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Abstract. Multi-behavior recommendation models exploit diverse
behaviors of users (e.g., page view, add-to-cart, and purchase) and suc-
cessfully alleviate the data sparsity and cold-start problems faced by clas-
sical recommendation methods. In real-world scenarios, the interactive
behaviors between users and items are often complex and highly depen-
dent. Existing multi-behavior recommendation models do not fully utilize
multi-behavior information in the following two aspects: (1) The diversity
of user behavior resulting from the individualization of users’ intents. (2)
The loss of user multi-behavior information due to inappropriate infor-
mation fusion. To fill this gap, we hereby propose a multi-behavior graph
contrast network (MORO). Firstly, MORO constructs multiple behav-
ior representations of users from different behavior graphs and aggregate
these representations based on behavior intents of each user. Secondly,
MORO develops a contrast enhancement module to capture information
of high-order heterogeneous paths and reduce information loss. Extensive
experiments on three real-world datasets show that MORO outperforms
state-of-the-art baselines. Furthermore, the preference analysis implies
that MORO can accurately model user multi-behavior preferences.

Keywords: Multi-behavior recommendation · Graph neural network ·
Multi-task learning · Representation learning

1 Introduction

Recommender systems are widely used in online retail platforms and review sites
as techniques to alleviate information overload. How to exploit user behavior
data to learn effective user/item representations is the key problem of effective
recommendations [5,7,20]. Practically, users will perform different behaviors to
items under different intents. As shown in Fig. 1, there are three behaviors (i.e.,
“page view”, “add-to-cart”, and “purchase”) between users and items, which
indicate three kinds of user intents. However, the classical methods [2,5,12,13,20]
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Fig. 1. A toy example of users’ multi-behavior data. Best viewed in color. (Color figure
online)

consider only single behavior (e.g., purchase) instead of the diversity of multiple
behaviors, making it difficult to provide a good list of recommendations to users
who have no purchase behavior (e.g., user C in Fig. 1).

To utilize the diversity of user behaviors, several efforts on multi-behavior rec-
ommender systems have been made. These works can be roughly classified into
two categories. Deep collaborate filtering-based methods [3,4,17] use neural net-
work techniques to enhance model representation learning. For instance, MATN
[17] employs a transformer module to uniformly capture the dependencies among
user behaviors. However, these methods ignore high-order information between
users and items [1,16]. Then, graph neural network-based methods [1,6,19,21–23]
are proposed recently, which model user multi-behavior in two different ways:
(1) constructing a unified graph of multi-behavior data and learning user rep-
resentations on the unified graph [1,6]; (2) constructing subgraph for each user
behavior type, learning the representations on different subgraphs, and finally
aggregating them [16,19]. However, these methods are still insufficient in their
use of multi-behavioral data in two main ways.

• The lack of modeling diverse user behavior intents. As shown in Fig. 1,
there are various user multi-behavior patterns. Specifically, user A likes to
“purchase” items directly after “page view”, while user B will “add-to-cart”
and then “purchase” items. Uniform modeling the user behaviors as MATN
[17] and GNMR [16] will lose this customized feature which is important
for modeling user preference. Therefore, modeling users’ personalized multi-
behavior patterns is one of the goals in this paper.

• The loss of fusion multi-behavior information. Due to the influence
of other behaviors, modeling on a unified graph cannot fully explore users’
preferences of a specific behavior [6]. Moreover, modeling on different behav-
ior subgraphs is difficult to capture the information of high-order heteroge-
neous paths between users and items (e.g., user→page view→item→purchase
→user) [19]. Thus, another goal of this paper is to reduce the information loss
in multi-behavior information fusion.

To address these limitations, we propose multi-behavior graph contrast net-
works (MORO) to model complex user behaviors effectively. First, MORO uses
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graph convolution networks to construct user/item representations under dif-
ferent behavior graphs. Then, we mine the user’s personalized multi-behavior
patterns with a behavior perceptron module, which is our proposed novel
idea enabling MORO to leverage personalized information about user behav-
ior intents. In addition, we propose a contrast enhancement module to reduce
the information loss of the multi-behavior information aggregation.

