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Preface

These volumes (LNCS 13421–13423) contain the proceedings of the 6th Asia-Pacific
Web (APWeb) and Web-Age Information Management (WAIM) Joint Conference on
Web and Big Data (APWeb-WAIM). Researchers and practitioners from around the
world came together at this leading international forum to share innovative ideas, original
research findings, case study results, and experienced insights in the areas of the World
Wide Web and big data, thus covering web technologies, database systems, information
management, software engineering, knowledge graphs, recommender system and big
data.

The 6th APWeb-WAIM conference was held in Nanjing during 25–27 November
2022. As an Asia-Pacific flagship conference focusing on research, development, and
applications in relation to Web information management, APWeb-WAIM builds on the
successes of APWeb and WAIM. Previous APWeb events were held in Beijing (1998),
Hong Kong (1999), Xi’an (2000), Changsha (2001), Xi’an (2003), Hangzhou (2004),
Shanghai (2005), Harbin (2006), Huangshan (2007), Shenyang (2008), Suzhou (2009),
Busan (2010), Beijing (2011), Kunming (2012), Sydney (2013), Changsha (2014),
Guangzhou (2015), and Suzhou (2016). And previousWAIM events were held in Shang-
hai (2000), Xi’an (2001), Beijing (2002), Chengdu (2003), Dalian (2004), Hangzhou
(2005), Hong Kong (2006), Huangshan (2007), Zhangjiajie (2008), Suzhou (2009),
Jiuzhaigou (2010),Wuhan (2011),Harbin (2012), Beidaihe (2013),Macau (2014),Qing-
dao (2015), andNanchang (2016). The combinedAPWeb-WAIM conferences have been
held in Beijing (2017),Macau (2018), Chengdu (2019), Tianjin (02020), andGuangzhou
(2021). With the ever-growing importance of appropriate methods in these data-rich
times and the fast development of web-related technologies, we believe APWeb-WAIM
will become a flagship conference in this field.

The high-quality program documented in these proceedings would not have been
possible without the authors who chose APWeb-WAIM for disseminating their find-
ings. APWeb-WAIM 2022 received a total of 297 submissions and, after the double-
blind review process (each paper received at least three review reports), the confer-
ence accepted 75 regular papers (including research and industry track) (acceptance
rate 25.25%), 45 short research papers, and 5 demonstrations. The contributed papers
address a wide range of topics, such as big data analytics, advanced database and web
applications, data mining and applications, graph data and social networks, information
extraction and retrieval, knowledge graphs, machine learning, recommender systems,
security, privacy and trust, and spatial and multimedia data. The technical program also
included keynotes by Ihab F. Ilyas Kaldas, Aamir Cheema, Chengzhong Xu, Lei Chen,
and Haofen Wang. We are grateful to these distinguished scientists for their invaluable
contributions to the conference program.

We would like to express our gratitude to all individuals, institutions, and sponsors
that supported APWeb-WAIM 2022. We are deeply thankful to the Program Committee
members for lending their time and expertise to the conference. We also would like
to acknowledge the support of the other members of the organizing committee. All of
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them helped to make APWeb-WAIM 2022 a success. We are grateful for the guidance
of the Honorary Chairs (Zhiqiu Huang), Steering Committee representative (Yanchun
Zhang) and the General Co-chairs (Aoying Zhou, Wojciech Cellary and Bing Chen)
for their guidance and support. Thanks also go to the Workshop Co-chairs (Shiyu Yang
and Saiful Islam), Tutorial Co-chairs (Xiang Zhao, Wenqi Fan and Ji Zhang), Demo
Co-chairs (Jianqiu Xu and Travers Nicolas), Industry Co-chairs (Chen Zhang Hosung
Park), Publication Co-chairs (Chuanqi Tao, Lin Yue and Xuming Han), and Publicity
Co-chairs (Yi Cai, Siqiang Luo and Weitong Chen).

We hope the attendees enjoyed the exciting program of APWeb-WAIM 2022 as
documented in these proceedings.

November 2022 Toshiyuki Amagasa
Diego Calvanese

Xuming Han
Bohan Li

Chuanqi Tao
Lin Yue
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Abstract. Hypergraphs can naturally represent inter-group relations
that are prevalent in many application domains by hyperedges. Hyper-
graph motifs can be described as the structural patterns of three con-
nected hyperedges. As an effective tool, it plays an important role in
the local structure analysis of hypergraphs. In this paper, we study
exact hypergraph motif counting which is a fundamental problem of
hypergraph motif research. Existing algorithms don’t adequately con-
sider hyperedge relations in real-world hypergraphs, which lead to a
large number of redundant computations. This motivates us to improve
performance by exploiting hyperedge relations. In our work, we classify
hypergraph motifs with different hyperedge relations. For different types
of motifs, we use set theory to demonstrate and propose different opti-
mization methods to reduce the computation of excessive intersections.
We also further reduce the cost of the proposed method by preserv-
ing hyperedge intersections when constructing the hyperdege projected
graph. Extensive experiments on real datasets validate the superiority of
our algorithm compared to existing methods.

Keywords: Hypergraph · Hypergraph motif · Hypergraph motif
counting · Hyperedge relation

1 Introduction

A hypergraph consists of vertices and hyperedges that can connect multiple ver-
tices, and can be seen as a general form of ordinary graphs. Since hypergraphs
can effectively simulate complex intergroup relationships between entities, they
have a wide range of applications such as bioinformatics [5] and social network
analysis [9] . Specifically, complex analyses over hypergraphs have also been
extensively explored for hypergraph motifs [6], classification [4] and hyperedge
prediction [10]. Network motifs have achieved great success in exploring and
discovering local structural features of real-world graphs [7]. However, due to
the different structures of ordinary graphs between hypergraphs, it is difficult
to directly apply related techniques to hypergraphs. In order to better explore

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Li et al. (Eds.): APWeb-WAIM 2022, LNCS 13422, pp. 3–11, 2023.
https://doi.org/10.1007/978-3-031-25198-6_1
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4 Y. Su et al.

the local structural patterns of real-world hypergraphs, Lee et al. [6] success-
fully define hypergraph motifs for the first time. Existing methods demonstrate
the importance of hypergraph motifs in revealing hypergraph local structural
patterns. However, existing algorithms do not effectively explore hyperedge rela-
tions to improve the computational efficiency. This motivates us to fully explore
hyperedge relations (intersection and containment) to achieve the acceleration of
hypergraph motifs counting. The major contributions are concluded as follows.

– We explore the widely existing hyperedge relations in real-world hypergraphs
and classify hypergraph motifs according to specific relations. For different
types of motifs, by using set theory, we study and demonstrate different opti-
mal calculation methods to reduce the cost of excessive intersections.

– For the remaining hypergraph motifs that cannot be optimized, we further
reduce the cost of the algorithm by preserving the hyperedge intersection
when constructing the hyperdege projected graph.

– We conduct extensive experiments to verify that our algorithm outperforms
existing algorithms. In total processing time, our algorithm is more than two
times faster than existing algorithms.

