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Abstract. Learning latent user intentions from historical interaction
sequences plays a critical role in sequential recommendation. A few
recent works have started to recognize that in practice user interac-
tion sequences exhibit multiple user intentions. However, they still suf-
fer from two major limitations: (1) negligence of the dynamic evolu-
tion of individual intentions; (2) improper aggregation of multiple inten-
tions. In this paper we propose a novel Multi-Intention Sequential
Recommender (MISRec) to address these limitations. We first design
a multi-intention extraction module to learn multiple intentions from
user interaction sequences. Next, we propose a multi-intention evolu-
tion module, which consists of an intention-aware remapping layer and
an intention-aware evolution layer. The intention-aware remapping layer
incorporates position and temporal information to generate multiple
intention-aware sequences, and the intention-aware evolution layer is
used to learn the dynamic evolution of each intention-aware sequence.
Finally, we produce next-item recommendations by identifying the most
relevant intention via a multi-intention aggregation module. Extensive
experimental results demonstrate that MISRec consistently outperforms
a large number of state-of-the-art competitors on three public benchmark
datasets.

Keywords: Recommender system · Sequential recommendation ·
Intention modeling

1 Introduction

In the Internet era, recommender systems have found their way into various
business applications, such as e-commerce, online advertising, and social media.
Recently, sequential recommendation has emerged as the mainstream approach
for next-item recommendation. Learning a user’s latent intentions from his/her
temporally ordered interactions lies in the core of sequential recommendation.
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In real-world scenarios, a user normally exhibits multiple intentions in his/her
historical interactions. To this end, some very recent studies [4,7,10] have started
to explore a user’s multiple latent intentions in different ways.

While these studies have confirmed that modeling a user’s multiple inten-
tions is a rewarding research direction, we argue that they still suffer from two
major limitations. First, they largely neglect the dynamic evolution of individual
intentions. While previous studies emphasize the extraction of multiple inten-
tions from user interaction sequences, they overlook the benefits of modeling the
dynamic evolution of each individual intention, which is essential for next-item
recommendation. Second, modeling a user’s intention to interact with an item as
a weighted sum of multiple intentions is counter-intuitive. While a user exhibits
multiple intentions in his/her historical interaction sequence, the interaction with
a particular item is usually driven by a single intention.

In this paper, we propose a novel Multi-Intention Sequential Recommender
(MISRec) to address these two limitations. We first design a multi-intention
extraction module to extract multiple intentions from user interaction sequences.
Next, we propose a multi-intention evolution module, consisting of an intention-
aware remapping layer and an intention-aware evolution layer. The intention-
aware remapping layer incorporates position information and recommenda-
tion time intervals to generate multiple intention-aware sequences, where each
sequence corresponds to a learned intention. The intention-aware evolution layer
is used to learn the dynamic evolution of each intention-aware sequence. Finally,
we produce next-item recommendations by explicitly projecting a candidate item
into multiple intention subspaces and determining its relevance to each inten-
tion. Empowered by Gumbel-softmax, we devise a multi-intention aggregation
module to adaptively determine whether each intention is relevant to the target
item or not. We perform a comprehensive experimental study on three pub-
lic benchmark datasets and demonstrate that MISRec consistently outperforms
representative state-of-the-art competitors.

2 Related Work

Sequential recommendation has been an emerging paradigm for next-item rec-
ommendation. GRU4Rec [1] is the first to employ gated recurrent units (GRUs)
to extract sequential patterns from user interaction sequences. Caser [8] con-
siders convolutional neural networks (CNNs) as the backbone network to learn
sequential patterns as local features of recent items. NARM [6] uses an atten-
tion mechanism to capture more flexible sequential patterns from user interaction
sequences. SASRec [2] proposes to leverage self-attention to adaptively consider
interacted items. All the above works assume that a user has only a monolithic
intention and thus a single embedding representation, which does not reflect
the reality well, leaving much room for further improvement. As such, some
recent works have started to explore how to better model users using multiple
intentions. MCPRN [10] designs a dynamic purpose routing network to capture
different user intentions. SINE [7] activates sparse user intentions from a given
concept pool and then aggregates the intentions for next-item recommendations.
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3 Proposed Method

3.1 Problem Setting

Let U = {u1, u2, · · · , u|U|} and I = {i1, i2, · · · , i|I|} be the set of all users and the
set of all items, respectively. Given a sequence of user u’s historically interacted
items Su = (su

1 , su
2 , · · · , su

l ) with su
i ∈ I and the corresponding time sequence

Tu = (tu1 , tu2 , · · · , tul ) with tu1 ≤ tu2 ≤ · · · ≤ tul , the goal of sequential recommen-
dation is to predict the next item with which user u is most likely to interact
next. In addition, the recommendation time t is important for recommenda-
tion. We transform the interaction time sequence Tu into a new time interval
sequence Tivu = (tivu

1 , tivu
2 , · · · , tivu

l ), where tivu
i = min(t − tui , τ) with τ being

a hyperparameter controlling the maximum time interval.

