
Accelerated Algorithms for α-Happiness
Query

Min Xie(B)

Shenzhen Institute of Computing Sciences, Shenzhen University, Shenzhen, China
xiemin@sics.ac.cn

Abstract. Extracting a good representative subset of tuples that meets
the user’s needs from a large database is an important problem in multi-
criteria decision making. Many queries have been proposed for this pur-
pose, including the top-k query and the skyline query. Unfortunately,
these traditional queries either ask the user to specify their needs explic-
itly or overwhelm users with a large output size. Recently, an α-happiness
query was proposed, which overcomes the deficiencies of existing queries:
users do not need to specify any preference, while they can obtain a small
set of tuples such that users are happy with the results, i.e., their favorite
tuples in the returned subset is guaranteed to be not much worse than
their favorite tuples in the whole database. In this paper, we study the
α-happiness query. Inspired by the techniques of incremental convex hull
computation, we develop two accelerated algorithms, which maintain use-
ful information to avoid redundant computation, in both 2-dimensional
and d-dimensional space (d > 2). We performed extensive experiments,
comparing against the best-known method under various settings on
both real and synthetic datasets. Our superiority is demonstrated: we
can achieve up to two orders and 7 times of improvements in execution
times in 2-dimensional and d-dimensional space, respectively.

Keywords: α-happiness · Incremental convex hull · Decision making

1 Introduction

Nowadays, a database system usually contains millions of tuples and end users
may only want to find those tuples that fit their needs. This problem is known
as multi-criteria decision making [5,18,19], and various queries were proposed
to obtain a small representative subset of tuples without asking the user to scan
the whole database. An example is the traditional top-k query [18,19], where a
user has to provide her preference function, called the utility function. Based on
the user’s utility function, the utility of each tuple for this user can be computed,
where a higher utility means that the tuple is more preferred. Finally, the best k
tuples with the highest utilities are returned. Unfortunately, requiring the user
to provide the exact utility function is too restrictive in many scenarios. In this
case, the skyline query can be applied [5], which adopts the “dominance” concept.
A tuple p is said to dominate another tuple q if p is not worse than q on each
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Li et al. (Eds.): APWeb-WAIM 2022, LNCS 13422, pp. 53–68, 2023.
https://doi.org/10.1007/978-3-031-25198-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25198-6_5&domain=pdf
https://doi.org/10.1007/978-3-031-25198-6_5

54 M. Xie

attribute and p is better than q on at least one attribute. Intuitively, p will have a
higher utility than q w.r.t. all monotonic utility functions. Tuples which are not
dominated by any other tuples are returned in the skyline query. However, since
there is no constraint on the output size of a skyline query, a skyline query can
overwhelm the user with many results (at worst the whole database). Motivated
by this, a query called α-happiness query was studied recently in [27] to overcome
the deficiencies of both the top-k query (which requires the users to specify their
utility functions) and the skyline query (which might have a large output size).

Informally, an α-happiness query computes a set of tuples, with size as small
as possible, that makes the users happy where the degree of happiness is quanti-
fied as the happiness ratio of the user. Specifically, given a set of tuples, a user is
x% happy with the set if the highest utility of tuples in the set is at least x% of
the highest utility of all tuples in the whole database. In this case, we say that the
happiness ratio of the user is x%. Clearly, the happiness ratio is a value from 0 to
1. The larger the happiness ratio, the happier the user. The α-happiness query
guarantees the happiness ratio of an end user is at least α. In practice, more
tuples have to be returned to guarantee a higher happiness level, as expected.
However, with more tuples returned, users have to spend more effort to examine
the output, which is not desirable as they did in the skyline query. Hence, we
want the solution to be as small as possible, to ensure the given happiness level.

Consider a car database application. Assume that Alice wants to buy a car
from the car database where each car is described by two attributes, namely
horse power (HP) and miles per gallon (MPG). To help Alice for finding her
desired car, Alice can specify an α value, which represents the least happiness
level she expects. In practice, Alice can set α to be 0.9, indicating that she wants
a set of cars whose highest utility is at least 90% of the highest utility of all cars in
the database. Then, we execute the α-happiness query, which returns a small set
of cars from the database, hoping that Alice will be satisfied (since the happiness
ratio of Alice is at least α, as specified). However, if Alice is not satisfied with
those cars, she can increase the value of α, and execute the α-happiness query
again to obtain more cars with better quality to ensure a higher α.

Although it is NP-hard to solve the α-happiness query [27], various practical
algorithms were proposed in the literature. The best-known previous approach
for the α-happiness query is Cone-Greedy [27]. However, when we experimen-
tally evaluated Cone-Greedy, its execution time is unnecessarily long. This
is because Cone-Greedy did not keep sufficient information and thus, might
perform redundant computation, resulting in a long query time. The situation
is even worse when the user wants to perform multiple α-happiness queries with
different values of α on the same database, which is common in reality since users
might adjust the value of α to obtain more/less tuples to fit their needs. Moti-
vated by this, we propose two novel approaches which accelerate Cone-Greedy
in both 2-dimensional and d-dimensional space (d > 2). Our algorithms are
inspired by the incremental convex hull computation in computational geome-
try, and different from Cone-Greedy, they effectively maintain the information
needed during the computation and re-use them when necessary. Our exper-
iments show that our algorithms substantially outperform Cone-Greedy in
execution time. Our major contributions are summarized as follows:

Accelerated Algorithms for α-Happiness Query 55

– To the best of our knowledge, we are the first one who connect the α-happiness
query with the problem of incremental convex hull computation.

