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Abstract. Finding a small subset representing a large dataset is an important
functionality in many real applications such as data mining, recommendation and
web search. The average happiness maximization set problem also known as the
average regret minimization set problem was recently proposed to fulfill this task
and it can additionally satisfy users on average with the representative subset.
In this paper, we study the online average happiness maximization set (Online-
AHMS) problem over data streams where each data point should be decided
to be accepted or discarded when it arrives, and the discarded data points will
never be considered. We provide an efficient online algorithm named GreedyAT
with theoretical guarantees for the Online-AHMS problem which greedily selects
data points based on the adaptive thresholds strategy. Experimental results on the
synthetic and real datasets demonstrate the efficiency and effectiveness of our
GreedyAT algorithm.

Keywords: Happiness maximization set · Online algorithm · Adaptive
threshold

1 Introduction

In many real applications such as data mining [27], recommendation [18,30] and web
search [29], an important functionality is to select a succinct subset from a large dataset
to meet the requirements of various users. To fulfill this task, three popular tools are
proposed in the last three decades, namely the top-k query [17], the skyline query [5,11]
and the happiness maximization set (also known as the regret minimization set, or the
k-regret) query [21,35]. The top-k query is to use the concept of utility function to
quantify a user’s preference on different attributes and the top-k data points with the
largest utilities are returned. However, the weakness of the top-k query is that the utility
function is often unclear or only vaguely known which limits the applicability of this
tool. By utilizing the concept of domination: a point p dominates a point q iff p is as
good as q on all attributes and strictly better than q on at least one attribute, the skyline
query returns all data points not dominated by other data points. Though no specific
utility functions are needed, the skyline query does not effectively reduce the solution
size over high-dimensional datasets [5].

To avoid the limitations of the top-k and skyline queries, the Happiness Maximiza-
tion Set (HMS) query (called the k-regret query when first proposed [21]) was proposed
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to simultaneously have the merits of both top-k and skyline queries, resulting in many
studies in the database community [1,3,7,10,13,19,22,24,26,28,32,35–39]. Specifi-
cally, the happiness ratio is defined to quantify the happiness level of a user with a utility
function for a set of data points, compared with when s/he has seen the entire dataset. In
HMS, a subset of size k is chosen from the dataset such that theminimum happiness ratio
of any possible utility function between the best data point in the selected subset and the
best point in the whole dataset is maximized. The happiness maximization set query is
to select a size-k subset maximizing the minimum happiness ratio. We can see that the
minimum happiness ratio may unfairly prioritize the least satisfied users [19,26,38,39].
Instead, the Average Happiness Maximization Set (AHMS) query [38,39] is provided
to maximize the users’ happiness ratios on average, which is more proper to satisfy the
majority of users. Note that the Average Happiness Maximization Set query is identical
to theAverageRegretMinimization Set query, but the average happiness ratio function of
the AHMS query shows the property of submodularity which allows for the deviation of
stronger theoretical results. For the AHMS query [19,26,38,39], the users’ utility func-
tions are not just uniformly distributed but follow a probability distribution which can be
obtained from users’ historical preferences and feedback provided in real applications
[12,16,27,31]. Since the average happiness ratio over the utility function distribution
can be approximated by sampling, the AHMS query selects a subset to maximize the
average happiness ratio on a sample of M utility functions instead of on the distribution
of the utility functions.

The HMS query and its variants show their NP-hardness on any dataset when the
dimensionality d is larger than 2, i.e., d ≥ 3, and many promising algorithms for the
happiness maximization set query (or the regret minimization set query) exhibit their
advantages to solve the related problems [1,3,7,10,13,19,22,24,26,36–39]. However,
instead of considering the streaming setting where the data points arrive one by one, the
existing algorithms almost aim at the static setting of the dataset where full access to
the entire dataset is always available. Wang et al. [32] and Zheng et al. [42] considered
the dynamic environment of datasets where data points are inserted and deleted dynam-
ically and efficient algorithms, namely FD-RMS and DynCore were proposed to solve
this problem, respectively. Ma et al. [20] assumed the data points are only valid in a slid-
ing window and an efficient coreset-based algorithm was proposed to answer the regret
minimization set query. However, these researches do not consider the scenario that an
immediate decision should be made for each on-arriving data point in a data stream,
i.e., whether the current data point should be included in the result set or not, and the
discarded data points will never be considered. Our model is also distinct from the exist-
ing streaming setting [30] where a small portion of the data points can be buffered and
added to the solution later. Moreover, the scenario in the online setting occurs in many
real applications, such as news recommendation, football player recruitment, job seek-
ing, etc. when a news is published by a news agency, a news portal (e.g., Sina News),
should make an immediate decision on whether the news is to be included in the fixed-
size headlines; otherwise, other news portals will have the chance to release the news
at the earliest time. The same scenario happens for a football team recruiting a player,
or a company employing a staff. If they miss the chance to recruit the player or employ
the job-seeker, they may have no chance to consider her/him again, because the player
or job-seeker may be recruited or employed by other football teams or companies.
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In this paper, we study the Online Average Happiness Maximization Set (Online-
AHMS) problem. Since we have no foreknowledge of future data points in the online
setting, we define the online average happiness ratio function as a reasonable measure.
The goal of the Online-AHMS query is to return a subset with k data points while maxi-
mizing the online average happiness ratio at any time in the online setting. To solve this
problem, we provide an efficient online-selection algorithm named GreedyAT where
adaptive thresholds are set to filter the data points. In addition, by utilizing the property
that our online average happiness ratio function is submodular, we can guarantee a con-
stant competitive ratio of the GreedyAT algorithm. To sum up, the main contributions
of this paper are listed as follows:

– We study the online average happiness maximization set problem which selects the
data points irrevocably on the arriving of them, and an online algorithm GreedyAT
is proposed based on the adaptive thresholds strategy.

– We perform theoretical analysis of our GreedyAT algorithm and the competitive
ratio of the GreedyAT algorithm is provided based on the submodularity property of
our online average happiness ratio function.

– Extensive experiments on the synthetic and real datasets are conducted to verify the
efficiency, effectiveness and applicability of the GreedyAT algorithm in the online
setting.

The rest of the paper is organized as follows.We introduce the relatedwork in Sect. 2.
Related concepts are provided and we formally define our Online-AHMS problem in
Sect. 3. In Sect. 4, we propose our GreedyAT algorithm based on the adaptive thresholds
strategy and further provide the theoretical analysis to obtain the competitive ratio of
the GreedyAT algorithm. We conduct experiments on the synthetic and real datasets to
evaluate our GreedyAT algorithm in Sect. 5. Lastly, we conclude our work in Sect. 6.

2 Related Work

To avoid the drawbacks of the top-k query (needs users to provide exact utility functions)
and the skyline query (the output size is uncontrollable), the happiness maximization set
query has been investigated in the last decade which was called the k-regret query first
proposed byNanongkai et al. [21]. Due to the NP-hardness of the k-regret query [10,35],
many promising methods are proposed and useful variants are introduced. Geometry-
based methods, such as GeoGreedy [24] and Sphere [36] are proposed to improve the
efficiency of the k-regret query. To achieve the same goal, various techniques, e.g., ε-
kernel [1,7], hitting set [1], discretized matrix [3] are borrowed to answer the k-regret
query efficiently. As useful variants of the k-regret query, the kRMSquery [10], the inter-
active regret minimization query [22,34,40], the regret minimization query on nonlinear
utility functions [13,25], the rank-based regret minimization query [4,33] and the regret
minimization query with approximation guarantees [41] are proposed to meet different
situations. As a completely identical concept to the k-regret query, the happiness max-
imization set query was recently studied in [19,26,37] where if the happiness ratio is
defined as hr then the regret ratio rr is one minus hr, i.e., rr = 1 − hr.

The researches above related to the happiness maximization set query (or the k-
regret query) focused on maximizing the minimum happiness ratio (or minimizing the
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maximum regret ratio) and optimizing the worst-case scenario. To address the issue that
the happiness maximization set query may prioritize the least satisfied users, the average
regret minimization query was proposed by Zeighami et al. [38]. They introduced the
concept of the average regret ratio to measure the user’s regret ratio in the average
case which is more reasonable since it considers the expectations of different users.
Moreover, Zeighami et al. [39] proved the average regret minimization set problem is
NP-hard and an efficient algorithm Greedy-Shrink was proposed. Luenam et al. [19]
showed that the happiness maximization set query can admit stronger approximation
guarantees than the regret minimization set query.

Although the massive volume and the real-time generation of data points imply a
growing need for non-static algorithms, few researches considered the this setting of the
happiness maximization set query or the k-regret query. Wang et al. [32] studied the k-
regret query on dynamic datasets where data points were arbitrarily inserted or deleted.
They provided the FD-RMS algorithm which transformed the fully-dynamic k-regret
query to a dynamic set cover problem and constantly maintained the result with the-
oretical guarantees. Further, Zheng et al. [42] also considered the same problem and
a more efficient method named DynCore was proposed to achieve a better regret ratio
bound with a lower time complexity. Ma et al. [20] assumed there was a sliding win-
dow on a data stream and the data points inside the window were valid. They provided
a coreset-based method to continuously maintain the result efficiently. In the online set-
ting, however, upon the arrival of a data point, we need to decide whether to accept it or
not immediately as an online selection which usually occurs in many real applications.
The above researches do not consider this scenario because the data points are buffered
without immediate decisions. In this paper, we study the Online-AHMS problem which
is very promising in real-world applications.

