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Abstract. Locality sensitive hashing (LSH) has been extensively
employed to solve the problem of c-approximate nearest neighbor search
(c-ANNS) in high-dimensional spaces. However, the search performance
of LSH is degenerated with the number of data increasing. To this end,
we propose an efficient method called Data Aware Sensitive Hashing
(DASH) to deal with this drawback. DASH is the data-dependent hash-
ing algorithm under considering the residual distance prior. DASH lever-
ages this prior knowledge and provides theoretical guarantee for search
results. Our experimental results with various datasets show that DASH
achieves better search performance and the running time can reach up
to about 4–40x speedups compared with other state-of-the-art methods.
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1 Introduction

The nearest neighbor search (NNS) is the research focus all the time, which has
been extensively applied to various fields, such as databases, machine learning
and data mining. Given a query point q with dimension d in the Euclidean
space, the problem of NNS is to return a point o∗ in the dataset D with mini-
mum distance to q. For low-dimensional NNS, the exact solutions have already
been reported by based-tree methods. However, it has a great challenge to find
the exact results for NNS in high-dimensional space due to the curse of dimen-
sionality. Hence, an alternative scheme, i.e., the approximate nearest neighbor
search (ANNS), has been extensively studied in recent two decades. Formally,
the purpose of c-ANNS is to report a point o ∈ D, whose distance with q is
within c × r∗, where r∗ represents the distance between the query q and its
exact nearest neighbor.

Locality sensitive hashing (LSH) is one of most effective techniques to solve
high-dimensional c-ANNS problems, which is originally proposed for hamming
space in [1], and later is extended to Euclidean space based on p-stable distri-
bution [2]. Since LSH often needs to build hundreds of hash tables for achieving
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good search results. This leads to prohibitively large space consumption. To deal
with this problem, many LSH variants have been designed, e.g. [3–5]. However,
LSH and its variants are data-independent hashing schemes.

As a matter of fact, many researchers turn to study the data-dependent hash-
ing schemes to enhance the search performance for ANNS. In [7], the best LSH
data structure is constructed by partitioning the original datasets into several
subsets to form data-dependent hashing scheme. Based on [7], another data-
dependent hashing scheme is proposed via spectral theorem [8]. Although the
both methods have rigorous theoretical guarantee for search results returned,
it is hard to put them to practice. Moreover, DSH [9] improves the hashing
functions to address the problem that the elements of buckets for traditional
LSH are unbalance. But DSH is lack of similar probability guarantee with tradi-
tional LSH. Our proposal DASH is the data-dependent hashing algorithm under
considering the residual distance prior, and has the nature of probability guar-
antee for LSH. Similarly, BayesLSH [23] also puts forward a prior distribution
and exploits Bayes inference to give the probability guarantee for the results
returned, while its prior distribution is data-independent.

Motivations. Most of LSH and its variants have desirable theoretical guaran-
tee for the search results, but often suffer from time inefficient, although they
can achieve answering c-ANN queries with sub-linear query overhead. Also, the
calculation cost on Euclidean distance between the query and its candidates is
great because of finding a large amount of useless candidates. Product quan-
tization (PQ) [10] provides effective means to estimate Euclidean distance for
any high-dimensional points in Euclidean space. It constructs pre-calculation
distance table by the manner of the asymmetric distance computation (ADC)
or symmetric distance computation (SDC). This speeds up the distance com-
putation for any two points, compared against computing Euclidean distance
directly. By taking the merit of LSH and PQ into account, we are expected to
design an algorithm that not only has probability guarantee for c-ANNS, but
also is able to speed up query processing.

Contributions. The main contributions of the paper are concluded as follow:

• we propose an algorithm called Data Aware Sensitive Hashing (DASH) to
answer the k -ANNS in high-dimensional Euclidean space. DASH is time effi-
cient method and provides quality guarantee for the search results returned
with preassigned success probability.

• We propose a novel prior (residual distance prior) – the key observation for
DASH, which is based on the statistics of residual distance on data points
to any random query. Equipped with this prior knowledge, DASH is able to
address the k -NNS problem in more efficient manner.

