) 	= {u, v}, then x ∈ R(u, v).

Axiom (J3). If there exist elements u, v, x, y ∈ V such that x ∈ R(u, y), y ∈
R(x, v), x 	= y,R(u, v) 	= {u, v}, then x ∈ R(u, v).

There is a nice explanation of Axiom (J2) for GR. The conditions demand
that x is a common neighbor of nonadjacent different vertices u and v in GR. So,
Axiom (J2) yields that a common neighbor of two nonadjacent vertices u and v
belong to R(u, v). Notice also that Axiom (J0) is a relaxation of Axiom (J3).

2.2 Toll Walks

A toll walk between two different vertices w1 and wk of a finite connected graph
G are vertices w1, . . . , wk that satisfy the following conditions:

– wiwi+1 ∈ E(G) for every i ∈ {1, . . . , k − 1},
– w1wi ∈ E(G) if and only if i = 2,
– wkwi ∈ E(G) if and only if i = k − 1.

That is, a toll walk W from u to v is a walk in which u is adjacent only to the
second vertex of W , and v is adjacent only to the for-last vertex of W . Notice
that if uv ∈ E(G), then the only toll walk between u and v is uv. In addition we
define a toll walk that starts and ends in the same vertex w as w itself.

The function T : V × V → 2V defined as

TG (u, v) = {x ∈ V (G) : x lies on a toll walk between u and v}

is called the toll walk function on G. Clearly T is a transit function since T
fulfills all three transit axioms. It is clear from the definition of the toll walk
function T on G that G and GT are isomorphic.

The following lemma by Liliana Alcon et al. [2] gives a characterization of
vertices that belong to a toll walk in a graph, which we use frequently.

Lemma 2. [2] A vertex v is in some toll walk between two different non-adjacent
vertices x and y if and only if N [x]−{v} does not separate v from y and N [y]−{v}
does not separate v from x.

a b c d e

hf

Fig. 1. T (a, e) = {a, b, c, d, e, h} and A(a, e) = {a, b, c, d, e, f} are incomparable.
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For any two vertices u and v of a connected graph G, it is clear that I(u, v) ⊆
J(u, v) ⊆ T (u, v). But the all path transit function A and toll walk transit
function T of a graph are incomparable. In Fig. 1 afbcde is a path, however it is
not a toll walk, since a is adjacent to both f and b. So, a path need not to be
a toll walk. While abchcde is a toll walk that is not a path. So, a toll walk need
not to be a path.

Let the three vertices u, v, w be an asteroidal triple. Then there exist a u, v-
path denoted by Pu,v that does not contain a neighbor of w, a u,w-path which
avoids a neighbor of v and a v, w-path that does not contain a neighbor of u.
That is N [w] does not separate u from v, since Pu,v does not contain a neighbor
of w. Similarly N [v] does not separate u from w and N [u] does not separate v
from w. That is, we have u ∈ T (v, w), v ∈ T (u,w) and w ∈ T (u, v) by Lemma 2.

Notice that the toll walk function satisfies Axiom (J2) but not Axioms (b1)
and (b2) on a connected graph G. We define new Axioms (TW1), (TW2) and
(TW3) for a transit function R : V ×V → 2V and the toll walk function satisfies
these axioms for any connected graph G as proved in Sect. 3

Axiom (TW1). If there exist different elements u, v, x, y, z such that x, y ∈
R(u, v), x 	= y and R(x, z) = {x, z} and R(z, y) = {z, y} and R(x, v) 	= {x, v}
and R(u, y) 	= {u, y}, then z ∈ R(u, v).

Axiom (TW2). If there exist different elements u, v, x, z such that x ∈
R(u, v) and R(u, x) 	= {u, x} and R(x, v) 	= {x, v} and R(x, z) = {x, z}, then
z ∈ R(u, v).

Axiom (TW3). If there exist different elements u, v, x such that x ∈ R(u, v),
then there exist v1 ∈ R(x, v), v1 	= x with R(x, v1) = {x, v1} and R(u, v1) 	=
{u, v1}.

2.3 Characterizations by Forbidden Induced Subgraphs

Let G and G1, G2, . . . , Gk be connected graphs. We say that G is (G1G2 · · ·Gk)-
free graph if G has no induced subgraphs isomorphic to G1, G2, . . . , Gk. The list
of forbidden subgraphs can be infinite and we can write also a whole family of
graphs instead of one graph. There are several graph classes that are defined
by forbidden (induced) subgraphs. Probably the most famous example are K1,3-
free graphs, better known as claw-free graphs. Otherwise, a characterization with
respect to forbidden (induced) subgraphs of a graph class is always desirable.
Such a characterizations yield that a graph class is hereditary. Hereditary prop-
erties were studied extensively, see [3,4] for a flavor. One of the best known
such characterizations are bipartite graphs that are C2k+1-free graphs for k ≥ 1.
Another graph class that can be define as some induced cycle free graphs are
chordal graphs which are Ck-free graphs for every k ≥ 4. It was shown in [5]
that Axiom (J0) for JG is characteristic for chordal graphs. An induced cycle
Ck, k ≥ 5, is also called a hole. If we forbid all holes in G, then we say that G
is hole-free or H-free for short.
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Interval graphs are the intersection graphs of the intervals on the real line.
This means that the vertices of an interval graph represent a set of intervals
on the real line and two intervals are adjacent whenever they intersect. Interval
graphs have a representation with infinite forbidden induced subgraphs, however
this can be expressed in more dense style if we forbid asteroidal triples. The
following classic result was proven by Lekkerkerker and Boland in [14].

Theorem 1. [14] Graph G is an interval graph if and only if G is chordal AT-
free graph.

One can consider many different forbidden subgraphs, but often forbidden
subgraphs have a small number of vertices. Some examples of such graphs that
will be important later in this work are at Fig. 2. At this figure are from left to
right graphs house denoted in this paper by H, cycle C5, domino D and graph P .
Notice a small notation discrepancy in notation as H-free can mean a house-free
and hole-free graph as well. We solve this by never using just hole-free graphs,
but always when we will have hole-free graph, it will also be a house-free and we
will denote this by HH-free graph. If there is only one H, then it means house.
In particular, (HC5)-free graph is a graph without an induced house and induced
C5 and (HHD)-free is a graph without a house, a hole and a domino graph as
an induced subgraph. Also (PAT )-free graph is a graph without a graph P and
without asteroidal triples.

v x

u

v x

u

v x

u

u

y

x
w

v

Fig. 2. Graphs house H, C5, domino D and P (from left to right).

There are several connections in literature between special transit functions
that fulfill certain axioms and forbidden induced subgraphs characterization. See
for instance [5] where it was shown that I fulfilles Axiom (J3) on graph G if and
only if G is HHD(K1 ∨ P4)-free graph among many other results of this type.
The following result is from [6].

Lemma 3. [6] If R is a transit function on a non-empty finite set V satisfying
Axioms (b1), (J2) and (J3), then GR is HHP -free.

Recall the families of graphs Fn+1
2

∼= K1 ∨ Pn+1 and Fn
3

∼= K2 ∨ Pn and
Fn
4

∼= K2 ∨ Pn for n ≥ 1. We will extend each of them into a new families
XFn+1

2 , XFn
3 and XFn

4 , respectively.
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We obtain XFn+1
2 from Fn+1

2
∼= K1 ∨ Pn+1 by adding three new vertices

u, v, x where u is adjacent only to the first vertex of path Pn+1, v is adjacent
only to the last vertex of path Pn+1 and x is adjacent only to the vertex of K1.
The family XFn+1

2 is represented in the middle of the last line on Fig. 3.
Both XFn

3 and XFn
4 can be obtained from Fn

3
∼= K2∨Pn and Fn

4
∼= K2∨Pn,

respectively, by the same procedure. For this let Pn = p1 . . . pn and V (K2) =
{y1, y2} = V (K2). We again add three new vertices u, v, x where u is adjacent
only to p1 and y1, v is adjacent only to pn and y2 and x is adjacent only to
y1 and y2. The families XFn

3 and XFn
4 are represented in the for-last and last

place, respectively, of the last line on Fig. 3.
The following characterization of AT -free graphs with forbidden induced sub-

graphs from [13], see also [18], will be important later. All the forbidden induced
subgraphs are depicted on Fig. 3. We use the same notation as presented in [18].

Theorem 2. [13] A graph G is (CkT2X2X3X30 . . . X41XFn+1
2 XFn

3 XFn
4 )-free

for k ≥ 6 and n ≥ 1 if and only if G is AT -free graph.

3 Axioms on the Toll Walk Function

In this section, we discus the axioms satisfied by the toll function in an arbitrary
connected graph as well as those satisfied by the special classes of graphs that
are the subclasses of AT -free graphs. We begin with axioms satisfied by the
toll walk function for an arbitrary connected graph. The proof is presented in
Appendix A.

Proposition 1. The toll walk function satisfies the Axioms (TW1), (TW2) and
(TW3).

The toll walk function need not satisfy Axiom (b1) for arbitrary connected
graphs. The following theorem characterizes the graph class in which the toll
walk function satisfies Axiom (b1).

Theorem 3. The toll walk function T of a graph G satisfies Axiom (b1) if and
only if G is (HC5DAT)-free graph.

Proof. First assume that a graph G is not (HC5DAT)-free graph. Then G con-
tains an asteroidal triple or a domino or a C5 or a house as an induced subgraph.
If G contains an asteroidal triple u, v, w, then there exist at least one path join-
ing each pair that avoids the neighbors of the third vertex. That is u, v, w are
independent and N [u] does not separate w from v, N [v] does not separate w
from u and N [w] does not separate u from v. By Lemma 2 we have w ∈ T (u, v),
u ∈ T (w, v) and v ∈ T (w, u). This means that T does not satisfy Axiom (b1). If
G contains a domino, a C5 or a house as an induced subgraph, then in each case,
we can find vertices u, v, x as shown at Fig. 2, such that v and x are adjacent
and u is not adjacent to v and x. Clearly x ∈ T (u, v) and v ∈ T (x, u), hence T
does not satisfy Axiom (b1).
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2
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Fig. 3. Forbidden induced subgraphs of AT -free graphs.

Conversely suppose that Axiom (b1) does not hold for T for vertices u, v, x
where x ∈ T (u, v) and x 	= v and v ∈ T (x, u). Clearly x 	= u, because otherwise
we have v ∈ T (x, x) = {x}, a contradiction. Similar u 	= v as v 	= x ∈ T (u, v).
Since x ∈ T (u, v) and v ∈ T (x, u), N [u] − {x} does not separate x from v,
N [v] − {x} does not separate x from u and N [x] − {v} does not separate u from
v by Lemma 2. If u, x, v are independent vertices, then, they form an asteroidal
triple.

To avoid this, we may assume that one of ux, uv, vx must be an edge. If
uv ∈ E(G), then we get a contradiction with x ∈ T (u, v) and u 	= x 	= v.
Similar, ux ∈ E(G) yields a contradiction with v ∈ T (x, u) = {u, x}. So, vx ∈
E(G). Since x ∈ T (u, v) there exists a u, v-walk W1 without any neighbors of
v beside x. Similar, as v ∈ T (x, u) there exists a u, x-walk W2 without any
neighbors of x beside v. In W2 we can find a v, u-induced path P = vv1 . . . vpu
without any neighbors of x different than v and in W1 an x, u-induced path
Q = xx1 . . . xqu without any neighbors of v different than x. Notice that v1 	= u,
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because otherwise uv ∈ E(G), a contradiction. Also x1 	= u as ux /∈ E(G).

