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Abstract. Perceiving multiple objects within an image without the
labels’ supervision is the challenge of multi-label image hashing tasks.
Existing unsupervised hashing approaches do reconstruction or con-
trastive learning for the representation of the object of interest but ignore
the other objects in the image. We propose to use pseudo labels to provide
candidate objects, making the image match the possible objects’ features
by the co-occurrence correlations between labels. As a result, we explore
the co-occurrence correlations based on empirical models and design a
data augmentation strategy in a self-supervised learning framework to
learn label-level embeddings. We also build the image visual correlations
and design a dual overlapping group sum-pooling (OGSP) component
to fuse label-level and visual-level embeddings into image representa-
tions, alleviating noise from empirical models. Extensive experiments on
public multi-label image datasets using pseudo labels demonstrate that
our self-supervised label-visual correlation hashing framework outper-
forms state-of-the-art label-free hashing algorithms for retrieval. GitHub
address: https://github.com/lzHZWZ/SS-LVH.git.

Keywords: Multi-label image hashing · Self-supervised learning ·
Co-occurrence correlations

1 Introduction

In label-free scenarios, image hashing algorithms [25] remain tricky for learning
accurate hash codes for an image containing multiple objects. Existing unsuper-
vised hashing methods ignore the existence of other objects and only perceive
the object of interest in an image, resulting in limited performance. If features
of all objects are extracted in advance using techniques like object detection [9],
the computational cost will be a huge problem.

Recently, the study of co-occurrence correlation [4] has attracted our inter-
est. This correlation reveals the probability of different objects appearing in an
image. It can serve as potential supervisory information to aid in the perception
of objects of interest. Meanwhile, since the co-occurrence correlation reflects a
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Fig. 1. The architecture of SS-LVH. (1) In the label co-occurrence embedding learning
branch (blue frame), C denotes the number of labels, L1 to LC denote word vectors
corresponding to pseudo labels, and E1

1 to EC
1 denote label-level co-occurrence embed-

dings corresponding to L1 to LC . (2) In the image representation learning branch (red
frame), the input is image pairs with trusted or untrusted similarity. Conv5_x is a
layer generating the image feature. E2 denotes the image representation calculated via
global max-pooling layer with the feature. (3) In the visual correlation embedding learn-
ing branch (orange frame), M denotes the number of images sampled from the target
dataset, R1 to RM denote high-dimensional feature vectors corresponding to sampled
images, and E1

3 to EM
3 denote visual-level similarity embeddings corresponding to R1

to RM . (4) The purple frame denotes the dual OGSP component. Based on overlapping
group (a dotted box) sum-pooling, Q1 (i.e., semantic similarity representations) is fused
by each Ei

1 (i ∈ {1, 2, . . . , C}) and E2, and Q2 (i.e., visual similarity representations)
is fused by each Ej

3 (j ∈ {1, 2, . . . ,M}) and E2, where ◦ denotes Hadmard Product.
The label-visual representation Q is acquired by concatenating Q1 with Q2. (5) The
cyan frame completes self-supervised learning for Q in the way of BYOL. The Tanh
function is added to improve the adaptation of hashing. (6) The golden frame achieves
hash learning by the Cauchy distribution loss functions [25] consisting of Cauchy cross-
entropy loss and Cauchy quantization loss. (Color figure online)

common phenomenon in the real world, it is reliable in label-free scenarios. As
a result, the labels’ co-occurrence correlations of the empirical model can pro-
vide relatively accurate priori information. Although some labels in the empirical
model may not exist in the target dataset, co-occurrence correlation can ensure
that the relevant objects (e.g., basketball and players) in the image are simul-
taneously activated by Graph Convolutional Networks (GCNs) [25], partially
solving the multi-object perception problem of unlabeled images.