• Extensive experiments demonstrate that DASH achieves desirable search per-
formance for a variety of real datasets with different sizes. Compared against
other state-of-the-art algorithms, DASH can obtain at least 4x speedup in
the running time over different datasets.
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Organization. The rest of this paper is organized as follows. Some preliminar-
ies are reviewed in Sect. 2. A key observation is found in Sect. 3. Our method
and probability analysis are presented in Sect. 4. Experimental results and anal-
ysis are reported in Sect. 5. Section 6 discusses the related work. Finally, a brief
conclusion is drawn in Sect. 7.

2 Preliminaries

2.1 Problem Definitions

In this paper, we consider a dataset D with n points denoted as vectors in a d -
dimensional Euclidean space Rd. For any point o and query q, let d(o, q) represent

the Euclidean distance that is defined as d(o, q) =
√∑d

i (o[i] − q[i])2, where o[i]
and q[i] are the coordinate value of i -th dimension for o and q, respectively. Given
a query q and the distance measure d(·, ·), the exact nearest neighbor (NN) o∗ of q
is the point in D with the minimum distance to q, namely o∗ = argmino∈Dd(o, q).
Then, the c-approximate nearest neighbor search (c-ANNS) is defined as follows:

Definition 1. Given an approximate ratio c (c ≥ 1), any query q ∈ Rd and the
distance measure d(·, ·), the problem of c-ANNS is to establish a data structure,
which retrieves a point o ∈ D satisfying d(o, q) ≤ c × d(o∗, q), in which o∗ ∈ D
denotes the exact NN of q.

The c-ANNS can be extended to more generalized form of c-k -ANNS. Sim-
ilarly, the problem of c-k -ANNS is to establish a data structure, which for any
query q ∈ Rd, retrieves a set of k ordered points oi ∈ D (1 ≤ i ≤ k) satisfying
d(oi, q) ≤ c × d(o∗

i , q), in which o∗
i ∈ D denotes the i -th exact NN of q.

2.2 Product Quantization

Product Quantization (PQ) [10] has been proposed to address the ANNS prob-
lem in high-dimensional space. It divides the d -dimensional original space into M
subspaces equally, with the dimension of each subspace being d

M . Correspond-
ingly, all the original vectors are divided into M subvectors and the dimension of
each subvector is d

M . Then all the subvectors in each subspace are quantized to
k∗ different centroids, which are learned from a part of original data by k -means
algorithm. That is, each subvector is denoted by the index of its nearest centroid,
where the index is an integer over interval [1, k∗]. Thus, each original vector is
denoted by a tuple of M integers, which are called as PQ-code. All the M · k∗

centroids are compose of the codebook C of the product quantizer jointly.
With the codebook and PQ-codes, the Euclidean distance between any two

vectors in the original space is estimated from their PQ-codes. There exists
two manners to estimate the distance, i.e., the asymmetric distance calculation
(ADC, the distance is calculated by a original vector and a PQ-code) and sym-
metric distance calculation (SDC, the distance is calculated by two PQ-codes).
When a query vector arrives, a M ·k∗ pre-calculation distance table is built with
ADC manner.
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2.3 Query-Aware LSH Scheme

Assume that there is a random projection vector �a of dimension d, namely
�a = [a1, a2, . . . , ad], whose each entry is an i.i.d random variable drawn from
Gaussian distribution N (0, 1), independently. Given a vector �o of dimension d,
the hash function between two vectors �a and �o represented as h(o) = 〈�a, �o〉 is
the projection of o along �a, which is regarded as an LSH signature. According
to the property of p-stable distribution for p = 2 [2], for any given points o1, o2,
h(o1) − h(o2) follows Gaussian distribution N (0, d2(o1, o2)).

