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Abstract. Sequential recommendation has injected plenty of vitality
into online marketing and retail industry. Existing contrastive learning-
based models usually resolve data sparsity issue of sequential recom-
mendation with data augmentations. However, the semantic structure of
sequences is typically corrupted by data augmentations, resulting in low-
quality views. To tackle this issue, we propose Self-guided contrastive
learning enhanced BERT for sequential recommendation (Self-BERT).
We devise a self-guided mechanism to conduct contrastive learning under
the guidance of BERT encoder itself. We utilize two identically initial-
ized BERT encoders as view generators to pass bi-directional messages.
One of the BERT encoders is parameter-fixed, and we use the all Trans-
former layers’ output as a series of views. We employ these views to guide
the training of the other trainable BERT encoder. Moreover, we mod-
ify the contrastive learning objective function to accommodate one-to-
many positive views constraints. Experiments on four real-world datasets
demonstrate the effectiveness and robustness of Self-BERT.
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1 Introduction

Recommender systems, owing to their ability to give suggestions for users effec-
tively, can alleviate the information overload issue and help users derive valuable
insights from big data. Sequential Recommendation aims to model user behav-
iors dynamically by taking the sequential patterns of user interaction history
into consideration [9,11,16–18]. Given recent observations of users, sequential
recommendation models are built to capture sequential item relationships.

Due to the high practical value of sequential recommendation, various works
are proposed to resolve it. Early works [16] on sequential recommendation are
based on the Markov Chain (MC) assumption to model users’ pair-wise behavior
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transition. Due to the limitation of MC-based models, Recurrent Neural Net-
work (RNN) [3] is adopted in sequential recommendation to model sequence-wise
relationships. Recently, Transformer [19] adopts the self-attention mechanism to
encode sequences, which has proved significantly powerful in various fields [2,20,
21]. Thus, many researchers design Transformer-based models in sequential recom-
mendation [11,17]. For example, BERT4Rec [17] employs Bi-directional Encoder
Representations from Transformers (BERT) [4], stacked by multiple Transformer
encoder layers, to reveal the correlations of sequential items.

Although existing approaches have achieved great recommendation results,
the issue of data sparsity is still not well explored [13,22], leading to subopti-
mal performance. In detail, the data sparsity problem includes inadequate data
amount and short data length, causing insufficient model training. More recently,
a contrastive learning paradigm is introduced to alleviate the above issue [13,22].
In detail, this paradigm usually constructs both positive and negative views of
an original sequence through data augmentations. The goal is to push positive
views close to the original sample by optimizing the value of contrastive learning
loss, while negative views are the opposite. Such a paradigm can enhance the
discrimination ability of the encoders and improve the robustness of the model.

However, we consider that there are two points in existing contrastive learn-
ing models that could be improved. First, most contrastive learning sequential
recommendation models are modified based on unidirectional Transformers. In
fact, bi-directional Transformers perform better than unidirectional Transform-
ers, which means we can consider integrate bi-directional Transformers (such as
BERT) with contrastive learning to obtain better recommendation performance.
Second, the data augmentations adopted in the existing contrastive learning-
based models have two shortcomings, i.e., (1) finding and realizing the optimal
data augmentation method for different datasets is very time-consuming, (2)
the data augmentation process of generating views has a certain degree of ran-
domness, leading to the destruction of important original semantic information.
Therefore, instead of data augmentation-based solutions, a more efficient and
stable contrastive learning scheme is highly demanded.