3 Problem Definition

In this section, we formally define the online average happiness maximization set
(Online-AHMS) problem. Some useful concepts such as utility function, happiness
ratio, average happiness ratio and their online versions are introduced before we state
our problem. Let D be a d-dimensional dataset containing n data points where each
data point p =< p[1], p[2], . . . , p[d] >∈ D is described by d numerical attributes which
are normalized in the range [0, 1]. We assume that a larger value in each dimension is
preferable to all users.

Definition 1 (Utility Function). A utility function f is a mapping f : Rd
+ → R+ that

assigns a non-negative utility f(p) to each data point p ∈ D which shows how satisfied
the user is with the data point p.

Following [10,21], we assume the form of the utility functions to be linear, i.e., f
is represented as a d-dimensional vector u =< u[1], u[2], . . . , u[d] >∈ R

d
+ where u[i]

denotes the importance of the i-th dimension in user’s happiness. W.l.o.g., we assume
that u is normalized such that ||u||1 =

∑d
i=1 u[i] = 1. Thus, the utility of a data point

p ∈ D w.r.t. f can be expressed as f(p) = u · p =
∑d

i=1 u[i]p[i].
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Definition 2 (Happiness Ratio). Given a subset S ⊆ D and a user’s utility func-
tion f , the happiness ratio of S over D for f , denoted by hrD,f (S), is defined to be
maxp∈S f(p)
maxp∈D f(p) .

Intuitively, we havemaxp∈S f(p) ≤ maxp∈D f(p), so the happiness ratio of a user
ranges from 0 to 1. The happiness ratio measures how happy a user is if s/he sees the
subset S instead of the entire dataset D. The happiness ratio of a user is closer to 1
which indicates that the user feels happier with the selected subset S.

However, the users are generally difficult or not willing to provide their utility func-
tions explicitly. We thus assume that all users’ utility functions belong to a utility func-
tion class, denoted by FC. Therefore, FC is the set of all possible linear utility func-
tions, i.e., FC = {f |f(p) = u · p}. We focus on that the users’ utility functions in FC
follow a probability distribution Θ. Unless specified otherwise, we consider arbitrary
type of distribution. Let η(f) be the pobability density function for utility functions f
in FC corresponding to Θ. Next we formally define the average happiness ratio.

Definition 3 (Average Happiness Ratio). Given a subset S ⊆ D and a utility func-
tion class FC with the probability density function η(.) corresponding to a probability
distribution Θ, the average happiness ratio of S is defined as

ahrD,FC(S) =
∫

f∈FC
hrD,f (S) · η(f)df. (1)

Unfortunately, the set of all possible linear utility functions FC is uncountable, so
evaluating the above average happiness ratio needs to compute an integral over FC,
which is very time-consuming. Hence, we utilize a sampling technique from [39] to
compute the average happiness ratio in Definition 3 with a theoretical bound. Specifi-
cally, we sample M utility functions according to the distribution Θ and obtain a sam-
pled utility function class FCM = {f1, f2, . . . , fM} where |FCM | = M . With FCM ,
we compute the estimated average happiness ratio by averaging the happiness ratio of
the M sampled utility functions, as follows,

ahrD,FCM
(S) =

1
M

∑

f∈FCM

maxp∈S f(p)
maxp∈D f(p)

. (2)

It holds that ahrD,FCM
(S) ∈ [0, 1], and when ahrD,FCM

(S) is close to 1, it indi-
cates that the subset S satisfies the majority of users with utility functions in FCM . We
claim that this estimated average happiness ratio ahrD,FCM

(S) differs from the exact
average happiness ratio ahrD,FC(S) by an error ε ∈ [0, 1] (Theorem 4 in [39]). In the
following, we ignore the error ε and only focus on maximizing ahrD,FCM

(S) instead
of ahrD,FC(S) and further provide the average happiness maximization set problem
based on the sampled utility function class FCM .

Definition 4 (Average Happiness Maximization Set, AHMS). Given a dataset D ∈
R

d
+ with n data points, a user-specified positive integer k, and the sampled utility func-

tion class FCM , we want to find a set S ⊆ D containing at most k data points such
that ahrD,FCM

(S) is maximized, i.e.,

S = argmax
S′⊆D:|S′|≤k

ahrD,FCM
(S′). (3)
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In this paper, we focus on solving the Online-AHMS problem. We first present
some descriptions of our online model, then we give the formal definition of the Online-
AHMS problem based on the model.