Given a bucket width 2w, the strategy of query-aware is that when query
point q arrives, its LSH signature is located as the projected centre to identify
the interval with bucket width 2w, i.e., the interval [h(q) − w, h(q) + w]. For
arbitrary point o, let s = d(o, q), if the LSH signature of a point o falls in the
hash bucket with width 2w, i.e., |h(o) − h(q)| ≤ w, then o collides with q under
the hash function h(·). Accordingly, the collision probability is formalized as
following form:

p(s) = Pr(ψ(o) ≤ w) =
∫ w

s

− w
s

ϕ(x)dx (1)

with ψ(o) = |h(o) − h(q)| and ϕ(x) being the probability density function of
Gaussian Distribution N (0, 1).

Suppose that the number of independent hash functions and the collision
threshold are m and l, respectively, where l ≤ m. According to the collision
counting technique [4], it is easy to derive that the probability P(†Col(o) ≥ l)
of point returned obeys Binomial distribution B(m, p(s)), with

P(†Col(o) ≥ l) =
m∑
i=l

(
m

i

)
(p(s))i(1 − p(s))m−i (2)

in which †Col(o) is the number of collision between q and o under m hash
functions.

3 Residual Distance Prior

The residual distance prior is based on the following observation that the differ-
ence of approximate distance and Euclidean distance with respect to a random
query point forms a specific distribution. To elaborate this observation formally,
we first define the notion of residual distance. For a random query point q and
an arbitrary point o, their residual distance (denoted by e) is given as following
form:

e = d(o, q) − d̂(o, q) (3)

where d(o, q) denotes the Euclidean distance between the original vector o and
query q, while d̂(o, q) denotes the approximate distance of d(o, q). Clearly, the
residual distance is query-dependent.
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Observation. We fit e over different datasets, as shown in Fig. 1 and Fig. 2. One
important finding is that e fitted over many existing datasets asymptotically
follow a common distribution family, i.e., Gaussian distribution.

Next, we will show how to obtain the universal residual distance distributions.
This is similar to the previous works [11]. For a random query point q, we first
compute the Euclidean distances d(o, q) and d̂(o, q) to obtain their difference e.
Then the histogram on the difference e forms the residual distance distribution
with respect to this query q. Actually, the residual distance distributions con-
structed for various queries could be discrepant. However, we observe that these
residual distance distributions have similar shapes, but their scales are different.
If a single residual distribution is only selected in one of the residual distance
distributions as an universal distribution, errors will be resulted in. Therefore,
in order to reduce error, we select the residual distance distributions for certain
queries to approximate the universal residual distance distribution.

Concretely, we show how to extract statistical parameters from various
datasets and conduct parameter estimation for the Gaussian distribution.
According to the description above, we propose to fit the residual distance by
the Gaussian distribution, whose probability density function is formalized as
follows:

f(x|μ, σ2) =
1√
2πσ

exp

(
− (x−μ)2

2σ2

)
(4)

with μ being the shape parameter; σ being the scale parameter. In practice, the
purpose we select the Gaussian distribution is that it has distinct advantages.

First, the Gaussian distribution fits the residual distances with respect to
various datasets, as shown in Fig. 1 and Fig. 2. Please see Subsect. 5.1 for more
details about the datasets. One can be found that the residual distance distribu-
tions follow Gaussian distribution asymptotically. Since the accuracy of d̂(o, q)
depends on M, namely the larger M, the more accuracy d̂(o, q) would be, the
residual distance distributions vary with M. To verify the availability, we present
different results with the variation of M. In Fig. 1, d̂(o, q) over various datasets
are computed with PQ under M = 8, except the dataset ImageNet with M = 10.
While in Fig. 2, M = 25 for ImageNet, and other datasets are M = 16. Note
that the residual distance distributions are also fitted to be the Gaussian dis-
tribution when increase the magnitude of M, where we only show part of the
residual distance distributions due to the limitation of space.