– We propose a 2-dimensional algorithm, called 2D-CH, for solving the α-
happiness query exactly when each tuple is described by two attributes.

– In d-dimensional space, we propose a novel algorithm for the α-happiness
query. In particular, our algorithm effectively maintain useful information,
which can be re-used repeatedly, speeding up the overall query.

– We present extensive experiments on both synthetic and real datasets. Our
evaluation shows that the proposed algorithms outperform the competi-
tors substantially. Under some practical settings, our 2-dimensional algo-
rithms achieve up to two orders improvement in running time, while our
d-dimensional algorithms are around 7 times faster than the exiting ones.

Organization. The rest paper is organized as follows. We discuss the related
works in Sect. 2. The α-happiness query and the solution overview are formally
introduced in Sect. 3. In Sect. 4, we present the exact algorithm for the α-
happiness query in 2-dimensional space and its d-dimensional extension. Finally,
experiments are presented in Sect. 5 and Sect. 6 concludes this paper.

2 Related Work

Traditional queries for multi-criteria decision making include top-k queries and
skyline queries. In top-k queries [10,13,19,21,28], a concrete utility function is
given. Based on the function, the k tuples with the highest utilities are returned.
However, it is sometimes difficult to obtain the exact utility function in practice.
Alternatively, skyline queries [5] can be applied. However, it is found that the
skyline query has a large output size, which is not desirable. Although there are
some variants of skyline queries [9,15,20] which alleviate this drawback by intro-
ducing an integer k, which controls the output size, it is difficult for these queries
to provide theoretical guarantee without knowing the exact utility function.

The α-happiness query was first considered in [2,12], called the min-size regret
query, and it is later formalized by Xie et al. in [27]. Specifically, given a real number
α, an α-happiness query minimizes the output size while keeping the users at least
α happy (i.e., the minimum happiness ratio is at least α). The α-happiness query
can be considered as a dual version of the well-known k-regret query [15,24,26],
which, given an integer k, returns a set S of at most k tuples such that the “utility
difference” between the maximum utility of S and the whole dataset D is mini-
mized. See [25] for a recent survey. It has been shown that both the α-happiness
query and the k-regret query are NP-hard problems [2,6,7,27].

Algorithms were proposed to get a solution for the α-happiness query, cat-
egorized as follows. (1) ε-kernel based. The first approach formulated it as the
well-known ε-kernel problem [1] and several algorithms [2,6] were proposed to
obtain a good approximation. (2) Space partitioning based. [2,3] discretized the
function space and formulated the α-happiness query as a hitting set problem
(or a set cover problem), which provides user-controlled approximations on hap-
piness ratios and output sizes. (3) Hybrid. [12] proposed an algorithm which

56 M. Xie

Table 1. Car database and utilities

Car HP MPG f0.4,0.6(p) f0.2,0.8(p) f0.7,0.3(p) Car HP MPG f0.4,0.6(p) f0.2,0.8(p) f0.7,0.3(p)

p1 0.2 1 0.68 0.84 0.44 p4 1 0.2 0.52 0.36 0.76
p2 0.6 0.9 0.78 0.84 0.69 p5 0.35 0.2 0.26 0.23 0.305
p3 0.9 0.6 0.72 0.66 0.81 p6 0.3 0.6 0.48 0.54 0.39

combines the ε-kernel and hitting set approaches, improving the efficiency of the
existing algorithms. (4) Geometric-based. Xie et al. [27] provided a novel geomet-
ric interpretation of the α-happiness query, based on which they proposed the
state-of-the-art algorithm, denoted by Cone-Greedy for solving the problem.
According to the experiments in [27], Cone-Greedy outperforms the existing
methods in both output sizes and execution times. We use it as the baseline in
our experiments.

Compared with the existing studies [2,3,6,12,27], we utilize the techniques
in incremental convex hull construction and propose accelerated algorithms. In
particular, we maintain useful information so that intermediate results can be
re-used repeatedly to avoid redundant computation. Our algorithms performs
particularly well when the users execute multiple α-happiness queries on the
same dataset. Our experimental superiority will be demonstrated in Sect. 5.

3 Problem and Overview

The input to our problem is a set D of n tuples (i.e., |D| = n) in a d-dimensional
space (i.e., each tuple in D is described by d attributes). In this paper, we assume
that d is a fixed constant. In the following, we first introduce the terminologies
and the background. Then, we give an overview of our solution.

3.1 Preliminary

We use the same terminology as in [27]. We denote the i-th dimensional value
of a tuple p in D by p[i] where i ∈ [1, d]. In the rest paper, we also call each
tuple as a point in a d-dimensional space. Without loss of generality, we assume
that each dimension is normalized to (0, 1], such that there exists a point p in
D and p[i] = 1 for each i ∈ [1, d] and a larger value on each dimension is more
preferable to all users. Recall that in the car database, each car is associated with
2 attributes, HP and MPG; in the example shown in Table 1, the car database
D = {p1, p2, p3, p4, p5, p6} consists of 6 cars with normalized attribute values.

Following the assumption in existing studies [14,15,24,26,27], we assume
that user’s happiness is measured by an unknown utility function, which can be
regarded as a mapping f : Rd

+ → R+. The utility of a point p w.r.t. f is denoted
by f(p). A user wants a point which maximizes the utility w.r.t. his/her utility
function. Given a utility function f and S ⊆ D, we define the maximum utility
of S w.r.t. f , denoted by Umax(S, f), to be maxp∈S f(p).