In the online setting, the data points of D are revealed one by one in an online
fashion. At each timestamp t ∈ {1, 2, . . . , n}, a data point pt ∈ D is revealed, the
algorithm must immediately decide whether to accept pt into the solution set St−1,
which is initially empty.

Moreover, we relax the model by allowing the algorithm to preempt previously
accepted data points. That is, when the algorithm adds the newly revealed data point pt

into the current solution St−1, a data point may be removed from St−1, as long as this
preemption can improve the solution quality. We cannot reconsider those data points
that have been rejected from the solution or have been discarded because of preemption.

In the online setting, since at any timestamp t ∈ {1, 2, . . . , n}, there are only a
portion of the data points Dt = {p1, p2, . . . , pt} revealed. We have no foreknowledge
of the future data points and only select a subset S from Dt, so we would like to find a
practical method to compute maxp∈Dt

f(p) for each utility function f ∈ FCM . Note
that this actually calculates the maximum utility among all data points in Dt for f , the
natural idea is to maintain an auxiliary variable mf,t which holds the current maximum
utility for each utility function f after the point pt is revealed. Further, we utilize mf,t

to calculate the happiness ratio of S over Dt for f , i.e., hrDt,f (S) =
maxp∈S f(p)

mf,t
.

With the above analysis, we next reformalize the average happiness ratio in the
online setting and define the online average happiness ratio.

Definition 5 (Online Average Happiness Ratio). Given a portion of the revealed data
points Dt = {p1, p2, . . . , pt} at timestamp t ∈ {1, 2, . . . , n}, a sampled utility function
class FCM = {f1, f2, . . . , fM} and a subset S ⊆ Dt, the online average happiness
ratio is defined as

âhrFCM ,t(S) =
1
M

∑

f∈FCM

maxp∈S f(p)
mf,t

, (4)

where mf,t is an auxiliary variable which holds the current maximum utility for the
utility function f ∈ FCM over Dt at timestamp t.

Obviously, the value of âhrFCM ,t(S) does not depend on the entire unknown data
stream D, but on the current maximum utility mf,t for each f and the subset S, which
makes it an ideal objective function for selecting representative data points in the online
setting. In fact, the online average happiness ratio defined above still satisfies submod-
ularity which we will prove in Sect. 4.1, thus our model is reasonable in practice.

Definition 6 (Online Average Happiness Maximization Set, Online-AHMS). Given
an unknown data stream D with n data points, a user-specified positive integer k, and
the sampled utility function class FCM = {f1, f2, . . . , fM}. The Online-AHMS prob-
lem returns a feasible selected set St with |St| ≤ k over the currently revealed data
points Dt ⊆ D such that the online average happiness ratio âhrFCM ,t(St) is maxi-
mized at any timestamp t ∈ {1, 2, . . . , n}, i.e.,

St = argmax
S′⊆Dt:|S′|≤k

âhrFCM ,t(S′). (5)
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Unfortunately, according to the existing results in [39], the Online-AHMS problem
is NP-hard for any d ≥ 3. Thus, it is unlikely to have a polynomial-time algorithm
that solves the Online-AHMS problem optimally, unless P=NP. Hence, we focus on
designing the approximate algorithm for the Online-AHMS problem in this paper.

4 The GreedyAT Algorithm

In this section, we will first introduce monotonicity and submodularity properties of the
online average happiness ratio function and show how these properties can be used in
designing our approximation algorithm. Then, we present our GreedyAT algorithm for
the Online-AHMS problem.

4.1 Properties

Given a dataset D, a non-negative set function g: 2D → R+ and a subset S ⊆ D, a set
function g is naturally associated with a marginal gain Δg(p|S) := g(S ∪ {p})− g(S),
which represents the increase of g(S) when adding a data point p ∈ D\S to S.

Definition 7 (Monotonicity). A set function g is monotone if and only if for any S ⊆ D
and p ∈ D\S, it holds that Δg(p|S) ≥ 0.

Definition 8 (Submodularity). A set function g is submodular if and only if for any
S ⊆ T ⊆ D and p ∈ D\S, it holds that Δg(p|S) ≥ Δg(p|T ).

A set function is submodular if the gain of adding a data point p to a set S is always
no less than the gain of adding the same data point to a superset of S. In [38], it was
shown that the estimated average regret ratio arrFCM

(S) is monotonically decreas-
ing and supermodular. Since ahrFCM

(S) = 1 − arrFCM
(S), it trivially follows that

ahrFCM
(S) is monotonically increasing and submodular. Next, we show the online

average happiness ratio function âhrFCM ,t(S) satisfies above two properties.