Based on this motivation, we propose to incorporate co-occurrence corre-
lations of pseudo labels [16] (i.e., labels of the empirical model) into a self-
supervised learning (SSL) framework [8] to design a multi-object hashing model.
The architecture is shown in Fig. 1. We gather the co-occurrence probability
of each pseudo label to build the adjacency matrix, and input the matrix into
GCNs for the label-level embedding learning. To alleviate the noise caused by
applying the empirical models to out-of-distribution (o.o.d) data, we introduce
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the adjacency matrix based on the visual correlations of all/sampling images
(See Sect. 3), and input the matrix into the other GCN branch for the visual-
level embedding learning. Since it is derived from images rather than labels, this
visual-level embedding is more representative of the distribution of the target
dataset [2]. We also use a feature extraction backbone to generate image repre-
sentations. With the embeddings and image representations, we design a dual
overlapping group sum-pooling (OGSP) component to fuse them. The embed-
dings and representations are fused into a vector by Hadmard Product and then
is mapped to multiple cells by group sum-pooling with overlapped windows.
Compared with the Multi-modal Factorized Bilinear (MFB) component used in
LAH [25], the dual OGSP component preserves richer spatial information. As
a result, the regions of interest will be highlighted through more representa-
tions. Furthermore, it can balance the activated representations based on two
embeddings, improving generalization ability and accuracy. Finally, we employ
the Cauchy distribution loss functions [1] to learn the activated representations
into hash codes.

In this paper, we propose a self-supervised label-visual correlation hashing
(SS-LVH) framework for multi-label image retrieval. In practice, we employ
Bootstrap Your Own Latent (BYOL) [8] as the SSL framework in that we can
learn compact representations without negative sampling. For this limitation,
we design a data augmentation strategy that fuses the two images via different
weights as the pretext task, used to enhance the learning for co-occurrence corre-
lations. In addition, we incorporate the Tanh function into the BYOL framework
to adapt hash learning. For the embeddings learning, we use BERT [5] to gener-
ate label embeddings and select the Classification Transformer (C-Tran) model
pre-trained on Visual Genome 500 (VG-500) [13]) as the empirical model, the
ResNet-101 [24] model as the representation backbone. Note that we will first use
the BYOL framework to pre-train the model, and then access the hash loss func-
tions for hashing. Extensive experiments on public multi-label image datasets
using pseudo labels demonstrate that SS-LVH is conducive to retrieving images
that share at least one label. Its performance is better than state-of-the-art label-
free hashing methods. In addition, we demonstrate that all the components we
introduced can improve retrieval performance.

The contributions of SS-LVH are summarized below.

(1) We proposed a novel SSL framework, i.e., SS-LVH, for image hashing using
co-occurrence correlations of pseudo labels. By perceiving multiple objects in
an image via pseudo labels and their co-occurrence correlations, we achieve
self-supervised hashing in a multi-label learning pattern.

(2) We designed a series of tricks to resist noise from o.o.d data, including the
label-visual correlation learning scheme and the dual OGSP component,
resulting in accurate multi-object activation.

(3) SS-LVH outperforms state-of-the-art unsupervised/self-supervised hashing
methods in terms of multi-label image retrieval on three public datasets. We
demonstrate that the co-occurrence correlations can benefit the label-free
hash learning performance.
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2 Related Work

The SS-LVH is designed via the co-occurrence information of objects in images
and the SSL framework. Recent research in these fields is described below.

Co-occurrence Correlations. The object co-occurrence correlations in the
images can represent the intrinsic logical relation of objects included by images.
Wang et al. propose CNN-RNN [22], utilizing the semantic redundancy and the
co-occurrence dependency to construct an end-to-end classification model. ML-
GCN [4] is a novel trainable multi-object image recognition framework, which
employs GCN to map the label representations (i.e., word embeddings), includ-
ing co-occurrence information and inter-dependency of objects in images. In
SS-LVH, we also exploit this insight to construct a co-occurrence correlation
matrix to delegate the object’s inter-dependency.

Multi-label Image Hashing. The multi-label hashing methods can improve
the accuracy of image retrieval. Lai et al. propose Instance-aware hashing
(IAH) [12], which first conducts the instance-aware retrieval via learning-based
hashing. Song et al. propose Deep Region Hashing (DRH) [20] with a cost-free
hashing strategy, and can generate the hash codes for whole image as well as the
object candidate regions. Xie et al. propose Label-Attended Hashing (LAH) [25]
that combines the co-occurrence correlations of labels to learn hash codes.

Self-supervised Learning. We follow SSL for guiding our model to acquire
the appropriate image representations without hand-crafted labels. In this field,
contrastive methods [3,8] have shown impressive results, with the fundamental
ideology pulling representations of different views transformed from the same
sample closer together (i.e., positive pairs) while spreading representations of
different data views (i.e., negative pairs). Chen et al. propose the method Sim-
CLR [3] based on contrastive insight, which utilizes a learnable nonlinear trans-
formation between data representations and the contrastive loss, thus improving
the quality of representations. BYOL [8] utilizes the learnable target network as
‘target’ and weighted moving average to make target network learning smoother
and efficiently.