Accelerated Algorithms for α-Happiness Query 57

In the following, we introduce two important terms, namely the function-wise
ratio (happiness ratio) and the minimum happiness ratio.

Definition 1. Given a set S ⊆ D and a utility function f , the function-wise
ratio of S w.r.t. f , denoted by fRatio(S, f), is defined to be Umax(S,f)

Umax(D,f) .

Clearly, the value of a function-wise ratio ranges from 0 to 1 since
Umax(S, f) ≤ Umax(D, f). Intuitively, when the maximum utility of S is closer
to the maximum utility of D, the function-wise ratio of S w.r.t. the user’s utility
function becomes larger, which indicates that the user feels more satisfied with
S. In this sense, the function-wise ratio is also called the happiness ratio.

As discussed in Sect. 1, it is difficult to know the user’s exact utility function.
Thus, we assume that all users’ utility functions belong to a function class,
denoted by FC. A function class is defined to be a set of functions which share
some common characteristics, e.g., the class of linear utility functions [15]. Given
the function class FC, the minimum happiness ratio of a set S can be regarded
as the worst-case function-wise ratio w.r.t. a utility function in FC.

Definition 2. Given a set S ⊆ D and a function class FC, the minimum hap-
piness ratio of S over FC is defined to be inff∈FC fRatio(S, f).

Example 1. To illustrate, assume that FC has 3 utility functions, namely f0.4,0.6,
f0.2,0.8 and f0.7,0.3 where fa,b(p) = a× p[1]+ b× p[2]. Consider p1 in Table 1. Its
utility w.r.t. f0.4,0.6 is f0.4,0.6(p1) = 0.4×0.2+0.6×1 = 0.68. The utilities of other
points in D are computed similarly. Given S = {p1, p4}, the maximum utility
of S w.r.t. f0.4,0.6 is Umax(S, f0.4,0.6) = maxp∈S f0.4,0.6(p) = f0.4,0.6(p1) = 0.68.
Similarly, Umax(D, f0.4,0.6) is 0.78. Then, fRatio(S, f0.4,0.6) = Umax(S,f0.4,0.6)

Umax(D,f0.4,0.6)
=

0.68
0.78 = 0.872. Similarly, fRatio(S, f0.2,0.8) = 1 and fRatio(S, f0.7,0.3) = 0.938. The
minimum happiness ratio of S over FC is min{0.872, 1, 0.938} = 0.872. ��

Same as [2,12,14,15], we focus on the class of linear utility functions, denoted
by L, due to its popularity in modeling user preferences and assume each function
in L is equally probable to be used by users. Other classes and distributions of
utility functions are considered in [8,17,27] and are not our focus.

Specifically, we assume that each linear utility function f in L is associated
with a d-dimensional non-negative utility vector u where u[i] denotes the impor-
tance of the i-th dimension in user’s preference. Mathematically, we can write:
f(p) =

∑d
i=1 u[i]p[i] = u ·p. Without loss of generality, we assume

∑d
i=1 u[i] = 1.

Thus, L = {f | f(p) = u · p where u ∈ R
d
+ and

∑d
i=1 u[i] = 1}. When it is clear,

we refer each f in L by its utility vector u. Let minHap(S) be the minimum
happiness ratio of S over L. The α-happiness query is stated as follows.

Problem 1. Given a real number α ∈ [0, 1], the α-happiness query returns a set
S ⊆ D with minHap(S) ≥ α such that the size of S, i.e., |S|, is minimized.

When there are multiple sets with the minimum size, an α-happiness query
simply returns one of them. As stated in Sect. 1, the α-happiness query takes the

58 M. Xie

advantages of both the top-k query and the skyline query: same as the skyline
query, a user does not need to specify any preference and meanwhile, it returns
a set with size as small as possible. Recall that minHap(S) is defined to be the
worst-case happiness ratio w.r.t. any utility function in L. If minHap(S) ≥ α, for
each user, s/he will be at least α happy with S no matter which function s/he
uses from L. The α-happiness query is an NP-hard problem [2,6,7].

3.2 Geometric Interpretation

Note that L contains an infinite number of utility functions. Thus, it is not easy
to compute minHap(S) for a given S directly according to Definition 2. To com-
pute minHap(S) tractably, Xie et al. [27] interprets the problem geometrically.

We first introduce some geometric concepts. For each point p ∈ D, we define
the orthotope set of p, denoted by Orth(p), to be a set of 2d d-dimensional
points constructed by {0, p[1]} × ... × {0, p[d]}. That is, for each i ∈ [1, d], the
i-dimensional value of a point in Orth(p) is equal to either 0 or p[i]. Given a set
S ⊆ D, we define the orthotope set of S, denoted by Orth(S), to be

⋃
p∈S Orth(p).

Given a set S ⊆ D, let Conv(S) be the convex hull (the smallest convex set) of
the orthotope set of S [16]. Moreover, a point p ∈ Conv(S) is said to be a vertex
of Conv(S) if p is not in the convex hull of the other points in Orth(S). A facet
of a convex hull is a bounded flat surface that forms a part of the boundary of
the convex hull. We denote a facet by the set of points forming it.

Example 2. To illustrate, consider Table 1 where D = {p1, p2, p3, p4, p5, p6}. For
the ease of presentation, we first visualize D in Fig. 1 where the X1 and X2

coordinate represent HP and MPG, respectively. The points in Orth(p2) = {p2,
p′
2, p′′

2 , O} are shown in Fig. 1 where p′
2 = (0, p2[2]), p′′

2 = (p2[1], 0) and O is the
origin. Similarly, Orth(p3) is shown in the same figure.