2 Related Work

We examine existing related work on network motif counting for ordinary graph.
Most of them apply the following three techniques to speed up motif counting:
1) Combinatorics: In order to speed up exact network motif counting, the exist-
ing work [8] adopt combinatorial relations computation methods. 2) MCMC
sampling: Most approximate network motif counting algorithms estimate the
number of motif instances by sampling [2,3]. 3) Color coding: The approxi-
mate network motif counting algorithm [1] uses color coding to randomly color
each vertex and use this coloring information to randomly sample. However,
due to the different structures of ordinary graphs and hypergraphs, it is diffi-
cult to directly apply related techniques to hypergraphs. We also review existing
related work on hypergraph motifs. Hypergraph motifs are the basic building
blocks of hypergraphs as defined by [6]. Unlike network motifs, it is formed by
three connected hyperedges with 26 different connection patterns. Hypergraph
motifs differ from network motifs in that they do not limit the number of ver-
tices. Extensive experiments verify that hypergraph motifs play an important
role in revealing local structural patterns of real-world hypergraphs. The only
existing exact hypergraph motif counting algorithm is proposed by [6]. Although
the algorithm efficiently implements hypergraph motif counting, it performs a
lot of redundant intersection computations.
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3 Hypergraph Motif Classification and Computation
Acceleration Based on Hyperedge Relations

3.1 Basic Definition

Definition 1 (Hypergraph). A hypergraph is represented by G = (V, E),
where V is a finite set of vertices, E =

⋃|E|
i=1ei is a finite set of hyperedges. Each

hyperedge ei ∈E is a non-empty subset of V.

Definition 2 (Hyperdege Projected Graph). A hyperdege projected graph
of G = (V, E) is an ordinary graph PG = (E, H), where H = {(ei,ej) | ei ∩ ej
�= ∅}. We use Hij to denote the intersection of ei and ej, that is, Hij = {vi ∈
V | vi∈ ei ∩ ej}.
Definition 3 (Hypergraph Motif). Given three connected hyperedges {ei,
ej, ek}, hypergraph motifs are used to describe the connectivity patterns of the
three connected hyperedges. Formally, a hypergraph motif is a binary vector of
size 7 whose elements represent the emptiness of the following seven sets: (1) ei
\ ej \ ek, (2) ej \ ek \ ei, (3) ek \ ei \ ej, (4) ei ∩ ej \ ek, (5) ej ∩ ek \ ei,
(6) ek ∩ ei \ ej and (7) ei ∩ ej ∩ ek.

Fig. 1. Hypergraph motif and hypergraph motif instance

Fig. 2. The 26 hypergraph motifs
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Example 1. As shown in Fig. 1(b), hypergraph motifs can be naturally repre-
sented in the Venn diagram. The three circles represent hyperedges ei, ej and
ek, respectively. The three circles are superimposed and divided into seven parts
representing seven different sets. We usually use patterned parts to represent
non-empty and white to represent empty. In fact, excluding symmetries and
duplicated hyperedges, we can describe the pattern of all connected three hyper-
edges by means of 26 hypergraph motifs in Fig. 2. If the connectivity pattern of
the three hyperedges corresponds to a particular hypergraph motif, we consider
the three connected hyperedges as an instance of this hypergraph motif. As
shown in Fig. 1, (a) is an instance of the hypergraph motif 6. It is worth noting
that motif 17–22 are open motifs in Fig. 2. More intuitively, the open motif
is the one that has two hyperedges which are not connected. Obviously, given
three hyperedges ei, ej and ek, if their connection pattern (motif) is a open
motif, then |ei ∩ ej ∩ ek| = 0.

Definition 4 (Hypergraph Motif Counting). Hypergraph motif counting
is to calculate the number of instances corresponding to 26 hypergraph motifs on
a hypergraph.

3.2 Double-Single-Inclusion Motifs

Definition 5 (Double-Single-Inclusion Motifs). Given three hyperedges ei,
ej and ek, if their connection pattern (motif) satisfies any of the following three
conditions (1) |ei ∩ ej | = |ej ∩ ek| = |ej |; (2) |ej ∩ ek| = |ei ∩ ek| = |ek|;
(3) |ei ∩ ej | = |ei ∩ ek| = |ei|, we call it a Double-Single-Inclusion Motif (DSI
motif for short).

Example 2. As shown in Fig. 2, motif 1 and motif 4 are DSI motifs. More
intuitively, the DSI motif is the one that has one hyperedge contained by the
other two hyperedges.

Theorem 1. Given three hyperedges ei, ej and ek, if their connection pattern
(motif) is a DSI motif, there exist the following conclusions : (1) if |ei ∩ ej | =
|ej ∩ek| = |ej | then |ei∩ej ∩ek| = |ej |; (2) if |ej ∩ek| = |ei∩ek| = |ek| then |ei∩
ej ∩ ek| = |ek|; (3) if |ei ∩ ej | = |ei ∩ ek| = |ei| then |ei ∩ ej ∩ ek| = |ei|.
Proof. We first prove the conclusion (1). Given three hyperedges ei, ej and ek, if
|ei ∩ ej | = |ej ∩ ek| = |ej |, then ei contains ej and ek also contains ej . Therefore,
there is |ei ∩ ej ∩ ek| = |ej ∩ ek| = |ej |. Similarly, conclusions (2) and (3) can be
proved. Theorem 1 is proved.

3.3 Single-Double-Inclusion Motifs

Definition 6 (Single-Double-Inclusion Motifs). Given three hyperedges ei,
ej and ek, if their connection pattern (motif) satisfies any of the following three
conditions (1) |ei ∩ ej | = |ej | and |ei ∩ ek| = |ek|; (2) |ej ∩ ek| = |ek| and
|ei ∩ ej | = |ei|; (3) |ej ∩ ek| = |ej | and |ei ∩ ek| = |ei|, we call it a Single-Double-
Inclusion Motif (SDI motif for short).
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Example 3. As shown in Fig. 2, motif 3, motif 7 and motif 8 are SDI motifs.
More intuitively, the SDI motif is the one that has one hyperedge containing the
other two hyperedges.

Theorem 2. Given three hyperedges ei, ej and ek, if their connection pattern
(motif) is a DSI motif, there exist the following conclusions : (1) if |ei∩ej | = |ej |
and |ei ∩ ek| = |ek| then |ei ∩ ej ∩ ek| = |ej ∩ ek|; (2) if |ej ∩ ek| = |ek|
and |ei ∩ ej | = |ei| then |ei ∩ ej ∩ ek| = |ej ∩ ek|; (3) if |ej ∩ ek| = |ej | and
|ei ∩ ek| = |ei| then |ei ∩ ej ∩ ek| = |ei ∩ ej |.
Proof. We first prove the conclusion (1). Given three hyperedges ei, ej and ek,
if |ei ∩ ej | = |ej | and |ei ∩ ek| = |ek|, then ei contains ej and ek. Therefore, there
is |ei ∩ ej ∩ ek| = |(ei ∩ ej) ∩ (ei ∩ ek)| = |ej ∩ ek|. Similarly, conclusions (2) and
(3) can be proved. Theorem2 is proved.

3.4 Single-Single-Inclusion Motifs

Definition 7 (Single-Single-Inclusion Motifs). Given three hyperedges ei,
ej and ek, if their connection pattern (motif) satisfies any of the following three
conditions (1) |ei ∩ ej | = |ej | and |ei ∩ ek| �= |ek|; (2) |ej ∩ ek| = |ek| and
|ei ∩ ej | �= |ei|; (3) |ej ∩ ek| = |ej | and |ei ∩ ek| �= |ei|, we call it a Single-Single-
Inclusion Motif (SSI motif for short).

Example 4. As shown in Fig. 2, motif 5, motif 9 and motif 10 are SSI motifs.
More intuitively, the SSI motif is the one that has one hyperedge containing only
one of other two hyperedges.

Theorem 3. Given three hyperedges ei, ej and ek, if their connection pattern
(motif) is a SSI motif, there exist the following conclusions : (1) if |ei∩ej | = |ej |
and |ei ∩ ek| �= |ek| then |ei ∩ ej ∩ ek| = |ej ∩ ek|; (2) if |ej ∩ ek| = |ek|
and |ei ∩ ej | �= |ei| then |ei ∩ ej ∩ ek| = |ej ∩ ek|; (3) if |ej ∩ ek| = |ej | and
|ei ∩ ek| �= |ei| then |ei ∩ ej ∩ ek| = |ei ∩ ej |.
Proof. We first prove the conclusion (1). Given three hyperedges ei, ej and ek,
if |ei ∩ ej | = |ej | and |ei ∩ ek| �= |ek|, then ei contains ej . Therefore, there is
|ei ∩ ej ∩ ek| = |(ei ∩ ej) ∩ ek| = |ej ∩ ek|. Similarly, conclusions (2) and (3) can
be proved. Theorem 3 is proved.