3 Preliminary on SS-LVH

We introduce how to create correlations and training image pairs. Given the
target image dataset XD = {xi}N

i=1 and a subset XS = {xi}M
i=1 of XD, where

xi ∈ R
D is the i -th image, C, N, and M are the number of labels, images, and

sampled images, respectively.

Label Co-occurrence Correlation Matrix. As shown in Fig. 2, we employ
LL = {Li}C

i=1 to calculate the correlation matrix ML ∈ R
C×C based on the

co-occurrence probability of each label, where LL is a set of word vectors. For
the image xi, we gather the label probability pi ∈ R

C×1 from the last layer of
C-Tran, where pi denotes the probability of each object contained in the i -th
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Fig. 2. The generation of the co-occurrence correlation matrix and visual correlation
matrix. (Color figure online)

image and it is the i -th column of the label probability matrix MP ∈ R
C×N .

Assume that MP (i, j) denotes the element of the i -th row and the j -th column
in MP . We change the values of MP (i, j) ≥ 0.5 to 1, reserve the values of
0.5 > MP (i, j) ≥ 0.3 (expanding the range of candidates to correct bias), and
assign the rest of elements to 0. Note that these settings were determined after
we calculated the difference between the generated labels and the actual labels
on VOC2007 [6]. To alleviate the sparsity issue caused by a large C, we generalize
the method in LAH that regards the occurrence of a label as a discrete state (0
or 1) and calculate the co-occurrence probability Pj,i, i.e., the probability of the
j -th label’s occurrence when the i -th label appears, as below.

Pj,i =
Tj,i

Ti
=

∑N
k =1 MP (i, k) × MP (j, k)

∑N
k =1 MP (i, k)

, (1)

where Ti denotes the expectation number of occurrences for the i -th label and Tj,i

denotes the expectation number of co-occurrences between the i -th label and the
j -th one. Note that although Ti,j = Tj,i, Pj,i �= Pi,j when Ti �= Tj . As shown
in Fig. 2, only three images contain the girl or cat, where Pcat,girl �= Pgirl,cat

because Tgirl = 2 (purple triangle) and Tcat = 1.45 (red triangle). To promote
the convergence efficiency and prevent over-fitting, we lower the long-tail effect
by using the threshold μ to binarize Pj,i. Then, we fill ML by Pj,i, which can
be described as:

ML(i, j) =

{
0, if Pj,i ≤ μ,

1, otherwise .

To further overcome the problem of over-smooth caused by using the correlation
matrix in GCNs, we employ the weighted scheme like LAH to determine ML.
The ML is described below.

ML(i, j) =

{
α∑C

j =1,i�=j ML(i,j)
, if i �= j,

1 − α, otherwise ,
(2)

where α ∈ (0, 1). We update a node feature with the effect from α. For instance,
a node feature will be more determined by its neighbor nodes when α → 1.
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Fig. 3. Data augmentation strategy. The black lines represent fusion weights. And
the blue lines and orange dotted lines represent trusted and untrusted similarities,
respectively. (Color figure online)

Image Visual Correlation Matrix. We employ RV = {Ri}M
i=1 to calcu-

late the correlation matrix MV ∈ R
M×M . Nevertheless, we are caught between

employing XS , which results in information loss, and using XD, which results in
a huge cost. Therefore, we learn the embeddings for XD and sample the embed-
dings. As shown in Fig. 2, we collect XD through the C-Tran model. Different
from conventional features acquired from the convolution layer, our features
consist of Z1 to ZH×W , where each Zi ∈ R

1×2048 consists of values at the same
position for all feature maps, H and W represent the width and height of the
feature map, respectively. Since features in C-Tran are generated by the rela-
tionship between pixels, we pick the top-k (See Sect. 5) values on each Zi to
construct Ri, i.e., the high-dimension feature of the i-th image. Then, we form
the adjacency matrix MA by cosine distances between Ri and Rj for the graph
embedding learning. Assume that ui = MA(i, ·) denotes the vector in the i -th
row of MA. It also represents the similarity between the i -th image and others
in XD. We employ SDNE [21] to encode ui into the embedding Ei

0, and get the
subset {Ei

0}M
i=1 of {Ei

0}N
i=1 to calculate MV , where {Ei

0}M
i=1 is obtained by

random sampling, but preferably in an amount equal to the number of pseudo
labels and covering all categories in the target dataset. Each element of MV is
calculated by cosine distances between Ei

0 and Ej
0.