Given S = {p2, p3}, we define Orth(S) to be Orth(p2) ∪ Orth(p3). Then, the
convex hull Conv(S) is shown in Fig. 2. There are 5 vertices in Conv(S), namely
O, p′

2, p2, p3 and p′′
3 (labeled in Fig. 1), each of which is not in the convex hull of

the other points in Orth(S). {p2, p3} is a facet of Conv(S). ��
Given a real value α ∈ [0, 1], we define the α-shrunk set of D, denoted by

D′
α, to be {p′

α|p′
α = αp,∀p ∈ D} where p′

α is a proportionally shrunk point of
p. When α is clear, we denote D′

α by D′ and denote a point in D′ by p′. Unless
stated explicitly, we stick to the above notations in the rest of this paper.

Given two point sets, say S and T , if for each p ∈ S, p is inside Conv(T), we
say Conv(T) covers Conv(S) since Conv(S) is totally contained inside Conv(T).

Example 3. Let α = 0.9. The α-shrunk set D′ (shown in white dots) of D (shown
in black dots) is drawn in Fig. 2 where each point in D′ is a proportionally scaled
point in D. Given S = {p2, p3}, it is easy to observe from the figure that Conv(S)
covers Conv(D′) since Conv(D′) is totally contained inside Conv(S). ��

Xie et al. [27] shows that the α-happiness from the geometric perspective.

Lemma 1 ([27]). Given S ⊆ D and α ∈ [0, 1], S is a feasible set of the α-
happiness query if Conv(S) covers Conv(D′), where D′ is the α-shrunk set of D.

Accelerated Algorithms for α-Happiness Query 59

Fig. 1. Orthotope set Fig. 2. Convex hull Fig. 3. Conical hull

3.3 Solution Overview

According to Lemma 1, we can solve the α-happiness query by finding a minimum
size set S such that Conv(S) covers Conv(D′). To find such S, the Cone-Greedy
algorithm in [27] has the following two major steps (note that the correctness of
the procedure below is proven in [27] and we omit it here for lack of space):

1. (Step 1) For each p in D, it computes a function set Fp, whose utilities are
maximized by p over points in D′, i.e., Fp = {f ∈ L | f(p) ≥ f(p′) ∀p′ ∈ D′}.

2. (Step 2) If finds a set S of tuples from D such that
⋃

p∈S Fp = L.

Step 2 of Cone-Greedy is reduced to the well-known set-cover problem in
[27], where the greedy algorithm is adopted and it gives theoretical guarantees on
the output size. We adopt the same approach for Step 2 in this paper. Interested
readers can find more details in [27], and we focus on Step 1 next.

Note that when performing Step 1 in Cone-Greedy, redundant operations
might be done when computing Fp for distinct points in D. This is inefficient. In
this paper, we adopt a novel strategy for computing Fp, which maintains useful
information for all points in D, so that we can re-use those information as much
as possible. In the following, we briefly review the procedure in Cone-Greedy
and explain why it is inefficient. In Sect. 4, we give our advanced procedures.

Computing Fp in Cone-Greedy. We first define “conical hull”. Given a
point p in D, let Vp = {t − p| for each vertex t of Conv(D′)}. Then we define a
conical hull of p, denoted by Cone(p), to be Cone(p) = {q ∈ R

d| q = p+
∑

v∈Vp
wv

where w ≥ 0}. Intuitively, Cone(p) can be regarded as a convex cone with apex
at p. The boundaries of Cone(p) are unbounded facets, each of which is enclosed
by some vectors in Vp and is a flat surface that forms the boundary of Cone(p).

In geometry, each facet of a conical hull is contained by a unique hyperplane
(i.e., a subspace of dimensionality d − 1). Then, for each facet F of Cone(p), we
define an extreme vector to be the unit vector (pointing out) perpendicular to
the hyperplane containing F . Denote the set of extreme vectors of p by Ext(p).

60 M. Xie

Example 4. Consider the point p2 in Fig. 3 as an example. We draw the vectors
in Vp2 = {t− p2| for each vertex t of Conv(D′)} in solid arrows. It is constructed
by creating a vector for each vertex of Conv(D′). The conical hull Cone(p2) is
showed in the shaded region in the figure, which is the set of all vectors with the
form p2+

∑
v∈Vp2

wv where w ≥ 0. In this 2-dimensional example, the boundaries
of Cone(p2) are two unbounded facets, i.e., the rays shooting from p2 to p′

1 and
from p2 to p′

3. The extreme vectors of p2 are dashed arrows Ext(p2) = {v1, v2},
each of which is perpendicular to a boundary facet of Cone(p2). ��

Based on the above concepts, Xie et al. [27] define the function set Fp, which
is a set of utility functions whose utilities are maximized by p, as follows.

Definition 3. Given p in D and its Ext(p), the function set of p, denoted by
Fp, is defined to be {f ∈ FC| f(p) = u · p and u =

∑
v∈Ext(p) wv where w ≥ 0}.

According to [27], Fp is uniquely defined by the extreme vectors in Ext(p).
Thus, Cone-Greedy obtain Fp by computing Ext(p) as follows:

1. It first computes the vertices in Conv(D′);
2. For each p in D, it computes the set Vp = {t−p| for each vertex t of Conv(D′)}

and the corresponding conical hull Cone(p); and
3. It obtains the extreme vectors Ext(p) based on boundary facets of Cone(p).