3.2 Embedding Layer

Following previous works, we first transform the user u’s interaction sequence
(su

1 , su
2 , · · · , su

l ) into a fixed-length sequence (su
1 , su

2 , · · · , su
n), where n denotes

the maximum length that our model handles. In the embedding layer, we cre-
ate an item embedding matrix Ei ∈ R

|I|×d based on the one-hot encodings
of item IDs, where d is the dimension of embedding vectors. Then we retrieve
the interaction sequence embedding matrix ESu =

[
esu

1
, esu

2
, · · · , esu

n

] ∈ R
n×d,

where esu
i

is the embedding of item su
i in Ei. We also establish two embed-

ding matrices, EP =
[
ep1 , ep2 , · · · , epn

] ∈ R
n×d for absolute positions and

ETivu =
[
etivu

1
, etivu

2
, · · · , etivu

n

] ∈ R
n×d for relative time intervals.

3.3 Multi-Intention Extraction Module

To capture multiple intentions behind a user’s historical interaction sequence,
we propose a multi-intention extraction module based on multi-head attention
mechanism. Specifically, we map the embedding matrix of a user’s interaction
sequence ESu into different latent subspaces using multiple heads, where each
head represents an intention of a user. Let γ be the number of heads and thus
the number of intentions. We generate the kth intention mu

k via

mu
k = headu

kWt, (1)

headu
k = Attention(ESuWQ

k ,ESuWK
k ,ESuWV

k ), (2)

where headu
k ∈ R

1× d
γ is the output of kth head through a multi-head attention

layer. Note that, to match the dimension of item embeddings, a transforma-
tion matrix Wt ∈ R

d
γ ×d is proposed to transform headu

k from R
1× d

γ to R
1×d.

Attention(·) is an attention function, and WQ
k , WK

k , and WV
k ∈ R

d× d
γ are

the trainable transformation matrices of the kth head’s query, key and value,
respectively. Inspired by previous works [9], we adopt scaled dot-product as the
attention function:

Attention(Q,K,V) = softmax(
QK�
√

d
)V. (3)
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After the multi-intention extraction module, we obtain a user u’s γ intentions,
denoted by (mu

1 ,mu
2 , · · · ,mu

γ).

3.4 Multi-Intention Evolution Module

With the extracted multiple intentions from the multi-intention extraction mod-
ule, we next capture the dynamic evolution of each intention via a multi-intention
evolution module, which consists of an intention-aware remapping layer and an
intention-aware evolution layer.

Intention-Aware Remapping Layer. Simply capturing the sequential pat-
terns on the learned intentions lacks guarantees to model the dynamic evo-
lution of user intentions precisely [5]. Therefore, we first design an intention-
aware remapping layer to explicitly inject sequentiality and temporal information
into intention-aware interaction sequences. In particular, we devise an extended
scaled dot-product attention mechanism, where the learned intentions play the
role of query vectors, and the key and value of the scaled dot-product attention
are the interaction sequence injected with positional and temporal information:

(Key : Value) : (ESuWK
S + EPW

K
P + ETivuWK

T : ESuWV
S + EPW

V
P + ETivuWV

T ),
(4)

where ESu , EP , ETivu ∈ R
n×d are the embedding matrices of the interaction

sequence, position sequence and time interval sequence, respectively. WK and
WV ∈ R

d×d are the trainable matrices for keys and values, where the subscripts
S, P and T indicate the matrices for the interaction sequence, position sequence
and time interval sequence, respectively. Then we compute a new intention-aware
interaction sequence Su

k = (su
k1, s

u
k2, · · · , su

kn) via

Su
k = softmax

(
(mu

kW
Q
Sk

)Key�
√

d

)

Value, (5)

where WQ
Sk

∈ R
d×d is the trainable matrix for intention mu

k .