To this end, we propose a new framework, Self-guided contrastive learning
enhanced BERT for sequential recommendation (Self-BERT) to cope with the
above issues. It consists of three essential parts: (1) a traditional BERT-based
sequential recommendation task; (2) a self-guided contrastive learning paradigm
to take advantage of all the information captured in BERT encoder; (3) a joint-
learning training framework to optimize two loss functions simultaneously in
contrastive learning and recommendation tasks. Specifically, Self-BERT uses two
BERT encoders. One BERT encoder is fixed after initialization and its outputs
of all hidden layers are regarded as positive views. The other is used to obtain
general sequence representations. In this way, multiple pair of positive views
are automatically generated. It is equivalent to using the information inside the
BERT encoder to guide its training, and we call it a self-guided mechanism. In
addition, we modify NT-Xent loss [1] by extending its one-to-one view constraints
into one-to-many view constraints, which allows our model to train multiple pairs
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of positive and negative views simultaneously. We conduct experiments on four
real-world datasets to verify the effectiveness and robustness of our Self-BERT.
To distinguish our work from other sequential recommendation solutions, main
contributions of this paper are listed as follows:

– To the best of our knowledge, this is the first work to apply self-guided con-
trastive learning-based BERT to sequential recommendation.

– We propose a novel data augmentation-free contrastive learning paradigm
to tackle the unstable and time-consuming challenges in contrastive learn-
ing. It exploits self-guided BERT encoders and extends one-to-many view
constraints to preserve the view-wise semantic correlations.

– We conduct extensive experiments on four real-world benchmark datasets.
Our experimental results improve competitive baselines with a large margin
under the challenges of data sparsity.

2 Related Work

2.1 Sequential Recommendation

Sequential recommendation predicts future items that users may be interested
in by capturing item correlations in history interaction sequences. Early pro-
posed models, such as FPMC [16], adopt the MC assumption to capture pair-
wise item correlations. Besides, FPMC incorporates Matrix Factorization (MF)
to simulate users’ personal preferences. With the advancement of neural net-
works in many other research domains [27,28], RNN [3] and its variants are
widely used in sequential recommendation. For example, Hidasi et al. [9] pro-
pose GRU4Rec, which exploits Gated Recurrent Unit (GRU) [5], and it aims
to dynamically model long-term users’ preferences from their historical inter-
action sequences. In addition, other deep neural networks, like Convolutional
Neural Network (CNN), also made remarkable achievements in sequential rec-
ommendation. Tang et al. design a CNN-based model named Caser [18], which
views history interaction sequences as “images” and captures local patterns via
convolutional filters. Yuan et al. [25] devise a generative model (NextItNet) by
stacking holed convolutional layers to increase the receptive fields of convolu-
tional filters. Recently, inspired by the application of self-attention network [19]
in Natural Language Processing (NLP), various attention-based models are pro-
posed in sequential recommendation [23,26]. Kang et al. [11] develop SASRec
to characterize advanced item transition correlations by adapting Transformer
layer [19]. Sun et al. [17] propose BERT4Rec by applying BERT [4] to obtain
better sequence representations. BERT4Rec essentially consists of a stack of
Transformers that can fuse contextual information from two directions. Nowa-
days, multiple contrastive learning-based models are proposed, trying to obtain
characteristic signals within the sequence. Both S3-Rec [13] and CL4SRec [22]
are very competitive models. However, the encoders in these models only con-
sider unidirectional information transfer without the ability to fuse contextual
information in the sequence.
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2.2 Self-supervised Learning