Note that in Cone-Greedy, although the vertices in Conv(D′) are used for
all points in D, the vector set Vp is different for each distinct p in D. Therefore,
the conical hull Cone(p) will be computed independently for distinct p in D, which
might incur redundant computation, since the common information Conv(D′) is
not well utilized. In Sect. 4, we show our alternative ways for computing Ext(p),
by maintaining useful information to avoid such redundant computation. Our
algorithms are especially efficient when the user wants to execute multiple α-
happiness queries on the same D with different values of α. Our experiments
show that we are more efficient than the counterpart in Cone-Greedy.

4 Algorithm

4.1 Conceptual Idea

Our algorithm is inspired by the incremental approach of convex hull computa-
tion [11]. Specifically, in incremental convex hull computation, a convex hull is
built by inserting points iteratively. At the i-th iteration, we have the convex hull
of the first i points, and we need to modify this convex hull to include the i-th
point. For example in Fig. 4, if we are inserting p2 to Conv(D′) (shown in solid
lines), the convex hull is updated and the vertices become {b1, p2, p

′
3, p

′
4, b2, O}.

To update Conv(D′), new facets (e.g., {p2, p
′
3}, shown in dashed lines) are cre-

ated, and old facets are removed (e.g., {p′
1, p

′
2} and {p′

2, p
′
3}). It is not hard to

observe that the newly created facets indeed give us the desired extreme vectors
Ext(p), since each extreme vector is perpendicular to exactly one newly created

Accelerated Algorithms for α-Happiness Query 61

facet (i.e., it is perpendicular to the unique hyperplane containing that facet).
For example in Fig. 4, v2, an extreme vector of p2, is perpendicular to the newly
created facet {p2, p

′
3}. Motivated by this, we can compute the desired Ext(p) for

each p in D, by adapting the techniques of incremental convex hull computation,
pretending that we are inserting p to the convex hull Conv(D′).

4.2 Two-Dimensional Case: 2D-CH

In 2-dimensional space, the vertices (excluding the origin O) of the convex
hull Conv(D′) can be organized in a clockwise manner, say t1, t2, . . . , tk, where
{ti, ti+1} (i ∈ [1, k−1]) is a facet. For example, in Fig. 4, vertices of Conv(D′) can
be organized in order: b1, p′

1, p′
2, p′

3, p′
4, b2, where b1 and b2 are two orthotope

points in Orth(D′). {p′
2, p

′
3} is facet of Conv(D′). We store vertices of Conv(D′)

clockwise in a doubly-linked list so that we can create new facets efficiently.
Specifically, our 2-dimensional algorithm, called 2D-CH, is proposed by

adopting the following strategy for computing the extreme vectors Ext(p) for
p:

1. We first compute the convex hull Conv(D′) and maintain its vertices in a
doubly-linked list for efficient facet traversal for all points in D;

2. For each p in D that is not contained inside Conv(D′), we compute the new
facets, by pretending that we are inserting p to Conv(D′) (see details below);

3. For each newly created facet, we obtain a desired extreme vector in Ext(p),
which is the unique vector perpendicular to the new facet.

To insert a point p to Conv(D′), we need to determine the correct positions for
constructing the new facets. For example, in Fig. 4, p′

3 is the desired position, and
a new facet is created by connecting p2 and p′

3. To determine such positions, we
need the notion of “visibility”. Formally, given a point p and a facet {ti, ti+1} of
Conv(D′), {ti, ti+1} is visible to p if p is above the unique hyperplane containing
{ti, ti+1}. The following lemma (proof is intuitive and is omitted) tells us how
to determine the correct positions with the notion of “visibility”.

Lemma 2. Given point p and two adjacent facets of Conv(D′), say F1 =
{ti−1, ti} and F2 = {ti, ti+1}, when inserting p to Conv(D′), we create a new
facet by connecting p and ti iff one facet in {F1, F2} is visible to p and the other
is not.

For example in Fig. 4, {p′
2, p

′
3} is visible to p2, while {p′

3, p
′
4} is not. To insert

p2 to Conv(D′), we create a new facet by connecting p2 and p′
3 by Lemma 2. Since

we maintain vertices of Conv(D′) in a doubly-linked list, the correct position for
creating facets can be found efficiently by binary search in the list.

After obtaining the new facets, the extreme vector set construction is
straightforward. Note that in 2-dimensional space, there are exactly two extreme
vectors for each p. Therefore, the corresponding function set Fp can be concisely
represented by an angle interval. Specifically, we define the angle of a vector v in
2-dimensional spaces as the angle between the vector Ov and the y-axis, denoted
by Ang(v). Given Ext(p) = {v1, v2} of a point p, we define the angle interval of p

62 M. Xie

to be [Ang(v1),Ang(v2)]. Then, it is easy to show that finding a set S such that⋃
p∈S Fp = L is equivalent to finding a set S whose angle intervals covers [0, π

2],
where the latter problem is the interval cover problem [4]. We then employ the
popular greedy strategy to solve the interval cover problem optimally.

Example 5. Consider p2 in Fig. 4 where Ext(p2) = {v1, v2}. Since Ang(v1) = 0
and Ang(v2) = 1.04, we represent the function set Fp2 as an angle interval
[0, 1.04] (labeled in the figure). Similarly, we can compute the angle intervals for
other points in D. By the greedy strategy, we find that the angle intervals of p2
and p3 covers the entire [0, π

2], which gives us the desired set S = {p2, p3}. ��

Fig. 4. 2D case Fig. 5. 3D case

4.3 High-Dimensional Case: HD-CH

The problem is more complicated in the higher-dimensional case, since there is
no natural order in the facets of a convex hull and each facet can have multiple
adjacent facets (unlike exactly two adjacent facets in the 2-dimensional case).