Next, there exists an effective method to estimate the parameters of residual
distance distribution, which can be estimated by Maximum Likelihood Esti-
mation (MLE). For any sample with n i.i.d. Gaussian random variables, i.e.,
{x1, x2, . . . , xn}, the likelihood function is given by following form:

L(μ, σ) =
n∏

i=1

f(xi|u, σ2) (5)

then we maximize the log-likelihood function ln(L(μ, σ)). By respectively com-
puting the partial derivatives of ln(L(μ, σ)) for both two parameters μ and σ,
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Fig. 1. The residual distance distribution (RD) asymptotically follows the Gaussian
distribution (GD) for M = 8 and M = 10.

Fig. 2. The residual distance distribution (RD) asymptotically follows the Gaussian
distribution (GD) for M = 16 and M = 25.

their estimation can be solved as μ̂ = 1
n

n∑
i=1

xi and σ̂2 = 1
n

n∑
i=1

(xi − μ̂)2. It can be

found that the estimated parameters only hinge on arithmetic mean and variance
of the sample, such that they can be easily obtained from given dataset.

4 Our Approach and Theoretical Analysis

4.1 Overview

Our algorithm is based on the search framework of QALSH [5]. It achieves that
the exact distance calculation between the query and its candidates is converted
to a look-up table operation, which greatly speeds up search time. Also, the
similar probability guarantee with LSH is still obtained.
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4.2 Algorithm Achievement

Our algorithm is based on the framework for memory version of QALSH [5],
which can be divided into two parts: indexing construction and query processing.

Indexing Construction. We first select m LSH random projection vectors
�a generated from N (0, 1). Then, each o ∈ D is randomly projected from d -
dimensional space to m hash values hi(o), i ∈ {1, 2, . . . ,m}. For each projection
vector �ai, we construct a sorted hash table to store the key-value pair (ID(o),
hi(o)) for all points, where key ID(o) is the identifier (ID) of each point o,
and the hash table is sorted in the ascending order of hi(o). Finally, m hash
tables reside on memory. Meanwhile, we employ PQ quantifying the dataset D
to form PQ-codes and the pre-calculation distance tables for various queries are
constructed with ADC manner.

Query Processing. When a query point q ∈ Rd arrives, we also use m hash
functions h(·) mapping it into corresponding hash values hi(q). Then for given
bucket width 2w, we will conduct a range search [hi(q) − w, hi(q) + w] over each
hash table. During this search processing, †Col(o) for each point o is updated
dynamically. Recall that †Col(o) is the number of collision between o and q.

The pseudo-code of the probabilistic NNS on DASH is shown in Algorithm 1.
DASH locates the hash values hi(q) via binary search, and the range search is
conducted by gradually extending bucket width 2w by adding �w (Line 3),
which is similar to the process of virtual rehashing [4,5] to access more points.
However, the most significant difference of extending 2w is that it positively
impacts the collision probability for supporting our probabilistic terminal con-
dition, which will be discussed in the next subsection. When |hi(o)−hi(q)| ≤ w,
†Col(o) is updated (Line 5-6). If †Col(o) is not lower than the collision threshold
l, o is regarded as the candidate of q (Line 7-8). Then, the calculation of exact
distance d(o, q) is converted to a look-up table operation, i.e., d(o, q) is approx-
imated with d̂(o, q) calculated by the pre-calculation distance table constructed
with PQ. Such an operation accelerates the query processing greatly.

Due to the fact that d̂(o, q) is an estimation distance that has certain error
with d(o, q), DASH is unable to obtain desirable search accuracy under fixed
bucket width compared with QALSH. To this end, we supplement the loss �
based on d̂(o, q) to obtain a more accuracy distance, where � is a constant
value determined by Gaussian distribution N (μ̂, σ̂2), and we will present how
to determine � in Subsect. 4.3. Finally, d(o, q) is estimated as d̂(o, q) + �. As
d̂(o, q)+� is large enough, i.e., d̂(o, q)+� > d(o, q), it leads to DASH extending
the bucket width to bring in more points in comparison with QALSH. This
because for any given success probability P ∗, the bucket width 2w is proportional
to d̂(o, q)+�. If d̂(o, q)+� > d(o, q), QALSH and DASH will be terminated early
in 2w′ and 2w′′ respectively, with w′ < w′′. Furthermore, another method is to
heighten the success probability P ∗. This condition is rigorous, which promotes
DASH to return more candidates. Hence, DASH enhances the search accuracy
effectively with the methods above.
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Algorithm 1: NNS on DASH
Input: query point q, m hash tables, collision threshold l, bucket width 2w,