The goal of Self-Supervised Learning (SSL) is to utilize the unlabeled data to
obtain valuable signals for downstream tasks. Generally speaking, SSL models
can mainly be divided into generative and contrastive approaches [10]. Represen-
tative models of generative SSL-based models includes Generative Adversarial
Networks (GAN) [7] and Variational Auto Encoders (VAE) [12]. These mod-
els are designed to make the generated data close to the original data. Differ-
ent from generative models, contrastive SSL-based models are built to maxi-
mize the consistency between pairs of positive views and the opposite for pairs
of negative views. Positive views are obtained by performing a series of aug-
mentation operations on original sequences. Recently, Contrastive SSL-based
methods have achieved remarkable success in various research domains [6,8,29].
For different data types, views are generated by applying reasonable augmen-
tation methods. Chen et al. [1] propose SimCLR and employ random crop,
color distortions, and Gaussian blur to obtain augmented visual representations.
GraphCL [24] devises four data augmentations to generate views, including node
dropping, edge perturbation, attribute masking, and subgraph selection. Exist-
ing contrastive SSL-based sequential recommendation models fully consider the
sequence characteristics of user interaction history and design effective view gen-
erators. Zhou et al. [13] propose S3-Rec to learn the item transition correlations
among attribute, item, subsequence and sequence by optimizing four auxiliary
self-supervised objectives. CL4SRec [22] devises three data augmentation oper-
ations (crop, mask, reorder) to randomly generate views of original sequences.
However, we hold the opinion that the contrastive learning views generated by
data augmentations cannot preserve the complete semantic information of the
original sequences.

3 Method: Self-BERT

In this section, we first provide the problem definition of sequential recommenda-
tion. Then, we introduce the two tasks of Self-BERT, the main recommendation
task and the auxiliary self-guided contrastive learning task. Finally, we train the
above two tasks together through a joint learning framework.

3.1 Problem Definition

In this paper, we symbolize user and item sets as U and V, respectively. |U|
and |V| represent the number of users and items. Each user has a chronologi-
cal interaction sequence consisting of a series of items. For user u, we denote
the corresponding sequence as Su = [v1, v2, ..., v|Su|], where vt represents user u
interacted with this item at time t. Given the interaction sequence Su of user
u, the target of sequential recommendation is to predict the most possible item
that user u will interact with at time |Su|+1, which can be formulated as follows:

arg max
vi∈V

P(v|Su|+1 = vi|Su). (1)
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3.2 Recommendation Task

In this subsection, we introduce the recommendation task implemented by a
BERT encoder. As shown in Fig. 1, the BERT encoder consists of stacked Trans-
former encoder layers. Unlike the left-to-right unidirectional Transformer, the
BERT encoder can fuse bi-directional contextual information, which gives the
model a global receptive field to capture the dependencies in any distance.

Fig. 1. The architecture of Transformer encoder (left) and BERT (right).

Embedding Layer. To take full advantage of the sequential information of the
input, for a given item vi of sequence Si, its embedding representation h0

i con-
siders both original item embedding vi and corresponding positional embedding
pi. The formula is as follows:

h0
i = vi + pi, (2)

where h0
i , vi, pi are all d -dimensional embedding vectors (d represents the

dimension of embedding). By this way, a positional embedding representation
H0 ∈ R

N×d of sequence Si is obtained, where N denotes the maximum length
of all sequences1.

Transformer Layer. Given a sequence of length N, after passing through the
embedding layer, we iteratively pass it through L layers of Transformers to get
the hidden layer representation hl

i of each layer l at position i. We stack the
hidden layer representations of all positions together to get H l ∈ R

N×d. Next, we
pass H l through a multi-head self-attention network to capture the dependencies

1 We pad the sequence length with zeros on the left when the length is less than N.
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between representation pairs at arbitrary distances in the sequence. We linearly
projects H l into h subspaces, and the formula is as follows:

MH(H l) = concat(head1; head2; · · · ; headh)WO,

headi = Attention(H lWQ
i ,H lWK

i ,H lW V
i ),

(3)

where WO, WQ
i , WK

i , and W V
i are trainable parameters. Q, K, and V rep-

resent queries, keys, and values, respectively. The Attention function is imple-
mented by the Scaled Dot-Product Attention:

Attention(Q,K,V ) = softmax(QK�/
√

d/h)V , (4)

After linear projection through multi-head self-attention, we utilize a position-
wise feed-forward network (PFFN) to endow the interactions between different
dimensions at each position hi:

PFFN(H l) = [FFN(hl
1)

T; ...; FFN(hl
N )T]T, (5)

where FFN(·) represents a two-layer feedforward network with GELU as an
activation function. We also use residual connections, dropout, and normaliza-
tion to connect the two sub-layers of multi-head self-attention and position-wise
feed-forward network. The process of stacking Transformer layers is as follows:

H l = Trm(H l−1) = LayerNorm(F l−1 + Dropout(PFFN(F l−1))),

F l−1 = LayerNorm(H l−1 + Dropout(MH(H l−1)).
(6)

Finally, we pass HL through a linear prediction layer and a softmax operation
to get an output distribution P (v) over all candidate items.