The main contributions of this work are summarized as follows:

• We emphasize the importance of modeling user personalized multi-behavior
patterns and the loss of fusion multi-behavior information.

• We propose a novel recommendation model, MORO, which exploits users’
personalized behavior patterns and tries to reduce the information loss in the
aggregation process of different behavior representations.

• We conduct extensive experiments on three real-world datasets whose results
demonstrate that our model outperforms baselines. Further studies on user
preferences validate the interpretability of our model.

2 Related Work

In this section, we review works on multi-behavior recommendation. We roughly
divide these works into two categories: deep collaborate filtering-based methods
and graph neural network-based methods.

Deep collaborate filtering-based methods leveraged neural networks to learn
effective representations of users and items from the interaction data. For exam-
ple, NCF [5] employed a multilayer perceptron to replace the inner product
to calculate the user’s acceptance probability of the item. DMF [20] projected
representations into the same semantic space, which reduced the noise of inner
product computation. Moreover, AutoRec [12] and CDAE [15] introduced auto-
encoders into recommendation systems by minimizing the representation recon-
struction loss. Recently, NMTR [3] proposed a multi-task framework for per-
forming the cascade prediction of different behaviors. DIPN [4] leveraged atten-
tion mechanism to model user representations from user multi-behaviors and
predict the purchase intent of users. MATN [17] introduced transformer to the
multi-behavior recommendation. However, these methods are difficult to capture
higher-order neighbor information which makes improvement limited.

Graph neural network-based methods employed graph neural network (GNN)
[14,18,21] to aggregate the high-order neighbor information by message propaga-
tion mechanism. Wang et al. [13] proposed NGCF to aggregate neighbor informa-
tion from the user-item bipartite graph. GNMR [16] leveraged GNN to learn rep-
resentations from multi-behavior interactions between users and items. MBGCN
[6] learned user preferences through multi-behavior interaction and learned item
representations by item-relevance aware propagation. Moreover, MGNN [23] con-
structed a multiplex graph and proposed a multiplex graph neural network for
multi-behavior recommendation. Recently, GHCF [1] employed efficient multi-
task learning without sampling in multi-behavior recommendation. MB-GMN
[19] combined meta-learning with GNN to learn the meta-knowledge of user
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Fig. 2. Illustration of the proposed MORO. Best viewed in color. (Color figure online)

behaviors and improved accuracy of recommendation results. However, due to
the differences in building methods, these methods will have some information
loss in multi-behavior information fusion.

Different from these methods, we propose MORO to exploit user personalized
behavior patterns from multi-behavior data. Moreover, we design a contrastive
enhancement module to reduce the information loss on representation aggrega-
tion from different behaviors.

3 Preliminary

In multi-behavior recommendation, we need to define a behavior (e.g., purchase)
as target behavior which we aim to predict. Other relevant behaviors (e.g., page
view, add-to-cart, and add-to-favorite) will be defined as source behaviors. We
begin with introducing key notations and considering a multi-behavior recom-
mendation scenario with users and items:

Definition 1. Behavior Graph. A behavior graph Gk = (Uk,Vk, Ek) represents
the behavior k from |Uk| users over |Vk| items. Specifically, each eu,v,k ∈ Ek

denotes an observed behavior k between user u ∈ Uk and item v ∈ Vk.

Definition 2. Multi-behavior Graph. A multi-behavior graph G = (U ,V, E)
represents all kinds of behaviors E =

⋃K
k=1 Ek from users U =

⋃K
k=1 Uk over

items V =
⋃K

k=1 Vk. Particularly, K denotes the number of behavior categories.
In the multi-behavior recommendation scenario, K is fixed.