Hence, p ≥ 1 and q ≥ 1. Therefore v
P−→ u

Q−→ xv yields a cycle Cn where n ≥ 5.
If Cn is induced, then G contains a cycle of length at least five. If n = 5, then
G is not a C5-free graph and if n > 5, then G contains an asteroidal triple. So,
we may assume that Cn is not induced and there exists a chord between xi,
i ∈ {1, . . . , q}, and vj , j ∈ {1, . . . , p}. To avoid induced Cn, n ≥ 5, there exists
a chord x1v1. If p = 1 = q, then u, x, v1, v, x1 induce a house H and G is not
an H-free graph. Next we may assume without loss of generality that p = 1 and
q > 1. If v1x2 ∈ E(G), then v, x, v1, x1, x2 induce a house H again and G is
not an H-free graph. Now either x2u ∈ E(G) (that is q = 2) or v1x3 ∈ E(G)
(when q > 2) and v1x2 /∈ E(G) to avoid an induced Cn, n ≥ 5. In the first case
v, x, v1, x1, x2, u and in the second case v, x, v1, x1, x2, x3 induce a domino D and
G is not a D-free graph. Finally, let both p, q ≥ 2. Again we have some chords
to avoid induced Cn, n ≥ 5. If x1v2 ∈ E(G) or x2v1 ∈ E(G), then we obtain an
induced house H on v, x, v1, x1, z where z = v2 or z = x2, respectively. Otherwise
one of x1v3, v1x3, x2v2 must be an edge (here it is possible that v3 = u or x3 = u).
In all three cases we obtain an induced domino D on vertices v, x, v1, x1 and v2, v3
or x2, x3 or x2, v2, respectively. Therefore G is not an H- or a D-free graph and
the proof is concluded. 
�

We continue with a slightly modified Axiom (b1) for a transit function R
for independent elements as follows to obtain the sequential characterization of
AT -free graphs.

Axiom (b1’). If there exist elements u, v, x ∈ V such that x ∈ R(u, v), v 	=
x,R(v, x) 	= {v, x}, then v /∈ R(u, x).

It is clear that in a house and C5 if we take u, v, x in such a way that
x ∈ R(u, v), v 	= x,R(v, x) 	= {v, x}, then R(u, x) = {u, x}. That is in house and
C5, T satisfies Axiom (b1’). Also, in a domino, if the three vertices u, v, x are
independent, then T fulfills Axiom (b1’) for them. That is, if we replace Axiom
(b1) by Axiom (b1’) in Theorem 3, then the underlying graph GT is AT -free.

Corollary 1. The toll walk function T on a graph G satisfies Axiom (b1’) if
and only if G is AT -free.

Notice that Axiom (b1) does not contain condition R(v, x) 	= {v, x} and
therefore it implies Axiom (b1’). In other words Axiom (b1’) represents a more
relaxed condition than Axiom (b1).

The following two propositions will be needed later. Their proofs are quite
standard and can be found in Appendix A.

Proposition 2. Let T be a tolled walk function on a connected graph G. If T
satisfies Axiom (b1) on G then T satisfies Axiom (b2).

Proposition 3. Let T be a tolled walk function on a graph G which does not
contain a P -graph as an induced subgraph. If T satisfies Axiom (b1) on G, then
T satisfies Axiom (J3).
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4 A Characterization of the Toll Walk Function
of Subclasses of AT -Free Graphs

In this section, we define a set of first order axioms for an arbitrary transit
function R to be the toll walk function of the concerned graph class.

The following easy lemma will often be handy. Its proof is in Appendix A.

Lemma 4. Let R be a transit function on a non-empty finite set V satisfying
Axioms (J2), (J3) and (TW2). If Pn, n ≥ 2, is an induced u, v-path in GR,
then V (Pn) ⊆ R(u, v). Moreover, if z is adjacent to an inner vertex of Pn that
is nonadjacent to u or to v in GR, then z ∈ R(u, v).

We continue with a result that is basically one implication of a characteri-
zation presented in Theorem 6. The proof contains similar ideas as the proof of
Theorem 3 and can be found in Appendix A.

Theorem 4. If R is a transit function on a non-empty finite set V satisfying
Axioms (b1), (J2), (J3), (TW1) and (TW2), then GR is (HC5PAT )-free graph.

Next goal is to derive which axioms are needed for an arbitrary transit func-
tion R to be forced to be the toll walk transit function.

Theorem 5. If R is a transit function on a non-empty finite set V that satisfies
Axioms (b1), (b2), (J2), (J3), (TW1), (TW2) and (TW3), then R = T on GR.

Proof. Let u and v be two distinct vertices of GR and first assume that x ∈
R(u, v). We have to show that x ∈ T (u, v) on GR. Clearly x ∈ T (u, v) whenever
x ∈ {u, v}. So assume that x /∈ {u, v}. If R(u, x) = {u, x} and R(x, v) = {x, v},
then uxv is a toll walk of GR and x ∈ T (u, v) follows. Suppose next that
R(x, v) 	= {x, v}. We will construct an x, v-path Q in GR without a neighbor of u
(except possibly x). For this let x = v0. By Axiom (TW3) there exist a neighbor
of v0, say v1, and v1 ∈ R(v0, v) with R(u, v1) 	= {u, v1}. Since v1 ∈ R(v0, v),
by Axioms (b1) and (b2) we have R(v1, v) ⊆ R(v0, v) and v0 /∈ R(v1, v). Hence,
R(v1, v) ⊂ R(v0, v) follows. Moreover, v1 ∈ R(v0, v) ⊆ R(u, v) by Axiom (b2).
If v1 	= v, then we can continue with the same procedure to get v2, where
R(v1, v2) = {v1, v2}, R(u, v2) 	= {u, v2}, R(v2, v) ⊂ R(v1, v) and v2 ∈ R(u, v).
By repeating this step we obtain a sequence of vertices v0, v1, . . . , vq, q ≥ 2, such
that

1. R(vi, vi+1) = {vi, vi+1}, i ∈ {0, 1, . . . , q − 1},
2. R(u, vi) 	= {u, vi}, i ∈ {1, . . . , q},
3. R(vi+1, v) ⊂ R(vi, v), i ∈ {0, 1, . . . , q − 1}.

Clearly this sequence needs to stop, because V is finite and by the last condi-
tion. Hence, we may assume that vq = v. Now, if R(u, x) = {u, x}, then we have
a toll u, v-walk uxv1 . . . vq−1v and x ∈ T (u, v). Otherwise, R(u, x) 	= {u, x}
and we can symmetrically build a sequence u0, u1, . . . , ur, where u0 = x,
ur = u and u0u1 . . . ur is an x, u-path in GR that avoids N [v]. Clearly,
uur−1ur−2 . . . u1xv1 . . . vq−1v is a toll u, v-walk and x ∈ T (u, v).
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Now suppose that x ∈ T (u, v) and x /∈ {u, v}. We have to show that x ∈
R(u, v). By Lemma 2 N [u] −x does not separate x and v and N [v] −x does not
separate u and x. Let W be a toll u, v-walk containing x. Clearly W contains an
induced u, v-path, say Q. If x belongs to Q, then x ∈ R(u, v) by Lemma 4. So, we
may assume that x does not belongs to Q. The underlying graph GR is AT-free
by Theorem 4. Thus, Q contains a neighbor of x, say x′. If R(u, x′) = {u, x′} and
R(x′, v) = {x′, v}, then we have a contradiction with W being a toll u, v-walk
containing x. Without loss of generality, we may assume that R(x′, v) 	= {x′, v}.
If also R(u, x′) 	= {u, x′}, then x ∈ R(u, v) by the second claim of Lemma 4.
So, let now R(u, x′) = {u, x′}. Since x and v are not separated by N [u] − {x}
by Lemma 2, there exists an induced x, v-path S without a neighbor of u. Let
S = s0s1 · · · sk, s0 = x and sk = v and let sj be the first vertex of S that
belongs also to Q. Notice that sj can equal to v but it is different than x′ and
that j > 0. We may choose S such that it minimally differ from Q. This means
that s0, . . . , sj−2 are adjacent only to x′ on Q. If x′sj−1 /∈ E(GR), then x′ Q−→
sjsj−1sj−2x

′ form an induced cycle. This yields a hole or a P graph together
with u, a contradiction because GR is (HC5PAT )-free by Theorem 4. Hence,
x′sj−1 ∈ E(GR). We have x′, sj ∈ R(u, v) by Lemma 4 and clearly x′ 	= sj ,
R(sj−1, sj) = {sj−1, sj}, R(x′, sj−1) = {x′, sj−1}, which gives sj−1 ∈ R(u, v) by
Axiom (TW1). We continue with the same step j − 1 times, only that we lower
the indexes of sj−1 and sj at each step by i ∈ {1, . . . , j − 1} in the natural order
and get that consequently sj−2, sj−3, . . . , s0 ∈ R(u, v). This completes the proof
because s0 = x ∈ R(u, v). 
�

The toll walk function satisfy Axioms (J2), (TW1), (TW2) and (TW3) for a
graph G. So, using Theorems 3, 4 and 5 and Propositions 2 and 3, we have the
following characterization of toll walk function of (HC5PAT )-free graph because
a P -free graph implies also a D-free graph.

Theorem 6. Let R be a transit function on a finite set V and GR be the under-
lying graph of R. Then R satisfy Axioms (b1), (b2), (J2), (J3), (TW1), (TW2)
and (TW3) if and only if GR is (HC5PAT )-free graph and R = T on GR.

In Appendix B we present several examples that establishes the independence
between Axioms (b1), (b2), (J2), (J3), (TW1), (TW2) and (TW3).

We continue with a similar approach with more relax conditions. For this we
use Axiom (b1’) instead of Axiom (b1). The results and their proofs (that can
be found in Appendix A) are somewhat similar as in the case of Axiom (b1).

Theorem 7. If R is a transit function on a non-empty finite set V satisfying
Axioms (b1’), (J2), (J3), (TW1) and (TW2), then GR is PAT -free graph.

Also Lemma 1 can be generalized if we replace Axiom (b1) with Axiom (b1’).

Proposition 4. If a transit function R on a non-empty finite set V satisfies
Axioms (b1’) and (b2), then GR is connected.
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The following result is an attempt to get a similar statement as in Theorem
5, where the conditions are relaxed by replacing Axiom (b1) with Axiom (b1’).
However we can show only that T ⊆ R, which means T (u, v) ⊆ R(u, v) for any
elements u, v ∈ V . This is not surprising due to Theorem 5

Theorem 8. If R is a transit function on a non-empty finite set V satisfying
Axioms (b1’), (b2), (J2), (J3), (TW1), (TW2) and (TW3), then T ⊆ R on GR.

We end this section with a remark that we do not have the equality in above
theorem.

5 A New Characterization of Interval Graphs with a Help
of the Toll Walk Function

In this section, we present a new characterization of interval graphs that involves
the toll walk function T . The proofs are in Appendix A.

Theorem 9. The toll walk function T on a graph G satisfies Axioms (b1) and
(J0) if and only if G is an interval graph.

Theorem 10. If R is a transit function on a non-empty finite set V satisfying
Axioms (b1), (J2), (J0), (TW1) and (TW2), then GR is an interval graph.

By Theorem 5 the following result holds since Axiom (J0) implies Axiom (J3).

Theorem 11. If R is a transit function on a non-empty finite set V satisfying
Axioms (b1), (b2), (J2), (J0), (TW1), (TW2) and (TW3), then R = T on GR.

We have for a graph G, the toll walk function satisfy Axioms (J2), (TW1),
(TW2) and (TW3). By Thoerems 9, 10 and 11 and Proposition 2 we have the
following characterization of the toll walk function of an interval graph.

Theorem 12. A transit function R on a finite set V satisfy Axioms (b1), (b2),
(J2), (J0), (TW1), (TW2) and (TW3) if and only if GR is an interval graph
and R = T on GR.

The independence of the Axioms (b1), (b2), (J2), (J0), (TW1), (TW2) and
(TW3) will easily follow from the Examples in Appendix B.
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Appendix A

In this appendix we have detailed proofs of the results that use standard
approaches or are similar to the proofs presented in the main part of the paper.

Proof of Proposition 1. (TW1): Suppose x, y ∈ T (u, v), x 	= y and T (x, z) =
{x, z} and T (z, y) = {z, y} and T (x, v) 	= {x, v} and T (u, y) 	= {u, y}. Since
x ∈ T (u, v) and T (x, v) 	= {x, v} there exist a u, x-path P that avoids the neigh-
borhood of v. Since y ∈ T (u, v) and T (u, y) 	= {u, y} there exists a y, v-path Q
that avoids the neighborhood of u. Also T (x, z) = {x, z} and T (z, y) = {z, y}.