As described in Subsect. 3.2–3.4, we propose 3 different special motifs through
set theory. We also exploit set theory to give and prove their respective special
properties. By determining the type of motifs, we can speed up the computation
for the corresponding motifs through Theorems 1–3.

4 Hypergraph Motif Counting Algorithm Framework
Optimization

For the remaining hypergraph motifs that cannot be optimized, we further reduce
the overall complexity of the algorithm by preserving the hyperedge pair inter-
sections in the preprocessing stage. 1) Constructing Projected Graph. As
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a preprocessing step (Lines 1–7), Algorithm 1 builds a complete hyperedge pro-
jected graph for subsequent motif counting. It first clears H for recording hyper-
edge pairs (Line 1). Then it finds all neighbors of each hyperedge ei (Lines 2–4).
Ev is used to denote the set of all hyperedges containing the vertices v. Finally
it stores the hyperedge pair in H (Line 6). At the same time, it pre-stores the
intersection (set of vertices) of the corresponding hyperedge pairs in H for com-
puting acceleration (Line 7). The time complexity of this preprocessing step is
O(

∑
(ei,ej)∈H |ei ∩ ej |). In fact, it needs to compute ei ∩ ej to find the neighbor

ej of hyperedge ei, hence it does not affect the time complexity of the algorithm
by pre-storing ei ∩ ej in H. 2) Motif Counting. Algorithm 1 (Lines 8–12) first
finds two neighbors of each hyperedge ei to form a hyperedge triple (Lines 8–9).
Hei is used to represent all neighbors of hyperedge ei in PG. Then it deter-
mines whether the three hyperedges belong to a particular motif (Line 10). If
the corresponding hyperedge triple belongs to DSI or SDI or SSI or open motif,
we use the function h({ei, ej , ek}) to determine which motif it belongs to and
accumulate at the corresponding position of M (Line 11). Since h({ei, ej , ek})
does not need to compute ei ∩ ej ∩ ek, the time complexity of h({ei, ej , ek})
is O(1). For the remaining motifs, we use function h({ei, ei, ei},H) to calculate
(Line 12). Since the algorithm pre-stores the hyperedge pair intersections in H,
the time complexity of h({ei, ei, ei},H) is O(min(|ei ∩ ej |, |ej ∩ ek|, |ei ∩ ek|)). In
conclusion, the time complexity of our algorithm is better than that of existing
algorithm (O(min(|ei|, |ej |, |ei|)) in [6]).

Algorithm 1: The Framework For Hypergraph Motif Counting

Input : Hypergraph G = (V,E), hyperedge projected graph PG = (E,H)
Output: Exact count of each hypergraph motif in M

1 initialize: Set H := ∅ ;
2 foreach hyperedge ei ∈ E do
3 foreach vertex v ∈ ei do
4 foreach hyperedge ej ∈ Ev do
5 if j > i then
6 H ← (ei, ej) ;

7 H ← ei ∩ ej ;

8 foreach hyperedge ei ∈ E do
9 foreach unordered hyperedge pair ej ∈ Hei and ek ∈ Hei do

10 if {ei, ej , ek} ∈ DSI or SDI or SSI or open motif then

11 M [h({ei, ej , ek})] + + ;

else

12 M [h({ei, ej , ek}, H)] + + ;

13 return M ;
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5 Experimental Settings and Results Analysis

5.1 Experimental Settings

1) Competitive Algorithms. The first is a native algorithm for hypergraph
motif counting. This algorithm does not employ any optimization techniques. We
call this algorithm HMC for short, and we regard HMC as a basic method. The
second algorithm HMCO can be seen as HMC with optimization techniques
only for the open motif and it is actually the exact motif algorithm in [6]. The
third algorithm HMCA can be seen as HMC with optimization techniques for
DSI, SDI, SSI and open motifs. Our algorithm HMCP can be seen as HMCA
adding preserving intersections techniques for remaining hypergraph motifs. 2)
Experiment Environment. We obtained the source code of HMCO from the
authors of [6]. The compiler for compiling source code is g++ 4.9.3−O3 flag. We
conduct all experiments on a PC machine with equipment of Intel i5 3.20 GHz
and 16 GB RAM . 3) Metrics. We measure the execution time in milliseconds
(ms). 4) Datasets. We use 8 real-world datasets (http://konect.cc/) to evaluate
the algorithms. The specific information of all real-world datasets is given in
Table 1.

Table 1. Real-World Datasets Statistics

Data |V | |H| H Avg H Max V Avg Edge of BiGraph

unicodelang 254 614 2.04 141 4.94 1,225

edit-crwiki 1,188 2,071 10.63 248 19.11 22,700

filmtrust 1,508 30,087 17.14 1,044 23.54 35,494

escorts 10,106 6,624 7.64 615 5.01 50,632

wang-amazon 26,112 799 36.37 812 1.11 29,062

tripadvisor 145,316 1,759 99.92 2,138 1.21 175,765

bag-kos 3,430 6,906 67.73 2,123 136.36 467,714

flickr 395,979 103,631 82.46 34,989 21.58 8,545,307

5.2 Experimental Results Analysis

Fig. 3. Total Processing Time on Different Datasets (Vary Algorithm).

http://konect.cc/
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1) Total processing time. Figures 3(a)–(f) show the total time when process-
ing the corresponding dataset. Based on the experimental results, we can obtain
the following conclusions. 1) HMC performs the worst on all datasets, because
it employs the brute force policy and lacks optimization method. 2) Simplify-
ing the computation by considering only special motifs can also lead to better
speedups. HMCA outperforms existing methods HMCO. This is because a
large number of hyperedge inclusion relations are actually contained in the real-
world hypergraph. Our optimization technique exploits these relationships to
greatly reduce computational overhead. 3) HMCP always maintains the advan-
tage on all datasets. The reason is twofold. One is to use Theorems 1–3 to reduce
redundant intersection calculations. The second is that preserving the hyperedge
pair intersections in the preprocessing stage provides speedup for computing the
remaining hypergraph motifs. In general, HMCP is more than 2 times faster
than existing method HMCO. In dataset wang-amazon, HMCP can bring a
maximum speedup of four times. 2) Scalability. To test the scalability of our
algorithm, we use larger datasets. By varying the number of edges added to the
hypergraph, we compare the performance of the four algorithms as shown in
Figs. 4(a)–(b). The conclusion is that HMCP has better scalability than other
algorithms. This is because our algorithm fully considers the hyperedge rela-
tionship to provide speedup. It is worth noting that the degree of the hyperedge
increases as the number of edges increases. This will lead to more hyperedge
inclusion relations, so the advantage of HMCP is more obvious.

Fig. 4. Processing time on different datasets (vary number of edges)

6 Conclusion

In this paper, we propose effective techniques for accelerating hypergraph motif
counting based on hyperedge relations. In our work, we classify hypergraph
motifs with different hyperedge relations and demonstrate different optimiza-
tion methods. For the remaining hypergraph motifs that cannot be optimized,
we further reduce the overall complexity of the algorithm. Extensive experiments
on real datasets show that our method is superior to the existing solutions.