To extend our algorithm to the high-dimensional case, we define the following
notions in a high-dimensional convex hull. The boundaries of a facet are called
ridges. Intuitively, the ridge signifies the adjacency of two neighbouring facets.
For example, the ridges in a 2-dimensional space are points and the ridges in
a 3-dimensional space are edges (i.e., the line segment jointed by two points).
Given a point p, a ridge is called horizon ridge of p if it signifies the adjacency
of a visible facet and an invisible facet of p. Intuitively, a horizon ridge indicates
the maximum visible region from p to the convex hull. For example in Fig. 5,
if F1 is visible to p and F2 is not visible to p, the ridge (i.e., edge in this case)
{t1, t2}, which signifies the adjacency of F1 and F2, is a horizon ridge of p.
For each horizon edge, we define an extreme vector of p to be the unit vector
perpendicular to the unique hyperplane containing p and the horizon ridge.

With the above definitions, our high-dimensional algorithm, denoted as HD-
CH, computes the extreme vector set Ext(p) as follows:

Accelerated Algorithms for α-Happiness Query 63

1. It first computes the convex hull Conv(D′);
2. For each p in D, we maintain its visible facets in a queue Q and horizon ridges

in a set H. Initially, H is empty and we obtain the first facet F in Q by facet
traversal on Conv(D′). Neighboring facets of F is marked as “unchecked” ;

3. When there is a facet F in Q with unchecked neighboring facets, we pop F
from Q and check its neighboring facets. Specifically, for each visible neighbor-
ing facet, we add it to Q for later processing; and for each invisible neighboring
facet, we obtain a horizon ridge for p and it is inserted to H;

4. Finally, for each horizon ridge in H, we get an extreme vector (i.e., the unit
vector perpendicular to the hyperplane containing p and the horizon ridge).

After obtaining the extreme vector set Ext(p), we adopt the same strategy
as Cone-Greedy for constructing the solution S. Note that HD-CH enjoys
the same theoretical guarantee on the output size as Cone-Greedy by similar
analysis. Interested readers can find more details in [27] and we omit them here.

4.4 Discussion

Compared with the best-known previous approach Cone-Greedy, our 2D-
CH and HD-CH algorithms mainly differ in the procedure of constructing the
extreme vector set Ext(p), by employing incremental computation on the convex
hull Conv(D′). Note that Conv(D′) is a α-shrunk convex hull of Conv(D). There-
fore, we can compute Conv(D) once and use it for α-happiness queries with dif-
ferent values of α, by properly scaling Conv(D). Moreover, given the convex hull
Conv(D′), we can use it for all points in D, for computing the desired function
set Fp via facet traversal. In contrast, although Cone-Greedy also computes
the vertices Conv(D′) for all points in D, it constructs the conical hull Cone(p)
independently for each p in D, resulting in a large overall execution time. Even
worse, when the user wants to execute an α-happiness query with a different
value of α on the same dataset, the conical hull Cone(p) has to be re-computed
from scratch for all points in D, since the vector set Vp = {t − p| for each vertex
t of Conv(D′)} is radically different under different values of α.

5 Experimental Evaluation

We conducted experiments on a machine with 3.20 GHz CPU and 8 GB RAM.
All programs were implemented in C/C++. Most experimental settings follow
those in [2,12,27]. Both synthetic and real datasets were used in our experiments.

We generated the widely used anti-correlated datasets by a dataset genera-
tor [5]. Unless stated explicitly, for each synthetic dataset, the number of tuples
is set to be 100,000 (i.e., n = 100,000), the dimensionality is set to be 3 (i.e.,
d = 3) and α is set to be 0.99. Following existing studies, we used three real
datasets in our experiments: the Island dataset [15,27], the Household dataset
[26] and the El Nino dataset [2,7,27]. Island is 2-dimensional, containing 63,383
points, which characterize geographic positions. Household consists of 1,048,576

64 M. Xie

family tuples in US in 2012 where each family is described by three economic
attributes. El Nino contains 178,080 tuples with four oceanographic attributes
taken at the Pacific Ocean. For all datasets, each attribute is normalized
to (0, 1].

We implemented our algorithms, 2D-CH and HD-CH, and two variants 2D-
CHreuse and HD-CHreuse, which pre-compute the vertices and convex hulls and
re-use them under different values of α. Our algorithms are compared against
the state-of-the-art algorithm, Cone-Greedy [27], for the α-happiness query.
Note that although there are other algorithms proposed in the literature, [2,6,
12,15], they are shown to be worse than Cone-Greedy in [27] and thus, we
only compared Cone-Greedy in the experiments for the ease of presentation.
We used the same parameters reported in [27]. Unless specified explicitly, the
performance of each algorithm is measured in terms of the execution time. Since
2D-CH and HD-CH only differ from Cone-Greedy in the way of computing
the function sets, their outputs are the same and we omit them for lack of space.

In the following, we show the experiments on the synthetic and real datasets
in Sect. 5.1 and Sect. 5.2. We summarize our findings in Sect. 5.3.