Data Augmentation Strategy. We propose a label similarity transformation
strategy (2 patterns) to fuse two images via different weights. As shown in Fig. 3,
xi and xj are images in XD, while x1

i,j and x2
i,j are images composed by xi and

xj with different weights, where weights are a and 1 − a, and a ∈ (0, 1) (See
Sect. 5). We depict the method of point-to-point pixel summation and average
in Fig. 3(a) and the splicing method along with the horizontal and vertical in
Fig. 3(b). The label similarity transformation strategy produces more image pairs
with the trusted similarity, alleviating the sparsity issue of similar pairs when
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C is too large. Note that, since the composite images don’t contaminate the
correlation matrices, the co-occurrence correlations from the target dataset still
are decisive.

4 SS-LVH

SS-LVH learns a nonlinear hash function fh : x �→ h ∈ {−1, 1}K from input
space to Hamming space using CNNs and two GCNs, encoding each image x
into a K-bit hash code h = fh(x). For the target images (untrusted pairs) or
composite images (trusted pairs), i.e., xi and xj , if their pseudo-multi-labels
contain at least one same label, their similarity labels sij = 1. Otherwise, sij = 0.
fh(x) should preserve the similarities, i.e., S = {sij}, in hash codes.

In the representation learning stage, we input LL and ML, pairwise images
{(xi, xj , sij)}, and RV and MV into the label co-occurrence embedding learning
branch, the image representation learning branch, and the visual correlation
embedding learning branch, respectively. Then, {Ei

1}C
i=1, E2, and {Ei

3}M
i=1 are

generated and sent to the dual OGSP component. The fusion results Q1 and Q2

are concatenated to the label-visual representation Q. SS-LVH learns Q in the
way of BYOL. In the hash learning stage, we fix the learned parameters and
learn with the Cauchy distribution loss functions. Finally, SS-LVH transforms
Q into a K-dimensional continuous code Z ∈ R

K in the fc layer, and then
transforms Z into a K-dimensional hash code by h = sgn(tanh(Z)) ∈ {1,−1}K

in the fch layer. Finally, preserving similarity of pairwise images and lowering
the quantization error, SS-LVH learns the non-linear hash function fh(x). The
details of each part are described below.

Image Representation Learning. Following LAH, we employ ResNet-101 as
the backbone to learn the image representation. For the image x that has been
transformed to the dimension of D = 448 × 448 × 3, i.e., x ∈ R

448×448×3,
we capture a 2048×14×14-dimensional feature vector from the conv5_x layer.
Then, we generate E2 ∈ R

2048×1 through the global max-pooling (GMP) layer.

GCN for Learning of Embeddings. GCN can smooth the features by the
given correlation. More specifically, by the propagation of weights, it learns a
function fgcn on the graph to achieve feature extraction. For example, on the
label co-occurrence embedding learning branch, we assume that L(i)

L represents
the input in the i -th layer and L(i+1)

L denotes updated node features. The prop-
agation function in each GCN layer is described below.

L(i+1)
L = fgcn(M̂LL(i)

L W(i)
L ), (3)

where W(i)
L is the weight on the i -th graph layer, M̂L = D̃− 1

2 M̃LD̃− 1
2 with

M̃L = ML + IC and D̃(i, i) =
∑

j M̃L(i, j). In the implementation, we use
two GCN layers with word vectors generated by BERT. The dimensions of the
last layer of LL and RV are designed to match E2.
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Fig. 4. Self-supervised learning process.

Dual OGSP for Activation. OGSP employs a one-dimensional overlapping
window to perform sum-pooling over vectors and utilizes Hadmard Product (i.e.,
◦) to fuse embeddings and image representations. Each fusion result is mapped
onto multiple values corresponding to multiple groups (i.e., dotted boxes shown
in Fig. 1), resulting in richer information highlighting regions of interest. For the
i -th label activated representation Qi

L, we define that the size of the group is
iGg

L and the stride is iGs
L, where i ∈ {1, 2, . . . , C}. Meanwhile, Qi

L = Ei
1 ◦ E2,

where Ei
1, E2 ∈ R

2048×1 and Qi
L(k) denotes the k -th element of Qi

L. Thus, the
j -th element of Qi

L is described below.