Training with the Cloze Task. In order to realize the bi-directional delivery
of information in the Transformer encoder, the Cloze task is selected to train the
model. The input sequence is randomly masked according to the ratio ρ during
the training process, and the masked items are predicted based on the two-way
context information. The objective function of the recommendation task is:

LRec =
1

|Su,m|
∑

vm∈Su,m

− log P (vm = v∗
m|S′

u), (7)

where S
′
u represents the masked user behavior sequence Su. Su,m is a collection

of random masked items. vm and v∗
m represent masked item and true item,

respectively. In the testing process, we append a “[mask]” token at the end of
the input sequence to predict the next item.

3.3 Self-guided Contrastive Learning Task

Unlike existing models that construct views through data augmentation, we
propose Self-BERT and use the hidden layer representations obtained by the
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BERT encoder itself as positive views. The main architecture of Self-BERT is
shown in Fig. 2. Essentially, these representations are all yielded from the same
input sequence and thus can be treated as positive views. We call it self-guided
contrastive learning since the encoder uses its internal signals to guide the con-
trastive learning.

Fig. 2. The overall framework of Self-BERT. The positive views Hi (a series of hidden
layer outputs) and Oi are obtained through the BERTfix and BERTtrain encoders,
respectively. The negative view Hj is obtained through the BERTfix. And we calculate
the contrastive learning loss through this ternary relationship.

Specifically, we first pre-train the BERT encoder for z epochs2 on the Cloze
task. Then, we use two BERT encoders to obtain positive views in the con-
trastive learning task. One of the encoders, called BERTtrain, is initialized
according to the parameters in the trained BERT, and the parameters are
updated synchronously in the subsequent training process. The other encoder,
called BERTfix, is also a copy of the trained BERT, but its parameters are fixed
after initialization. Self-BERT uses all hidden layer outputs obtained by BERTfix

as positive views for contrastive learning. Therefore, the information captured
by each Transformer layer in the BERT encoder can be fully utilized.

Given an interaction sequence Si of user i, we first pass it through the same
embedding layer as in the recommendation task to get the embedded input SE

i

of the encoder. A contrastive learning view Oi is obtained directly by passing

2 We found in experiments that the performance of Self-BERT does not change much
with different z, and we choose z = 50.
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SE
i through BERTtrain and a projection head. At the same time, we feed SE

i

into BERTfix and obtain the output of each layer of Transformers:

Hi = BERTfix(SE
i ) = [H1

i , ...,Hk
i , ...,HL

i ] (1 ≤ k ≤ L). (8)

Since each Transformer layer in the BERT encoder can capture different level
information, we regard Oi and each element in Hi as a pair of positive views.
Thus, there are L pairs of positive views in total.

As for negative views, we directly choose other sequences in the batch where
Si is located. For example, Fig. 2 shows that we feed the negative sample Sj into
BERTfix and acquire a series of negative views Hj .

After computing these vectors, we compute the NT-Xent loss [1] for each
positive sample, which is commonly used in contrastive learning.

φ(u, v) = exp(sim(f(u), f(v))/τ), (9)

LCl = − log
φ(Oi,H

L
i )

φ(Oi,HL
i ) + Σb

j=1,j �=iφ(Oi,HL
j )

, (10)

where b denotes the current batch size, τ denotes the temperature parameter,
sim(·) and f(·) symbolize the cosine similarity function and a projection head,
HL

i and HL
j represent the last layer output of BERTfix.