Acknowledgements. This work is supported by the National Nature Science Foun-
dation of China (62072083) and the Fundamental Research Funds of the Central Uni-
versities (N2216017).
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Abstract. Focusing on learning the user’s behavioral characteristics
during check-in activities, the next point of interest (POI) recommen-
dation is to predict user’s destination to visit next. It is important for
both the location-based service providers and users. Most of the exist-
ing studies have not taken full advantage of spatio-temporal information
and user category preference, these are very important for analyzing user
preference. Therefore, we propose a next POI recommendation algorithm
named as CPAM that integrates category preference and attention mech-
anism to comprehensively structure user mobility patterns. We adopt
the LSTM with multi-level attention mechanism to get user POI pref-
erence, which studies the weight of different contextual information of
each check-in, and the different influence of each check-in the sequence
to the next POI. In addition, we use LSTM to capture the user’s cate-
gory transition preference to further improve the accuracy of recommen-
dation. The experiment results on two real-world Foursquare datasets
demonstrate that CPAM has better performance than the state-of-the
art methods in terms of two commonly used metrics.

Keywords: LSTM · Next POI recommendation · Contextual
information · Location-based social networks · Attention mechanism

1 Introduction

With the rapid development of mobile networks, location-based social networks
(LBSNs) are also widely used in recent years, such as Foursquare and Facebook
[4]. Users can share their location and life by checking in locations. Accord-
ing to users’ historical check-in information, it is convenient to construct users’
movement trajectory and dig out their movement patterns. The next point of
interest (POI) recommendation has become one of the most important tasks in
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Li et al. (Eds.): APWeb-WAIM 2022, LNCS 13422, pp. 12–19, 2023.
https://doi.org/10.1007/978-3-031-25198-6_2
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http://orcid.org/0000-0003-1890-7033
https://doi.org/10.1007/978-3-031-25198-6_2


Next POI Recommendation Method Based on Category Preference 13

LBSNs and has a broad range of applications. Its primary objective is to predict
the next POI that a user is likely to visit at a given time based on the user’s
check-in sequence [10]. The next POI recommendation plays a significant role in
location-based services, and it can not only promotes customer experiences, but
also helps improve the quality of location-related business services [2].

User’s transition preference for POI category reflects user’s mobility patterns
at category level, in order to take full advantage of contextual information, we
propose a next POI recommendation algorithm (CPAM) that combines category
preference and attention mechanism. Experimental results on two real-world
datasets demonstrate that CPAM algorithm is significantly better than other
six comparative algorithms in terms of Recall and Map.

2 Related Work

Earlier approaches are to model the user’s movement patterns through Markov
chains to solve the sparse problem [6]. But existing Markov chain based meth-
ods are difficult to capture longer sequence contexts. In recent years, there has
been a trend of methods applying deep learning for recommendation system.
For example, Liu et al. proposed the ST-RNN which considers spatio-temporal
information on the basis of RNN [5]. But RNN is not suitable for building long
sequences. Subsequently, Zhang et al. proposed iMTL with multi-task learning
framework based on LSTM [11], which comprehensively considered the category
and space-time information in trajectory sequence. In addition, Some studies
found that aggregating different contextual information (such as social relation-
ship, time, location, etc.) into POI recommendation methods can alleviate data
sparseness [12]. Attention mechanism can capture the degree of influence of dif-
ferent components [1]. It is also widely used for the next POI recommendation.
Combining LSTM and attention mechanism can distinguish the differing degrees
of influences that each time step may have on the next check-in. Huang et al. pro-
posed ATST-LSTM, which adds attention mechanism on the basis of LSTM [3].
Li et al. proposed a codec framework, which could automatically learn the deep
spatio-temporal representation of historical check-ins, but it did not consider
the impact of spatio-temporal transition on check-in [14]. Wu et al. considered
the long and short term preferences of users separately, and integrated atten-
tion mechanism, geographical location and category information of POI into the
LSTM network [13]. The above studies all employ the attention mechanism to
achieve better next POI recommendation performance.

3 Proposed Method

The model is mainly composed of three modules, as shown in Fig. 1. (1) Category
module based on LSTM is to obtain the user’s preference representation at
category level; (2) POI module based on self-attention LSTM network to get
user’s preference representation at POI level; (3) Output layer is to generate a
ranked list of next POIs.
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Fig. 1. The proposed CPAM framework

3.1 Category Module

Category sequence is the representation of check-in sequence at the semantic
level. It reflects user’s mobile preference at category level. Category module is
designed to infer user category preference and participates in POI recommenda-
tion as an auxiliary function.

We learn the user’s category preference ru
c from category sequence Cu ={

Cu
t1 , C

u
t2 , · · · , Cu

tN

}
, each element of Cu is denoted as Cu

tk
= (u, catv). It indi-

cates that the user u visits a POI v of category catv at time tk. The latent vector
of the category module is defined as follows.

xc
tk

= WCcatv + bC (1)

where W ∈ R
E×E is the weight matrix, where E is the dimension of the hidden

vector, b ∈ R
E is bias. Then, xc

tk
is input into the LSTM network to infer the

hidden state hc
tk

of user u.

hc
tk

= LSTM
(
xc

tk
,hc

tk−1

)
(2)

ru
c = hc

tN (3)

where LSTM (·) captures the sequential correlation of categories, hc
tk−1

is the
LSTM hidden state, which indicates the check-in category up to tk−1.

3.2 POI Module

Embedding Layer. The historical check-in sequence of user u consists of the
check-in tuple Au

tk
=

(
u, vu

tk
, lv, catv, tk, wtk

)
, we use it to learn the user’s pref-

erence at the POI level. the latent vector of the embedding layer of the POI
preference module is defined as follows:

x̃p
tk

= Wvvu
tk

+Wllv +Wttk +Wwwtk +Wddtk +Wtdtdtk + b (4)
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where vu
tk

is POI number, lv is POI location, tk is access timestamp, wtk is the
day of the week, dtk is distance between lutk and lutk−1

, tdtk is time difference
between tk and tk−1. x̃

p
tk

is sent to the contextual attention layer.

Contextual Attention. Each feature of the embedded layer marks an attribute
of the current check-in, and the extent to which these attributes affect the current
check-in is different. Therefore, the proportion of different contextual information
is studied with contextual attention mechanism in the current check-in.

x̃ (i, tk) represents the i-th attribute of the k-th historical check-in. ρ (i, tk)
indicates the weight of the i-th feature in the k-th check-in. The softmax function
is used for normalization.

ρ̃ (i, tk) = tanh
(
Wi

[
hp

tk−1
, cp

tk−1

]
+Wx̃

i x̃ (i, tk) + bi

)
(5)

ρ (i, tk) =
exp (ρ̃ (i, tk))

∑I
i=1 exp (ρ̃ (i, tk))

, 1 ≤ i ≤ I (6)

where I is the number of attributes, hp
tk−1

is the LSTM hidden state, cp
tk−1

is the
LSTM cell state. Then, x̃ (i, tk) is multiplied by ρ (i, tk) to obtain the embedding
vector, the updated attribute embedding vector is connected to obtain the aggre-
gation xp

tk
of the embedding layer based on contextual attention mechanism. xp

tk
is sent to LSTM to infer the hidden state hp

tk
at tk.

x (i, tk) = x̃ (i, tk) × ρ (i, tk) (7)

xp
tk

=
I∑

i=1

W (i)x (i, tk) + b (8)

hp
tk

= LSTM
(
xp

tk
,hp

tk−1

)
(9)

Temporal Attention. We use the temporal attention mechanism to adaptively
select relevant historical check-ins activities to achieve a better recommendation
of the next POI.

Let Hp be a matrix composed of all hidden vectors
{
hp

t1 ,h
p
t2 , · · ·hp

tN

}
, where

N is the length of the historical check-in sequence. The weight vector μ of his-
torical check-in is generated through the temporal attention mechanism.