Task Formulation. Given a multi-behavior graph G = (U ,V, E) and a target
behavior k, the task of multi-behavior recommendation is to learn a predictive
model F which outputs the probability ŷ

(k)
uv that user u ∈ U performs target

behavior k to item v ∈ V.
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4 Methodology

We now present our proposed MORO, which exploits multi-behavior data to learn
users’ preferences. Figure 2 illustrates the framework of MORO, which consists of
four key components: (1) behavior propagation module, which models the repre-
sentations of users and items in different behavior graphs (Sect. 4.1); (2) behavior
perception module, which exploits user personalized multi-behavior preferences
and aggregates representations from different behavior graphs (Sect. 4.2); (3) con-
trast enhancement module, which maximizes consistency between multi-behavior
aggregated representations and global behavior representations to reduce infor-
mation loss (Sect. 4.3); (4) multi-task learning module, which makes full use of the
information of multi-behavior data (Sect. 4.4).

4.1 Behavior Propagation

In the E-commerce scenario, different behaviors between users and items contain
different user intents. For example, “purchase” performs more obvious user pref-
erence than “page view”. However, the “purchase” behavior is often sparse in
practical application scenarios. To take full advantage of multi-behavior, MORO
constructs the representations of users and items from different behavior graphs.

As shown in Fig. 2, MORO splits the multi-behavior graph G into several
behavior graphs Gk ⊂ G according to the behavior types. For each behavior
graph Gk, MORO performs a behavior propagation to engage the neighborhood
information and obtain user/item representations:

hl
u,k =

∑

v∈Nk(u)

β(k)
u,vh

l−1
v,k � hk (1)

hl
v,k =

∑

u∈Nk(v)

β(k)
v,uh

l−1
u,k � hk (2)

where hl
u,k ∈ R

d and hl
v,k ∈ R

d denote the representations of user u and item
v collecting the information from l-hops in behavior graph Gk, respectively; hk

denotes the ID embedding of behavior k; and � is the Hadamard product. Partic-
ularly, h0

u,k and h0
v,k denote the ID embeddings of user u and item v, respectively.

Inspired by UltraGCN [8], we calculate propagation weight β
(k)
v,u of user u to

item v in the behavior graph Gk in the following way:

β(k)
u,v =

1
f(u,Gk)

√
f(u,Gk) + 1
f(v,Gk) + 1

(3)

where f(u,Gk) denotes the degrees of user u in behavior graph Gk; f(v,Gk)
denotes the degrees of item v in Gk.

After L-layer propagations, we obtain the user/item representations at dif-
ferent layers. The user/item representations about behavior k are obtained:

hu,k =
1

L + 1

L∑

l=0

hl
u,k, hv,k =

1
L + 1

L∑

l=0

hl
v,k (4)



122 W. Jiang et al.

4.2 Behavior Perception

In the multi-behavior recommendation, user behaviors tend to show personal-
ized. Taking the E-commerce scenario as an example, some users “purchase”
the products after “page view”, while others will “purchase” the products they
prefer after they have “page view” and “add-to-cart”. Therefore, it is necessary
to model users’ multi-behavior preferences individually.

In order to fuse the different behavior information, we define behavior per-
ception weight for a particular behavior k for user u denoted as α̂u,k:

αu,k = W1σ1(W2hu,k + b2) + b1 (5)

α̂u,k =
exp(αu,k)

∑K
k′=1 exp(αu,k′)

(6)

where W1 ∈ R
1×d′

and W2 ∈ R
d′×d denote two project matrices; b1 ∈ R and

b2 ∈ R
d′

are bias terms; and the activate function σ1(·) is LeakyReLU. d′ and d
denote the embedding dimensions (d′ < d). Symmetrically, the behavior-aware
weight of a specific item v can also be calculated by Eqs. (5–6).

MORO aggregates the representations from multiple behavior graphs, and
obtains the multi-behavior aggregated representations about user u and item v:

hu =
K∑

k=1

α̂u,khu,k, hv =
K∑

k=1

α̂v,khv,k (7)

Therefore, MORO is able to aggregate the information of different behavior graph
and generate multi-behavior aggregated representations of users and items. The
perception weights also explain the multi-behavior preferences of users.