Intention-Aware Evolution Layer. To capture the dynamic evolution of each
intention, we employ gated recurrent units (GRUs) to model the dependencies
between interacted items under each individual intention. Specifically, the input
to the GRU for the kth intention is the kth intention-aware interaction sequence
Su

k . We utilize the last hidden state hu
k of the GRU to represent the user u under

the kth intention. We further adopt a point-wise feedforward network (FFN) to
endow the model with non-linearity and consider interactions between different
latent dimensions:

mu
k = hu

k + Dropout(FFN(LayerNorm(hu
k))), (6)

LayerNorm(x) = α � x − μ√
σ2 + ε

+ β, (7)

FFN(x) = ReLU(xW1 + b1)W2 + b2, (8)
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where W1,W2 ∈ R
d×d are learnable matrices, and b1, b2 are d-dimensional bias

vectors. μ and σ are the mean and variance of x, α and β are the learned scaling
factor and bias term, respectively. We apply layer normalization to the input hu

k

before feeding it into the FFN, apply dropout to the FFN’s output, and add the
input hu

k to the final output.

3.5 Multi-Intention Aggregation Module

Intuitively, a user’s interaction with an item is usually driven by a single inten-
tion. Directly combining the multiple intention representations as the final inten-
tion representation is counter-intuitive and cannot maximize the benefits of
extracting multiple intentions. In addressing this issue, we adopt the Gumbel-
softmax to adaptively determine whether an intention is relevant to the can-
didate item or not. Specifically, we first explicitly project the candidate item’s
embedding en+1 into different intention subspaces (see Eq. 9), and then cal-
culate the relevance between each intention representation and the candidate
item’s embedding in each intention subspace via the inner product operation
(see Eq. 10). Distinct from the previous methods using softmax to aggregate
the multiple intention representations, we adopt the Gumbel-softmax to identify
the most relevant intention (see Eqs. 11 and 12). Finally, we obtain the final
representation mu of user u at the finer granularity of intentions.

ek
n+1 = en+1Wk, (9)

rk
n+1 = ek

n+1m
u
k

�, (10)

ak =
exp((log(rk

n+1) + gi)/τ)
∑γ

j=1 exp((log(rj
n+1) + gj)/τ)

, (11)

mu =
γ∑

k=1

ak ∗ mu
k . (12)

3.6 Model Training

After we get the final representation mu of user u, prediction scores are calculated
as the inner product of the final user representation mu and the candidate item’s
embedding ei:

ru,i = eim
�
u . (13)

We use the pairwise Bayesian personalized ranking (BPR) loss to optimize
the model parameters. Specifically, it encourages the predicted scores of a user’s
historical items to be higher than those of unobserved items:

LBPR =
∑

(u,i,j )∈O
− ln σ(ru,i − ru,j ) + λ‖Θ‖22 , (14)

where O = {(u, i, j)|(u, i) ∈ O+, (u, j) ∈ O−} denotes the training dataset
consisting of the observed interactions O+ and sampled unobserved items O−,
σ(·) is the sigmoid activation function, Θ is the set of embedding matrices, and
λ is the L2 regularization parameter.
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4 Experiments

4.1 Experimental Setup

Datasets and Evaluation Metrics. We evaluate our framework on three pub-
lic benchmark datasets that are widely used in the literature. Amazon-Review
datasets1 contain product reviews from the online shopping platform Amazon,
and we use two representative datasets, Grocery and Gourmet Food (referred to
as Grocery and Beauty). MovieLens2 datasets contain a collection of movie
ratings from the website MovieLens. and we use MovieLens-1M (referred to as
ML1M) in our experiments. Following previous works [2,5], we filter out cold-
start users and items with fewer than 5 interactions and sort the interactions of
each user by timestamps. Similarly, we use the most recent item for testing, the
second most recent item for validation, and the remaining items for training. We
evaluate our framework by two widely-adopted ranking metrics, Hit Ratio@N
(HR@N) and Normalized Discounted Cumulative Gain@N (NDCG@N).

Baselines. To demonstrate the effectiveness of our solution, we compare it
with a wide range of representative sequential recommenders, including four
single-intention-aware methods (GRU4Rec [1], NARM [6], Caser [8], and
TiSASRec [5]) and a multi-intention-aware method, SINE [7].

Implementation Details. Identical to the settings of previous methods, the
embedding size is fixed to 64. We optimize our method with Adam [3] and
set the learning rate of Grocery, Beauty, and ML1M to 10−4, 10−3 and 10−4,
respectively, and the mini-batch size to 256 for all three datasets. The maximum
length of interaction sequences of Grocery, Beauty, and ML1M is set to 10, 20,
and 50, respectively. The maximum time interval is set to 512 sec for all three
datasets. The temperature parameter τ in the Gumbel-softmax is set to 0.1. To
address overfitting, we use L2 regularization with the regularization coefficients
of 10−5 for Grocery and ML1M and 10−4 for Beauty.