success probability P ∗, approximate ratio c;
Output: omin in the set of C

1 w = 0; †Col(o) = 0;
2 while true do
3 2w = 2w + �w;
4 for each i = 1 to m do
5 for |hi(o) − hi(q)| ≤ w for o in i-th hash table do
6 †Col(o) = †Col(o) + 1;
7 if †Col(o) ≥ l then
8 C = C ∪ o;

9 Calculate (̂d(o, q) + �) and Pr(̂d(o, q) + �);

10 if Pr(̂d(o, q) + �) ≥ P ∗ then
11 break the while-loop;

12 return omin ∈ C;

If PQ is directly exploited to the acceleration, it will lead to the destruc-
tion on probability guarantee of LSH. Fortunately, we observe that the residual
distance prior follows an universal distribution, as described in Sect. 3. Accord-
ing to the key observation, we determine the loss � as a constant value with
certain probability. Then by taking this probability into account, we develop a
new probability guarantee based on the framework of QALSH as the terminal
condition of DASH. Actually the probability guarantee is similar to that in LSH,
which is given in Subsect. 4.3. With the estimated distance d̂(o, q)+�, it is easy
to derive the collision probability Pr(d̂(o, q) + �) (Line 9). Assume the terminal
condition has already been satisfied (Line 10), omin in the set C is reported as
the final result (Line 12).

k-NN Search. Our method can also be extended to perform k -NN search.
It is sufficient to modify the terminal condition as |C| ≥ k and Pr(d̂(o, q) +
�) ≥ P ∗ (Line 10 of Algorithm 1), and finally return k neighbors, i.e.,
{o1min, o2min, . . . , okmin}. Hence, with this search framework, DASH can conduct
probabilistic NNS and k -NNS.

4.3 Probability Analysis

Assume that the point o is the candidate of q. As discussed above, their estimated
distance is d̂(o, q) + �, and the loss � is determined based on N (μ̂, σ̂2). Next,
we mainly focus how to obtain � with desirable probability.

According to the jσ rule of Gaussian distribution, here j ∈ {1, 2, 3}, the
probability P(μ, jσ) for random variables drawn within [μ − jσ, μ + jσ] is given
as:
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P(μ, jσ) = F (μ + jσ) − F (μ − jσ) =
2√
π

∫ j√
2

0

dx (6)

where F (·) is the cumulative distribution function (CDF) of Gaussian distri-
bution. From the Eq. (3), we have d(o, q) = d̂(o, q) + e, where e ∼ N (μ̂, σ̂2).
Then, one can derive based on Eq. (6) that d(o, q) falls into the interval
[d̂(o, q) + μ̂ − jσ̂, d̂(o, q) + μ̂ + jσ̂] with probability P(μ̂, jσ̂). Hence, the loss
� is determined as � = μ̂+jσ̂, which is the worst-case to estimate d(o, q) under
P(μ̂, jσ̂), with d(o, q) = d̂(o, q) + μ̂ + jσ̂.

Recall that ψ(o) = |h(o)−h(q)|. For given bucket width 2w and approximate
ratio c, the collision probability p(d̂(o, q) + �) for both q and o is given as
following form:

p(d̂(o, q) + �) = Pr(ψ(o) ≤ cw) =
∫ cw

d̂(o,q)+�

− cw

d̂(o,q)+�

ϕ(x)dx (7)

where ϕ(x) is the probability density function of N (0, 1). A simple calcu-
lation for the Eq. (7) is p(d̂(o, q) + �) = 2norm( cw

d̂(o,q)+� ) − 1, in which

norm(x) =
∫ x

−∞ ϕ(t)dt. Note that norm(x) is the CDF of N (0, 1), which is
the monotonically increasing function with respect to x. When c and 2w are
fixed, norm( cw

d̂(o,q)+� ) is monotonically decreasing with d̂(o, q) + � increasing,

so p(d̂(o, q) + �) monotonically decreases with d̂(o, q) + � increasing. We know
that d̂(o, q)+� is the worse-case to estimate d(o, q). Since � is a random variable
drawn from N (μ̂, σ̂2) with probability P(μ, jσ), there is d̂(o, q) + � ≤ d(o, q) or
d̂(o, q) + � ≥ d(o, q).