If z is not adjacent to both u and v, then the walk u
P−→ xzy

Q−→ v is a u, v-toll
walk containing z. If z is adjacent to atleast one of u or v (say u), then the walk

uzy
Q−→ v is a u, v-toll walk containing z. If z is adjacent to both u and v, then

the walk uzv is a u, v-toll walk containing z. That is z ∈ T (u, v).
(TW2): Suppose x ∈ T (u, v), T (u, x) 	= {u, x}, T (x, v) 	= {x, v} and T (x, z) =
{x, z}. Since x ∈ T (u, v) and T (x, v) 	= {x, v} there exist a u, x-path P that
avoids the neighborhood of v and and an x, v-path Q that avoids the neighbor-
hood of u. If T (u, z) = {u, z} and T (v, z) = {v, z}, then z ∈ T (u, v). Suppose
either T (u, z) 	= {u, z} or T (v, z) 	= {v, z}. With out loss of generality we may
assume T (u, z) 	= {u, z}. The walk formed by P and the edge zv is a toll walk
containing z when T (v, z) = {v, z}. Otherwise also T (v, z) 	= {v, z} and the walk
formed by concatenation of P and Q is a toll walk containing z. That is in all
cases z ∈ T (u, v).
(TW3): Suppose x ∈ T (u, v). There exists an x, v-path P that avoids the neigh-
borhood of u with possible exception of x. For the neighbor v1 of x on P it
follows that v1 ∈ T (x, v), v1 	= x with T (x, v1) = {x, v1} and T (u, v1) 	= {u, v1}.

�

Proof of Proposition 2. Suppose T satisfies Axiom (b1). If T does not satisfy
Axiom (b2), then there exist u, v, x, y such that x ∈ T (u, v), y ∈ T (u, x) and
y /∈ T (u, v). Since x ∈ T (u, v), there exist a x, v-path, say P , without a neighbor
of u and since y ∈ T (u, x), there exist a u, y-path, say Q, without a neighbor of x
and y, x-path, say R, without a neighbor of u. Since y /∈ T (u, v), either neighbor
of u separates y from v or neighbor of v separates y from u. But y

R−→ x
P−→ v

is a y, v-path that does not contain a neighbor of u. So the only possibility is
neighbor of v separates y from u. Therefore Q contains a neighbor of v, say
v′. Now u

Q−→ v′v P−→ x is a u, x-toll walk containing v. That is v ∈ T (u, x), a
contradiction with Axiom (b1). 
�

Proof of Proposition 3. Suppose T satisfies Axiom (b1). If T does not satisfy
Axiom (J3), then there exist u, v, x, y such that is x ∈ T (u, y), y ∈ T (x, v) but
x /∈ T (u, v). Since x ∈ T (u, y), there exists a u, x-path, say P , without a neighbor
of y and there exists an x, y-path, say Q, without a neighbor of u. Also since
y ∈ T (x, v), there exists an x, y-path, say R, without a neighbor of v and there
exists a y, v-path, say S, without a neighbor of x. But x /∈ T (u, v) implies either
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N [v] separate x from u or N [u] separate x from v. Without loss of generality, we
may assume that N [v] separates x from u. Let v′ be the neighbor of v closest to
x on P . Since G is P -free at least one of v′x, xy and yv is not an edge. If yv is not
an edge, then y

R−→ x
P−→ v′v is a y, v-toll walk containing x. That is x ∈ T (y, v).

If xy is not an edge, then y
S−→ vv′ P−→ x is a y, x-toll walk containing v. That

is v ∈ T (y, x). Finally, if xv′ is not an edge, then xyvv′ P−→ u is a x, u-toll walk
containing y. That is y ∈ T (x, u), and we have a contradiction to Axiom (b1).
�

Proof of Lemma 4. If n = 2, then P2 = uv and R(u, v) = {u, v} by the
definition of GR. If n = 3, then P3 = uxv and x ∈ R(u, v) by Axiom (J2). Let
now n = 4 and P4 = uxyv. By Axiom (J2) we have x ∈ R(u, y) and y ∈ R(x, v).
Now, Axiom (J3) (together with Axiom (t2)) implies that x, y ∈ R(u, v). For a
longer path Pn = uxx3 . . . xn−2yv, n > 4, we continue by induction. By induction
hypothesis we have {u, x, x3, . . . , xn−2, y} ⊆ R(u, y) and {x, x3, . . . , xn−2, y, v} ⊆
R(x, v). In particular, x, x3, . . . , xn−2 ∈ R(u, y) and y ∈ R(x, v). By Axiom (J3)
we get x, x3, . . . , xn−2 ∈ R(u, v) and symmetrically we also have y ∈ R(u, v) by
the same axiom.

For the second part let z be a neighbor of xi, i ∈ {3, . . . , n − 2} that is not
adjacent to u, v. Clearly, in such a case n ≥ 5. By the first part of the proof, we
have xi ∈ R(u, v) and we have z ∈ R(u, v) by Axiom (TW2). 
�

Proof of Theorem 4. Let R be a transit function satisfying Axioms (b1), (J2),
(J3), (TW1) and (TW2). Graph GR is HHP -free by Lemma 3 and with this
also C5-free. Now we have to prove that GR is also AT-free. By Theorem 2 it is
enough to prove that GR does not contain as an induced subgraph any of the
graphs Ck, T2,X2,X3,X30, . . . , X41,XFn+1

2 ,XFn
3 ,XFn

4 , k ≥ 6, n ≥ 1, depicted
on Fig. 3. Since the graphs Ck,X2,X3,X30,X32, . . . , X41,XFn

4 contains a house,
a hole or a P -graph as an induced subgraph, it is sufficient to prove that GR is
T2,X31,XFn+1

2 ,XFn
3 -free for n ≥ 1.

Suppose first that T2 is an induced subgraph of GR with vertices as shown
on Fig. 3. By Lemma 4 we have u1, u2, u3, u4 ∈ R(u, v) ∩ R(u, x). In particular,
u4 ∈ R(u, v), R(u, u4) 	= {u, u4}, R(v, u4) 	= {v, u4} and R(x, u4) = {x, u4}. By
Axiom (TW2) this yields that x ∈ R(u, v). By symmetric arguments we get that
also v ∈ R(u, x), a contradiction with Axiom (b1).

We continue with the same approach also when GR contains X31,XFn+1
2

or XFn
3 for n ≥ 1 as an induced subgraph. By this we rely on the notation

from Fig. 3. There is an induced path uabcv or up1y1pnv if GR contains X31 or
XFn+1

2 for n > 1, respectively, as an induced subgraph. By the second claim of
Lemma 4 we have x ∈ R(u, v) in both mentioned cases. If GR contains XF 2

2 or
XFn

3 as an induced subgraph, then paths up1p2v and uy1y2v, respectively, are
induced. Hence, p1, p2 ∈ R(u, v) and y1, y2 ∈ R(u, v), respectively, by Lemma 4.
We can use Axiom (TW1) and obtain y1 ∈ R(u, v) and x ∈ R(u, v), respectively.
Finally, we get also x ∈ R(u, v) in the case of XF 2

2 by Axiom (TW2). So, in all
the remaining cases we have x ∈ R(u, v).
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We will obtain a contradiction with Axiom (b1) by showing that v ∈ R(u, x)
as well in all the remaining cases. Let first X31 be an induced subgraph of GR. A
path uebx is induced and we have e, b ∈ R(u, x) by Lemma 4. By Axiom (TW1)
we get first c ∈ R(u, x) and later also v ∈ R(u, x). Next let XFn+1

2 , n ≥ 1, be an
induced subgraph of GR. A path up1y1x is induced in GR and p1, y1 ∈ R(u, x)
by Lemma 4. By consecutive use of Axiom (TW1) we get pi ∈ R(u, x) for
i ∈ {2, . . . , n}. At the end we have v ∈ R(u, x) by Axiom (TW2). Finally, let
XFn

3 , n ≥ 1, be an induced subgraph of GR. A path up1y2x is induced in GR

and p1, y2 ∈ R(u, x) by Lemma 4. By consecutive use of Axiom (TW1) we get
pi ∈ R(u, x) for i ∈ {2, . . . , n}. At the end we have v ∈ R(u, x) by Axiom
(TW2). Hence, in all the cases we have x ∈ R(u, v) and v ∈ R(u, x) which yields
a contradiction with Axiom (b1). 
�

Proof of Theorem 7. Let R be a transit function on V satisfying Axioms
(b1’), (J2), (J3), (TW1) and (TW2). We have to show that GR is PAT -free. We
prove that GR does not contains any of the graphs Ck, T2,X2,X3,X30, . . . , X41,
XFn+1

2 ,XFn
3 , XFn

4 from Fig. 3 and P -graph from Fig. 2 as an induced sub-
graph for k ≥ 6 and n ≥ 1. We use the notation of vertices u, v, x as shown
on Figs. 2 and 3 for all the mentioned graphs. Clearly, u, v and x are inde-
pendent on all the graphs from Fig. 3 as well as for P . We will show that
x ∈ R(u, v) and v ∈ R(u, x) in all the mentioned graphs, which yields a con-
tradiction with Axiom (b1’). We can use the same proof as for Theorem 4 to
show that GR is (T2X31XFn+1

2 XFn
3 )-free. It is easy to see that x ∈ R(u, v) for

graphs Ck,X2,X3,X32,X33,X35,X38,X39,X40 and XFn
4 for k ≥ 6 and n ≥ 1

by Lemma 4. Similar is x ∈ R(u, v) for graphs X34,X36 and X37 by Lemma 4
and Axiom (TW1). Finally, x ∈ R(u, v) for graphs X30 and X41 by Lemma 4
and Axiom (TW2). If GR contains P as an induced subgraph, then by Lemma
4 and by Axiom (J3), we have that x ∈ R(u, v).

Next we show that v ∈ R(u, x) holds for all the graphs from Fig. 3. We have
v ∈ R(u, x) for graphs Ck,X37 and X38 for k ≥ 6 by Lemma 4. Also v ∈ R(u, x)
for graph X30 by Lemma 4 and Axiom (TW2). We get v ∈ R(u, x) for graphs
X32,X34,X35,X36,X39, X40,X41 and XFn

4 by Lemma 4 and Axiom (TW1).
Here we use Axiom TW1 once for X35, n-times for XFn

4 and twice for the rest.
Let us observe X36 in every detail (the same steps are also for X39 and X40).
Paths ucbx and uax are induced and we have a, b, c ∈ R(u, x) by Lemma 4.
Now d is adjacent to a, c ∈ R(u, x) and d ∈ R(u, x) by Axiom (TW1). Finally
v ∈ R(u, x) by Axiom (TW2) again since v is adjacent to b, d ∈ R(u, x). For X2

we have a ∈ R(x, b) and b ∈ R(a, u) by Lemma 4. Next a ∈ R(u, x) by Axiom
(J3) and finally v ∈ R(u, x) follows by Axiom (TW2). We end with X3 and X33.
Here we have c ∈ R(x, v) and v ∈ R(c, u) by Lemma 4. Now v ∈ R(u, x) by
Axiom (J3). For P we have v ∈ R(u, y) and y ∈ R(v, x) by Lemma 4. Now,
v ∈ R(u, x) follows by Axiom (J3). In all the cases we have R(u, x) 	= {u, x},
R(x, v) 	= {x, v}, a contradiction since R satisfies Axiom (b1’). 
�

Proof of Proposition 4. Suppose u, v ∈ V . We have to show that there exist
a path between u and v. For this we use induction on |R(u, v)|. If |R(u, v)| = 1,



442 L. K. K. Sheela et al.

then u = v and there is nothing to show. If |R(u, v)| = 2, then R(u, v) = {u, v}
and uv is an edge of GR. Let now |R(u, v)| = m > 2. Suppose x ∈ R(u, v) with
R(u, x) = {u, x} and R(x, v) = {x, v}, then both ux and vx are edges of GR

and u and v are joined by a path. If R(u, x) 	= {u, x} and R(x, v) 	= {x, v}, we
have |R(u, x)| < m and |R(x, v)| < m by Axioms (b1’) and (b2). By induction
hypothesis there is a path in GR between u and x and also a path between x and
v. A u, v-walk is obtained by concatenating these two paths and hence u and v are
connected by a path. Let R(u, x) = {u, x} and R(x, v) 	= {x, v}, then there exist
a z1 ∈ R(x, v). If R(x, z1) 	= {x, z1} and R(z1, v) 	= {z1, v}, then |R(x, z1)| < m
and |R(z1, v)| < m by Axioms (b1’) and (b2). Again by induction, there is a path
between x and z1 and between z1 and v and by concatenating both paths together
with ux ∈ E(GR), we obtain a u, v-walk. Hence a u, v-path exists and we are
done. Suppose next that R(x, z1) = {x, z1} and R(z1, v) 	= {z1, v}. We can find
a z2 ∈ R(z1, v) and either we can find a u, v-path when R(z1, z2) 	= {z1, z2} and
R(z2, v) 	= {z2, v} or we can find a z3 ∈ R(z2, v) when R(z1, z2) = {z1, z2} and
R(z2, v) 	= {z2, v}. Continuing this procedure we obtain a sequence of vertices
u, x, z1, z2, . . . where ux, xz1, zizi+1 ∈ E(GR) and R(zi, v) 	= {zi, v} for every
i ≥ 1. Moreover R(u, v) ⊃ R(x, v) ⊃ R(z1, v) ⊃ · · · holds by Axioms (b1’) and
(b2). This sequence must be finite because V is finite and this yields the desired
u, v-path. 
�

Proof of Theorem 8. Suppose that x ∈ T (u, v) and x /∈ {u, v}. We have to show
that x ∈ R(u, v). By Lemma 2 N [u] − x does not separate x and v and N [v] − x
does not separate u and x. Let W be a toll u, v-walk containing x. Clearly W
contains an induced u, v-path, say Q. By Lemma 4 we have V (Q) ⊆ R(u, v). If
x belongs to Q, then x ∈ R(u, v). So, we may assume that x does not belongs
to Q. Moreover, we may assume that x does not belong to any induced u, v-
path. The underlying graph GR is AT -free by Theorem 7. Thus, Q contains
a neighbor of x, say x′. If R(u, x′) = {u, x′} and R(x′, v) = {x′, v}, then we
have a contradiction with W being a toll u, v-walk containing x. Without loss
of generality, we may assume that R(x′, v) 	= {x′, v}. If also R(u, x′) 	= {u, x′},
then x ∈ R(u, v) by the second claim of Lemma 4. So, let now R(u, x′) =
{u, x′}. Since x and v are not separated by N [u]−{x} by Lemma 2, there exists
an induced x, v-path S without a neighbor of u. Let S = s0s1 · · · sk, s0 = x
and sk = v and let sj be the first vertex of S that belongs also to Q. Notice
that sj can equal to v but it is different than x′ and that j > 0. We may
choose S such that it minimally differ from Q. This means that s0, . . . , sj−2

are adjacent only to x′ on Q. If x′sj−1 /∈ E(GR), then sj−2 ∈ R(u, sj−1) and
sj−1 ∈ R(sj−2, v) by Lemma 4. By Axiom (J3) we get sj−2 ∈ R(u, v). Finally,
we use Axiom (TW1) for j − 2 times to get sj−3, sj−4, . . . , s0 ∈ R(u, v), one
after each use of Axiom (TW1). We are done since x = s0. We are left with the
case x′sj−1 ∈ E(GR). We have x′, sj ∈ R(u, v) by Lemma 4 and clearly x′ 	= sj ,
R(sj−1, sj) = {sj−1, sj}, R(x′, sj−1) = {x′, sj−1}, which gives sj−1 ∈ R(u, v) by
Axiom (TW1). We continue with the same step j − 1 times, only that we lower
the indexes of sj−1 and sj at each step by i ∈ {1, . . . , j − 1} in the natural order
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and get that consequently sj−2, sj−3, . . . , s0 ∈ R(u, v). This completes the proof
because s0 = x ∈ R(u, v). 
�

Proof of Theorem 9. If the toll walk function T of a graph G satisfies Axiom
(b1), then G is (HC5DAT )-free graph by Theorem 3. Next we show that if T
satisfies (J0), then G is chordal. Suppose that G contains an induced cycle Cn,
n ≥ 4 with three consecutive vertices x, u, v and y is any other vertex of Cn.
Clearly x ∈ T (u, y) and y ∈ T (x, v) but x /∈ T (u, v) since uv is a edge in G.
That is, if T satisfy Axiom (J0), then G is a chordal graph. By Theorem 1 G is
an interval graph.

To prove the converse, suppose G is an interval graph and assume the toll
walk function T of G does not satisfy Axiom (b1) or (J0). If T does not satisfies
Axiom (b1), then G has an asteroidal triple or has a domino or C5 or a house
as an induced subgraph by Theorem 3. This is a contradiction with Theorem 1
since G is an interval graph. Now suppose Axiom (J0) is not satisfied. There exist
distinct vertices u, x, y, v such that x ∈ T (u, y) and y ∈ T (x, v) and x /∈ T (u, v).
Now, x /∈ T (u, v) implies that N(u) − x separate x from v or N(v) − x separate
u from x. With out loss of generality, we may assume that N(u) − x separates
x from v. So, every x, v-path contains at least one neighbor of u. But x belongs
to a u, v-walk, say W , formed by an induced u, x-path P , an induced x, y-path
Q and an induced y, v-path S. Since x /∈ T (u, v), there exist a neighbor of u, say
u1, that belongs to Q or to S. Because x ∈ T (u, y), u1 does not belongs to Q and
u1 belongs to S. We may choose u1 to be the first vertex which is adjacent to u

after the vertex y. The path uu1
S−→ y is an induced u, y-path which avoids the

neighbors of x. Suppose T (u, x) 	= {u, x} and T (x, y) 	= {x, y}, then the vertices
u, x, y form an asteroidal triples, a contradiction with G being an interval graph.
So, T (u, x) = {u, x} or T (x, y) = {x, y} holds.

Suppose first that T (u, x) = {u, x}. The path ux
Q−→ y

S−→ u1 and the edge
uu1 form a cycle of length at least four. Since G is interval graph, there an edge
between a vertex of Q and a vertex from S. Let a the first vertex on Q after x
which is adjacent to some vertex, say b, in the u1, y-subpath of S. We have a
cycle ux

Q−→ ab
S−→ u1u of length at least four, a contradiction. Hence, we may

assume that T (u, x) 	= {u, x} which yields T (x, y) = {x, y}. To avoid the induced
cycle u

P−→ xy
S−→ u1u, there must be an edge from a vertex of P to a vertex of

S. Let a the last vertex on P before x that is adjacent to some vertex, say b, on
the u1, y-subpath of S. Cycle a

P−→ xy
S−→ ba is induced of length at least four, a

final contradiction. 
�

Proof of Theorem 10. From the definitions of Axioms (J0) and (J3), it follows
that if R satisfies Axiom (J0), then R satisfies Axiom (J3). From Theorem 4, if R
satisfies the Axioms (b1), (J2), (J3), (TW1) and (TW2), then GR is HPC5AT -
free. We need to prove that GR is chordal by Theorem 1. Even more, it is
enough to prove that GR is C4-free, because it is C5-free and Ck-free for k ≥ 6
as an AT-free graph. Suppose conversely that GR contains C4 = uxyv. We have
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x ∈ R(u, y) and y ∈ R(x, v) by Lemma 4 and x ∈ R(u, v) follows by Axiom (J0).
This is a contradiction to R(u, v) = {u, v}. Hence, GR is an interval graph. 
�

Appendix B

In this appendix we show the independence of the axioms used in this paper. In
all the examples we have R(a, a) = {a} for all a ∈ V .

Example 1. There exists a transit function that satisfies Axioms (b2), (J2), (J3),
(TW1), (TW2) and (TW3), but not (b1).
Let V = {u, v, w, x, y} and define a transit function R on V as follows: R(u, v) =
R(u, x) = R(y, v) = R(y, w) = R(x,w) = V , R(u, y) = {u, y}, R(u,w) = {u,w},
R(x, v) = {x, v}, R(x, y) = {x, y} and R(w, v) = {w, v}. It is straightforward
but tedious to see that R satisfies Axioms (b2), (J2), (J3), (TW1), (TW2) and
(TW3). In additions x ∈ R(u, v), x 	= v and v ∈ R(u, x) and R does not satisfy
Axiom (b1).

Example 2. There exists a transit function that satisfies Axioms (b1), (J2), (J3),
(TW1), (TW2) and (TW3), but not (b2).
Let V = {u, v, x, y} and define a transit function R on V as follows: R(u, v) =
{u, x, v}, R(u, x) = {u, y, x}, R(u, y) = {u, v, y}, R(x, y) = {x, y}, R(x, v) =
{x, v} and R(y, v) = {y, v}. It is straightforward but tedious to see that R
satisfies Axioms (b1), (J2), (J3), (TW1), (TW2) and (TW3). Axiom (b2) does
not hold, because x ∈ R(u, v), y ∈ R(u, x) and x /∈ R(u, v).

Example 3. There exists a transit function that satisfies Axioms (b1), (b2), (J3),
(TW1), (TW2) and (TW3), but not (J2).
Let V = {u, v, x, y} and define a transit function R on V as follows: R(u, v) =
{u, x, v}, R(u, y) = {u, y}, R(u, x) = {u, x}, R(x, y) = {x, y}, R(x, v) = {x, v}
and R(y, v) = {y, v}. It is straightforward but tedious to see that R satis-
fies Axioms (b1), (b2), (J3), (TW1), (TW2) and (TW3). On the other hand
R(u, y) = {u, y}, R(y, v) = {y, v}, R(u, v) 	= {u, v} and y /∈ R(u, v) and R does
not satisfy Axiom (J2).

Example 4. There exists a transit function that satisfies Axioms (b1), (b2), (J2),
(TW1), (TW2) and (TW3), but not (J3).
Let V = {u, v, w, x, y} and define a transit function R on V as follows:R(u, v) =
{u,w, v}, R(u, y) = {u, x,w, y}, R(u,w) = {u,w}, R(u, x) = {u, x}, R(x, y) =
{x, y}, R(x,w) = {x,w}, R(x, v) = {x, y, w, v}, R(w, y) = {w, y}, R(w, v) =
{w, v} and R(y, v) = {y, v}. It is straightforward but tedious to see that R
satisfies Axioms (b1), (b2), (J2), (TW1), (TW2) and (TW3). Beside that x ∈
R(u, y), y ∈ R(x, v), R(u, v) 	= {u, v} but x /∈ R(u, v). So R does not satisfy
Axiom (J3).
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Example 5. There exists a transit function that satisfies Axioms (b1), (b2), (J2),
(J3), (TW2) and (TW3), but not (TW1).
Let V = {u, v, w, x, y} and define a transit function R on V as follows:
R(u, v) = {u, x, y, v}, R(u, y) = {u, x, y}, R(u,w) = {u, x,w}, R(u, x) = {u, x},
R(x, v) = {x, y, v}, R(x,w) = {x,w}, R(x, y) = {x, y}, R(w, y) = {w, y},
R(w, v) = {w, y, v} and R(y, v) = {y, v}. It is straightforward but tedious to
see that R satisfies Axioms (b1), (b2), (J2), (J3), (TW2) and (TW3). Since
x, y ∈ R(u, v), x 	= y, R(x,w) = {x,w}, R(w, y) = {w, y}, R(x, v) 	= {x, v} and
R(u, y) 	= {u, y}, but w /∈ R(u, v), R does not satisfies Axiom (TW1).

Example 6. There exists a transit function that satisfies Axioms (b1), (b2), (J2),
(J3), (TW1) and (TW3), but not (TW2).
Let V = {u, v, w, x, y, z} and define a transit function R on V as follows:
R(u, v) = {u,w, x, y, v}, R(u, y) = {u,w, x, y}, R(u, x) = {u,w, x}, R(u, z) =
{u,w, x, z}, R(u,w) = {u,w}, R(w, v) = {w, x, y, v}, R(w, y) = {w, x, y},
R(w, z) = {w, x, z}, R(w, x) = {w, x}, R(x, v) = {x, y, v}, R(x, z) = {x, z},
R(x, y) = {x, y}, R(z, y) = {z, x, y}, R(z, v) = {z, x, y, v} and R(y, v) = {y, v}.
It is straightforward but tedious to see that R satisfies Axioms (b1), (b2),
(J2), (J3), (TW1) and (TW3). But R does not satisfies axiom (TW2), since
x ∈ R(u, v), R(u, x) 	= {u, x}, R(x, v) 	= {x, v}, R(x, z) = {x, z} but z /∈ R(u, v).