Fig. 6. 2D synthetic Fig. 7. 3D synthetic Fig. 8. 4D synthetic

Fig. 9. Vary n Fig. 10. Vary d

5.1 Results on Synthetic Datasets

In Fig. 6, we evaluated our 2-dimensional algorithms, 2D-CH and 2D-CHreuse

on a 2d anti-correlated dataset. For completeness, we also include the d-
dimensional algorithm, HD-CH and HD-CHreuse, in the figure (however, their

Accelerated Algorithms for α-Happiness Query 65

performance will be analyzed in later experiments). As shown there, 2D-CH
runs much faster than the other algorithms. In particular, it takes less than 0.2 s
for all α and its running time is not sensitive to the value of α. This is because
in a 2-dimensional dataset, there is an ordering on the vertices, and thus, con-
structing the functions sets on the α-shrunk convex hull Conv(D′) can be done
efficiently via binary search, which is not sensitive to α compared with the other
methods. The performance of 2D-CH is further improved by 2D-CHreuse, by
pre-computing the vertices and re-using them for all points in D under different
values of α. Note that Cone-Greedy is the slowest in most cases, e.g., 2D-
CH (resp. 2D-CHreuse) achieves 5 times (resp. two orders) of improvements in
execution times compared with Cone-Greedy when α = 0.99.

We proceed with the performance evaluation of our d-dimensional algorithms,
HD-CH and HD-CHreuse, on 3d and 4d anti-correlated datasets. The results
are presented in Figs. 7 and 8. With the increasing value of α, all algorithms
take less time to execute, in the cost of larger output sizes (not shown). This is
because when α is large, the convex hull Conv(D′) is “close” to Conv(D) and thus,
each point in D can only “see” a small portion of Conv(D′). Hence, it takes each
point a shorter amount of time to construct the function set, which dominates
the computational cost, but we need more points to cover the entire Conv(D′).
Nevertheless, Cone-Greedy still has the largest execution time, e.g., it takes
Cone-Greedy 21 s on the 4-dimensional dataset when α = 0.999, as opposed
to 12 s by HD-CH. HD-CHreuse further improves the execution time of HD-
CH by around 30%, This confirms our claim that our algorithms are especially
efficient when the user wants to execute the α-happiness query on the same D
with different values of α, since the convex hull can be efficiently pre-computed
and used for different α-happiness queries.

We next evaluated the scalability of HD-CH and HD-CHreuse, by vary-
ing the dimensionality d and the dataset size n in Figs. 9 and 10, where other
parameters are fixed to the default setting stated at the beginning of this section.
According to the results, we can see that our algorithm scales well w.r.t. both d
and n. For example, on a large dataset with 1 million points, HD-CHreuse only
takes 3 s to execute, 3 times and 7 times faster than HD-CH and Cone-Greedy,
respectively. When the dimensionality is 4, the execution time of Cone-Greedy,
HD-CH and HD-CHreuse is 42 s, 29 s and 26 s, respectively. In other words, HD-

Fig. 11. Island Fig. 12. Household Fig. 13. El Nino

66 M. Xie

CH and HD-CHreuse outperform the state-of-the-art approach, w.r.t. both n
and d, by accelerating the querying time.

5.2 Results on Real Datasets

In this section, we conducted experiments on three commonly used real datasets.
The results are shown in Figs. 11, 12 and 13, respectively.

On the 2-dimensional Island dataset (Fig. 11), we plot the performance of
both 2-dimensional and d-dimensional algorithms. Consistent to the performance
on the synthetic datasets, the running times of our algorithms are much faster
than the existing algorithms. For our d-dimensional algorithms HD-CH and HD-
CHreuse, they achieves 30% speedup against the state-of-the-art Cone-Greedy
algorithm. When considering our 2D-CH and 2D-CHreuse algorithms, which
are designed for the 2-dimensional case, the improvement of execution time is
significant, e.g., one order and two orders of improvement when α = 0.999.

The result on the Household dataset are similar and it is shown in Fig. 12.
Note that due to the small skyline size on Household, the execution times of all
algorithms are not sensitive to the value of α. In this scenario, HD-CH still out-
performs Cone-Greedy, e.g., by reducing the average execution time from 7.2 s
to 3.5 s. HD-CHreuse further improves the average execution time of HD-CH
to 1.3 s, which clearly demonstrates that pre-computing the auxiliary structures
is a promising way to speedup the query process. By maintaining intermediate
information, we efficiently support the α-happiness queries for different values
of α. Note that similar speedup cannot be achieved by the Cone-Greedy algo-
rithm. Although it also computes the vertices of Conv(D′) for all points in D, it
has to construct the conical hull independently for each point in D, resulting in
a large overall execution time.

Finally, consider the experiments on the El Nino dataset in Fig. 13. Similar
to the previous experiments, the performance of Cone-Greedy is worse than
that of HD-CH and HD-CHreuse. When α = 0.999, HD-CHreuse only spends
half of the time compared with Cone-Greedy to obtain the desired solution.

5.3 Summary

The experiments on both real and synthetic datasets demonstrated our superi-
ority over the best-known previous approach. We observe the following. (1) On
the 2-dimensional datasets, 2D-CH and 2D-CHreuse are the best algorithms, by
achieving up to two orders of improvement in execution time, compared with the
state-of-the-art algorithm. (2) On the d-dimensional datasets, HD-CH and HD-
CHreuse runs much faster than the competitor, e.g., on the Household dataset,
the average execution times of HD-CH, HD-CHreuse and Cone-Greedy are
3.5 s, 1.3 s and 7.2 s, respectively. (3) Pre-computing the vertices and convex hulls
is a promising way for reducing the query time, especially when the users want to
execute multiple α-happiness queries on the same datasets. For example, when
n = 1, 000, 000, it only takes HD-CHreuse 3 s to execute, 3 times faster than the
HD-CH algorithm. (4) The scalability of our solutions is demonstrated, e.g.,

Accelerated Algorithms for α-Happiness Query 67

when varying the dimensionality or the dataset size, our algorithms are consis-
tently faster than Cone-Greedy.