4.3 Contrast Enhancement

Since the multi-behavior aggregated representations (e.g., hu and hv) are aggre-
gated from different behavior graphs, there will be information loss about high-
order heterogeneous path. As shown in Fig. 2, we design a contrast enhancement
module to reduce the information loss of high-order heterogeneous path (e.g.,
user→purchase→item→page view →user). Here, we use R-GCN [11] to encode
global behavior representations from multi-behavior graph:

ĥl
u = σ(

K∑

k=1

∑

v∈Nk(u)

1
|Nk(u)|W

l−1
k ĥl−1

v + Wl−1
0 ĥl−1

u ) (8)

ĥl
v = σ(

K∑

k=1

∑

u∈Nk(v)

1
|Nk(v)|W

l−1
k ĥl−1

u + Wl−1
0 ĥl−1

v ) (9)

where Wl−1
k ∈ R

d×d denotes the transition matrix for (l − 1)-hop neighbors in
the semantic space of behavior k; Wl−1

0 ∈ R
d×d is the transition matrix for self-

loop in all behaviors; and the activate function σ(·) is LeakyReLU. Particularly,
ĥ0
u and ĥ0

v denote the ID embeddings of user u and item v, respectively.
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Thus, the multi-behavior aggregated representation hu and the global behav-
ior representation ĥu to form two representations for user u from different
perspectives. With these representations, we can efficiently model the relation
between hu and ĥu. Based on InfoNCE [9], we design the graph-contrastive
learning objective to maximize the consistency between hu and ĥu as follows:

Luser =
∑

i∈U
−log

exp(s(hi, ĥi)/τ)
∑

j∈U exp(s(hi, ĥj)/τ)
(10)

where τ is the temperature hyperparameter of softmax; and s(·) denotes the
cosine similarity function. Similarly, the graph-contrastive loss of the item side
Litem can be obtained. And the complete graph-contrastive loss is the weighted
sum of the above two losses:

Lc = Luser + γLitem (11)

where γ is a hyperparameter to balance the weight of the two terms in graph-
contrastive loss.

4.4 Multi-task Learning

In the multi-behavior recommendation scenario, the target behavior presents
more obvious sparsity and cold-start problems than the source behaviors. As
shown in Fig. 1, user C only performs “page view” and “add-to-cart” behaviors,
and no purchase records. Therefore, using only “purchase” behavior data as
target behavior to provide supervision signals is insufficient. We design a multi-
task learning module to make full use of multi-behavior data to learn accurate
user/item representations. Specifically, the probability of user u and item v hav-
ing behavior k is calculated as follows:

ŷ(k)
u,v = h�

u Wkhv (12)

where Wk ∈ R
d×d denotes the project matrix from global semantic space to the

semantic space of target behavior k. We optimize BRP loss [10] for each target
behavior and sum them up to obtain the final loss:

Lm =
∑

u∈U

K∑

k=1

∑

(s,s′)∈Su,k

−log(σ2(ŷ(k)
u,s − ŷ

(k)
u,s′)) (13)

where Su,k denotes the set of positive and negative item sample pair of user u
under behavior k. For each pair (s, s′) ∈ Su,k, s denotes the positive item sample,
s′ denotes the negative item sample. The activate function σ2(·) is softmax.

By combining Lc and Lm, the following objective function for training model
can be obtained:

L = Lm + λ1Lc + λ2||Θ||2 (14)

where λ1 and λ2 are the hyper-parameters to control the weights of contrastive
object and the regularization term, respectively, and Θ is the model parameters.
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Table 1. Statistics of datasets.