Since p(d̂(o, q) + �) is known, P(†Col(o) ≥ l) is obtained via the Eq. (2).
To achieve the probability guarantee of the algorithm, we first make an assump-
tion that the two events on the loss Δ determined and the nearest neighbor
returned by collision counting are mutually independent under DASH, i.e., the
both probability P(†Col(o) ≥ l) and P(μ, jσ) obtained are independent. Then
the overall probability Pr(d̂(o, q)+�) of finding the nearest neighbor for DASH
can be expressed as:

Pr(d̂(o, q) + �) = P(†Col(o) ≥ l) · P(μ, jσ) (8)

This is regarded as the probabilistic terminal condition for DASH. Furthermore,
if we could acquire d̂(o, q) + � in advance, then p(d̂(o, q) + �) is determined
immediately by the Eq. (7). We only require to select suitable m, l and P(μ, jσ)
to realize the success probability P ∗ specified beforehand, such that

Pr(d̂(o, q) + �) = P ∗ (9)

Example 1. Suppose the point o has been the candidate of q, and their estimated
distance is d̂(o, q) + μ + 2σ. This means � = μ + 2σ, with P(μ, 2σ) = 0.9544.
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If the collision probability P(†Col(o) ≥ l) = 0.9, then the overall probability
Pr(d̂(o, q)+�) = 0.9× 0.9544 ≈ 0.86. Similarly, when d(o, q) = d̂(o, q)+μ+3σ,
we obtain P(μ, 3σ) = 0.9974, such that Pr(d̂(o, q) + �) = 0.9 × 0.9974 ≈ 0.9.

To sum up, it is natural to yield the theorems below for the search results
under DASH.

Theorem 1. DASH returns the NN (omin) of query q with the success proba-
bility at least P ∗.

Proof. First, we define the two events below:
E1 : the loss � is determined based on residual distance distribution.
E2 : the omin is found by DASH.
Recall that we make an assumption on E1 and E2 being independent. As

discussed earlier, if the points are contained under the fixed bucket width 2w,
then P [E1] and P [E2] can be obtained by the Eq. (6) and Eq. (2), respectively.
Since the both events are mutually independent, P [E1E2] = P [E1]P [E2]. How-
ever, DASH is guaranteed to answer the omin with success probability P ∗, then
we have P [E1E2] ≥ P ∗. Hence, this theorem is proved. ��
Theorem 2. DASH returns the k-NN ({oimin}ki=1) of query q with the success
probability at least P ∗.

Proof. The proof of this theorem is similar to Theorem 1. ��

5 Performance Evaluation

Our method is implemented in C++ and compiled with g++ 9.3 with -O3
optimization. The experiments for general-scale datasets were conducted on a
laptop with six-cores Intel(R), i7-8750H @ 2.20GHz CPUs and 32 GB RAM, in
Ubuntu 20.04. While others for large-scale datasets were conducted on a server
with eight-cores Intel(R), E5-2620 v4 @2.1GHz CPUs and 256 GB RAM.

5.1 Datasets and Experiment Setting

We employ some publicly available real-life datasets in our experiments, whose
data types cover audio, image and deep-learning data. Also, the 50 points are
chose randomly from corresponding test sets as queries.

• Cifar. The Cifar dataset is a collection of 0.05 million 512-dimensional GIST
feature vectors extracted from TinyImage.

• Audio. It is a 192-dimensional dastset that is composed of about 0.05 million
audio feature vectors from DARPA TIMIT audio speed dataset.