Lemma 1. âhrFCM ,t(S) is a monotonically increasing function.

Proof. At timestamp t ∈ {1, 2, . . . , n}, the data point pt is revealed, Dt ⊆
D is the set containing all currently revealed data points. âhrFCM ,t(S) =
1
M

∑
f∈FCM

maxp∈S f(p)
mf,t

. For each utility function f ∈ FCM , the denominator mf,t

is a fixed value, because it represents the maximum utility of all data points in Dt on
f at this timestamp t. Let S and T be subsets of Dt, where T is a superset of S. It
clearly yields that maxp∈S f(p) ≤ maxp∈T f(p) as the additional data points in T\S

can only contribute larger utility for each f . So, we can easily have âhrFCM ,t(S) ≤
âhrFCM ,t(T ).

Lemma 2. âhrFCM ,t(S) is a submodular function.

Proof. Similar to Lemma 1, at timestamp t ∈ {1, 2, . . . , n}, the data point pt is
revealed, and Dt ⊆ D is the set that contains all currently revealed data points.
We need to show that for all S ⊆ T ⊆ D and for any data point p ∈ Dt\T ,
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ΔâhrFCM ,t(p|S) ≥ ΔâhrFCM ,t(p|T ). To do so, consider a data point p ∈ Dt\T .
There are two possibilities depending on whether p is the best data point in S for any
user with utility function f ∈ FCM or not. If p is not the best data point in S ∪{p} (and
consequently, since S ⊆ T , p is not the best data point in T ∪ {p} either) for any utility
function, ΔâhrFCM ,t(p|S) and ΔâhrFCM ,t(p|T ) are both zero which proves the result
in this case.

Otherwise, if p is the best data point in S ∪ {p} for some utility functions, then by
the definition of the online average happiness ratio, we easily have ΔâhrFCM ,t(p|S) =
1
M

∑
f∈F

maxp∈S∪{p} f(p)−maxp∈S f(p)

mf,t
, where F is the set of utility functions whose

best data points change when p is added to S. Similarly, we have ΔâhrFCM ,t(p|T ) =
1
M

∑
f∈F

maxp∈T∪{p} f(p)−maxp∈T f(p)

mf,t
holds for the same reason. And if the best data

point of a user changes when p is added to T , the utility function must be in F since
S is a subset of T . We can show that ΔâhrFCM ,t(p|S) is larger than or equal to

ΔâhrFCM ,t(p|T ), which implies that âhrFCM ,t(S) is a submodular function.

4.2 The Algorithm

In this section, we present our greedy online-selection algorithm with adaptive thresh-
olds, i.e., GreedyAT for the Online-AHMS problem.

According to the lemmas in Sect. 4.1, âhrFCM ,t(S) is a monotonically increas-
ing and submodular function. Thus, we can transform the Online-AHMS problem to
an online submodular maximization problem under a cardinality constraint, which has
been recently studied extensively [6,8,9]. The current state-of-the-art solution is the
online algorithm Preemption [6] with a competitive ratio (approximation ratio for online
algorithms) of at least 1/4. Initially, Preemption accepts the first k revealed data points
sequentially and gets the solution set Sk. When the (k+1)-th data point is revealed,
the Preemption algorithm needs to find a swap which replaces some data point in
Sk. However, the swap happens only when the increased value of the solution, i.e.,
âhrFCM ,k+1(Sk ∪ {pk+1} − {pi}) − âhrFCM ,k(Sk) is large enough to pass a given

threshold c · âhrFCM ,k(Sk)/k where pi ∈ Sk and c is a given positive constant, i.e.,
c > 0. According to Corollary 4.3 in [6], it is known that Preemption provides a c

(c+1)2 -
competitive ratio, and the best competitive ratio is 1/4 when c = 1. However, once the
parameter c is fixed, it can be obviously observed that after several swaps, the value
of the solution set will reach a high value and consequent swaps have less chance to
increase this value. Thus, the solution quality is not satisfactory.

To improve the quality of the solution set when swapping the on-arriving data point
pt with the data point in the current solution set St−1, we adaptively set the thresh-
olds based on the fact that n is known because it is obvious that in the scenarios in
Sect. 1, the numbers of the candidate players, employees and coming news can be pred-
icated or are known in advance. Our adaptive thresholds strategy is that we partition
the stream into two parts and the first part is set with a larger threshold according to
the parameter c1 and the second part with a smaller threshold corresponding to the
parameter c2 which is smaller than c1, i.e., c2 < c1. The strategy is simple but empir-
ically effective. To do this, we introduce a balancing parameter β ∈ (0, 1), such that
the first part is with the points {pk+1, . . . , p�βn�} while the second part contains the
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points {p	βn
, . . . , pn} (or {p	βn
+1, . . . , pn} when �βn	 is an integer). When the data
points in the first part {pk+1, . . . , p�βn�} are revealed, we use a higher threshold with
parameter c1 to determine the happening of the swap while when the data points in the
second part {p	βn
, . . . , pn} are revealed, we use a lower threshold with parameter c2
to decide whether to swap or not. When the swap happens, we greedily select the point
pi in St−1 to be replaced to maximize the increased value and pi will be discarded for-
ever. Based on the above idea, we provide our greedy online-selection algorithm with
adaptive thresholds, GreedyAT as shown in Algorithm 1.