Example 7. There exists a transit function that satisfies Axioms (b1), (b2), (J2),
(J3), (TW1) and (TW2), but not (TW3).
Let V = {u, v, x, y} and define a transit function R on V as follows: R(u, v) =
{u, x, y, v}, R(u, y) = {u, y}, R(u, x) = {u, x}, R(x, y) = {x, y}, R(x, v) =
{x, y, v} and R(y, v) = {y, v}. It is straightforward but tedious to see that R
satisfies Axioms (b1), (b2), (J2), (J3), (TW1) and (TW2). But R does not hold
for Axiom (TW3), since x ∈ R(u, v) and there does not exist a v1 such that
v1 ∈ R(x, v), v1 	= x with R(x, v1) = {x, v1} and R(u, v1) 	= {u, v1}.

Appendix C

At the end of this work we would like to mention two open problems. The first
one is a general one and it seems to be to ambitious at the moment.

Problem 1. Is there an axiomatic characterization of the toll walk transit func-
tion of an arbitrary connected graph G?

It seems that it is much more realistic to attack above problem by smaller
steps. A natural first possible step is to deal first with chordal graphs.

Problem 2. Is there a characterization of the toll walk transit function of chordal
graph?
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Abstract. The alliance problems have been studied extensively during
the last couple of decades. In this paper, we approach the problems from
the standpoint of parameterized complexity. We study three problems,
namely the defensive, offensive and powerful alliances. Given a graph G =
(V, E), a non-empty set S ⊆ V is a defensive alliance, if for every vertex
v ∈ S : |NG(v) ∩ S| ≥ |NG(v) \ S| − 1 and a non-empty set S ⊆ V is an
offensive alliance, if for every vertex v ∈ N [S]\S : |NG(v)∩S| ≥ |NG(v)\
S|+1. A powerful alliance is both defensive and offensive simultaneously.
We majorly focus on a set of parameters for which the complexity of
the problems is unknown. Our main results are as follows: (1) All the
three alliance problems are fixed parameter tractable parameterized by
distance to clique of the input graph. (2) All the three alliance problems
are fixed parameter tractable parameterized by the combined parameter
twin cover and the number of cliques outside the twin cover. (3) All the
three alliance problems are fixed parameter tractable parameterized by
the combined parameter twin cover and the size of the largest clique
outside the twin cover.

Keywords: Defensive alliance · Offensive alliance · Powerful alliance ·
Twin cover · Distance to clique

1 Introduction

An alliance is a connection between multiple individuals, states or parties. The
union of individuals is considered to be stronger than the individual. The con-
cept of alliances in graphs was first introduced by Kristiansen, Hedetniemi and
Hedetniemi [18]. They have studied three problems, namely the defensive, offen-
sive and powerful alliances. The initial algorithmic results of the problem were
given by Jamieson [15]. Alliances in graphs have been well studied [3] and gen-
eralizations such as r-alliances are also studied [10,20]. Let G = (V,E) be a
finite, simple and undirected graph with V as the vertex set and E as the edge
set. We define the closed neighbourhood of a vertex v by NG[v] and the open
neighbourhood by NG(v). We denote the boundary of a set S ⊆ V by ∂S which
represents the set of vertices in the neighbourhood of S, excluding S (∂S =

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Bagchi and R. Muthu (Eds.): CALDAM 2023, LNCS 13947, pp. 447–459, 2023.
https://doi.org/10.1007/978-3-031-25211-2_34
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N [S] \ S). A defensive alliance is a non-empty set S ⊆ V , such that for every
vertex v ∈ S : |NG(v)∩S| ≥ |NG(v)\S|−1. An offensive alliance is a non-empty
set S ⊆ V , such that for every vertex v ∈ ∂S : |NG(v) ∩ S| ≥ |NG(v) \ S| + 1.
A powerful alliance is both defensive and offensive simultaneously. An alliance
is global if it is also a dominating set.

The problem definitions for the alliance problems are stated as follows:
DEFENSIVE r-ALLIANCE:

A non-empty set S ⊆ V (G) is a defensive r-alliance if for each v ∈ S, |N(v) ∩
S| ≥ |N(v) \ S| + r.

Input: A simple, undirected graph G = (V,E), and a positive integer k.
Question: Is there a defensive r-alliance S ⊆ V such that |S| ≤ k?

DEFENSIVE ALLIANCE:

A non-empty set S ⊆ V (G) is a defensive alliance if it satisfies the condition
for defensive (-1)-alliance.

OFFENSIVE r-ALLIANCE:

A non-empty set S ⊆ V (G) is an offensive r-alliance if for each v ∈ ∂S, |N(v)∩
S| ≥ |N(v) \ S| + r.

Input: A simple, undirected graph G = (V,E), and a positive integer k.
Question: Is there an offensive r-alliance S ⊆ V such that |S| ≤ k?

OFFENSIVE ALLIANCE:

A non-empty set S ⊆ V (G) is an offensive alliance if it satisfes the condition
for an offensive (1)-alliance.

POWERFUL r-ALLIANCE:

A powerful r-alliance is simultaneously a defensive r-alliance and an offensive
(r + 2)-alliance.

Input: A simple, undirected graph G = (V,E), and a positive integer k.
Question: Is there a powerful r-alliance S ⊆ V such that |S| ≤ k?

Given a graph G = (V,E), a problem is considered to be fixed parameter tractable
w.r.t a parameter k, if there exists an algorithm with running time O((|V | +
|E|)O(1) · f(k)), where f is a computable function. We use O∗(f(k)) to denote
the time complexity of the form O((|V |+ |E|)O(1) · f(k)). For more information
on parameterized complexity we refer the reader to [5].

1.1 Previous Work

The decision version of the problems is known to be NP-complete. Jamieson et
al. [14] showed that the defensive alliance is NP-complete even when restricted
to split, chordal and bipartite graphs. The defensive r-alliance [21] and global
defensive r-alliance problems [9] are NP-complete for any r. Fernau et al. [10]
showed that the offensive r-alliance and global offensive r-alliance problems are
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NP-complete for any fixed r. There are polynomial time algorithms for finding
minimum alliances in trees [2,14,15]. There is a polynomial time algorithm for
finding a minimum defensive alliance in series parallel graphs [6]. Gaikwad and
Maity [12] proved that the defensive alliance is NP-complete on circle graphs.

In terms of parameterized complexity, Fernau and Raible [8] proved that all
the three problems, including their global versions are fixed parameter tractable
when parameterized by the solution size k. Using integer linear programming
framework, Kiyomi and Otachi [17] showed that all the alliance problems are
fixed parameter tractable when parameterized by vertex cover number of the
input graph. Gaikwad and Maity [12] showed that the defensive alliance is W[1]-
hard parameterized by a wide range of parameters such as the feedback vertex
set, treewidth, cliquewidth, treedepth and pathwidth. Bliem and Woltran [1]
proved that the defensive alliance is W[1]-hard parameterized by treewidth of
the input graph. Recently, both the defensive and offensive alliances were also
shown to be fixed parameter tractable parameterized by neighbourhood diversity
of the input graph [11].

1.2 Our Results

We study the problems for structural parameters distance to clique and twin
cover. Our results are as follows:

– All the three alliance problems are fixed parameter tractable parameterized
by distance to clique of the input graph.

– All the three alliance problems are fixed parameter tractable parameterized
by the combined parameter twin cover and the number of cliques outside the
twin cover.

– All the three alliance problems are fixed parameter tractable parameterized by
the combined parameter twin cover and the size of the largest clique outside
the twin cover.

2 FPT Algorithms

In this section, we present FPT algorithms for alliance problems. The parameters
we consider are distance to clique and twin cover. We show that all the three
alliance problems are in FPT for the parameter distance to clique. When it comes
to twin cover, we show that all the three problems are in FPT for the combined
parameters: (1) twin cover and the number of cliques outside the twin cover. (2)
twin cover and the size of the largest clique outside the twin cover.

2.1 Alliances Parameterized by Distance to Clique

Definition 1. For a graph G = (V,E), the parameter distance to clique is the
cardinality of the smallest set D ⊆ V such that V \ D is a clique.

Using a simple branching algorithm, we can compute set D of size at most k in
O∗(2k) time, if such a set exists.
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D

P

C

C1

Cj

Ck

CN

Fig. 1. Partitioning of the vertex set V into sets D and C, where |D| is the distance
to clique and C is a clique.

Theorem 1. Given a graph G = (V,E) and D ⊆ V such that V \D is a clique,
the DEFENSIVE r-ALLIANCE problem can be solved in O∗(f(|D|)) time.

Consider a graph G = (V,E) and D ⊆ V such that |D| is the distance to clique
of G and C = V \ D. We partition the vertices of C into t twin classes which
are represented by C1, C2, ..., Ct (t ≤ 2|D|), such that all the vertices in a twin
class Ci have same adjacency in D. Let S ⊆ V be a defensive r-alliance of G.
We guess the vertex sets P = S ∩ D and compute SC = S ∩ C. We also guess a
subset of twin classes CN ⊆ C from which no vertices are picked in the solution.
See Fig. 1 for an illustration. After the guess of P and CN , we compute SC

using integer linear programming. For each of u ∈ D, we define demand(u) =
1
2 (deg(u)+r)−|N(u)∩P |. For each u ∈ D, we denote by M(u) the set of indices
i such that Ci ⊆ N(u). In other words, M(u) represents the indices of the twin
classes from C that u is adjacent to. xi represents the number of vertices in
Ci ∩ S. In our ILP formulation, there are t variables that are x1, x2, ..., xt.

Lemma 1. The set S is a defensive r-alliance if and only if

1. For each u ∈ P ,
∑

i∈M(u) xi ≥ demand(u).
2. Each v ∈ C \ CN has to satisfy |N(v) ∩ P | + ∑

i∈{1,2,...,t} xi ≥ |N [v] \ P | −
∑

i∈{1,2,...,t} xi + r.

Proof.

1. For each u ∈ P , deg(u) = |N(u) ∩ S| + |N(u) \ S| and |N(u) ∩ S| ≥ |N(u) \
S|+ r holds if and only if 2 ∗ |N(u) ∩ S| ≥ deg(u) + r, which is equivalent to
|N(u) ∩ SC | ≥ demand(u) implies

∑
i∈M(u) xi ≥ demand(u).
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2. For each v ∈ C \CN , |N(v)∩S| = |N(v)∩P |+ |SC |, which is indeed |N(v)∩
P |+∑

i∈{1,2,...,t} xi; |N(v)\S|+r = |(N(v)∩D)\P |+|C|−∑
i∈{1,2,...,t} xi+r,

which equals |N [v] \ P | − ∑
i∈{1,2,...,t} xi + r.

�	
The ILP formulation for the defensive r-alliance is given as

Minimize
∑

i∈{1,2,...,t} xi

Subject to

–
∑

i∈M(u) xi ≥ demand(u), for each u ∈ P.

– |N(v) ∩ P | + ∑
i∈{1,2,...,t} xi ≥ |N [v] \ P | − ∑

i∈{1,2,...,t} xi + r, for every
v ∈ C \ CN .

– xi ≤ |Ci|, for each i ∈ {1, 2, ..., t}.

The ILP will output the optimal values of xi for all i ∈ {1, 2, ..., t}. If xi >
0, we need to pick xi vertices from Ci. As all the vertices in Ci have same
neighbourhood, we can pick any xi vertices. Hence, we obtain the vertex set SC .

ILP formulation
Integer Linear Programming is a framework used to formulate a given problem
using a finite number of variables. The problem definition is given as follows:

Problem. p-Opt-ILP
Instance: A matrix A ∈ Zm∗p, and vectors b ∈ Zm and c ∈ Zp.
Objective: Find a vector x ∈ Zp that minimizes c�x and satisfies that Ax ≥ b.
Parameter: p, the number of variables.

Lenstra [19] showed that deciding the feasibilty of a p-ILP is fixed parameter
tractable with running time doubly exponential in p, where p is the number of
variables. Later, Kannan [16] gave a pp algorithm for p-ILP. Fellows et al. [7]
proved that p-Opt-ILP, the optimization version of the problem is also fixed
parameter tractable.

Theorem 2. [7] p-Opt-ILP can be solved using O(p2.5p+o(p) ·L·log(MN)) arith-
metic operations and space polynomial in L, where L is the number of bits in
the input, N is the maximum absolute value any variable can take, and M is
an upper bound on the absolute value of the minimum taken by the objective
function.

In our ILP formulation, we have at most 2|D| variables. The values of all the
variables and the objective function are bounded by n. The constraints can
be represented using O(4|D| · logn) bits. With the help of Theorem 2, we will
be able to solve the problem with the guess (P, CN ) in FPT time. There are
2|D| candidates for P and 22

|D|
candidates for CN . To obtain SC , we solve 8|D|
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ILP formulas where each formula can be computed in O∗(f(|D|)) time. This
concludes the proof of Theorem 1.