Qi
L(j) =

iGg
L+(j−1)·iGs

L∑

k =1+(j−1)·iGs
L

Qi
L(k), (4)

where j ∈ {1, 2, . . . , 	 2048−iGg
L+iGs

L
iGs

L

}. Note that when the number of elements is

not enough, we fetch elements from the head of vector to fill. Based on this, Qi
L =

[Qi
L(1);Qi

L(2); . . . ;Qi
L(� 2048−iGg

L
+iGs

L
iGs

L

�)] and the label semantic similarity representation
Q1 is described below.

Q1 = [Q1
L;Q

2
L; . . . ;Q

C
L ], (5)

where Q1 ∈ R

∑C
i=1� 2048−iGg

L
+iGs

L
iGs

L

�×1
. In the same way, we define and calculate

iGg
V , iGs

V , Qi
V = Ei

3 ◦E2, and Qi
V . Then, the visual similarity representation Q2

is described below.
Q2 = [Q1

V ;Q2
V ; . . . ;QM

V ], (6)

where Q2 ∈ R

∑M
i=1� 2048−iGg

V
+iGs

V
iGs

V

�×1
. Finally, the label-visual representation Q is

described below.
Q = [Q1;Q2]. (7)

Generally, we recommend that ∀i, iGs
L = iGs

V =Gs, iGg
L = iGg

V =Gg (See Sect. 5)
because Q ∈ R

∑C+M
i=1 � 2048−Gg+Gs

Gs �×1 conduces to the trade-off between two repre-
sentations.

Self-supervised Learning. As shown in Fig. 4, the framework consists of the
online (brown dotted frame) and target (green dotted frame) networks, whose
parameters are θ and ξ respectively. The parameters ξ are an exponential moving
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average of θ. Given a target decay rate τ ∈ [0, 1], the update after each training
step is described below.

ξ ← τξ + (1 − τ)θ. (8)

The target network has the same architecture as the online network except
for the prediction function q. The two views V and V ′ come from image aug-
mentations T and T ′ respectively. In our task, T and T ′ can be conventional
methods for a single image, or our similarity transformation strategy for xi and
xj . f denotes the representation extraction function corresponding to networks
in blue, red, orange and purple frames shown in Fig. 1. Representation corre-
sponds to Q shown in Fig. 1. Q = fθ(V ) and Q′ = fξ(V ′). g is a projection
function consists of the BatchNorm layer (BN ), ReLU, fc layer and Tanh, where
Tanh is injected to adapt to hash task. H = gθ(Q) and H ′ = gξ(Q′). q is a
prediction function and H ′′ = qθ(H), where q has the same architecture as g.
Finally, we L2-normalize Ĥ ′ = H′

‖H′‖2
and Ĥ ′′ = H′′

‖H′′‖2
. The loss between the

normalized predictions and target projections is described below.

Lθ,ξ = ‖Ĥ ′ − Ĥ ′′‖22 = 2 − 2〈H ′,H ′′〉
‖H ′‖2 · ‖H ′′‖2

. (9)

According to Eq. (9), we calculate Lθ,ξ by feeding V to the target network and
V ′ to the online network. At each training step, the task is to minimize L̂θ,ξ =
Lθ,ξ +Lθ,ξ with respect to θ only. The optimizer of self-supervised learning are
described below.

θ ← Opt(θ,∇θL̂θ,ξ, η), (10)

where Opt is the stochastic gradient descent optimizer and η is a learning rate.
When we use conventional augmentation strategies, we will initialize a low learn-
ing rate for label co-occurrence embedding learning branch that enhances acti-
vation ability for global visual similarity representations. Contrastively, when we
adopt our similarity transformation strategy, we will initialize lower the learn-
ing rate for visual correlation embedding learning branch to enhance activation
ability for local semantic similarity representations. Finally, we only keep fθ

involving in hash function learning.

Cauchy Loss for Hash Learning. To generate hash codes with high aggre-
gation degree of similar samples within short Hamming distance, we employ
Cauchy loss functions used in DCH [1], resulting in the best retrieval perfor-
mance in Hamming radius ≤ 2.