• Mnist. The Mnist dataset contains about 0.07 million images of hand-written
digits, which are represented as 784-dimensional vectors.

• Notre. It has about 0.3 million 128-dimensional features of a set of Flickr
images and a reconstruction.
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• Sift. The Sift dataset contains 1 million 128-dimensional SIFT vectors.
• Deep. The Deep dataset has 1 million data points with 256 dimensions that

are deep neural codes of natural images obtained from the activations of a
convolutional neural network.

• Ukbench. It is about 1 million 128-dimensional features of images.
• ImageNet. The ImageNet consists of about 2.4 million data points with

150-dimensional dense SIFT features.
• Sift10M. This dataset contains 10 million 128-dimensional SIFT vectors.
• Sift100M. This dataset contains 100 million 128-dimensional SIFT vectors.
• Deep10M. This dataset contains 10 million 96-dimensional DEEP vectors.
• Deep100M. This dataset contains 100 million 96-dimensional DEEP vectors.

The parameters have an important influence on the performance of our
method. To this end, we empirically determine some near optimal parameters
with respect to different datasets. For data compression, each vector is divided
into M = d

2 subvectors and the centroids of each subspace are k∗ = 256. The
details for building the pre-calculation table can refer to [10]. In addition, we
select the number of hash function m = 60 and the collision threshold l = 50 as
the default for the experiments.

5.2 Evaluation Metrics

We employ the following metrics to evaluate the performance of our algorithm.

• Recall. We employ recall as a criterion to measure the accuracy for different
algorithms. For the k -NNS, the recall is defined as the fraction on how many
the k points answered by an algorithm are appeared in the true k nearest
neighbors. Hence, it can be formalized as

Recall =
|R′ ∩ R|

|R|
where R′ is a set of k points answered for a query and R is a set of true k
nearest neighbors for the query. In our experiment, the Recall is computed as
R1@1, R10@10, . . . , R100@100.

• Query Answering Time. Another evaluation metrics is the query answer-
ing time, which is defined as the wall-clock time of an algorithm to answer
k -NN.

In our experiments, we report the average recall and average running time
as the final results, where both of them are the average over the queries.

5.3 Baseline Algorithms

There are many the state-of-the-art algorithms for approximate nearest neigh-
bor search (ANNS), such as QALSH [5], VHP [6], PMLSH [18], R2LSH [19],
SRS [20], HD-index [21], PQBF [22]. Since R2LSH performs better for ANNS
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compared with SRS, Hd-index and PQBF [19]. Also, we find that VHP, PMLSH
and R2LSH are not compared with each other. Hence we select QALSH, VHP,
PMLSH, R2LSH as baselines. Note that those algorithms work on memory. To
implement the best performance of VHP, we use some parameter values pre-
sented in [6], in which hash functions m = 60, success probability P ∗ = 0.9 and
the initial search window t0 = 1.4. For QALSH, we employ the improved version,
which can achieve higher accuracy and support c = 1. VHP and QALSH use
identical hash functions m and collision threshold l. For PMLSH, we choose the
parameters proposed in [18], with m = 15, P ∗ = 1 − 1/e and the number of piv-
ots s = 5. Also, the parameters of R2LSH are set as the default value suggested
by the authors in [19], where m = 40 and P ∗ = 0.9. For the c-k -ANNS, we set
c = 1 and k ∈ {1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.

5.4 Results and Analysis

Our method is based on the framework of QALSH. Due to the employment of
PQ, our method requires to add extra consumption to construct indexing com-
pared with QALSH, whereas the consumption is relatively small. For example,
with respect to the large-scale dataset Deep100 M of size 36 GB used in the
experiments, the additional time and space consumption are around 470 s and
4.5 GB, respectively, where QALSH needs about 46 GB memory space for con-
structing hash tables and the corresponding time is close to 820 s. It can be found
that the additional time and memory space are only around a half and tenth of
QALSH, respectively.