Theorem 3 (�1). Given a graph G = (V,E) and D ⊆ V such that V \ D is a
clique, the OFFENSIVE r-ALLIANCE problem can be solved in O∗(f(|D|)) time.

Theorem 4 (�). Given a graph G = (V,E) and D ⊆ V such that V \ D is a
clique, the POWERFUL r-ALLIANCE problem can be solved in O∗(f(|D|)) time.

2.2 Alliances Parameterized by Twin Cover and the Number
of Cliques Outside the Twin Cover

Definition 2. For a graph G = (V,E), the parameter twin cover is the cardi-
nality of the smallest set T ⊆ V such that V \ T is a disjoint union of cliques
wherein all the vertices in each clique have the same adjacency in the twin cover.

Theorem 5. [4,13] If a minimum twin cover in G has size at most k, then it
is possible to compute a twin cover of size at most k in time O(|E||V | + k|V | +
1.2738k).

From Theorem 5, it is possible to find a twin-cover of size k in FPT time. In this
subsection, we consider the combined parameter twin cover and the number of
cliques outside the twin cover.

Theorem 6. Given a graph G = (V,E), T ⊆ V is a twin cover of G and y is
the number of cliques outside the twin cover, the DEFENSIVE r-ALLIANCE problem
can be solved in O∗(f(|T |, y)) time.

Consider a graph G = (V,E). Let T ⊆ V be a twin cover of G and C = V \T . We
partition the vertices of C into y cliques which are represented by C1, C2, ..., Cy,
such that all the vertices in a clique Ci have same adjacency in T . Let S ⊆ V
be a defensive r-alliance of G. We guess the vertex sets P = S ∩ T and compute
SC = S∩C. We also guess a subset of cliques CN ⊆ C from which no vertices are
picked in the solution. See Fig. 2 for an illustration. After the guess of P and CN ,
we compute SC using integer linear programming. For each of u ∈ T , we define
demand(u) = 1

2 (deg(u)+r)−|N(u)∩P |. For each u ∈ T , we denote by M(u) the
set of indices i such that Ci ⊆ N(u). In other words, M(u) represents the indices
of the cliques from C that u is adjacent to. xi represents the number of vertices
in Ci ∩ S. In our ILP formulation, there are y variables that are x1, x2, ..., xy.

Lemma 2. The set S is a defensive r-alliance if and only if

1. For each u ∈ P ,
∑

i∈M(u) xi ≥ demand(u).
2. Each v ∈ (C \ CN ) ∩ Ci has to satisfy |N(v) ∩ P | + xi ≥ |N [v] \ P | − xi + r.

1 Due to the space limit, the proofs of statements marked with a � have been omitted.
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T

P

C1

C2

Cy

C

CN

Fig. 2. Partitioning of the vertex set V into sets T and C, where T is a twin cover and
C is a disjoint union of cliques.

Proof.

1. For each u ∈ P , deg(u) = |N(u) ∩ S| + |N(u) \ S| and |N(u) ∩ S| ≥ |N(u) \
S| + r holds if and only if 2 ∗ |N(u) ∩ S| ≥ deg(u)+r, which is equivalent to
|N(u) ∩ SC | ≥ demand(u) implies

∑
i∈M(u) xi ≥ demand(u).

2. For each v ∈ (C \ CN ) ∩ Ci, |N(v) ∩ S| = |N(v) ∩ P | + xi; |N(v) \ S| + r =
|N [v] \ P | − xi + r. �	

The ILP formulation for the defensive r-alliance is given as

Minimize
∑

i∈{1,2,...,y} xi

Subject to

–
∑

i∈M(u) xi ≥ demand(u), for each u ∈ P.

– |N(v) ∩ P | + xi ≥ |N [v] \ P | − xi + r, for every v ∈ (C \ CN ) ∩ Ci.
– xi ≤ |Ci|, for each i ∈ {1, 2, ..., y}.

In our ILP formulation, we have y variables, where y is the number of cliques
outside the twin cover. The values of all the variables and the objective function
are bounded by n. The constraints can be represented using O(y · |T | · logn) bits.
With the help of Theorem 2, we will be able to solve the problem with the guess
(P, CN ) in FPT time. There are 2|T | candidates for P and 2y candidates for
CN . To obtain SC , we solve 2|T | ∗ 2y ILP formulas where each formula can be
computed in O∗(f(|T |, y)) time. This concludes the proof of Theorem 6.
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Theorem 7 (�). Given a graph G = (V,E), T ⊆ V is a twin cover of G and
y is the number of cliques outside the twin cover, the OFFENSIVE r-ALLIANCE

problem can be solved in O∗(f(|T |, y)) time.

Theorem 8 (�). Given a graph G = (V,E), T ⊆ V is a twin cover of G and
y is the number of cliques outside the twin cover, the POWERFUL r-ALLIANCE

problem can be solved in O∗(f(|T |, y)) time.

2.3 Alliances Parameterized by Twin Cover and the Size
of the Largest Clique Outside the Twin Cover

In this subsection, we consider the combined parameter twin cover and the size
of the largest clique outside the twin cover.

Theorem 9. Given a graph G = (V,E), T ⊆ V is a twin cover of G and z is
the size of the largest clique outside the twin cover, the DEFENSIVE r-ALLIANCE

problem can be solved in O∗(f(|T |, z)) time.

Consider a graph G = (V,E). Let T ⊆ V be a twin cover of G and C =
V \ T . We partition the vertices of C into t clique sets which are represented by
C1, C2, ..., Ct (t ≤ 2|T |), such that all the vertices in a clique set Ci have same
adjacency in T . Let S ⊆ V be a defensive r-alliance of G. We guess the vertex
sets P = S∩T and compute SC = S∩C. For each of u ∈ T , we define demand(u)
= 1

2 (deg(u) + r) − |N(u) ∩ P |. For each u ∈ T , we denote by M(u) the set of
indices i such that Ci ⊆ N(u). In other words, M(u) represents the indices of
the clique sets from C that u is adjacent to. We have at most z different size
cliques in each clique set whose sizes range from 1 to z. We represent the cliques
of size l in the clique set Ci as Cl

i . We define the deficiency for a clique set Ci

as, di = |N(Ci) ∩ (T \ P )| - |N(Ci) ∩ P |.

We place cliques of all sizes from each clique set into one of the following
three types: full, partial and null. full cliques have all of its vertices picked in
the solution, partial cliques have some of its vertices picked whereas the null
cliques have no vertices picked. Cl,F

i represents the union of all full cliques in
Cl

i . Cl,P
i , Cl,N

i represents the union of all partial cliques and union of all null
cliques in Cl

i respectively. We denote each partial clique in Cl,P
i by C

l,Pj

i , where
j denotes the index of a partial clique. See Fig. 3 for an illustration of the clique
types in the clique set Ci. x

l,Pj

i represents the number of vertices in C
l,Pj

i ∩ S.
In the ILP formulation, we need to assign an individual variable to every partial
clique. Here, the idea is to limit the number of partial cliques in each clique set
Ci, which results in formulating the ILP using a significantly lesser number of
variables.

Lemma 3. Consider a set Cl
i from a clique set Ci with a non-positive deficiency

di, there exists an optimal solution with at most two partial cliques from Cl
i .
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Ci

C1
i

C2,F
i

C2,N
i

C
2,P1
i C

2,P2
i C

2,P3
i C

2,P
y2
i

i

Cz
i

Fig. 3. Representation of cliques of type full, partial and null of length two in the
clique set Ci. The black highlighted vertices belong in the alliance set.

Proof.
Case 1: di = 0. Let S be an optimal solution containing p partial cliques and f full
cliques from Cl

i . Let Cl,P1
i , Cl,P2

i and Cl,P3
i be three partial cliques from Cl

i and we
have, l

2 ≤ xl,P1
i , xl,P2

i , xl,P3
i < l and 3l

2 ≤ xl,P1
i + xl,P2

i + xl,P3
i ≤ 3l − 3. We obtain

another solution(S′) with only two partial cliques as follows. We try to convert
one among Cl,P1

i , Cl,P2
i and Cl,P3

i to full clique by placing all of its vertices in
the solution and we claim that this also gives an optimal solution. Let Cl,P1

i be
the full clique in S′, we get l

2 ≤ xl,P2
i , xl,P3

i < l and l
2 ≤ xl,P2

i + xl,P3
i ≤ 2l − 3.

It is easy to verify that we have values for xl,P2
i and xl,P3

i satisfying the above
constraints. If xl,P2

i + xl,P3
i ∈ [ l2 , l), then we need only one partial clique among

xl,P2
i , xl,P3

i as we can set another value to zero. If xl,P2
i + xl,P3

i ∈ [l, 2l − 3], then
both xl,P2

i , xl,P3
i lie in [ l2 , l). We claim that S is an optimal solution if and only if

S′ is an optimal solution. It is clear that all the partial cliques in S′ satisfy the
defensive alliance property. Now, consider any vertex u ∈ P which is adjacent to
the clique set Ci, there is no change in the total number of adjacent vertices to u
from Ci that goes into the solution in both S and S′. So, u satisfies the defensive
alliance property in S if and only if it does in S′. We perform the conversion of
all triplets from partial cliques until only two partial cliques remain.

Case 2: di < 0. It can be easily inferred from case 1 that even for any negative
value of di, there exists an optimal solution with at most two partial cliques. �	
Lemma 4. Consider a clique set Ci with a positive deficiency di, then no cliques
of size less than di from Ci can be a part of the solution.

Proof. If Ci has a positive deficiency of di, then for any clique to be a part of the
solution from Ci, we need to include di more neighbours from Ci. But, the only
neighbours of any clique from Ci are the vertices of the clique itself and even if
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we include all the vertices of the clique, we won’t be able to fill the deficiency of
Ci. Therefore, no cliques of size less than di will be considered to be a part of
the solution. �	
Lemma 5. Consider a set Cl

i from a clique set Ci with a positive deficiency di,
there exists an optimal solution with at most 
 l−1

l−ki
� partial cliques, where ki =

di + l−di

2 .

Proof. Let ki = di + l−di

2 . From Lemma 4, it follows that no cliques of size
less than di can be a part of the solution. Consider the cliques of size di, in
order to fill the deficiency, we need to add all the vertices of the clique to S,
which is trivial. Therefore, we consider only the cliques of size greater than
di from each clique set. If l > di, then we have l > ki. Consider an optimal
solution S with p partial cliques in Cl

i . We have ki ≤ xl,P1
i , xl,P2

i , ..., x
l,Pp

i < l and
ki · p ≤ xl,P1

i + xl,P2
i + ... + x

l,Pp

i ≤ p(l − 1). Let N = xl,P1
i + xl,P2

i + ... + x
l,Pp

i .
Now, we transform the instance S into another instance S′ with at most p′ partial
cliques, where p′ ≤ 
 l−1

l−ki
�. Let Cl,P1

i , Cl,P2
i , ..., C

l,Pp′
i be p′ partial cliques from

Cl
i and we have,

N = (
N
l � − p′)l + p′ · m, where m ∈ [ki, l − 1].

p′ · l − p′ · m = 
N
l � · l − N

p′ · (l − (l − 1)) ≤ (
N
l � − N

l )l

p′ ≤ l−1
l · l

p′ ≤ l − 1 (1)

We have to absorb the maximum value of 
N
l � · l − N , that is l − 1, using p′

partial cliques. This gives us the following tighter bound.

p′ ≤ 
 l − 1
l − ki

� (2)

From (1) and (2), We have that p′ ≤ 
 l−1
l−ki

�. We claim that S is an optimal
solution if and only if S′ is an optimal solution. It is clear that all the partial
cliques in S′ satisfy the defensive alliance property. Now, consider any vertex
u ∈ P which is adjacent to the clique set Ci, there is no change in the total
number of adjacent vertices to u from Ci that goes into the solution in both S
and S′. So, u satisfies the defensive alliance property in S if and only if it does
in S′. Hence, we conclude that there is an optimal solution with at most 
 l−1

l−ki
�

partial cliques. �	
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Let yl
i be the number of partial cliques in Cl

i . From Lemma 3 and Lemma 5,
it is clear that there is an optimal solution with at most 
 l−1

l−ki
� partial cliques

from Cl
i and we have yl

i ≤ 
 l−1
l−ki

�. We guess the cliques from Cl
i that goes into

Cl,P
i in yl

i + 1 ways and from the remaining |Ci − Cl,P
i | cliques, Cl,F

i can be
guessed in m − yl

i +1 ways, where m is the number of cliques in Cl
i . As we have

guessed P,Cl,F
i and Cl,P

i , we compute SC using integer linear programming. xl,P
i

represents the sum of xl,P1
i , xl,P2

i , ..., x
l,P

yl
i

i . In our ILP formulation, there are at

most
∑z

l=1

∑t
i=1 yl

i variables that are x1,P1
1 , ..., x

z,Pyz
1

1 , x1,P1
2 , ..., x

z,Pyz
2

2 , ..., x
z,Pyz

t
t .