The Cauchy loss functions consist of the Cauchy cross-entropy loss and the
Cauchy quantization loss. For the hi and hj corresponding to {(xi, xj , sij)}, the
probability function based on the Cauchy distribution is written as:

Γ (δ(hi, hj)) =
γ

γ + δ(hi, hj)
, (11)

where Γ (∗) is well-defined probability function, δ(hi, hj) denotes the Hamming
distance between hi and hj , γ is the scale hyper-parameter of the Cauchy dis-
tribution and controls aggregation degree. Generally, γ = 0.15.
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Assume that hi(j) is the j-th element of hi. The sign function sgn(hi) is
described below.

sgn(hi(j)) =

{
−1, if hi(j) ≤ 0,
1, otherwise .

(12)

For the quantization error ‖ h − sgn(h) ‖, we combine γ and the Cauchy distri-
bution to describe the prior for each hash code as:

φhi
=

γ

γ + δ(|hi|,1)
, (13)

where 1 ∈ R
K. To cooperate with continuous relaxation, we set δ(hi, hj) =

K
2 (1 − 〈hi,hj〉

‖hi‖2·‖hj‖2
) to approximate the Hamming distance and to optimize the

loss function.
Based on Eq. (11) and the logarithm Maximum a Posteriori estimation of the

hash codes, the Cauchy cross-entropy loss function LC is described below.

LC =
∑

sij

ωij(sij log
δ(hi, hj)

γ
+ log(1 +

γ

δ(hi, hj)
)), (14)

where

ωij =

{
|S|/|Ss|, sij = 1,
|S|/|Sd|, sij = 0,

where Ss = {sij ∈ S : sij = 1} is the set of similar pairs, Sd = {sij ∈ S : sij =
0} is the set of dissimilar pairs. For ∀i, j and i �= j, if ∃MP (i, k) = MP (j, k) =
1, we obtain sij = 1; otherwise, sij = 0. Meanwhile, according to Eq. (13), the
Cauchy quantization loss function LQ is described below.

LQ =
N∑

i=1

log(1 +
δ(|hi|,1)

γ
). (15)

According to the deduction of Bayesian learning in DCH [1], the complete
hash loss function is described below.

L = λLC + (1 − λ)LQ, (16)

where λ is a hyper-parameter to balance two loss functions.

5 Experiment

Experimental Settings. We select three multi-label image datasets, includ-
ing MS-COCO [15], VOC2007 [6], and MIRFLICKR-25K [10]. We randomly
select 10,000, 4,000, and 5,000 images from three datasets respectively as target
datasets to train models. Following parameters in LAH and BYOL, we train
all datasets without using hand-crafted labels. Then, we randomly select 5000,
1000, and 1000 images from remaining images as the query set to test mod-
els respectively. The classification results in terms of Mean Average Precision
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Table 1. MAP of re-ranking within Hamming radius 2 (MAP@H ≤ 2) at different bits
on three public multi-label image datasets.

Method MS-COCO VOC2007 MIRFLICKR-25K
16 bits 32 bits 48 bits 64 bits 128 bits 16 bits 32 bits 48 bits 64 bits 128 bits 16 bits 32 bits 48 bits 64 bits 128 bits

DistillHash [26] 0.605 0.617 0.628 0.630 0.627 0.403 0.410 0.424 0.422 0.420 0.628 0.631 0.633 0.636 0.637
DU3H [27] 0.611 0.620 0.630 0.634 0.633 0.421 0.442 0.448 0.446 0.444 0.636 0.645 0.647 0.646 0.643
TBH [19] 0.607 0.613 0.615 0.618 0.617 0.423 0.441 0.447 0.451 0.448 0.638 0.639 0.642 0.646 0.645
DHNR [23] 0.606 0.609 0.611 0.613 0.611 0.434 0.438 0.439 0.438 0.437 0.624 0.631 0.637 0.647 0.645
Bi-half [14] 0.609 0.616 0.622 0.626 0.626 0.428 0.433 0.438 0.442 0.441 0.640 0.642 0.647 0.650 0.649
WDHT [7] 0.594 0.597 0.608 0.613 0.610 0.389 0.393 0.401 0.411 0.410 0.603 0.616 0.621 0.623 0.616
MGRN [11] 0.618 0.621 0.627 0.636 0.636 0.447 0.449 0.452 0.452 0.452 0.631 0.636 0.641 0.645 0.649
DATE [17] 0.611 0.621 0.633 0.639 0.638 0.481 0.488 0.493 0.505 0.507 0.641 0.650 0.656 0.657 0.657
CIBHash [18] 0.617 0.623 0.638 0.641 0.641 0.489 0.504 0.517 0.519 0.518 0.644 0.655 0.659 0.660 0.659
SS-LVH 0.617 0.637 0.644 0.653 0.658 0.509 0.513 0.519 0.526 0.531 0.639 0.655 0.661 0.663 0.663

Fig. 5. P@H ≤ 2 and R@H ≤ 2 with different code lengths on the MS-COCO (C),
VOC2007 (V) and MIRFLICKR-25K (F) datasets.