However, as shown in Eq. (10), the commonly used NT-Xent loss only com-
putes a pair of positive and negative views. Therefore, we modify Eq. (10) so
that it could take into account the output of intermediate layers and calculate
the loss of L pairs of positive and negative views simultaneously:

LCl =
1
L

L∑

k=1

− log
φ(Oi,H

k
i )

φ(Oi,Hk
i ) + Σb

j=1,j �=iΣ
L
l=1φ(Oi,H l

j)
. (11)

3.4 Joint Learning

Finally, we train the recommendation task and the self-guided contrastive learn-
ing task simultaneously through a joint learning framework to improve the per-
formance of sequential recommendation. The overall loss function is as follows:

L = LRec + λLCl, (12)

where λ is a hyperparameter that controls the proportion of the auxiliary con-
trastive learning task in the two tasks.

4 Experiments

In this section, we conduct extensive experiments to answer the following
Research Questions (RQs):

– RQ1: How does Self-BERT perform compared to the existing methods?
– RQ2: How is the sensitivity of the hyper-parameters in Self-BERT?
– RQ3: How does the self-guided mechanism contribute to the whole model?
– RQ4: How does Self-BERT perform under the issue of data sparsity?
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4.1 Experimental Settings

Datasets. We conduct experiments on four real-world public datasets to answer
the four RQs. The Movielens dataset includes movies, users, and corresponding
rating data, commonly used in evaluating recommendation systems. We employ
Movielens 1 m (ML-1M)3 and Movielens 20 m (ML-20M)4 to carry out our
experiments. McAuley et al. [14] developed a series of datasets based on the
Amazon web store, which is split according to the products categories. We select
two of the datasets5, i.e., Beauty and Toys, for experiments.

As for data preprocessing, we follow the standard practice in [13,17,22]. First,
we regard the cases with ratings or reviews as positive samples and the rest as
negative samples. Then for each user, the corresponding items are sorted chrono-
logically. We follow the “5-core” principle, which means we discard users with
less than 5 interactions and items related with less than 5 users. The statistics
of the four datasets after data preprocessing are shown in Table 1.

Table 1. Statistics of four datasets after preprocessing.

Dataset Users Items Actions Avg. length Sparsity

ML-1M 6,040 3,416 999,611 165.5 95.21%

ML-20M 138,493 18,345 19,984,024 144.3 99.21%

Beauty 22,363 12,101 198,502 8.9 99.93%

Toys 19,412 11,924 167,597 8.6 99.93%

Baselines. We use the following baseline methods for comparison to demon-
strate the effectiveness of Self-BERT.

– Pop: It is a non-personalized recommendation method based on item popu-
larity. The items that occur most frequently in the interaction sequence are
recommended for all users.

– BPR-MF [15]: It is a matrix factorization model that captures pairwise item
correlations and optimizes a Bayesian Personalized Ranking (BPR) loss.

– GRU4Rec [9]: This method employs GRU, which is a variant of RNN, to
obtain better representations of user interaction sequences.

– Caser [18]: It is a CNN-based model that utilizes convolution kernels in
horizontal and vertical orientations to capture local patterns.

– SASRec [11]: It adopts a left-to-right Transformer encoder to model users’
interests dynamically.

– BERT4Rec [17]: This model regards the recommendation task as the Cloze
task to train model so that the Transformer encoder could fuse contextual
information for better sequence representations.

3 https://grouplens.org/datasets/movielens/1m/.
4 https://grouplens.org/datasets/movielens/20m/.
5 http://jmcauley.ucsd.edu/data/amazon/.

https://grouplens.org/datasets/movielens/1m/
https://grouplens.org/datasets/movielens/20m/
http://jmcauley.ucsd.edu/data/amazon/
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– S3-Rec [13]: It devises four auxiliary SSL objectives to gain the relations
among attribute, item, subsequence and sequence. However, for the fairness
of the comparison, we remove the modules related to attribute.