Dataset #User #Item #Interaction Interaction behavior type

Taobao 147,894 99,037 7,658,926 {Page View, Favorite, Cart, Purchase}
Beibei 21,716 7,977 3,338,068 {Page View, Cart, Purchase}
Yelp 19,800 22,734 1,400,036 {Tip, Dislike, Neutral, Like}

5 Experiments

In this section, we evaluate the proposed MORO on three real-world datasets.
The experiments are designed to answer the following research questions:

• RQ1: How does MORO perform compared with other baselines?
• RQ2: What is the impact of module designs on the improvement of MORO?
• RQ3: Can MORO successfully capture users’ personalized behavior patterns?

5.1 Experimental Setup

We first introduce the datasets, evaluation metrics, baseline methods, and
parameter settings involved in the experiments.

Data Description. To evaluate the effectiveness of MORO, we utilize three
real-world datasets: Taobao1, Beibei2, and Yelp3, which are publicly accessible
and vary in terms of domain, size, and sparsity. The statistical information of
them is shown in Table 1.

• Taobao Dataset. It is a benchmark dataset for the performance evaluation
of multi-behavior recommendations. There are four types of user behaviors
contained in this dataset, i.e., page view (pv), add-to-cart (cart), tag-as-
favorite (fav), and purchase (buy). We use “purchase (buy)” as the target
behavior to evaluate the effectiveness of MORO.

• Beibei Dataset. This benchmark dataset is collected from infant product
online retailing site Beibei. It involves three types of user behaviors, includ-
ing page view (pv), add-to-cart (cart), and purchase (buy). We use “purchase
(buy)” as the target behavior to evaluate the effectiveness of MORO.

• Yelp Dataset. This dataset is collected from the public data repository from
Yelp platform. We differentiate user’s behaviors over items in terms of the
rating scores r, i.e., negative behavior (r � 2), neutral behavior (2 < r < 4),
and positive behavior (r � 4). Besides the users’ rating behaviors, this data
also contains the tip behavior if a user gives a tip on his/her visited venues.
We use “positive behavior” as the target behavior.

1 https://tianchi.aliyun.com/dataset/dataDetail?dataId=649.
2 https://www.beibei.com/.
3 https://www.yelp.com/dataset/download.

https://tianchi.aliyun.com/dataset/dataDetail?dataId=649
https://www.beibei.com/
https://www.yelp.com/dataset/download


MORO: Multi-behavior Graph Contrast Network for Recommendation 125

Evaluation Metrics. We adopt two widely-used evaluation metrics: Hit Ratio
(Hit@N) and Normalized Discounted Cumulative Gain (NDCG@N) [16,17]. The
higher Hit@N and NDCG@N , the better the model performance. Following the
same experimental settings in [16,19], the leave-one-out evaluation is leveraged
for training and test set partition. For efficient and fair model evaluation, we
pair each positive item instance with 99 randomly sampled no-interactive items
for each user, which shares the same settings in [16,19].

Baselines. In order to comprehensively verify the performance of MORO, we
consider following baselines:

• BiasFM [7] is a classical matrix factorization model that considers the biased
information from users and items.

• DMF [20] introduces a neural network to matrix factorization and leverages
explicit interactions and implicit feedback to refine the representations.

• NCF [5] is a collaborative filtering-based method that replaces inner product
computation with multilayer perceptrons.

• AutoRec [12] stacks multilayer auto-encoder to transfer user-item interac-
tion into a low-dimensional space and fetch user/item representations.

• NGCF [13] uses message passing architecture to aggregate information over
the user-item interaction and exploits high-order relationships.

• NMTR [3] proposes a multi-task framework for performing the cascade pre-
diction of different types of behaviors.

• DIPN [4] is a classical multi-behavior recommendation method that leverages
an attention mechanism to predict users’ purchase intent.

• MATN [17] employs a transformer module to capture the relationships
among user behaviors and refine the representations learning.

• GNMR [16] leverages GNN to learn representations from multi-behavior
interactions between users and items.

• R-GCN [11] is a graph neural network-based method that leverages relation
type information for knowledge graph completion.

