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Abstract. Hypergraphs can naturally represent inter-group relations
that are prevalent in many application domains by hyperedges. Hyper-
graph motifs can be described as the structural patterns of three con-
nected hyperedges. As an effective tool, it plays an important role in
the local structure analysis of hypergraphs. In this paper, we study
exact hypergraph motif counting which is a fundamental problem of
hypergraph motif research. Existing algorithms don’t adequately con-
sider hyperedge relations in real-world hypergraphs, which lead to a
large number of redundant computations. This motivates us to improve
performance by exploiting hyperedge relations. In our work, we classify
hypergraph motifs with different hyperedge relations. For different types
of motifs, we use set theory to demonstrate and propose different opti-
mization methods to reduce the computation of excessive intersections.
We also further reduce the cost of the proposed method by preserv-
ing hyperedge intersections when constructing the hyperdege projected
graph. Extensive experiments on real datasets validate the superiority of
our algorithm compared to existing methods.

Keywords: Hypergraph · Hypergraph motif · Hypergraph motif
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1 Introduction

A hypergraph consists of vertices and hyperedges that can connect multiple ver-
tices, and can be seen as a general form of ordinary graphs. Since hypergraphs
can effectively simulate complex intergroup relationships between entities, they
have a wide range of applications such as bioinformatics [5] and social network
analysis [9] . Specifically, complex analyses over hypergraphs have also been
extensively explored for hypergraph motifs [6], classification [4] and hyperedge
prediction [10]. Network motifs have achieved great success in exploring and
discovering local structural features of real-world graphs [7]. However, due to
the different structures of ordinary graphs between hypergraphs, it is difficult
to directly apply related techniques to hypergraphs. In order to better explore
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the local structural patterns of real-world hypergraphs, Lee et al. [6] success-
fully define hypergraph motifs for the first time. Existing methods demonstrate
the importance of hypergraph motifs in revealing hypergraph local structural
patterns. However, existing algorithms do not effectively explore hyperedge rela-
tions to improve the computational efficiency. This motivates us to fully explore
hyperedge relations (intersection and containment) to achieve the acceleration of
hypergraph motifs counting. The major contributions are concluded as follows.

– We explore the widely existing hyperedge relations in real-world hypergraphs
and classify hypergraph motifs according to specific relations. For different
types of motifs, by using set theory, we study and demonstrate different opti-
mal calculation methods to reduce the cost of excessive intersections.

– For the remaining hypergraph motifs that cannot be optimized, we further
reduce the cost of the algorithm by preserving the hyperedge intersection
when constructing the hyperdege projected graph.

– We conduct extensive experiments to verify that our algorithm outperforms
existing algorithms. In total processing time, our algorithm is more than two
times faster than existing algorithms.

2 Related Work

We examine existing related work on network motif counting for ordinary graph.
Most of them apply the following three techniques to speed up motif counting:
1) Combinatorics: In order to speed up exact network motif counting, the exist-
ing work [8] adopt combinatorial relations computation methods. 2) MCMC
sampling: Most approximate network motif counting algorithms estimate the
number of motif instances by sampling [2,3]. 3) Color coding: The approxi-
mate network motif counting algorithm [1] uses color coding to randomly color
each vertex and use this coloring information to randomly sample. However,
due to the different structures of ordinary graphs and hypergraphs, it is diffi-
cult to directly apply related techniques to hypergraphs. We also review existing
related work on hypergraph motifs. Hypergraph motifs are the basic building
blocks of hypergraphs as defined by [6]. Unlike network motifs, it is formed by
three connected hyperedges with 26 different connection patterns. Hypergraph
motifs differ from network motifs in that they do not limit the number of ver-
tices. Extensive experiments verify that hypergraph motifs play an important
role in revealing local structural patterns of real-world hypergraphs. The only
existing exact hypergraph motif counting algorithm is proposed by [6]. Although
the algorithm efficiently implements hypergraph motif counting, it performs a
lot of redundant intersection computations.
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3 Hypergraph Motif Classification and Computation
Acceleration Based on Hyperedge Relations

3.1 Basic Definition

Definition 1 (Hypergraph). A hypergraph is represented by G = (V, E),
where V is a finite set of vertices, E =

⋃|E|
i=1ei is a finite set of hyperedges. Each

hyperedge ei ∈E is a non-empty subset of V.