(MAP) on MS-COCO, VOC2007, and MIRFLICKR-25K are 0.518, 0.403, and
0.451, respectively when we test datasets by the empirical model. In addition,
we employ the methods of the word vectors generation and evaluation met-
rics used in LAH, where LAH measures the quality of hash codes within Ham-
ming radius 2: MAP within Hamming Radius 2 (MAP@H ≤ 2), Precision curves
within Hamming Radius 2 (P@H≤ 2), and Recall curves within Hamming Radius
(R@H≤ 2).

We compare SS-LVH with nine state-of-the-art label-free hashing methods,
including five unsupervised methods (DistillHash [26], DU3H [27], TBH [19],
DHNR [23], and Bi-half [14]), two label-embedding-based weakly-supervised
methods (WDHT [7] and MGRN [11]), and two SSL methods, i.e., contrastive
learning methods (DATE [17] and CIBHash [18]).

Implementation Details. For the label-level co-occurrence embeddings learn-
ing, we employ labels of VG-500 and set C = 500. For the label-level visual
similarity embeddings learning, we set k = 10, and M = 500 to equal C. For
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Table 2. MAP within Hamming radius 2 (MAP@H ≤ 2) of SS-LVH and its variants
on three public multi-label image datasets. VB denotes Visual Correlation Embedding
Learning Branch. GSP denotes Group Sum-Pooling. OW denotes Overlapping Window.
SSL denotes Self-Supervised Learning. STS denotes Label Similarity Transformation
Strategy. � means to enable the component, otherwise disable it.

Order VB MFB GSP OW SSL Tanh STS MS-COCO VOC2007 MIRFLICKR-25K
32 bits 64 bits 128 bits 32 bits 64 bits 128 bits 32 bits 64 bits 128 bits

1 � � � � � � 0.637 0.653 0.658 0.513 0.526 0.531 0.655 0.663 0.663
2 � � � � � 0.620 0.624 0.623 0.485 0.487 0.481 0.626 0.633 0.618
3 � � � � � 0.441 0.451 0.451 0.354 0.358 0.359 0.406 0.411 0.403
4 � � � � � 0.632 0.648 0.652 0.510 0.519 0.524 0.648 0.650 0.652
5 � � � 0.531 0.568 0.570 0.367 0.374 0.377 0.541 0.544 0.546
6 � � � � 0.623 0.630 0.635 0.483 0.513 0.518 0.634 0.647 0.653
7 � � � � � 0.633 0.639 0.653 0.510 0.522 0.529 0.650 0.660 0.661
8 � � � � � 0.628 0.643 0.649 0.507 0.514 0.527 0.637 0.654 0.659

OGSP, we set Gg = 128 and Gs = 32. For BYOL, we adopt color transforma-
tion as the conventional data augmentation strategy. When we input untrusted
pairs transformed by the conventional strategy, we initialize η1 = 0.05, η2 = 0.05,
η3 = 0.1 and η4 = 0.03, where η1, η2, η3 and η4 denote learning rates of the
label co-occurrence embedding learning branch, image representation learning
branch, visual correlation embedding learning branch, and other components
respectively. When we input trusted pairs using our strategy, we set a = 0.35,
η1 = 0.1, and η3 = 0.05. With 1000 epochs, we set the batch sizes to 128 and 32
for the conventional data augmentation strategy and our one respectively, the
weight decay to 10−6, and the base target decay rate to τ = 0.99. For the hash
learning, we set η1 = η2 = η3 = 10−4 and η5 = 0.05 with batch size 128, where η5
is the learning rate of hash learning component. The momentum of optimization
is 0.9 and the weight decay is 10−4.