Lemma 6. The set S is a defensive r-alliance if and only if

1. For each u ∈ P ,
∑

i∈M(u)

∑l=z
l=1 |Cl,F

i | +
∑

i∈M(u)

∑l=z
l=1

∑j=yl
i

j=1 x
l,Pj

i ≥
demand(u).

2. Each v ∈ Cl,F
i has to satisfy |N(v) ∩ P | + l ≥ |N [v] \ P | − l + r.

3. Each v ∈ C
l,Pj

i has to satisfy |N(v) ∩ P | + x
l,Pj

i ≥ |N [v] \ P | − x
l,Pj

i + r.

Proof.

1. For each u ∈ P , deg(u) = |N(u)∩S|+ |N(u)\S| and |N(u)∩SC | = ∑
i∈M(u)

∑l=z
l=1 |Cl,F

i |+ ∑
i∈M(u)

∑l=z
l=1

∑j=yl
i

j=1 x
l,Pj

i . |N(u) ∩ S| ≥ |N(u) \ S| + r holds
if and only if 2 ∗ |N(u) ∩ S| ≥ deg(u)+r, which implies

∑
i∈M(u)

∑l=z
l=1 |Cl,F

i |
+

∑
i∈M(u)

∑l=z
l=1

∑j=yl
i

j=1 x
l,Pj

i ≥ demand(u).
2. For each v ∈ Cl,F

i , |N(v)∩S| = |N(v)∩P |+l; |N(v)\S|+r = |N [v]\P |−l+r.

3. For each v ∈ C
l,Pj

i , |N(v) ∩ S| = |N(v) ∩ P | + x
l,Pj

i ; |N(v) \ S|+ r = |N [v] \
P | − x

l,Pj

i + r. �	

The ILP formulation for the defensive r-alliance is given as

Minimize
∑

i∈{1,2,...,t}
∑l=z

l=1

∑j=yl
i

j=1 x
l,Pj

i

Subject to

–
∑

i∈M(u)

∑l=z
l=1 |Cl,F

i | + ∑
i∈M(u)

∑l=z
l=1

∑j=yl
i

j=1 x
l,Pj

i ≥ demand(u), for each
u ∈ P.

– |N(v) ∩ P | + l ≥ |N [v] \ P | − l + r, for each v ∈ Cl,F
i .

– |N(v) ∩ P | + x
l,Pj

i ≥ |N [v] \ P | − x
l,Pj

i + r, for every v ∈ C
l,Pj

i .
– x

l,Pj

i < l, for each i ∈ {1, 2, ..., t}, l ∈ {1, 2, ..., z} and j ∈ {1, 2, ..., yl
i}.
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In our ILP formulation, we have at most
∑z

l=1

∑t
i=1 yl

i variables, where z is the
size of the largest clique outside the twin cover and yl

i ≤ 
 l−1
l−ki

�. The values of all
the variables and the objective function are bounded by n. The constraints can
be represented using O(

∑z
l=1

∑t
i=1 yl

i · |T | · logn) bits. With the help of Theorem
2, we will be able to solve the problem with the guess (P,Cl,F

i and Cl,P
i ) in

FPT time. There are 2|T | candidates for P and there are
∑z

l=1

∑t
i=1 yl

i · O(n)
candidates for (Cl,F

i and Cl,P
i ). To obtain SC , we solve 2|T | ·∑z

l=1

∑t
i=1 yl

i ·O(n)
ILP formulas, where each formula can be computed in O∗(f(|TC|, z)) time. This
concludes the proof of Theorem 9.

Theorem 10 (�). Given a graph G = (V,E), T ⊆ V is a twin cover of G and z
is the size of the largest clique outside the twin cover, the OFFENSIVE r-ALLIANCE

problem can be solved in O∗(f(|T |, z)) time.

Theorem 11 (�). Given a graph G = (V,E), T ⊆ V is a twin cover of G and z
is the size of the largest clique outside the twin cover, the POWERFUL r-ALLIANCE

problem can be solved in O∗(f(|T |, z)) time.

3 Conclusion

In this work, we have proved that all three alliance problems are fixed parame-
ter tractable when parameterized by distance to clique. We have that all three
alliance problems are fixed parameter tractable parameterized by twin cover
and the number of cliques outside the twin cover. We also proved that all three
alliance problems are fixed parameter tractable parameterized by twin cover and
the size of the largest clique outside the twin cover.

As a future direction, it will be interesting to check whether the idea pre-
sented in Sect. 2.3. can be extended to prove the tractability of the problem
parameterized by twin cover. The hardness results for the parameters distance
to cluster and twin cover can be considered. The problem still remains unsolved
for the parameter modular width. It is also interesting to initiate the study on
connected and independent versions of the offensive alliance problem.

References

1. Bliem, B., Woltran, S.: Defensive alliances in graphs of bounded treewidth. Discret.
Appl. Math. 251, 334–339 (2018)

2. Chang, C.W., Chia, M.L., Hsu, C.J., Kuo, D., Lai, L.L., Wang, F.H.: Global defen-
sive alliances of trees and cartesian product of paths and cycles. Discret. Appl.
Math. 160(4), 479–487 (2012)

3. Chellali, M., Haynes, T.W.: Global alliances and independence in trees. Discuss.
Math. Graph Theory 27(1), 19–27 (2007)

4. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theoret.
Comput. Sci. 411(40), 3736–3756 (2010)

5. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3


Structural Parameterization of Alliance Problems 459

6. Enciso, R.: Alliances in graphs: parameterized algorithms and on partitioning
series-parallel graphs. Ph.D. thesis, USA (2009)

7. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph
layout problems parameterized by vertex cover. In: Hong, S.-H., Nagamochi, H.,
Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 294–305. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-92182-0_28

8. Fernau, H., Binkele-Raible, D.: Alliances in graphs: a complexity-theoretic study.
In: Proceeding Volume II of the 33rd International Conference on Current Trends
in Theory and Practice of Computer Science, pp. 61–70 (2007)

9. Fernau, H., Rodriguez-Velazquez, Alberto, J., Sigarreta, J.: Global r-alliances and
total domination. In: 7th Cologne-Twente Workshop on Graphs and Combinatorial
Optimization, CTW 2008, pp. 98–101 (2008)

10. Fernau, H., Rodríguez, J.A., Sigarreta, J.M.: Offensive r-alliances in graphs. Dis-
cret. Appl. Math. 157(1), 177–182 (2009)

11. Gaikwad, A., Maity, S., Tripathi, S.K.: Parameterized complexity of defensive and
offensive alliances in graphs. In: Proceedings of the 17th International conference
on Distributed Computing and Internet Technology, pp. 175–187 (2021)

12. Gaikwad, A., Maity, S.: Defensive alliances in graphs. Theoret. Comput. Sci. 928,
136–150 (2022)

13. Ganian, R.: Twin-cover: Beyond vertex cover in parameterized algorithmics. In:
Proceedings of the 6th International Conference on Parameterized and Exact Com-
putation, vol. 7112, pp. 259–271 (2011)

14. Jamieson, L., Hedetniemi, S., Mcrae, A.: The algorithmic complexity of alliances
in graphs. JCMCC. J. Comb. Math. Comb. Comput. 68, 137–150 (2009)

15. Jamieson, L.H.: Algorithms and Complexity for Alliances and Weighted Alliances
of Various Types. Ph.D. thesis, USA (2007)

16. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.
Oper. Res. 12(3), 415–440 (1987)

17. Kiyomi, M., Otachi, Y.: Alliances in graphs of bounded clique-width. Discret. Appl.
Math. 223, 91–97 (2017)

18. Kristiansen, P., Hedetniemi, M., Hedetniemi, S.: Alliances in graphs. J. Comb.
Math. Comb. Comput. 48, 157–177 (2004)

19. Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper.
Res. 8(4), 538–548 (1983)

20. Shafique, K., Dutton, R.: Maximum alliance-free and minimum alliance-cover sets.
Congr. Numer. 162, 139–146 (2003)

21. Sigarreta, J., Bermudo, S., Fernau, H.: On the complement graph and defensive
k-alliances. Discret. Appl. Math. 157(8), 1687–1695 (2009)

https://doi.org/10.1007/978-3-540-92182-0_28


Author Index

Adoni, Vijay 41

Balachandran, Niranjan 134, 257
Basappa, Manjanna 59
Beck, Moritz 321
Bensmail, Julien 204
Bhyravarapu, Sriram 147, 159

Chakraborty, Dipayan 121, 271
Chand, Prabhat Kumar 28
Changat, Manoj 427
Chaudhary, Juhi 377

Das, Arun Kumar 89
Das, Sandip 89, 297, 309
Dutta, Pranjal 3

Foucaud, Florent 121, 245, 271, 297

Gahlawat, Harmender 309
Gaur, Daya R. 41
Gorain, Barun 415

Hebbar, Anish 257
Hocquard, Hervé 204

Islam, Sk Samim 297

Kare, Anjeneya Swami 447
Karimi, Leila 41
Karmakar, Sushanta 231
Kavaskar, T. 172
Kumar, Manish 28
Kumari, Swati 147
Kusum 335

Maheshwari, Anil 89
Maji, Sukanya 71
Malik, Vineet 231
Marcille, Pierre-Marie 204
Mishra, Sounaka 377
Mitchell, Joseph S. B. 59
Mittal, Harshil 101
Mohanapriya, A. 219

Molla, Anisur Rahaman 28
Mukherjee, Joydeep 297

Nandi, Soumen 121
Nanoti, Saraswati 101
Narayanan, Krishna 245

Panda, B. S. 363, 377
Pandey, Arti 284, 335
Parreau, Aline 271
Patra, Shaswati 415
Paul, Subhabrata 391
Peterin, Iztok 427
Prashant, Athmakoori 192

Raj, S. Francis 192
Rajalaxmi, T. M. 403
Rajamani, Pavithra 184
Rajan, R. Sundara 403
Ramasubramony Sulochana, Lekshmi 245
Rajasree, Mahesh Sreekumar 3
Ramgopal, Ashwin 309
Reddy, I. Vinod 147, 159
Reddy, Sangam Balchandar 447
Reji, Remi Mariam 403
Renjith, P. 219

Sachin 363
Sadagopan, N. 219
Sadhu, Sanjib 71
Sahoo, Uma Kant 309
Sankarnarayanan, Brahadeesh 134
Santra, Kamal 391
Sarvottamananda, 89
Sen, Sagnik 121, 309
Sethia, Aditi 101
Sharma, Gopika 284
Sheela, Lekshmi Kamal K. 427
Singh, Rishi Ranjan 415
Singireddy, Vishwanath R. 59
Sivasubramaniam, Sumathi 28
Spoerhase, Joachim 321
Storandt, Sabine 321



462 Author Index

Subramani, K. 15
Supraja, D. K. 121

Thankachan, Reji 184

Wagler, Annegret K. 271
Wojciechowski, P. 15

Yamamura, Akihiro 351


	 Preface
	 Organization
	Abstracts of Invited Talks
	 Stable Approximation Schemes
	 Graph Modification Problems with Forbidden Minors
	 Contents

	Algorithms and Optimization
	Efficient Reductions and Algorithms for Subset Product
	1 Introduction
	1.1 Our Contributions
	1.2 Prior Works and Limitation of the Obvious Attempts