• GHCF [1] is a stat-of-the-art method that proposes efficient multi-task learn-
ing without sampling for parameter optimization.

• MBGCN [6] is one of the state-of-the-art methods which uses a graph con-
volution network to perform behavior-aware embedding propagation.

• MB-GMN [19] is another state-of-the-art method that combines GNN with
meta-learning to learn the meta-knowledge of user behaviors.

Parameter Settings. We implement the proposed MORO using Pytorch and
release our implementation4 (including the codes, datasets, parameter settings,
and training logs) to facilitate reproducibility. MORO is optimized using Adam
Optimizer during the training phase. We set the dimension of MORO d as 64
and the number of propagation layer L as 2. The batch size and the learning
rate in MORO is set as 256 and 10−2. In addition, we turn the hyper-parameters
λ1 and λ2 in [10−8, 10−4], τ in [0.1, 1] with grid search.
4 https://github.com/1310374310/MORO.

https://github.com/1310374310/MORO
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Table 2. Overall performance comparison.

Dataset Taobao Beibei Yelp

Model Hit@10 NDCG@10 Hit@10 NDCG@10 Hit@10 NDCG@10

BiasMF [7] 0.262 0.153 0.588 0.331 0.775 0.481

DMF [20] 0.305 0.189 0.597 0.336 0.756 0.485

NCF [5] 0.319 0.191 0.595 0.332 0.714 0.429

AutoRec [12] 0.313 0.190 0.607 0.341 0.765 0.472

NGCF [13] 0.302 0.185 0.611 0.375 0.789 0.501

NMTR [3] 0.332 0.179 0.613 0.349 0.790 0.478

DIPN [4] 0.317 0.178 0.631 0.394 0.811 0.540

MATN [17] 0.463 0.271 0.626 0.385 0.822 0.523

GNMR [16] 0.424 0.249 0.604 0.367 0.848 0.559

R-GCN [11] 0.338 0.191 0.605 0.344 0.826 0.520

MBGCN [6] 0.369 0.222 0.642 0.376 0.779 0.465

GHCF [1] 0.377 0.218 0.693 0.411 0.791 0.485

MB-GMN [19] 0.491 0.301 0.691 0.410 0.852 0.567

MORO 0.619 0.403 0.754 0.455 0.877 0.583

5.2 Overall Performance (RQ1)

The performance comparison results are presented in Table 2. From the results,
We have the following observations.

Compared to state-of-the-art baseline methods, MORO achieves the best
performance on all datasets. Specifically, MORO achieves relatively 26%, 9%,
and 3% improvements in terms of Hit@10, and 33%, 10%, and 3% improve-
ments in terms of NDCG@10 on Taobao, Beibei, and Yelp datasets, respec-
tively. It reflects the effectiveness of MORO on multi-behavior recommendation
tasks. The improvements can be attributed to three reasons: (1) the advantages
of behavior propagation and perception modules which effectively exploit user
multi-behavior preferences; (2) the contrastive enhancement, which maximizes
the consistencies of representations and reduces the information loss of multi-
behavior aggregated representations; (3) multi-task learning, which fully utilizes
the signals of multi-behavior data to refine representations.

Further analysis reveals that the methods in which injection multi-behavior
information could boost the performance (e.g., MATN, GNMR, GHCF, MBGCN,
and MB-GMN). It illustrates the importance of considering multiple behaviors.
Moreover, better performance is achieved due to the GNN-based methods to
encode the neighbor information in the graph. Furthermore, the GNN-based meth-
ods considering the heterogeneity of edges (e.g., MBGCN) perform better than the
GNN-based algorithms on homogeneous graphs (e.g., NGCF).

In addition, we also work with different N to validate the effectiveness of
top-N recommendations. The experimental results on the Beibei dataset are
given in Table 3. We can observe that MORO achieves the best performance
under different values of N . It indicates the consistent superiority of MORO as
compared to other baselines in assigning higher scores to the user’s interested
item in the top-N list. We attribute this to the fact that MORO exploits the
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Table 3. Comparison results on Beibei dataset with varying N value in terms of Hit@N
and NDCG@N .