Algorithm 1: GreedyAT
Input: Data stream D = {p1, p2, . . . , pn}, sampled utility function class

FCM = {f1, f2, . . . , fM}, user-specified positive integer k, balancing parameter
β ∈ (0, 1), and threshold parameters c1 ≥ c2 > 0

Output: The solution set St at timestamp t

1 S0 ← ∅ ;
2 for t ← 1, . . . , n do
3 if t ≤ k then
4 St ← St−1 ∪ {pt} ;

5 else
6 if t ≤ �βn	 then
7 c ← c1 ;

8 else if t ≥ 
βn� then
9 c ← c2 ;

10 Let pi be the point in St−1 maximizing ̂ahrFCM ,t(St−1 ∪ {pt} \ {pi});
11 if ̂ahrFCM ,t(St−1 ∪{pt} \ {pi})− ̂ahrFCM ,t(St−1) ≥ c · ̂ahrFCM ,t(St−1)/k then
12 St ← St−1 ∪ {pt} \ {pi} ;

13 else
14 St ← St−1 ;

15 return St;

In Algorithm 1, when t ≤ k, it is obvious that the data points revealed are all
selected into the solution set (Lines 3–4). Otherwise, two thresholds along with param-
eters c1, c2 are set for the data points in {pk+1, . . . , p�βn�} and {p	βn
, . . . , pn}, respec-
tively (Lines 6–10). We greedily online select the point pi in St−1 with the maximum
increased value after the swap (Line 10). If the increased value overpasses the threshold,
we replace pi with the current revealed data point pt (Lines 11–12). Note that when the
data point pt is revealed, we calculate the utility of pt for f , i.e., f(pt), and update the
current maximum utility mf,t by mf,t ← max{mf,t, f(pt)} which is used to compute

âhrFCM ,t(S).
Our GreedyAT algorithm improves the Preemption algorithm due to the fact that

after first several swaps, the online average happiness ratio will reach a high value
(almost equal to 1 in most cases) and a smaller threshold will improve the solution
quality inevitably.
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4.3 Theoretical Analysis

In this section, we provide the competitive ratio of the GreedyAT algorithm.

Theorem 1. The competitive ratio of GreedyAT is at leastmin{ c1
(c1+1)2 , c2

(c2+1)2 }.

Proof. Let S∗
t denote the subset of size at most k that maximizes the online aver-

age happiness ratio at timestamp t ∈ {1, 2, . . . , n}, i.e., the optimal solution with
the value OPT = âhrFCM ,t(S∗

t ). Buchbinder et al. [6] proved that their algorithm
which compares each preemption against a threshold determined by a fixed parameter
c > 0 without the adaptive thresholds strategy, yields a c

(c+1)2 -competitive ratio. At
any timestamp t ∈ {1, . . . , p�βn�}, the GreedyAT algorithm outputs a selected subset

St such that |St| ≤ k and âhrFCM ,t(St) ≥ c1
(c1+1)2 · OPT . And at any timestamp

t ∈ {p	βn
, . . . , n}, the GreedyAT algorithm outputs a selected subset St such that

|St| ≤ k and âhrFCM ,t(St) ≥ min{ c1
(c1+1)2 , c2

(c2+1)2 } · OPT . Hence, the competitive
ratio of the GreedyAT algorithm is at least min{ c1

(c1+1)2 , c2
(c2+1)2 }.

Besides the competitive ratio derived (Theorem 1), our GreedyAT algorithm also
has the advantages of current graceful online submodular maximization algorithms [6,
8,9]. GreedyAT only needs one pass over the data stream and the space complexity is
O(k) (O(1) if k is a constant).

5 Experimental Evaluation

In this section, we experimentally evaluate the performance of our proposed algorithm
GreedyAT for solving the Online-AHMS problem on both synthetic and real datasets.
We first introduce the experimental setup in Sect. 5.1. Then, we present the experimental
results in Sect. 5.2.

5.1 Setup

All algorithms were implemented in C++. The experiments were conducted on a
machine running Ubuntu 16.04 with an Intel Core i7-5500 CPU and an 8GB RAM.