Comparisons with State-of-the-Arts. The MAP@H ≤ 2 of all comparison
methods are listed in Table 1, where the underline and bold fonts represent the
highest value in the comparison algorithms and all algorithms respectively. These
results show that SS-LVH has a stable advantage over other algorithms. Espe-
cially at 128 bits, the improvements are 1.7%, 1.3% and 0.4% on MS-COCO,
VOC2007 and MIRFLICKR-25K, respectively. Meanwhile, we find that except
for contrastive learning methods, the performance of other algorithms will decline
when the code length is beyond 32 or 64 bits. We think that the generalization
ability derived from visual correlation improves the ability of hash code for car-
rying semantic information, while our incorporation pattern for the semantic
and visual information can enhance this advantage.

To reflect the proportion of retrieved images related to the query image,
we show the P@H ≤ 2 performance in Fig. 5(a), Fig. 5(b), and Fig. 5(c). SS-LVH
achieves remarkable results on three datasets, and averagely exceeds the runner-
up algorithm (i.e., CIBHash) by 0.87%, 0.63% and 0.16% respectively. These
results verify the superiority of SS-LVH in the perception of objects and semantic
information. In addition, we show the aggregation degree of similar image and the
R@H≤ 2 performance in Fig. 5(d), Fig. 5(e), and Fig. 5(f). SS-LVH is dominant
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Fig. 6. The top 10 images returned by SS-LVH when we input query images.

Fig. 7. MAP@H ≤ 2 w.r.t. k, Gg, and a with 128 bits hash codes on the MS-COCO,
VOC2007 and MIRFLICKR-25K datasets.

on three datasets and averagely exceeds the runner-up algorithm (i.e., CIBHash)
by 0.86%, 1.78% and 3.01% respectively. These results verify the superiority of
SS-LVH in the aggregating similar data and the perception of inter-dependency.

To further demonstrate the retrieval effect of SS-LVH, we visualize the top
10 returned images for three query images in Fig. 6.

Ablation Study. To verify contributions of components including the visual
correlation embedding learning branch, OGSP, Tanh, and label similarity trans-
formation strategy, we list the influence on MAP@H ≤ 2 at different code lengths
using different combinations in Table 2. The 1st row denotes the performance
of SS-LVH as a benchmark. The performance without the visual correlation
embedding learning branch shows in the 2nd row, where the performance aver-
agely decreases by 2.7%, 3.9%, and 3.47% on three datasets, respectively. These
declines manifest the necessity of incorporating this visual branch and only
employing SSL is not enough to alleviate the noise problem. In addition, the
degradation of performance at 128 bits is remarkable. This result confirms that
the visual branch helps the hash code carry more semantic information. In the
3rd and 4th rows, we verify the effect of OGSP. Obviously, MFB is not compat-
ible with these SSL components. We believe that this is because the factorized
matrices of MFB disturb the spatial information during activation. Furthermore,
the overlapping window brings 1.33%, 0.57%, and 1.53% of increments of per-
formance on three datasets. Finally, we notice the influence of SSL components
in the 5th to 8th rows. The result in the 5th row means the performance using
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pseudo labels without SSL components. Compared with this result, on average,
the performance in the 6th row improves 7.3%, 13.2%, and 10.1%, respec-
tively on three datasets. This result shows that the SSL method is important for
improvement of hashing performance. Based on SSL, the incorporation of Tanh
brings 1.23%, 1.57%, and 1.23% of benefits, respectively, and the label similarity
transformation strategy also brings 1.07%, 1.13%, and 0.53% of benefits, respec-
tively, on three datasets on average. All in all, our components contribute to
performance improvement and the configuration of SS-LVH is optimal.

Hyper-Parameters Sensitivity Analysis. We fix the hyper-parameters that
have been verified in other papers and investigate the sensitivity of the designed
components’ parameters including top-k, Gg(Gs = 32), and a. We determine the
best hyper-parameter by fixing others with the default values and performing
the linear search in candidates. Figure 7 illustrates MAP@H≤ 2 with 128 bits
hash codes on three datasets. According to highest values, SS-LVH can achieve
the best retrieval performance when k = 10, Gg = 128 and a= 0.35.

6 Conclusion

This paper proposes an SS-LVH framework for multi-label image retrieval. Com-
pared with existing methods, we preserve the advantage derived from label co-
occurrence correlations and perceive image visual correlation to alleviate the
noise problem. The results on three datasets demonstrate the generalization
ability and superiority of SS-LVH. Our dual OGSP component, label similarity
transformation strategy, and introduction of Tanh in BYOL can improve the
retrieval performance.
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