μ =
exp

(
g

(
hp

tk
,qu

))

∑N
i=1 exp

(
g

(
hp

tk
,qu

)) (10)

the attention function g
(
hp

tk
,qu

)
is as follows.

g
(
hp

tk
,qu

)
=

hp
tk
(qu)T√
E

(11)
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where qu is the query information. Then multiply the resulting weight vector μ
by Hp to get user u’s preference representation at the POI level.

ru
p =

N∑

k=1

μkh
p
tk

(12)

3.3 Output Layer

We filter out a suitable POI for each user from all the accessed POIs, which must
meet any of the following conditions: (1) the POI is the one that the user has
visited before; (2) the POI is close to the POI that the user recently accessed
to; (3) it is the POI that is visited most by all users, i.e., popular POI.

In the output layer, we calculate the POI preference obtained by the POI
module and the category preference obtained by the category module with the
selected POI vk, and use the Softmax function to perform normalization, and
the probability of all candidate POI is obtained as bellows.

ou
tN+1,vk

=
exp

(
ru

pvk × ru
c catv

)

∑N
k=1 exp

(
ru

pvk × ru
c catv

) (13)

3.4 Network Training

Bayesian Personalized Ranking (BPR) is used to define loss function for training
the LSTM network in the category and POI modules [7], since BPR trains net-
work models by learning pair-wise sorting and can effectively utilize information
about POIs that the user does not visit. The data used for the category and POI
modules consists of a set of triplets sampled from the original data, each triplet
containing the user u and a pair of positive and negative samples.

The loss function of the category module is:

lc =
∑

(c>c′)∈Ωc

ln

(
1 + e

−
(

oc
t−oc′

t

))
(14)

where c′ is the negative category of c, Ωc is the training example, oc
t is the

predicted probability of user u visiting the POI of category c at time t, and oc′
t

is the predicted probability of user u visiting the POI of category c′.
The loss function of the POI module is:

lp =
∑

(v>v′)∈Ωp

ln

(
1 + e

−
(

ov
t −ov′

t

))
(15)

By integrating the loss functions and regularization terms of the two modules,
we strive to minimize the total loss function:

l = lc + lp +
ε

2

∣
∣
∣
∣Θ2

∣
∣
∣
∣ (16)

where ε is the regularization coefficient, Θ is the set of model parameters to learn.
AdaGrad is employed to optimize network parameters since it can significantly
improve the robustness of stochastic gradient descent.
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4 Experiments

To verify the proposed method, we compare it with six baselines on two public
real world check-in datasets named as Charlotte (CHA) and New York (NYC)
from Foursquare. All the algorithms are coded in Python 3.8 and the framework
is TensorFlow 2.3.1.

4.1 Datasets

The check-in data of CHA [11] is collected from January 2012 to December 2013
and the check-in data of NYC [9] is collected from April 2012 to February 2013.
The CHA dataset includes 20,939 check-in records and NYC dataset includes
227,428 check-in records.

In this study, each check-in record consists of user, POI, the POI location,
the check-in timestamp, the POI category, and the day of the week. Similar to
the work of Zhang et al. [11], we use the first 90% of check-ins of each user as
the training set and the last 10% as the test set.

4.2 Results and Analysis

We demonstrate the effectiveness of the CPAM method compared to the fol-
lowing six methods: PMF [8], ST-RNN [5], Time-LSTM [14], ATST-LSTM [3],
LSPL [13], iMTL [11]. To investigate the effectiveness of CPAM, we focused
on answering two research questions. RQ1: Can the performance of CPAM be
improved by using attention mechanisms and category preference? RQ2: Can
each component of CPAM help improve recommendation performance?

Table 1. The recommendation result of different methods on CHA and NYC dataset

Datasets CHA NYC
Criteria Rec@5 Rec@10 MAP@5 MAP@10 Rec@5 Rec@10 MAP@5 MAP@10

PMF 0.0868 0.1343 0.0181 0.0413 0.0322 0.125 0.0222 0.0263
ST-RNN 0.0890 0.1879 0.0333 0.061 0.0476 0.1964 0.025 0.0312
Time-LSTM 0.0943 0.2142 0.0625 0.0709 0.0794 0.2238 0.0372 0.0558
ATST-LSTM 0.1703 0.3083 0.0699 0.0819 0.1824 0.3269 0.0721 0.0821
iMTL 0.2138 0.3634 0.0833 0.0909 0.2184 0.3801 0.099 0.1057
LSPL 0.2539 0.3701 0.0909 0.1057 0.2702 0.3901 0.0925 0.1129
CPAM 0.2785 0.4016 0.0921 0.1162 0.2777 0.4484 0.101 0.1234

Answer to RQ1: Table 1 shows the performance of all methods, and the results
of two evaluation indicators when k is set to 5 and 10 are listed. It is found that
the recall and MAP value of Time-LSTM is higher than that of ST-RNN, which
infers that LSTM has better performance than RNN in long sequence modeling.
What’s more, ATST-LSTM performs better compared with Time-LSTM, which
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indicates that adding the spatio information and attention mechanism of check-
in sequence is beneficial to the modeling of POI check-in sequence. Compared
to baseline methods, CPAM considers users’ preferences for POI and category
at the same time and it mines as much information contained in user check-
in sequences as possible. So CPAM we proposed has a better recommendation
performance.

Fig. 2. The recommendation performance comparison of CPAM and its variants on
CHA and NYC dataset

Answer to RQ2: In order to verify the performance brought by considering
the contribution of category module, the contribution of contextual attention
mechanism and the contribution of temporal attention mechanism, we design
three different variants of CPAM: (1) CPAM-C removes the category module,
that is, users’ preferences at the category level are no longer considered. (2)
CPAM-CA removes contextual attention from the POI module. (3) CPAM-TA
removes the temporal attention mechanism from the POI module. Figure 2 illus-
trates the performance of CPAM and its variants. It is found that CPAM has
better performance than its variants. The three components are indispensable,
and they together improve the next POI recommendation performance.

5 Conclusion

A next POI recommendation algorithm based on category preference and atten-
tion mechanism is put forward in this paper. The proposed method CPAM con-
siders the user’s category preference and POI preference respectively, mines the
user’s movement behavior patterns through multi-level attention mechanism.
The experimental results show CPAM performs better than the other six com-
parative methods. In the future, we further study the influence of user comment
information for next POI recommendation.
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Abstract. Hierarchical text classification (HTC) is a challenging task
that classifies textual descriptions with a taxonomic hierarchy. Existing
methods have difficulties in modeling the hierarchical label structure.
They focus on using the graph embedding methods to encode the hier-
archical structure, ignoring that the HTC labels are based on a tree
structure. There is a difference between tree and graph structure: in
the graph structure, message passing is undirected, which will lead to
the imbalance of message transmission between nodes when applied to
HTC. As the nodes in different layers have inheritance relationships, the
information transmission between nodes should be directional and hier-
archical in the HTC task. In this paper, we propose a Top-Down Tree
Structure Awareness Model to extract the hierarchical structure features,
called ToSA. We regard HTC as a sequence generation task and intro-
duce a priori hierarchical information in the decoding process. We block
the information flow in one direction to ensure the graph embedding
method is more suitable for the HTC task, then get the enhanced tree
structure representation. Experiment results show that our model can
achieve the best results on both the public WOS dataset and a collected
E-commerce user intent classification dataset3.