– CL4SRec [22]: It applies contrastive learning to construct self-supervision
signals from the original sequences by three data augmentations.

Metrics. To compare the next-item prediction effectiveness among Self-BERT
and baseline methods, we follow [11,17] to choose Hit Ratio (HR) and Normal-
ized Discounted Cumulative Gain (NDCG) as evaluation metrics. It is worth
noting that we rank the predictions on each whole dataset without negative
sampling for a fair comparison. We report HR and NDCG with k = 5, 10. For
all evaluation metrics, the higher values indicate better model performance.

Implementation Details. We use code provided by the authors for GRU4Rec6,
Caser7, SASRec8, and S3-Rec9. We implement BPR, BERT4Rec, and CL4SRec
on public resources. All hyperparameters are set following the original papers
and tuned on the performance of the validation set. We report the results of
each baseline at its optimal hyperparameter setting. For ML-20M, the batch
size is 64 due to insufficient GPU memory, while for other datasets, the batch
size is 256. We tune the max sequence length on different datasets and choose
the corresponding optimal parameters. The contrastive loss proportion is tuned
(see Sect. 4.3 for more details) and is finally decided as 0.1. As for other hyper-
parameters, we follow the guidance from BERT4Rec. We train our model using
Adam optimizer with learning rate of 0.0001, β1 = 0.9, β2 = 0.999.

4.2 Overall Performance Comparison (RQ1)

To answer RQ1, we compare the performance of Self-BERT with the baseline
methods. These baselines can be divided into two categories, non-SSL-based
models and SSL-based models. Table 2 and Table 3 present the best results of all
models on four real-world datasets individually. The best score and the second
best score in each column are bolded and underlined, respectively. Improvements
over the best baseline method are indicated in the last row. From the experi-
mental results, we obtain the following observations:

Comparison with Non-SSL-Based Baselines. Non-personalized methods,
such as PopRec and BPR-MF, exhibit worse recommendation performance on all
datasets, which indicates the necessity of capturing sequential features in next
item recommendation. In sequential recommendation, the Transformer-based
models (e.g., SASRec and BERT4Rec) perform better than other models. This
phenomenon shows that the self-attention mechanism can more effectively mine
the information in the sequence than RNN and CNN. BERT4Rec performs rel-
atively well on datasets with longer average sequence lengths, such as Movie-
lens. We speculate that BERT4Rec can capture more contextual information
6 https://github.com/hidasib/GRU4Rec.
7 https://github.com/graytowne/caser pytorch.
8 https://github.com/kang205/SASRec.
9 https://github.com/RUCAIBox/CIKM2020-S3Rec.

https://github.com/hidasib/GRU4Rec
https://github.com/graytowne/caser_pytorch
https://github.com/kang205/SASRec
https://github.com/RUCAIBox/CIKM2020-S3Rec
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as sequence gets longer, hence obtain better performance. However, Self-BERT
achieves better performance than BERT4Rec, which verifies the effectiveness of
the self-supervised contrastive learning task under a joint learning framework.

Comparison with SSL-Based Baselines. Both S3-Rec and CL4SRec are
SSL-based models, but S3-Rec performs worse than CL4SRec. One possible rea-
son is that the two-stage training mode may lead to catastrophic forgetting. We
also observe that Self-BERT performs better than CL4SRec. It is likely that data
augmentations might corrupt the semantic information in sequence. In contrast,
Self-BERT uses the complete sequence representation obtained in the encoder
without data augmentations, improving the validity of contrastive learning.