Model N = 1 N = 3 N = 5 N = 7

Hit NDCG Hit NDCG Hit NDCG Hit NDCG

BiaMF [7] 0.118 0.118 0.310 0.228 0.453 0.287 0.537 0.316

NCF [5] 0.123 0.123 0.317 0.232 0.447 0.283 0.530 0.315

AutoRec [12] 0.128 0.128 0.321 0.236 0.456 0.291 0.540 0.322

MATN [17] 0.184 0.184 0.361 0.286 0.467 0.330 0.543 0.356

GNMR [16] 0.168 0.168 0.336 0.265 0.436 0.307 0.504 0.328

R-GCN [11] 0.134 0.134 0.323 0.242 0.453 0.295 0.535 0.323

MBGCN [6] 0.167 0.167 0.374 0.284 0.498 0.337 0.541 0.322

GHCF [1] 0.179 0.179 0.390 0.300 0.525 0.356 0.611 0.385

MB-GMN [19] 0.183 0.183 0.411 0.306 0.527 0.359 0.608 0.389

MORO 0.201 0.201 0.451 0.344 0.591 0.402 0.676 0.431

information of multi-behavior and achieves less information loss in representation
aggregation by contrast enhancement.

5.3 Study of MORO (RQ2)

Impact of Module. To evaluate the rationality of designed modules in MORO,
we consider four model variants as follows:

• MORO-GCN: To verify the effectiveness of the behavior propagation mod-
ule, we replace the behavior propagation module with GCN, i.e., the β of Eq.
(1) is replaced by 1/

√|Nu||Nv|.
• MORO-Rel: We replace the behavior perception module with MLP, and

aggregate the information from concatenated representations, i.e., hu =
MLP (hu,1|| · · · ||hu,K), where || denotes the concatenation operation.

• MORO-Con: We remove the contrast enhancement loss Lc from L to eval-
uate the effect of the contrast enhancement module.

• MORO-Task: We only sample positive and negative examples under the
target behavior (e.g., “purchase”) and use them to train the model.

The ablation study results are shown in Table 4. From the evaluation results,
we have the following observations.

• MORO outperforms all variants on all datasets. It shows the validation of
each module in MORO. Specifically, in the e-commerce scenario (i.e., Taobao
and Beibei), the improvement of recommendation accuracy by each module
is more pronounced. It demonstrates the application value of our proposed
model in complex scenarios such as e-commerce.

• The performance gap between MORO and MORO-Rel indicates the advan-
tage of the behavior perception module, which exploits user multi-behavior
preferences and aggregates multiple graph representations. It also shows that
capturing personalized user multi-behavior preferences is more important
than modeling them uniformly.
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Table 4. Ablation study on key components of MORO.

Dataset Taobao Beibei Yelp

Model Hit@10 NDCG@10 Hit@10 NDCG@10 Hit@10 NDCG@10

MORO-GCN 0.584 0.370 0.694 0.427 0.869 0.580

MORO-Rel 0.577 0.364 0.702 0.418 0.871 0.574

MORO-Con 0.605 0.392 0.746 0.446 0.872 0.579

MORO-Task 0.578 0.368 0.603 0.351 0.843 0.550

MORO 0.619 0.403 0.754 0.455 0.878 0.584

(a) Hit@10 w.r.t. γ (b) Hit@10 w.r.t. d (c) Hit@10 w.r.t. L

(d) NDCG@10 w.r.t. γ (e) NDCG@10 w.r.t. d (f) NDCG@10 w.r.t. L

Fig. 3. Hyperparameter study of MORO

• Moreover, the contrast enhancement module improves the performance of
MORO. We attribute this to the ability of the contrast enhancement module
to reduce the information loss in multi-behavior aggregated representations,
making the representations more effective.