General-Scale Data. We study the performance mainly focusing on the aver-
age recall and query answering time. The distance for any two points is estimated
with PQ, it is inevitable to result in certain estimated error and the destruction
of probability guarantee. Nevertheless, our method can speed up the search pro-
cessing with the pre-calculation distance table and obtain the similar probability
guarantee with LSH based on residual prior distribution. Since the distance cal-
culation with PQ negatively impacts the search accuracy, we use the original data
to solve this issue. More explicitly, we consider that the real k nearest neighbors
for any query are within the top-k′ points returned, where k′ > k is a predefined
constant. If we reorder the top-k′ points with Euclidean distance, then it has
higher possibility to find top-k exact nearest neighbors. Hence, we answer the
best top-k in top-k′ points as the final results for any query to achieve higher
accuracy. The average recall Rk@k by varying k from 1 to 100 under the success
probability P ∗ = 0.9 is given in Fig. 3. One can be found that the average recall
Rk@k for our method is almost higher than other state-of-the-art methods with
respect to different datasets.

Correspondingly, the running time curves for k -NNS are shown in Fig. 4. One
can observe that the running time for R2LSH, PMLSH and VHP presents dif-
ferent over various datasets, while DASH is lower significantly than them. This
is because when the candidates have been retrieved, other methods need to cal-
culate the Euclidean distance, which cost a large amount of time; by contrast,
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Fig. 3. The comparison on the accuracy among different methods.

Fig. 4. The comparison on the running time among different methods.

DASH only needs to calculate the approximate distance by the pre-calculation
distance table, so that the time consumption is relatively less. This means that
DASH is more promising as k varies. For the dataset Mnist with high dimen-
sionality, DASH performs better than those with low dimensionality, in which
the speed can reach up to more than 40x in comparison with QALSH. Generally,
DASH can achieve at least 5x speedup than other methods. Therefore, DASH
is more superior pertaining to high dimensional datasets. Note that the cost of
running time for finding k nearest neighbors is proportional to the increment
of k, while the corresponding curve for DASH looks pretty stable than other
algorithms because the magnitude of increment is relatively small.

Large-Scale Data. When DASH is applied to process more large-scale data, it
also has significant superiority on accuracy and running time, as shown in Fig. 5.
From the results, we can see that the accuracy obtain by DASH is higher than
other algorithms with k increasing. The main reason is that DASH could access
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Fig. 5. The comparison on the search performance among different methods.

more points to obtain desired accuracy under the suitable success probability. In
addition, DASH is able to achieve at least 4x speedups than other algorithms. It
is benefited from the acceleration property of PQ. This indicates that the search
performance of DASH has prominent superiority than other algorithms as the
scale of datasets increases.

6 Related Work

Approximate nearest neighbor search (ANNS) has attracted extensive attention
over decades. There exists a vast majority of works to solve the ANNS problem.
For example, the space partitioning methods [12,13] perform well in the low-
dimensional space, while their performance greatly decreases due to the“curse
of dimensionality”. The quantization-based methods play an important role in
data compression at the cost of bringing the quantization error, e.g. PQ [10],
such that query accuracy is relatively lower. Hence, many methods have been
proposed to decrease the quantization error, such as OPQ [14] and TQ [15].
The graph-based methods [16,17] have favourable results for high-dimensional
ANNS, which are benefited from effective indexing structure. Although it could
reach up to high recall with few time, they are lack of quality guarantee. In
addition, the hash-based methods employ a family of hash functions mapping
the nearby points to the same bucket with high probability than the distant
points. However, LSH needs to construct many hash tables to achieve desired
accuracy. For this drawback, many LSH-based variants have been proposed,
e.g., [18,19].

7 Conclusion

In this paper, we propose a time efficient data-dependent hashing sheme called
Data Aware Sensitive Hashing (DASH) for approximate nearest neighbor search
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in high-dimensional space. DASH is based on the search framework of QALSH
and takes the residual distance prior into account to evaluate a common dis-
tribution family for achieving probability guarantee. The extensive experiments
are conducted to verify the efficiency and effectiveness of DASH by employing
several real-life datasets. The results show that DASH obtains better search
performance under the same reported quality compared against other methods.
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