Table 2. Overall performance of different methods on Movielens datasets. Bold scores
are the best in method group, while underlined scores are the second best. The last
row is the relative improvements compared with the best baseline results. (H is short
for HR, N is short for NDCG)

Dataset ML-1M ML-20M

Metric H@5 H@10 N@5 N@10 H@5 H@10 N@5 N@10

PopRec 0.0078 0.0162 0.0052 0.0079 0.0165 0.0311 0.0094 0.0140

BPR-MF 0.0366 0.0603 0.0226 0.0302 0.0280 0.0482 0.0168 0.0233

GRU4Rec 0.0806 0.1344 0.0475 0.0649 0.0691 0.1187 0.0436 0.0595

Caser 0.0912 0.1442 0.0565 0.0734 0.0637 0.1051 0.0398 0.0531

SASRec 0.1071 0.1727 0.0634 0.0845 0.1276 0.1895 0.0842 0.1041

S3-Rec 0.1020 0.1724 0.0612 0.0839 0.1187 0.1807 0.0775 0.0974

CL4SRec 0.1142 0.1810 0.0705 0.0920 0.1108 0.1782 0.0707 0.0924

BERT4Rec 0.1308 0.2219 0.0804 0.1097 0.1380 0.2092 0.0928 0.1157

Self-BERT 0.1834 0.2620 0.1227 0.1480 0.1732 0.2468 0.1199 0.1436

Improv 40.21% 18.07% 52.61% 34.91% 25.51% 17.97% 29.20% 24.11%

Table 3. Overall performance of different methods on Amazon datasets. Bold scores
are the best in method group, while underlined scores are the second best. The last
row is the relative improvements compared with the best baseline results. (H is short
for HR, N is short for NDCG)

Dataset Beauty Toys

Metric H@5 H@10 N@5 N@10 H@5 H@10 N@5 N@10

PopRec 0.0075 0.0143 0.0041 0.0063 0.0066 0.0094 0.0046 0.0055

BPR-MF 0.0143 0.0253 0.0091 0.0127 0.0124 0.0178 0.0087 0.0105

GRU4Rec 0.0206 0.0332 0.0132 0.0172 0.0121 0.0184 0.0077 0.0097

Caser 0.0254 0.0436 0.0154 0.0212 0.0205 0.0333 0.0125 0.0166

SASRec 0.0371 0.0592 0.0233 0.0305 0.0429 0.0652 0.0248 0.0320

S3-Rec 0.0365 0.0610 0.0228 0.0306 0.0405 0.0644 0.0258 0.0335

CL4SRec 0.0396 0.0630 0.0232 0.0307 0.0434 0.0635 0.0249 0.0314

BERT4Rec 0.0370 0.0598 0.0233 0.0306 0.0371 0.0524 0.0259 0.0309

Self-BERT 0.0516 0.0740 0.0350 0.0421 0.0540 0.0759 0.0381 0.0452

Improv 30.30% 17.46% 50.21% 37.13% 24.42% 16.41% 47.10% 34.93%
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4.3 Parameter Sensitivity (RQ2)

To answer RQ2, we investigate the influence of essential hyperparameters in
Self-BERT, including the weight of LCl and the batch size b.

Impact of Contrastive Learning Loss. In this section, we study the effect of
contrastive learning proportion λ in the model. We select two datasets (ML-1M
and Beauty) and conduct experiments with different λ values (0, 0.05, 0.1, 0.2,
0.5, 1, 2, 4) while keeping other parameters optimal. The obtained experimen-
tal results (NDCG@5) are shown in Fig. 3 (a). We observe that appropriately
increasing the value of λ can improve the performance. However, the performance
become worse when λ exceeds a certain threshold. The above observation shows
that if λ is too large, the contrastive learning dominates the training process,
which may influence the performance of sequential recommendation. We finally
choose λ = 0.1 to achieve a balance between the contrastive learning task and
the recommendation task for better recommendation performance.

Fig. 3. Performance comparison (in NDCG@5) on Self-BERT w.r.t. different λ (a) and
batch size (b) on ML-1M and Beauty datasets.