• The evaluation results illustrate the limitations of single-task learning in
multi-behavior recommendation tasks (MORO-task). We believe that it is
caused by data sparsity for a single target behavior. That multi-task learning
can help alleviate this problem.

Hyperparameter Study. To analyze the effect of different parameter settings,
we perform experiments to evaluate the performance of MORO with different
hyperparameter configurations (i.e., coefficient γ, embedding size d, and number
of propagation layers L). The results are shown in Fig. 3.
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(a) Taobao (b) Beibei (c) Yelp

Fig. 4. Weights of user’s behaviors

In Eq. (11), the coefficient γ can balance the two terms of Lc for optimization.
To analyze the influence of coefficient γ, we turn γ in [0, 0.6]. The model’s perfor-
mance improves slightly as gamma increases, and the model overall achieves the
best performance when γ = 0.5. With the further increase of γ, the performance
remains stable, which shows that MORO is robust to γ.

We turn the embedding size d from 8 to 80. With the increasing embedding
size d from 8 to 64, the performance improves due to a stronger representation
space. After d reaches 64, better performance is not always obtained as d con-
tinues to increase. The reason is that a larger representation dimension reduces
the ability of MORO to learn representations.

Finally, we analyze the number of propagation layers L. MORO achieves the
best performance on all three data sets when stacking two propagation modules
(e.g., L = 2). Increasing the number of propagation layers L brings the noise to
the representations, which affects the performance of MORO (e.g., L = 3).

5.4 Study of User Preferences (RQ3)

To analyze user preferences, we visualize user attention weights calculated by
Eqs. (5–6). As shown in Fig. 1, we can observe that for each user, MORO suc-
cessfully captures his/her personalized multi-behavior patterns. The darker the
color of the grid, the greater the contribution of that behavior to modeling user
preferences. Moreover, for different datasets, the contributions of user behav-
iors show different distributions. Specifically, the “page view (pv)” behavior of
users in the Taobao dataset contributes more to the preference modeling of users.
Users’ “add-to-cart (cart)” behavior in the Beibei dataset contributes more than
other behaviors.

To verify the accuracy of user multi-behavior preferences in Fig. 4, we conduct
data ablation experiments, removing specific source behavior data (e.g., -pv) or
only using the target behavior data (e.g., +buy) for MORO. Figure 5 shows
the results of data ablation experiment. We can find that after removing the
“page view” (-pv) behavior data, the model’s performance on the Taboao dataset
has dropped significantly. For the Beibei dataset, removing the “add-to-cart”
(-cart) behavior data impacts the performance of the recommendation. It shows
that MORO can accurately model users’ multi-behavior preferences and improve
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Fig. 5. Results of data ablation. Here, “-pv”, “-cart”, “-fav”, “-tip”, “-neg”, and
“-neu” represent MORO without incorporation of “page view”, “add-to-cart”, “add-
to-favorite”, “tip”,“negative”, and “neutral” behavior data, respectively. “+buy” and
“+pos” denote the variants which only relies on the target behavior data.

model performance with all behaviors. Further analysis shows that the more
behavior data eliminated, the worse the performance of MORO. For example, in
the Beibei and Taobao datasets, if only “purchase” behavior data is kept (+buy),
the model performance will decline because of the sparsity of the “purchase”
behavior data. It also indicates that the source behaviors are vital in multi-
behavior recommendation tasks.

6 Conclusion and Future Work

In this paper, we propose MORO for multi-behavior recommendation tasks.
Considering the different information of user behaviors, we use the behavior
propagation module and the behavior perception module to aggregate the rep-
resentations of different behavior graphs. Then we employ the contrast enhance-
ment module to enhance the multi-behavior aggregated representations. Exten-
sive experiments on three real-world datasets demonstrate the superiority of
MORO over other methods. In the future, we plan to capture the dynamic
multi-behavior preferences of users from their multi-behavior time series data.
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