Keywords: Hierarchical multi-label text classification · Graph
embedding · Text generation

1 Introduction

Hierarchical text classification (HTC) is a particular multi-label text classifica-
tion task, where the classification results correspond to some nodes of a tax-
onomic hierarchy. It plays an important role in many real-world applications,
such as webpage topic classification, product categorization and user feedback
classification. Figure 1 is an example of the E-commerce user intent classification
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Li et al. (Eds.): APWeb-WAIM 2022, LNCS 13422, pp. 23–37, 2023.
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Fig. 1. An example of the E-commerce user intent classification dataset. In the HTC
task, the user query corresponds to some nodes in the hierarchical prior tree. The blue
nodes indicate the manually labeled results of the questions asked by the user in the
HTC task. (Color figure online)

dataset1, the goal of HTC is to use the structural relationship of labels to find the
correct classification answers. The prior probability tree of HTC is constructed
based on the labels that have been manually labeled, and the manually labeled
labels have hierarchical structure information between them, so that the con-
structed prior probability tree can use the structural information of the labels
between different levels. In the example of E-commerce user intent classification
dataset in Fig. 1, level 1, level 2 and level 3 represent the three-level structure of
all labels respectively. The role of the root node is to construct the labels in level
1 layer into a complete tree structure, so it is called level 0 and has no meaning
at the level 0. In the HTC task, the user query corresponds to some nodes in
the hierarchical prior tree. The blue nodes in each layer indicate the multi-label
classification results of the user utterance, and the HTC task is dedicated to
improving the accuracy of multi-label classification in the hierarchy. All nodes
in the E-commerce user intent classification dataset are not fully listed in Fig. 1,
and there are many more labels in the actual dataset.

Two kinds of methods are widely used for HTC, which are the local methods
and the global methods. The local methods [2,9,12,18] focus on constructing
multiple cascaded classifiers, and the number of classifiers depends on the num-
ber of label layers. Multiple classifiers built by local-based methods can learn
features from different layers and then obtain multi-label classification results.
The advantage of the local methods is that it can utilize more fine-grained hier-
archical information. But those methods are easily affected by the parent clas-

1 This E-commerce user intent classification dataset is collected from an intelligent
service robot designed for creating an innovative online shopping experience in an
E-commerce website.
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sifiers. Each classifier’s loss can easily affect the final model’s performance. And
the computational cost is very high.

In order to integrate the multiple cascaded classifiers’ loss, researchers try to
use the global methods. The global methods [19,21] focus on building a whole
classifier, which can utilize structural information of hierarchical prior tree. The
global approach is rapidly gaining a lot of attention due to its low computa-
tional cost and high classification accuracy. So in this paper, we mainly focus
on improving the accuracy of the global approach. The hierarchical prior tree is
constructed from manually labeled labels in order to extract the structural rela-
tionship between labels. Recent global methods employ the graph convolutional
neural network (GCN) [21] to utilize the structural features. GCN is a graph
structure feature extractor, which can extract features from graph structure
data to obtain an embedded representation of the graph. As the tree structure
is a special form of graph structure, the method based on graph structure can
also be used to extract tree structure features. It is not the first time to use
GCN to model tree structure problems, Zhang et al. [20] employ GCN to fit the
dependency tree in dependency parsing.

In this paper, we argue that it is inappropriate to use undirected graph struc-
ture approach to model directed tree structur data in the HTC task, and there
are some fundamental differences between tree and graph structures. In graph
embedding methods, node features are shared for the whole graph. The update
direction and order of graph nodes is random. But in the HTC tree structure,
the nodes should be updated from the root node instead of randomly selected
nodes. Updating the features of the second layer nodes at first will not help
much in decoding the first layer labels in the HTC task. And the information
update direction is also very important, all nodes should be updated in the same
direction as the prior tree, which is more suitable for the HTC task. Sequence
to sequence (Seq2Seq) learning [15] is widely used in machine translation task
and text generation task. The Seq2Seq method propose a encoder and decoder
architecture, which has a large degree of freedom in its inputs and outputs, so
it can be adapted to many tasks. Some researchers [13] use Seq2Seq method
for multi-label classification before, but they focus on using external knowledge
rather than hierarchical structure information. The Seq2Seq method can dynam-
ically fuse other models into a holistic model without incurring hierarchical loss
propagation. Based on the learning of the global method, we believe that the
encoder and decoder structure is more suitable to integrate GCN in the decoding
process.

To deal with the directional characteristic, we regard the hierarchical label
extraction as a sequence generation task. Unlike the previous multi-label clas-
sification task, the decoder is formed as an auto-regressive structure, in which
each time step can decode a corresponding label, and after time t, the decoding
results of each time step form the final multi-label classification results together.
Using encoder and decoder structure, the features of the parent layer labels
can be effectively used to decode the current layer. Based on the framework of
encoder-decoder, we employ a GCN to model the characteristics of a hierarchical
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tree. Then, aiming at the hierarchy of message transmission between tree nodes,
we propose a method to suppress one directional data flow to ensure a complete
hierarchical tree structure and get the enhance representation of hierarchical
tree structure. We designed two unidirectional node update patterns, which are
Top-Down and Down-Top. And we believe that using unidirectional node update
patterns can enhance the representation of the tree structure in the HTC task.

The contributions of this paper are summarized as follows:

– We use autoregressive decoder for the HTC task and propose the ToSA model,
which introduces GCN to get the representation of hierarchical structure, and
the decoder can use hierarchical structure information effectively.

– In the process of modeling the hierarchical structure tree, we propose two
unidirectional message passing methods in GCN, which are Top-Down and
Down-Top to enhance the representation of tree structure.

– We compare ToSA with several baselines, and our model ToSA has achieved
the best results on E-commerce user intent classification dataset Intent
dataset and WOS public dataset.

2 Related Work

HTC is a particular multi-label text classification (MLC) problem, and the clas-
sification of MLC tasks results in multiple category labels. The labels of the HTC
task have a hierarchical tree structure with the relationship between each level
of labels, and the final classification results of the HTC task correspond to some
nodes of the hierarchical tree. Existing methods for HTC could be categorized
into two groups: the local method and the global method.

Researchers tend to construct different forms of multi-classifiers to fit the
features in different level. Cesa-Bianchi et al. [5] propose a classification method
using hierarchical SVM. Using this method is as efficient as training independent
SVM-light classifiers for each node. Recently, Huang et al. [9] build a hierarchical
attention-based recurrent layer, each recurrent layer can be considered as a local
classifier. They classify the documents into the most relevant categories level by
level via integrating texts and the hierarchical category structure. Kazuya et al.
use text-cnn to extract parent labels’ features, and then they use fine-tuning
method to fit the children level labels’ features. Banerjee et al. [2] propose a
transfer learning method to train parent classifier and child classifier.

The global approach regards HTC as a flat MLC problem on the basis of
making full use of structural information as much as possible. Early efforts for
the HTC task focused on building a flat-based global classifier, and researchers
often used Decision Tree and Naive Bayes [7] methods. These methods ignore
the hierarchical structure information. There are many applications in indus-
try nowadays, and with the emergence of pre-trained language models, which
have also achieved good results in the HTC task. However, these methods ignore
the structural information between the hierarchical labels, which means that
the structural information is not utilized at all in the actual classification pro-
cess. Moreover, the inference speed is slow in the actual classification process
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due to the large number of parameters. A Neural Network called MHC-CNN
model is presented by Borges et al. [3] to predict all categories in the hierar-
chical structure. Harika et al. [1] present the first semi-supervised work for the
multi-label classification. Cerri et al.[4] present a new hierarchical multi-label
classification method based on multiple neural networks for the task of protein
function prediction. In recent years, with the emergence of some new methods
in deep learning, some researchers try to use meta-learning [19] to solve HTC
problems. Mao et al. [14] use a reinforcement learning approach called HiLAP
to transform the HTC task as a markov decision process. Zhou et al. [21] get the
idea from the graph embedding method and use GCN to extract the structural
features of the hierarchical tree, as a tree structure is a special graph struc-
ture. Du et al. [6] collect Multi-view data from different information sources or
with distinct feature extraction approaches via clustering algorithm. It is not
the first time to use GCN to model tree structure. Zhang et al. [20] employ
GCN to fit the dependency tree in dependency parsing. Tree LSTM [16] can
also model tree structure. Du et al. collected from different information sources
or with distinct feature extraction approaches However, tree LSTM has a large
number of parameters and is inferior to GCN in performance and training time.
Sequence to Sequence learning [15] is widely used in mechine translation and
text generation. Sequence to Sequence learning propose a encoder and decoder
architecture, which has great flexibility for the input and output. Rojas et al.
employ a encoder and decoder structure to fit the HTC task, as the architecture
can fuse external knowledge.