Definition 2 (Hyperdege Projected Graph). A hyperdege projected graph
of G = (V, E) is an ordinary graph PG = (E, H), where H = {(ei,ej) | ei ∩ ej
�= ∅}. We use Hij to denote the intersection of ei and ej, that is, Hij = {vi ∈
V | vi∈ ei ∩ ej}.
Definition 3 (Hypergraph Motif). Given three connected hyperedges {ei,
ej, ek}, hypergraph motifs are used to describe the connectivity patterns of the
three connected hyperedges. Formally, a hypergraph motif is a binary vector of
size 7 whose elements represent the emptiness of the following seven sets: (1) ei
\ ej \ ek, (2) ej \ ek \ ei, (3) ek \ ei \ ej, (4) ei ∩ ej \ ek, (5) ej ∩ ek \ ei,
(6) ek ∩ ei \ ej and (7) ei ∩ ej ∩ ek.

Fig. 1. Hypergraph motif and hypergraph motif instance

Fig. 2. The 26 hypergraph motifs
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Example 1. As shown in Fig. 1(b), hypergraph motifs can be naturally repre-
sented in the Venn diagram. The three circles represent hyperedges ei, ej and
ek, respectively. The three circles are superimposed and divided into seven parts
representing seven different sets. We usually use patterned parts to represent
non-empty and white to represent empty. In fact, excluding symmetries and
duplicated hyperedges, we can describe the pattern of all connected three hyper-
edges by means of 26 hypergraph motifs in Fig. 2. If the connectivity pattern of
the three hyperedges corresponds to a particular hypergraph motif, we consider
the three connected hyperedges as an instance of this hypergraph motif. As
shown in Fig. 1, (a) is an instance of the hypergraph motif 6. It is worth noting
that motif 17–22 are open motifs in Fig. 2. More intuitively, the open motif
is the one that has two hyperedges which are not connected. Obviously, given
three hyperedges ei, ej and ek, if their connection pattern (motif) is a open
motif, then |ei ∩ ej ∩ ek| = 0.

Definition 4 (Hypergraph Motif Counting). Hypergraph motif counting
is to calculate the number of instances corresponding to 26 hypergraph motifs on
a hypergraph.

3.2 Double-Single-Inclusion Motifs

Definition 5 (Double-Single-Inclusion Motifs). Given three hyperedges ei,
ej and ek, if their connection pattern (motif) satisfies any of the following three
conditions (1) |ei ∩ ej | = |ej ∩ ek| = |ej |; (2) |ej ∩ ek| = |ei ∩ ek| = |ek|;
(3) |ei ∩ ej | = |ei ∩ ek| = |ei|, we call it a Double-Single-Inclusion Motif (DSI
motif for short).

Example 2. As shown in Fig. 2, motif 1 and motif 4 are DSI motifs. More
intuitively, the DSI motif is the one that has one hyperedge contained by the
other two hyperedges.

Theorem 1. Given three hyperedges ei, ej and ek, if their connection pattern
(motif) is a DSI motif, there exist the following conclusions : (1) if |ei ∩ ej | =
|ej ∩ek| = |ej | then |ei∩ej ∩ek| = |ej |; (2) if |ej ∩ek| = |ei∩ek| = |ek| then |ei∩
ej ∩ ek| = |ek|; (3) if |ei ∩ ej | = |ei ∩ ek| = |ei| then |ei ∩ ej ∩ ek| = |ei|.
Proof. We first prove the conclusion (1). Given three hyperedges ei, ej and ek, if
|ei ∩ ej | = |ej ∩ ek| = |ej |, then ei contains ej and ek also contains ej . Therefore,
there is |ei ∩ ej ∩ ek| = |ej ∩ ek| = |ej |. Similarly, conclusions (2) and (3) can be
proved. Theorem 1 is proved.

3.3 Single-Double-Inclusion Motifs

Definition 6 (Single-Double-Inclusion Motifs). Given three hyperedges ei,
ej and ek, if their connection pattern (motif) satisfies any of the following three
conditions (1) |ei ∩ ej | = |ej | and |ei ∩ ek| = |ek|; (2) |ej ∩ ek| = |ek| and
|ei ∩ ej | = |ei|; (3) |ej ∩ ek| = |ej | and |ei ∩ ek| = |ei|, we call it a Single-Double-
Inclusion Motif (SDI motif for short).
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Example 3. As shown in Fig. 2, motif 3, motif 7 and motif 8 are SDI motifs.
More intuitively, the SDI motif is the one that has one hyperedge containing the
other two hyperedges.

Theorem 2. Given three hyperedges ei, ej and ek, if their connection pattern
(motif) is a DSI motif, there exist the following conclusions : (1) if |ei∩ej | = |ej |
and |ei ∩ ek| = |ek| then |ei ∩ ej ∩ ek| = |ej ∩ ek|; (2) if |ej ∩ ek| = |ek|
and |ei ∩ ej | = |ei| then |ei ∩ ej ∩ ek| = |ej ∩ ek|; (3) if |ej ∩ ek| = |ej | and
|ei ∩ ek| = |ei| then |ei ∩ ej ∩ ek| = |ei ∩ ej |.
Proof. We first prove the conclusion (1). Given three hyperedges ei, ej and ek,
if |ei ∩ ej | = |ej | and |ei ∩ ek| = |ek|, then ei contains ej and ek. Therefore, there
is |ei ∩ ej ∩ ek| = |(ei ∩ ej) ∩ (ei ∩ ek)| = |ej ∩ ek|. Similarly, conclusions (2) and
(3) can be proved. Theorem2 is proved.