6 Conclusions

This paper proposed two accelerated algorithms for the α-happiness query. Com-
pared with the existing methods, we maintain useful information to avoid redun-
dant computation, accelerating the query process. Our algorithms are particu-
larly good at executing the α-happiness queries with different values of α on the
same dataset D. We conducted comprehensive experiments to verify the speedup
of our algorithms, which achieve up to two orders of improvement in execution
time, compared with the best-known approach. As for future research, we con-
sider introducing user interaction [22–24] in α-happiness queries, so that we can
further reduce the solution set size while guaranteeing the happiness ratio.

Acknowledgements. This work was supported by Longhua Science and Technology
Innovation Bureau LHKJCXJCYJ202003 and Guangdong Basic and Applied Basic
Research Foundation 2022A1515010120.

References

1. Agarwal, P., Har-Peled, S., Varadarajan, K.: Approximating extent measures of
points. JACM 51, 606–635 (2004)

2. Agarwal, P.K., Kumar, N., Sintos, S., Suri, S.: Efficient algorithms for k-regret
minimizing sets. In: SEA (2017)

3. Asudeh, A., Nazi, A., Zhang, N., Das, G.: Efficient computation of regret-ratio
minimizing set: a compact maxima representative. In: SIGMOD (2017)

4. Bernhard, K., Vygen, J.: Combinatorial Optimization: Theory and Algorithms, 3rd
edn. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-662-56039-6

5. Borzsony, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE (2001)
6. Cao, W., et al.: k-regret minimizing: efficient algorithms and hardness. In: ICDT

(2017)
7. Chester, S., Thomo, A., Venkatesh, S., Whitesides, S.: Computing k-regret mini-

mizing sets. In: VLDB (2014)
8. Faulkner, T.K., Brackenbury, W., Lall, A.: k-regret queries with nonlinear utilities.

In: VLDB (2015)
9. He, J., Han, X.: Efficient skyline computation on massive incomplete data. Data

Sci. Eng. 7(2), 102–119 (2022)
10. He, Z., Lo, E.: Answering why-not questions on top-k queries. In: TKDE (2014)
11. Kallay, M.: The complexity of incremental convex hull algorithms in RD. Inf. Pro-

cess. Lett. 19(4), 197 (1984)
12. Kumar, N., Sintos, S.: Faster approximation algorithm for the k-regret minimizing

set and related problems. In: ALENEX (2018)
13. Liu, P., Wang, M., Cui, J., Li, H.: Top-k competitive location selection over moving

objects. Data Sci. Eng. 6(4), 392–401 (2021)
14. Nanongkai, D., Lall, A., Sarma, A., Makino, K.: Interactive regret minimization.

In: SIGMOD (2012)

https://doi.org/10.1007/978-3-662-56039-6

68 M. Xie

15. Nanongkai, D., Sarma, A., Lall, A., Lipton, R., Xu, J.: Regret-minimizing repre-
sentative databases. In: VLDB (2010)

16. Peng, P., Wong, R.: Geometry approach for k-regret query. In: ICDE (2014)
17. Qi, J., Zuo, F., Yao, J.: K-regret queries: from additive to multiplicative utilities.

CoRR (2016)
18. Qin, L., Yu, J., Chang, L.: Diversifying top-k results. In: VLDB (2012)
19. Soliman, M., Ilyas, I., Chang, C.: Top-k query processing in uncertain databases.

In: ICDE (2007)
20. Tao, Y., Ding, L., Lin, X., Pei, J.: Distance-based representative skyline. In: ICDE

(2009)
21. Tao, Y., Xiao, X., Pei, J.: Efficient skyline and top-k retrieval in subspaces. In:

TKDE (2007)
22. Wang, W., Wong, R., Xie, M.: Interactive search for one of the top-k. In: SIGMOD

(2021)
23. Xie, M., Chen, T., Wong, R.: Find your favorite: an interactive system for finding

the user’s favorite tuple in the database. In: SIGMOD (2019)
24. Xie, M., Wong, R., Lall, A.: Strongly truthful interactive regret minimization. In:

SIGMOD (2019)
25. Xie, M., Wong, R., Lall, A.: An experimental survey of regret minimization query

and variants: bridging the best worlds between top-k query and skyline query.
VLDB J. 29, 147–175 (2020)

26. Xie, M., Wong, R., Li, J., Long, C., Lall, A.: Efficient k-regret query algorithm
with restriction-free bound for any dimensionality. In: SIGMOD (2018)

27. Xie, M., Wong, R., Peng, P., Tsotras, V.: Being happy with the least: achieving
α-happiness with minimum number of tuples. In: ICDE (2020)

28. Xin, D., Han, J., Cheng, H., Li, X.: Answering top-k queries with multi-dimensional
selections: the ranking cube approach. In: VLDB (2006)

	Accelerated Algorithms for -Happiness Query
	1 Introduction
	2 Related Work
	3 Problem and Overview
	3.1 Preliminary
	3.2 Geometric Interpretation
	3.3 Solution Overview

	4 Algorithm
	4.1 Conceptual Idea
	4.2 Two-Dimensional Case: 2D-CH
	4.3 High-Dimensional Case: HD-CH
	4.4 Discussion

	5 Experimental Evaluation
	5.1 Results on Synthetic Datasets
	5.2 Results on Real Datasets
	5.3 Summary

	6 Conclusions
	References