In this paper, we believe that the difference between the two structures should
be considered when using the undirected graph embedding method to solve the
tree structure problem, so we control the message passing direction to make the
graph embedding method more suitable for the tree structure.

3 Our Model-ToSA

In this section, we illustrate our model in detail, whose architecture is depicted in
Fig. 2. The complete ToSA model consists of three parts: a user utterance infor-
mation extraction Encoder, a hierarchical structure Extractor, and a label
Decoder. Different colors represent different states of network, the yellow states
represent the word embeddings of user utterance in the Encoder area, the green
states represent the hidden vectors of the ToSA model. The outputs of the ToSA
model are the three level of hierarchical labels. Since a generative model is used,
we set a <BOS> tag at the beginning of the decoder and a <EOS> tag at the
end of the decoder, which are not included in the hierarchical labels.
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Fig. 2. The overall structure of our model. Different colors represent different states of
the network. (Color figure online)

3.1 Encoder

Our encoder is composed of Transformer blocks [17]. Considering the length of
sentences, this encoder can capture long-distance semantic dependency features.
Transformer is a high-performance feature extractor, which consists of multi-
head attention mechanism modules to extract features of sentences from different
perspectives, and the attention mechanism is calculated as follows:

Attention (Q,K, V ) = Softmax

(
QKT

√
d

)
V, (1)

where Q,K,V represent the query vectors, keys and values. The attention mech-
anism can calculate the similarity scores between query and keys, and the final
vector is obtained by multiplying the calculated weights by values. Multi-head
attention focuses on feature information from different perspectives, it randomly
initializes some identical attention mechanisms, and the multi-head attention is
calculated as follows:

Mi = Attention (Qi,Ki, Vi) , (2)
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where i represents the ith Attention mechanism. The Qi, Ki, Vi represent the
matrix in the ith Attention mechanism respectively. To keep the latitude of the
model constant after computing multiple attention mechanisms, a linear network
is used to fuse the multi-headed attention information.

M = Concat (M1,M2, ...,Mi) , (3)

H = MWl, (4)

where Wl represents linear weights, and the H represents the final sentence
representation.

Given the input X = (x1, x2, ..., xn), where xi represents the word in the
user utterance sentence. The encoder calculation formula is as follows, where H
represents the sentence representation.

H = TransformerBlock(X) (5)

In Transformer encoder block, the attention mechanism uses a self-attention
mechanism in which the values of query, key, and values are equal, representing
Q, K, and V in the formula, respectively. We use the Transformer block to encode
the user’s utterance into a fixed dimension.

3.2 Hierarchical Structure Extractor

Graph convolutional neural networks are widely used as structure extractors
for aggregating node information in natural language processing. Graph neural
networks are very effective for modeling structured information like knowledge
graphs, and it can find the relationship between different nodes or infer the
character of nodes after n hops. However, HTC is a typical tree structure, which
is different from the undirected graph structure. We believe that GCN should
fully learn the tree structure and balance the message transmission between tree
nodes, so as to make GCN more suitable for HTC tasks. In this paper, we believe
that controlling the GCN node message passing direction can improve the final
effect of the model, so we design two hierarchical message passing patterns for
the labeled prior tree, from down to top and from top to down respectively.

In order to ensure the balance between the root node of our hierarchical
probability tree, we control the message passing direction in GCN, so as to
model the hierarchical tree structure as a unidirectional tree and update the node
information directly and hierarchically. As shown in Fig. 3 structure extractor, we
propose two unidirectional tree patterns, which are GCN(Down) and GCN(Top).

We follow the previous method in the HTC task [9,21] to build a hierarchical
tree, each node in it represents a manually labeled label. We use the GCN method
to extract the relationships between labels, the initialization of each node is
random same as the original GCN. The role of the root node is to construct the
first-level labels into a complete tree structure and the root node has no actual
meaning.
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Fig. 3. Two unidirectional message passing patterns in the HTC task.

Given the hierarchical node set Node = {n1, n2, ..., ni}, where ni represents
the nodei in the hierarchical prior tree. The structure extractor is jointly trained
with the whole model. The message passing paradigm between nodes is calcu-
lated as:

h(l+1) = σ

⎛
⎝b(l) +

∑
j∈N(i)

1
cji

h
(l)
j W (l)

⎞
⎠ , (6)

where N(i) is the set of neighbors of Nodei, cji is the product of the square
root of node degrees, b(l) is bias, and σ is an activation function. We use the
node vector features in the last layer of GCN, which have fused the structural
information, as shown in Fig. 2 blue nodes.

3.3 Decoder

In the decoder stage, we use the hierarchical prior structure features while decod-
ing the HTC labels in each time step t. The hierarchical structure features used
for decoding are the steady state node vectors from the last layer of the GCN.
Our model is jointly trained so that it can improve the accuracy of HTC labels
and the representation of the tree structure.

Given the response sequence Y = (y1, y2, ..., yn), for each word yt in Y , we
employee the mask operation during the training process to avoid the model
seeing the correct answer in advance. For each word yt, we mask {yt+1, ..., yn}
and the model can only see {y1, ..., yt} while decoding the hierarchical label in
the time step t.

The formula for the decoder in the time step t can be written in the following
equation:

Outputt = P (yt|H, y1, ..yt−1) , (7)

where Outputt is the label distribution at time t. Starting from the first output,
we perform the attention operation on the Outputt and the node features
obtained by GCN. The obtained structure awareness representation is sent to
the decoder in the next time step t. Every time we decode the current layer label,
our model has inherited the information of the previous time step, which is the
parent information of the current layer label. The structure awareness (hSA

t )
attention equation is as follows:
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Algorithm 1. ToSA Algorithm
Input: X = (x1, x2, ..., xn), Node = {n1, n2, ..., ni}
Output:Labels

1: for epoch in number of epochs do
2: Encoder:
3: H = TransformerBlock(X)
4: Decoder:
5: for label in number of labels do
6: h(l+1) = Singel − directionGCN(Node)
7: hSA

t = Attention(Outputt−1, h
(L))

8: Outputt = TransformerBlock(H,hSA
t )

9: labelt = Softmax(Outputt)
10: Labels = labels ∪ labelt

11: end for
12: end for
13: return Labels

hSA
t = Attention(Outputt, h

(L)), (8)

where h(L) is the representation of the last layer of GCN. The last layer of the
GCN indicates that the information transfer between nodes in the tree structure
tends to a steady state. Using the attention mechanism can calculate the sim-
ilarity between the output of this layer and the nodes of the hierarchical prior
tree at different levels, so that correspondence relations can be established in
order to improve the model’s utilization of structural information.

In the decoding process, the overall probability of the label sequence gen-
erated by the model is calculated by the most likelihood estimation. The most
likelihood of the response sequence can be calculated as follows:

P (Y |H; θ) =
T∏

t=1

P
(
yt|H,hSA

t ; θ
)
, (9)

where hSA
t is the attention fusion vector of label and hierarchical prior tree

node features obtained by decoding at each time step t. The outputt decoded by
unidirectional message-passing GCN network finally use softmax to obtain the
corresponding multiple labels.

3.4 ToSA Model Process

In order to summarize the encoder and decoder processes of the ToSA model
more completely, we summarize Algorithm 1 to describe the model in detail.
The ToSA model contains three parts, sentence encoder, structure extractor



32 D. Zhao et al.

Table 1. The statistics of datasets, NA represents no third layer.