3.4 Single-Single-Inclusion Motifs

Definition 7 (Single-Single-Inclusion Motifs). Given three hyperedges ei,
ej and ek, if their connection pattern (motif) satisfies any of the following three
conditions (1) |ei ∩ ej | = |ej | and |ei ∩ ek| �= |ek|; (2) |ej ∩ ek| = |ek| and
|ei ∩ ej | �= |ei|; (3) |ej ∩ ek| = |ej | and |ei ∩ ek| �= |ei|, we call it a Single-Single-
Inclusion Motif (SSI motif for short).

Example 4. As shown in Fig. 2, motif 5, motif 9 and motif 10 are SSI motifs.
More intuitively, the SSI motif is the one that has one hyperedge containing only
one of other two hyperedges.

Theorem 3. Given three hyperedges ei, ej and ek, if their connection pattern
(motif) is a SSI motif, there exist the following conclusions : (1) if |ei∩ej | = |ej |
and |ei ∩ ek| �= |ek| then |ei ∩ ej ∩ ek| = |ej ∩ ek|; (2) if |ej ∩ ek| = |ek|
and |ei ∩ ej | �= |ei| then |ei ∩ ej ∩ ek| = |ej ∩ ek|; (3) if |ej ∩ ek| = |ej | and
|ei ∩ ek| �= |ei| then |ei ∩ ej ∩ ek| = |ei ∩ ej |.
Proof. We first prove the conclusion (1). Given three hyperedges ei, ej and ek,
if |ei ∩ ej | = |ej | and |ei ∩ ek| �= |ek|, then ei contains ej . Therefore, there is
|ei ∩ ej ∩ ek| = |(ei ∩ ej) ∩ ek| = |ej ∩ ek|. Similarly, conclusions (2) and (3) can
be proved. Theorem 3 is proved.

As described in Subsect. 3.2–3.4, we propose 3 different special motifs through
set theory. We also exploit set theory to give and prove their respective special
properties. By determining the type of motifs, we can speed up the computation
for the corresponding motifs through Theorems 1–3.

4 Hypergraph Motif Counting Algorithm Framework
Optimization

For the remaining hypergraph motifs that cannot be optimized, we further reduce
the overall complexity of the algorithm by preserving the hyperedge pair inter-
sections in the preprocessing stage. 1) Constructing Projected Graph. As
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a preprocessing step (Lines 1–7), Algorithm 1 builds a complete hyperedge pro-
jected graph for subsequent motif counting. It first clears H for recording hyper-
edge pairs (Line 1). Then it finds all neighbors of each hyperedge ei (Lines 2–4).
Ev is used to denote the set of all hyperedges containing the vertices v. Finally
it stores the hyperedge pair in H (Line 6). At the same time, it pre-stores the
intersection (set of vertices) of the corresponding hyperedge pairs in H for com-
puting acceleration (Line 7). The time complexity of this preprocessing step is
O(

∑
(ei,ej)∈H |ei ∩ ej |). In fact, it needs to compute ei ∩ ej to find the neighbor

ej of hyperedge ei, hence it does not affect the time complexity of the algorithm
by pre-storing ei ∩ ej in H. 2) Motif Counting. Algorithm 1 (Lines 8–12) first
finds two neighbors of each hyperedge ei to form a hyperedge triple (Lines 8–9).
Hei is used to represent all neighbors of hyperedge ei in PG. Then it deter-
mines whether the three hyperedges belong to a particular motif (Line 10). If
the corresponding hyperedge triple belongs to DSI or SDI or SSI or open motif,
we use the function h({ei, ej , ek}) to determine which motif it belongs to and
accumulate at the corresponding position of M (Line 11). Since h({ei, ej , ek})
does not need to compute ei ∩ ej ∩ ek, the time complexity of h({ei, ej , ek})
is O(1). For the remaining motifs, we use function h({ei, ei, ei},H) to calculate
(Line 12). Since the algorithm pre-stores the hyperedge pair intersections in H,
the time complexity of h({ei, ei, ei},H) is O(min(|ei ∩ ej |, |ej ∩ ek|, |ei ∩ ek|)). In
conclusion, the time complexity of our algorithm is better than that of existing
algorithm (O(min(|ei|, |ej |, |ei|)) in [6]).