4.2 Main Results

Overall Comparison. We report the overall comparison in Table 1, where the
best results are boldfaced and the second-best and third-best results are under-
lined. We can draw a few interesting observations: (1) TiSASRec achieves the
best performance among single-intention-aware methods, indicating the effec-
tiveness of the self-attention mechanism and temporal information in captur-
ing sequential patterns. However, without considering multiple user intentions,
these methods cannot identify a user’s true intention accurately, leading to sub-
optimal recommendations. (2) As a multi-intention-aware method, SINE per-
forms generally better than most single-intention-aware methods, which shows
1 http://jmcauley.ucsd.edu/data/amazon/links.html.
2 https://grouplens.org/datasets/movielens/1m/.

http://jmcauley.ucsd.edu/data/amazon/links.html
https://grouplens.org/datasets/movielens/1m/
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Table 1. Performance of different models on the three datasets. All the numbers in
the table are percentages with % omitted.

Grocery Beauty ML1M

Metric@10 Metric@20 Metric@10 Metric@20 Metric@10 Metric@20

HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG

GRU4Rec 4.79 2.41 7.89 3.19 3.98 2.09 6.38 2.69 14.17 6.90 23.06 9.13

NARM 6.21 3.21 9.72 4.09 7.28 4.18 10.23 4.92 15.23 7.10 25.66 9.71

Caser 5.65 2.85 9.02 3.69 5.92 3.15 8.91 3.90 15.62 7.48 27.72 11.00

TiSASRec 7.32 3.20 11.00 4.06 8.25 4.23 11.31 5.00 22.37 10.82 33.54 13.64

SINE 6.27 2.96 9.89 3.73 5.84 2.57 8.73 3.30 16.64 7.18 27.91 10.00

MISRec 7.63 3.37 11.37 4.26 8.83 4.72 12.42 5.45 22.81 11.62 34.37 14.45

Improv. 4.23 4.98 3.36 4.16 7.03 11.58 9.81 9.00 1.97 7.39 2.47 5.94

Table 2. Performance of different variants of MISRec. The results of HR@20 and
NDCG@20 are omitted due to the space limitation.

Grocery Beauty ML1M

HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

w/o PE 7.47 3.30 8.29 4.35 22.50 10.74

w/o TIE 7.46 3.31 8.38 4.49 22.48 10.80

w/o GS 7.59 3.34 8.78 4.68 22.68 11.50

MISRec 7.63 3.37 8.83 4.72 22.81 11.62

that explicitly exploring multiple user intentions is a rewarding direction. How-
ever, the performance of SINE is still worse than TiSASRec. We deem that it
is caused by the negligence of the dynamic evolution of individual intentions
and the improper aggregation of multiple intentions. (3) By addressing the two
issues mentioned above, MISRec maximizes the benefits of extracting multiple
intentions and consistently yields the best performance on all datasets, which
well justifies our motivation.

Ablation Study. To investigate the contributions of different components on
the final performance, we conduct an ablation study to compare the performance
of different variants of our MISRec model on the three datasets. The variants
include: (1) w/o PE removes positional embeddings in the multi-intention evo-
lution module. (2) w/o TIE removes time interval embeddings in the multi-
intention evolution module. (3) w/o GS replaces the Gumbel-softmax with the
softmax in the multi-intention aggregation module. Table 2 shows the perfor-
mance of all variants and the full MISRec model on the three datasets. By com-
paring the performance of different variants, we can derive that both positional
embeddings and time interval embeddings lead to performance improvement,
which demonstrates the significance of explicitly modeling the dynamic evolu-
tion of different intentions. Furthermore, identifying the most relevant intention
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rather than aggregating multiple intentions consistently improves the perfor-
mance by a significant margin, which justifies our motivation.

5 Conclusion

In this paper, we proposed a novel Multi-Intention Sequential Recommender
(MISRec) to address the limitations of existing works that leverage users’ multi-
ple intentions for better next-item recommendations. We made two major con-
tributions. First, we designed a multi-intention evolution module that effectively
models the evolution of each individual intention. Second, we proposed to explic-
itly identify the most relevant intention rather than aggregate multiple inten-
tions to maximize the benefits of extracting multiple intentions. A comprehensive
experimental study on three public benchmark datasets demonstrates the supe-
riority of the MISRec model over a large number of state-of-the-art competitors.
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