Datasets. Due to space limitation, we run our experiments only on 1 synthetic dataset
and 1 real dataset which are both popular in the literature [1,2,21,36,37]. The datasets
used in our experiments are listed as follows:

– Anti-correlated. The Anti-correlated dataset is a synthetic dataset generated by the
synthetic dataset generator [5]. The dataset contains 10,000 random data points with
4 anti-correlated attributes.

– Tweet. The Tweet dataset is a real dataset for streaming applications and we adapted
it for our comparison. The dataset was obtained from an archive website1. In the
Tweet dataset, the data points describe tweets delivered during a certain period and
the goal is to select the most popular tweets of a fixed size. After pre-processing, we

1 https://web.archive.org/.

https://web.archive.org/
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selected 12,197 tweets described by 7 attributes, namely TweetID, UserID, Follow-
erCount, FollowingCount, ReplyCount, LikeCount and RetweetCount. Among them,
the first two attributes identify a specific tweet, while the last five attributes char-
acterize the popularity of the tweet and are used to conduct our experiments. The
detailed meaning of each attribute is: (1) TweetID is the tweet identifier, (2) UserID
is the anonymized user identifier, (3) FollowerCount is the number of accounts fol-
lowing the user, (4) FollowingCount is the number of accounts followed by the user,
(5) ReplyCount is the number of tweets replying to this tweet, (6) LikeCount is the
number of likes that this tweet received, (7) RetweetCount is the number of retweets
that this tweet received.

For these two datasets, all attributes of the data points are normalized into [0,1] after
pre-processing. We considered the entire dataset as a data stream and processed the data
points in the order.

Algorithms. The algorithms compared are listed as follows:

– GREEDY: The GREEDY algorithm is a classical algorithm for the offline sub-
modular maximization problem under a cardinality constraint which achieves a
(1−1/e) approximation factor [23]. GREEDY iterates k times over the entire dataset
and greedily selects the data point with the largest marginal gain in each iteration.
Although GREEDY is not an online algorithm, we used GREEDY as the benchmark
algorithm providing typically the best solution quality, which allows us to compare
the relative performance of other algorithms.

– Random: A randomized algorithm with replacement via Reservoir Sampling [14].
Originally, Random is a random sampling of k data points as a solution. We adapted
it in the online setting by unconditionally accepting the first k data points and using
Reservoir Sampling [14] to randomly swap a data point in the current solution. For
constraint maximization problems, it cannot return a solution with theoretical guar-
antees. In spite of this, we still considered the empirical performance of Random as
a simple baseline.

– StreamGreedy: A variation of GREEDY for the streaming cardinality-constraint
submodular maximization problem in [15]. In the online setting, StreamGreedy
unconditionally accepts the first k data points and replaces the newly revealed data
point with any data point in the solution if the replacement can improve the current
solution by a constant threshold η > 0.

– Preemption: Current state-of-the-art algorithm for the online submodular maxi-
mization problem in [6]. Preemption achieves a competitive ratio of c

(c+1)2 , where
c > 0 is a fixed parameter. It works similarly to StreamGreedy, but instead of using a
constant threshold η, it uses a more suitable threshold, which depends on the current
solution. Unless stated explicitly, we set the value of parameter c in Preemption to
1, such that Preemption can achieve the best competitive ratio.

– GreedyAT: Our Online-AHMS algorithm based on the preemption and adaptive
thresholds strategy proposed in Sect. 4.

To evaluate the online average happiness ratio function of a solution for each algo-
rithm above, we only considered that utility functions used are linear and the learned
probability distribution of the utility functions is uniform. By default, the sample size
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M of the utility functions is set to 1, 000, i.e.,M = 1, 000. The algorithms are evaluated
from two perspectives, namely the average happiness ratio (AHR) and the CPU time.

5.2 Experimental Results

We first evaluate the performance of the GreedyAT algorithm when varying the param-
eters, by changing two values of the balanced parameter β and the threshold parameters
c1 and c2. Since the change of parameter values in GreedyAT only affects the quality of
the solution, we ignore the results for the CPU time of GreedyAT. Moreover, we only
show the experimental results on the real dataset Tweet due to space limitation, and fix
the solution size k to 20.