Algorithm 1: The Framework For Hypergraph Motif Counting

Input : Hypergraph G = (V,E), hyperedge projected graph PG = (E,H)
Output: Exact count of each hypergraph motif in M

1 initialize: Set H := ∅ ;
2 foreach hyperedge ei ∈ E do
3 foreach vertex v ∈ ei do
4 foreach hyperedge ej ∈ Ev do
5 if j > i then
6 H ← (ei, ej) ;

7 H ← ei ∩ ej ;

8 foreach hyperedge ei ∈ E do
9 foreach unordered hyperedge pair ej ∈ Hei and ek ∈ Hei do

10 if {ei, ej , ek} ∈ DSI or SDI or SSI or open motif then

11 M [h({ei, ej , ek})] + + ;

else

12 M [h({ei, ej , ek}, H)] + + ;

13 return M ;
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5 Experimental Settings and Results Analysis

5.1 Experimental Settings

1) Competitive Algorithms. The first is a native algorithm for hypergraph
motif counting. This algorithm does not employ any optimization techniques. We
call this algorithm HMC for short, and we regard HMC as a basic method. The
second algorithm HMCO can be seen as HMC with optimization techniques
only for the open motif and it is actually the exact motif algorithm in [6]. The
third algorithm HMCA can be seen as HMC with optimization techniques for
DSI, SDI, SSI and open motifs. Our algorithm HMCP can be seen as HMCA
adding preserving intersections techniques for remaining hypergraph motifs. 2)
Experiment Environment. We obtained the source code of HMCO from the
authors of [6]. The compiler for compiling source code is g++ 4.9.3−O3 flag. We
conduct all experiments on a PC machine with equipment of Intel i5 3.20 GHz
and 16 GB RAM . 3) Metrics. We measure the execution time in milliseconds
(ms). 4) Datasets. We use 8 real-world datasets (http://konect.cc/) to evaluate
the algorithms. The specific information of all real-world datasets is given in
Table 1.

Table 1. Real-World Datasets Statistics

Data |V | |H| H Avg H Max V Avg Edge of BiGraph

unicodelang 254 614 2.04 141 4.94 1,225

edit-crwiki 1,188 2,071 10.63 248 19.11 22,700

filmtrust 1,508 30,087 17.14 1,044 23.54 35,494

escorts 10,106 6,624 7.64 615 5.01 50,632

wang-amazon 26,112 799 36.37 812 1.11 29,062

tripadvisor 145,316 1,759 99.92 2,138 1.21 175,765

bag-kos 3,430 6,906 67.73 2,123 136.36 467,714

flickr 395,979 103,631 82.46 34,989 21.58 8,545,307

5.2 Experimental Results Analysis

Fig. 3. Total Processing Time on Different Datasets (Vary Algorithm).

http://konect.cc/
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1) Total processing time. Figures 3(a)–(f) show the total time when process-
ing the corresponding dataset. Based on the experimental results, we can obtain
the following conclusions. 1) HMC performs the worst on all datasets, because
it employs the brute force policy and lacks optimization method. 2) Simplify-
ing the computation by considering only special motifs can also lead to better
speedups. HMCA outperforms existing methods HMCO. This is because a
large number of hyperedge inclusion relations are actually contained in the real-
world hypergraph. Our optimization technique exploits these relationships to
greatly reduce computational overhead. 3) HMCP always maintains the advan-
tage on all datasets. The reason is twofold. One is to use Theorems 1–3 to reduce
redundant intersection calculations. The second is that preserving the hyperedge
pair intersections in the preprocessing stage provides speedup for computing the
remaining hypergraph motifs. In general, HMCP is more than 2 times faster
than existing method HMCO. In dataset wang-amazon, HMCP can bring a
maximum speedup of four times. 2) Scalability. To test the scalability of our
algorithm, we use larger datasets. By varying the number of edges added to the
hypergraph, we compare the performance of the four algorithms as shown in
Figs. 4(a)–(b). The conclusion is that HMCP has better scalability than other
algorithms. This is because our algorithm fully considers the hyperedge rela-
tionship to provide speedup. It is worth noting that the degree of the hyperedge
increases as the number of edges increases. This will lead to more hyperedge
inclusion relations, so the advantage of HMCP is more obvious.

Fig. 4. Processing time on different datasets (vary number of edges)

6 Conclusion

In this paper, we propose effective techniques for accelerating hypergraph motif
counting based on hyperedge relations. In our work, we classify hypergraph
motifs with different hyperedge relations and demonstrate different optimiza-
tion methods. For the remaining hypergraph motifs that cannot be optimized,
we further reduce the overall complexity of the algorithm. Extensive experiments
on real datasets show that our method is superior to the existing solutions.
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