	2 Preliminaries
	3 Time-Efficient Algorithm for 
	3.1 Proof of Theorem 1

	4 An Efficient Reduction from  to 
	4.1 Polynomial Time Algorithm for Computing Pseudo-Prime-Factors

	5 Conclusion
	References

	Optimal Length Cutting Plane Refutations of Integer Programs
	1 Introduction
	2 Statement of Problems
	3 Motivation and Related Work
	4 Optimal Length Read-Once Refutations
	5 Optimal Length Tree-Like and Dag-Like Refutations
	6 Conclusion
	References

	Fault-Tolerant Dispersion of Mobile Robots
	1 Introduction
	1.1 Our Results

	2 Related Work
	3 Model
	4 Crash-Fault Dispersion for Rooted Configuration
	4.1 Algorithm

	5 Crash-Fault Dispersion for Arbitrary Configurations
	6 Conclusion and Future Work
	References

	Resource Management in Device-to-Device Communications
	1 Introduction
	2 System Model
	3 Related Work
	4 Branch-n-Cut
	4.1 Cover Cuts

	5 Approximation Algorithm
	5.1 Algorithm
	5.2 Structure
	5.3 Proof of Theorem 1
	5.4 Density Ordered Greedy for KS

	6 Experiments and Results
	6.1 Instance Generation
	6.2 Methodology
	6.3 Results

	7 Conclusion and Future Work
	References

	Computational Geometry
	Algorithms for k-Dispersion for Points in Convex Position in the Plane
	1 Introduction
	1.1 Literature Survey

	2 Preliminaries
	3 An Exact Fixed-Parameter Algorithm
	3.1 Decision Algorithm
	3.2 The Optimization Scheme

	4 An Exact Polynomial Time Algorithm
	5 Concluding Remarks
	References

	Arbitrary-Oriented Color Spanning Region for Line Segments
	1 Introduction
	2 Preliminaries and Notations
	2.1 A Single Color Spanning Strip of Arbitrary Orientation
	2.2 Two Congruent Strips of Arbitrary Orientation
	2.3 Two Congruent Strips of Arbitrary Orientation Whose Union is Color Spanning
	2.4 Color Spanning Rectangle (CSR) of Arbitrary Orientation

	References

	Game Theory
	Rectilinear Voronoi Games with a Simple Rectilinear Obstacle in Plane
	1 Introduction
	2 Preliminaries
	3 Bounds for Rectilinear Voronoi Games with Polygonal Obstacles
	3.1 Unrestricted
	3.2 Simple Polygon Obstacle
	3.3 Convex Polygon Obstacle
	3.4 Orthogonal Simple Polygon Obstacle
	3.5 Orthogonal Convex Polygon Obstacle

	4 Bounds for Linf Metric in Plane
	References

	Diverse Fair Allocations: Complexity and Algorithms
	1 Introduction
	2 Preliminaries
	3 Bounds on the Number of Disjoint and Distinct Allocations
	4 Computing Disjoint and Distinct Allocations
	5 Symmetric Allocations
	6 Conclusion and Future Directions
	7  Appendix
	References

	Graph Coloring
	New Bounds and Constructions for Neighbor-Locating Colorings of Graphs
	1 Introduction
	2 Gaps Among (G), L(G) and NL(G)
	3 Bounds and Constructions for Sparse Graphs
	3.1 Bounds
	3.2 Tightness

	References

	5-List Coloring Toroidal 6-Regular Triangulations in Linear Time
	1 Introduction
	1.1 Motivation
	1.2 Our Work
	1.3 Related Work

	2 Proof of Theorem 1
	2.1 Reductions for the Proof of Case (1)
	2.2 Proof of Case (1)
	2.3 Proofs of Cases (2) to (4)
	2.4 Proof of Non-3-Choosability of the Graphs in Cases (1) to (4)

	References

	On Locally Identifying Coloring of Graphs
	1 Introduction
	2 Preliminaries
	3 Graphs with lid(G) = |V(G)|
	4 Block Graphs
	5 Biconvex Bipartite Graphs
	6 Cartesian Product
	6.1 Cartesian Product of a Cycle and a Path
	6.2 Cartesian Product of Two Cycles

	7 Lexicographic Product
	8 Conclusion
	References

	On Structural Parameterizations of Star Coloring*-4pt
	1 Introduction
	2 Preliminaries
	3 Neighborhood Diversity
	4 Twin Cover
	5 Clique-Width
	6 Conclusion
	References

	Perfectness of G-generalized Join of Graphs
	1 Introduction
	2 When a G-generalized Join of Complete and Totally Disconnected Graphs is Perfect
	3 Perfect Zero-Divisor Graph of a Ring
	3.1 Perfect Ideal Based Zero-Divisor Graph of Rings
	3.2 Zero-Divisor Graph of Rings, Reduced Semigroups and Posets

	References

	On Coupon Coloring of Cayley Graphs
	1 Introduction
	2 Preliminaries
	3 Coupon Coloring Number of CAY(R)
	4 Coupon Coloring Number of Rn
	References

	Coloring of a Superclass of 2K2-free graphs
	1 Introduction
	2 Preliminaries
	3 {butterfly,hammer}-free graphs
	3.1 {butterfly, hammer, P4+Kp}-free graphs
	3.2 {butterfly, hammer, C4+Kp}-free graphs
	3.3 {butterfly,hammer,(K1K2)+Kp}-free graphs
	3.4 {butterfly,hammer,2K1+Kp}-free graphs

	4 Conclusion
	References

	The Weak (2,2)-Labelling Problem for Graphs with Forbidden Induced Structures
	1 Introduction
	2 Preliminaries
	3 Graphs with No Induced Pair of Independent Edges
	4 From 2K2-free Graphs to K1,3-free Graphs, and Beyond
	References

	Graph Connectivity
	Short Cycles Dictate Dichotomy Status of the Steiner Tree Problem on Bisplit Graphs
	1 Introduction
	2 STREE in Bisplit Graphs
	2.1 Chordal Bisplit Graphs
	2.2 Chordal Bipartite Bisplit Graphs

	3 Complexity of STREE on Bisplit Graphs with Diameter as the Parameter
	4 Parameterized Complexity Results
	4.1 Parameterized Intractability
	4.2 FPT Algorithm for Bisplit Graph

	5 Structural Results on Bisplit Graphs
	References

	Some Insights on Dynamic Maintenance of Gomory-Hu Tree in Cactus Graphs and General Graphs
	1 Introduction
	1.1 Related Work and Motivation

	2 Preliminary
	3 Gomory-Hu Trees of Blocks of a Graph
	4 Gomory-Hu Tree of a Cactus Graph
	4.1 Dynamically Maintaining a Gomory-Hu Tree
	4.2 Incremental Algorithm for Gomory-Hu Tree
	4.3 Decremental Algorithm for Gomory-Hu Tree

	5 Gomory-Hu Tree Sensitivity Data Structure
	6 Conclusion and Future Works
	References

	Monitoring Edge-Geodetic Sets in Graphs
	1 Introduction
	2 Preliminary Lemmas
	3 Basic Graph Classes and Bounds
	3.1 Trees
	3.2 Cycle Graphs
	3.3 Unicyclic Graphs
	3.4 Complete Graphs
	3.5 Complete Multipartite Graphs
	3.6 Hypercubes
	3.7 Grid Graphs

	4 Relation to Feedback Edge Set Number
	5 Conclusion
	References

	Cyclability, Connectivity and Circumference
	1 Introduction
	2 Preliminaries
	3 Proofs of the Results
	4 Concluding Remarks
	References

	Graph Domination
	On Three Domination-Based Identification Problems in Block Graphs
	1 Introduction
	2 Upper Bounds
	2.1 Identifying Codes
	2.2 Locating-Dominating Codes
	2.3 Open Locating-Dominating Codes

	3 Lower Bounds
	4 Conclusion
	References

	Computational Aspects of Double Dominating Sequences in Graphs
	1 Introduction
	2 Preliminaries
	3 NP-Completeness
	3.1 Bipartite Graphs
	3.2 Co-bipartite Graphs

	4 Algorithm for Chain Graphs
	5 Conclusion
	References

	Relation Between Broadcast Domination and Multipacking Numbers on Chordal Graphs
	1 Introduction
	2 An Inequality Linking Broadcast Domination and Multipacking Numbers of Chordal Graphs
	3 Unboundedness of the Gap Between Broadcast Domination and Multipacking Numbers of Chordal Graphs
	3.1 Proof of Theorem 4

	4 Conclusion
	References

	Cops and Robber on Oriented Graphs with Respect to Push Operation
	1 Introduction
	2 Preliminaries
	2.1 Preliminary Results

	3 Cop-Win Classes Under Strong Push
	3.1 Complete Multipartite Graphs
	3.2 Subcubic Graphs
	3.3 Interval Graphs

	4 Conclusion
	References

	Mind the Gap: Edge Facility Location Problems in Theory and Practice
	1 Introduction
	1.1 Contribution
	1.2 Related Work

	2 Edge Center Selection Problems
	3 Hardness and Tractability Results
	4 Approximation Algorithms
	4.1 Parametric Pruning
	4.2 Greedy Selection

	5 Practical Computation
	6 Experiments
	6.1 Results for Small Edge Budgets
	6.2 Results for Large Edge Budgets

	7 Conclusions and Future Work
	References

	Complexity Results on Cosecure Domination in Graphs
	1 Introduction
	2 Preliminaries
	2.1 Definitions and Notations
	2.2 Preliminary Results

	3 NP-completeness Result for Split Graphs
	4 Algorithm for Cographs
	5 Approximation Results
	5.1 Upper Bound on Approximation Ratio
	5.2 Lower Bound on Approximation Ratio
	5.3 APX-hardness

	6 Conclusion
	References

	Graph Matching
	Latin Hexahedra and Related Combinatorial Structures
	1 Intoroduction
	2 Latin Hexahedra
	3 Latin Three-Axis Design and Latin Four-Axis Design
	3.1 1-Factorizations
	3.2 Construction of a Latin Regular Hexahedron Using Latin Three-Axis Designs

	References

	Algorithms and Complexity of Strongly Stable Non-crossing Matchings
	1 Introduction
	2 Preliminaries
	3 Strongly Stable Non-crossing Matchings
	4 Semi-strongly Stable Non-crossing Matchings
	4.1 (2,n)-SMI
	4.2 (1,n)-SMI

	5 Conclusion
	A Illustration of Construction of Instance in the Proof of Theorem 2
	References

	Minimum Maximal Acyclic Matching in Proper Interval Graphs
	1 Introduction
	2 Algorithm for Proper Interval Graphs
	3 Conclusion
	References

	Graph Partition and Graph Covering
	Transitivity on Subclasses of Chordal Graphs
	1 Introduction
	2 Notation and Definition
	3 Transitivity in Split Graphs
	4 Transitivity in the Complement of Bipartite Chain Graphs
	5 Nordhaus-Gaddum Type Bounds for Transitivity
	6 Transitively Critical Graphs
	7 Conclusion
	References

	Maximum Subgraph Problem for 3-Regular Knödel graphs and its Wirelength
	1 Introduction
	2 Preliminaries
	3 The Knödel graphs
	4 Results
	4.1 Maximum Subgraph Problem
	4.2 Minimum Linear Arrangement
	4.3 Wirelength of Embedding W3,2n, n4 into 1-rooted Complete Binary Tree T1n

	5 Implementation
	6 Concluding Remarks
	References

	Graph Covering Using Bounded Size Subgraphs
	1 Introduction
	2 Related Work
	3 Results
	3.1 Constant Factor Approximation Algorithm for BCFC
	3.2 Constant Factor Approximation Algorithm for BSWC

	4 Conclusion and Future Work
	References

	Axiomatic Characterization of the Toll Walk Function of Some Graph Classes
	1 Introduction
	2 Preliminaries
	2.1 Transit Functions and Axioms
	2.2 Toll Walks
	2.3 Characterizations by Forbidden Induced Subgraphs

	3 Axioms on the Toll Walk Function
	4 A Characterization of the Toll Walk Function of Subclasses of AT-Free Graphs
	5 A New Characterization of Interval Graphs with a Help of the Toll Walk Function
	References

	Structural Parameterization of Alliance Problems
	1 Introduction
	1.1 Previous Work
	1.2 Our Results

	2 FPT Algorithms
	2.1 Alliances Parameterized by Distance to Clique
	2.2 Alliances Parameterized by Twin Cover and the Number of Cliques Outside the Twin Cover
	2.3 Alliances Parameterized by Twin Cover and the Size of the Largest Clique Outside the Twin Cover

	3 Conclusion
	References

	Author Index