Effect of Parameters β, c1, and c2. Figure 1(a) shows the effect of parameters β and c1
on GreedyAT. We report the average happiness ratios (AHR) of GreedyAT for c2 = 0.4
by varying β ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and c1 ∈ {0.6, 0.8, 1.0, 1.2, 1.4}. First of all, for
any c1, the quality of solutions is better when the value of β is 0.3 or 0.5, but degrades
if β is too small or too large. This shows that the larger or smaller value of β will
lead to the malfunction of our adaptive thresholds strategy, because the effectiveness of
GreedyAT with the thresholds under larger or smaller β value is same as that there is
only one threshold c1 or c2. On the other hand, when β is fixed, the AHR decreases as
c1 becomes larger. This is due to the fact that we have discarded some important data
points when c1 is large.
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Fig. 1. Performance of GreedyAT under different adaptive thresholds (k = 20)

Figure 1(b) shows the effect of parameters β and c2 on GreedyAT. We report the
AHR of GreedyAT for c1 = 1.0 by varying β ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and c2 ∈
{0.2, 0.4, 0.6, 0.8, 1.0}. Similarly, we can observe that the AHR decreases when c2 is
larger. This illustrates the marginal gains of the remaining data points could be small
when a portion of the data stream is accessed. Moreover, if the value of β is moderate,
the solution quality will increase, which shows that it is pathological for β to be too
large or too small.

Figure 1(c) shows the effect of parameters c1 and c2 on GreedyAT. We report the
AHR of GreedyAT for β = 0.5 by varying c1 ∈ {0.6, 0.8, 1.0, 1.2, 1.4} and c2 ∈
{0.2, 0.4, 0.6, 0.8, 1.0}. When fixing c2, for larger c1, the solution quality of GreedyAT
remains relatively stable. But if c1 is fixed, the AHR becomes smaller by increasing c2.

Thus, considering the theoretical guarantee and practical performance, the values of
three parameters (β, c1, and c2) in GreedyAT will be properly decided in the remaining
experiments.
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Effect of Solution Size k. We report the performance of all the algorithms on syn-
thetic and real datasets by varying k ∈ {10, 15, 20, 25, 30}. We present two groups
of experiments with different parameter settings. In the first group of the experi-
ments, we set the parameter η = 0.1 in StreamGreedy, c = 1.0 in Preemption, and
β = 0.5, c1 = 1.0, c2 = 0.4 in GreedyAT. While in the second group of the experi-
ments, we set the parameter η = 0.05 in StreamGreedy, c = 0.8 in Preemption, and
β = 0.7, c1 = 1.2, c2 = 0.2 in GreedyAT.
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Fig. 2. The performance of all algorithms with varying k (η = 0.1, c = 1.0 and β = 0.5, c1 =
1.0, c2 = 0.4)
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Fig. 3. The performance of all algorithms by varying k (η = 0.05, c = 0.8 and β = 0.7, c1 =
1.2, c2 = 0.2)

As shown in Figs. 2 and 3, generally the average happiness ratio and the query time
of each algorithm grow with the increase of k. We can see that Random is the fastest
algorithm, but Random shows the weakest quality, especially on the real dataset, Tweet.
Only the AHR of Random decreases when k increases (i.e., k = 30). Compared with
GREEDY, GreedyAT takes less CPU time except in the case of k = 10 on the Tweet and
Anti-correlated datasets, and the superiority is more obvious when k is larger. There-
fore, GreedyAT shows higher efficiency than GREEDY, especially for larger k. On the
other hand, the only difference between the GreedyAT algorithm and the Preemption
and StreamGreedy algorithms is the use of the adaptive thresholds strategy, so the CPU
time is almost the same for these algorithms.

In terms of the solution quality (i.e., AHR) as depicted in Figs. 2 and 3, the qual-
ity of GREEDY is the best among all algorithms. This is obvious for GREEDY has
accessed the whole stream many times. Also, this also can be seen as the cost of the
online algorithms, i.e., StreamGreedy, Preemption and GreedyAT, which only access
the stream once. However, compared with Preemption and StreamGreedy, the solution
quality of GreedyAT is generally closer to that of GREEDY for different k. GreedyAT
almost has the same solution quality as GREEDY on the Tweet dataset (Figs. 2(a) and
3(a)) and provides solutions of at least 90% quality of GREEDY on the Anti-correlated
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dataset (Figs. 2(c) and 3(c)). This confirms the effectiveness of the adaptive thresholds
strategy we used in GreedyAT. Hence, GreedyAT generally outperforms Preemption
and StreamGreedy.

6 Conclusion

In this paper, we studied the online average happiness maximization set (Online-
AHMS) problem and formulated our problem as an online submodular maximization
problem under the cardinality constraint. Then we provided an efficient online algo-
rithm called GreedyAT based on the adaptive thresholds strategy to solve the Online-
AHMS problem. Our proposed GreedyAT has been proved with a constant competitive
ratio. Extensive experimental results on the synthetic and real datasets confirmed the
efficiency, effectiveness, and applicability of our proposed algorithm.
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