Impact of Batch Size. In this section, we study the effect of different batch
size b on the model. We set the batch size as 16, 32, 64, 128, 256, 512, and 1024
for experiments. The results (NDCG@5) on the ML-1M and Beauty datasets
are shown in Fig. 3(b). We observe that a large batch size has an advantage over
the smaller ones, but the influence tends to be tiny as the batch size increases.
This finding is similar to the experimental results in SimCLR [1]. A larger batch
size can provide more negative samples for contrastive learning and promote the
model to convergence. According to the experimental results, when the batch
size is larger than 256, the effect of the model does not improve much, thus we
select batch size b = 256.

4.4 Ablation Study (RQ3)

To answer RQ3, we conduct ablation study on Self-BERT to analyze the impact
of the components in Self-BERT. To verify the effectiveness of these components,
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we propose the following three variants of Self-BERT: (B) delete the auxiliary
contrastive learning task of Self-BERT, (C) only use the last layer output of
BERTfix as positive view, (D) cancel the parameter-fix mechanism in BERTfix

and use its hidden layer representations as positive views. The experimental
results on four datasets are shown in Table 4. From the results, we observe that:

– Self-BERT under the joint learning framework (A) performs better than a
single recommendation task model (B). It can be concluded that the auxil-
iary contrastive learning task can help obtain high quality representations for
sequential recommendation.

– In our model, the auxiliary contrastive learning task with one-to-many view
constraints (A) performs better than one-to-one view constraints (C). Self-
BERT makes full use of the output of all Transformer layer as positive views,
which improves the performance of the contrastive learning task by increasing
the number of positive views.

– Self-BERT (A) performs better than the model which cancel the parameter-
fix mechanism in BERTfix (D). We think that the self-guided mechanism in
Self-BERT prevents training signal of BERTfix from being degenerated.

Table 4. Ablation study of Self-BERT.

Model ML-1M ML-20M Beauty Toys

HR@5 NDCG@5 HR@5 NDCG@5 HR@5 NDCG@5 HR@5 NDCG@5

(A) Self-BERT 0.1834 0.1227 0.1732 0.1199 0.0516 0.0350 0.0540 0.0381

(B) w/o CL 0.1308 0.0804 0.1380 0.0928 0.0370 0.0233 0.0371 0.0259

(C) only HL 0.1715 0.1106 0.1592 0.1091 0.0479 0.0325 0.0488 0.0353

(D) w/o fix 0.1498 0.0956 0.1464 0.1014 0.0392 0.0279 0.0427 0.0284

4.5 Robustness Analysis (RQ4)

To answer RQ4, we conduct experiments to illustrate the robustness of Self-
BERT when facing the data sparsity issue. To simulate the data sparsity prob-
lem, we only use part of the data (25%, 50%, 75%, 100%) for training and keep
the test data unchanged. We compare the proposed model with CL4SRec and
BERT4Rec, and the results are shown in Fig. 4. We observe that performance
drops when using less training data, but Self-BERT consistently outperforms the
other two baseline methods. Although the data sparsity issue effects vary on dif-
ferent datasets, our model can alleviate the influence of this issue for sequential
recommendation to some extent.
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Fig. 4. Model performance (in NDCG@5) comparison w.r.t. sparsity ratio on ML-1M
(a) and Beauty (b) datasets.

5 Conclusion

In this paper, we propose self-guided contrastive learning enhanced BERT for
sequential recommendation (Self-BERT). High-quality contrastive views can
be stably generated by introducing the self-guided mechanism, which means the
hidden layer representations produced by a fixed BERT encoder are used to guide
the training of another trainable BERT encoder. Moreover, we also improve
the commonly used contrastive learning loss function (NT-Xent) to make it
more suitable for Self-BERT. Experimental results on four real-world datasets
demonstrate the effectiveness of our Self-BERT. We also experimentally verify
the data sparsity robustness of our Self-BERT.
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