Dataset E-commerce WOS

Number of sentences 80876 46985
Classes in level 1 10 7
Classes in level 2 140 143
Classes in level 3 1153 NA

and multi-label decoder, where the encoder uses the transformer block to encode
the user’s utterance and uses an attention mechanism to fuse the relationship
between the labels captured by the unidirectional GCN during decoding. Since
the decoder is an auto-regressive structure, each time step can decode a corre-
sponding label, and after time t, the decoding results of each time step form the
final multi-label classification results together. We use Labels = labels ∪ labelt
in Algorithm 1 to represent the merging of each label result.

4 Experiment

4.1 Datasets and Evaluation Metrics

We used E-commerce user intent classification dataset and WOS dataset [21] for
experiments. The E-commerce user intent classification dataset is more complex
than WOS in quantity, as shown in Table 1.

We use standard evaluation metrics [8], including Micro F1 and Macro F1.
Micro F1 takes the overall precision and recall of all the instances into account
while Macro F1 equals the average F1-score of labels. So Micro F1 gives more
weight to frequent labels, while Macro F1 equally weights all labels.

4.2 Baselines

We select several common baselines to test the model, such as TextCNN,
BERT(Global), Seq2Seq(Att), HiAGM [21], HARNN [9]. The HiAGM and
HARNN both are the most advanced HTC models in recent years.

– TextCNN(Global): Text classification model based on Convolutional Neu-
ral Network [11]. TextCNN is widely used in industry application, as its small
number of parameters and quickly response.

– BERT(Global): BERT encoder for global classification directly [10], which
is widely used in industry. We use it to evaluate global classification perfor-
mance at the pre-trained level.

– Seq2Seq(Att): Seq2Seq model with attention mechanism [15]. It’s a classical
encoder and decoder model, and many models use it as a baseline model. We
use it to evaluate the effectiveness of generative method in the HTC task.
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Table 2. Different components of ToSA variations.

Variations Encoder Decoder Structure extractor

ToSA (Normal) Transformer Transformer Without GCN
ToSA (BERT) BERT(base) Transformer Without GCN
ToSA (GCN) Transformer Transformer Undirected GCN
ToSA (GCNDown) Transformer Transformer Down-Top GCN
ToSA (GCNTop) Transformer Transformer Top-Down GCN
ToSA (GCNCat) Transformer Transformer Bi-direction GCN

– HARNN: Using attention-based Recurrent Network Approach to model tax-
onomic hierarchy [9]. It is the latest local method in the HTC task and con-
sider the each layer as a recurrent structure.

– HiAGM: Using Graph embedding method to model the hierarchy structure
and it’s the global method in the HTC task [21], which has achieved best
results without external knowledge.

4.3 Variations of Our ToSA Model

Table 2 gives details about the different combinations of individual encoder,
decoder and GCN for several variants of ToSA. In ToSA(BERT) model’s encoder
is composed of pre-trained levels of BERT, and the pre-trained BERT model
uses the base version. The decoder is the normal transformer block with atten-
tion mechanism. The Undirected GCN is the normal GCN, which don’t use
the method proposed in this paper. We concatenate the node features in both
Down-Top and Top-Down in Bi-direction structure extractor. We propose several
ToSA variants of the model to verify that our proposed unidirectional messaging
passing method is valid.

4.4 Implementation and Experiment Design

To keep the fairness across baseline models in the experiment, we used the same
parameters on all groups of experimental models. The hidden layer size is set
to 256, the batch size is set to 64. We use 8 heads attention, and the model
parameters’ optimizer is Adam. The learning rate is 0.001. We use Pytorch to
run all models on four Tesla P40 GPU. The experiments will be designed to
compare on several latitudes, the first set of experiments is to compare with the
commonly used models, the second set of experiments is to compare with the
recent state-of-the-art models, and the third set of experiments is to compare
some variants of our proposed ToSA model.

The first set of experiments contains some basic models commonly used in
industry. BERT pre-trained model is often used in industry as its ability to
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understand natural language, so we design experiments to compare our ToSA
model with pre-trained models. TextCNN is a classical classification model that
is also widely used in practical applications, and the Seq2Seq model is a classical
encoder and decoder generation model. In addition, in the Seq2Seq model, we use
the attention mechanism, and using the attention mechanism can significantly
increase the performance of the Seq2Seq model. The first set of experiments was
designed to verify the effectiveness of the model from different perspectives.

The second set of experiments used the most recent baseline models, where
HARNN is a hierarchical label classification model based on a local approach
and HiAGM model is a hierarchical label classification model based on a global
approach. The second set of experiments is designed to compare the effect of the
model proposed in this paper with the strong baseline model.

In the third set of experiments, we focus on which module in the ToSA model
has the greatest impact on the ToSA model. First, we design ToSA(Normal) and
ToSA(BERT) to improve the performance of the encoder and decoder struc-
ture. The purpose is to verify the effectiveness of the approach using generative
encoder and decoder structure in multi-label classification. Then, we design a
normal GCN model without using the methods in this paper, with the purpose of
verifying that unidirectional propagation performs better than undirected prop-
agation in GCN. Finally, we designed two models, called ToSA(GCNDown) and
ToSA(GCNTop), based on the two different directional message passing pat-
terns proposed in this paper. The purpose is to verify the effect of different
directional messaging patterns on the ToSA model. ToSA(GCNCat) is used to
verify whether fusing two different directions of information will be more effective
than unidirectional message passing.

5 Experiment Results and Analysis

The experiment results are shown in Table 3. When performing global classi-
fication directly in the HTC task, the performance of using encoder-decoder
architecture(Seq2Seq(Att)) is almost same as using BERT(base) global classi-
fication directly. And ToSA(Normal) is a common transformer structure and
it performs better than Seq2Seq. The attention mechanism-based transformer
module is much better than the RNN-based Seq2Seq model. Most importantly,
the performance of ToSA(Normal) using the generative method to fit the HTC
task is better than that of BERT(Global) method based on pre-training. As the
Seq2Seq(Att) and ToSA(Normal) based on encoder and decoder architecture,
the results of this set of experiments show that the encoder and decoder based
architecture is more suitable for the HTC task.

In terms of the utilization of hierarchical information, the effect of
ToSA(GCN) is significantly better than ToSA(Normal). And the ToSA(GCN)
uses the undirected message passing method. This suggests that it is effective
to focus on structural information in the encoder-decoder architecture through
the unspecified design of the GCN. In terms of solving the HTC problem, the
decoder in ToSA(GCN) uses the attention mechanism to consider the relation-
ship between the current layer node and other layers in the hierarchy tree when
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Table 3. Experiment results(%) of different models.

Dataset E-commerce WOS

Model Macro F1 Micro F1 Macro F1 Micro F1
TextCNN(Global) 67.98 88.57 76.18 77.31
BERT(Global) 74.45 90.92 78.33 82.06
Seq2Seq(Att) 72.69 91.46 79.22 80.27
HARNN 48.87 86.40 69.80 72.61
HiAGM 81.04 87.34 80.19 84.80
ToSA(Normal) 82.76 94.88 79.55 83.55
ToSA(BERT) 83.87 95.26 81.24 85.17
ToSA(GCN) 82.92 95.49 80.68 84.79
ToSA(GCNDown) 83.49 95.61 80.51 84.70
ToSA(GCNTop) 84.47 95.75 81.25 85.92
ToSA(GCNCat) 83.85 95.39 80.79 85.11

we decode the label of the current layer. Using attention mechanism can effec-
tively integrate the hierarchical structure information with the decoder.

ToSA(GCNTop) and ToSA(GCNDown) use unidirectional information flow,
and the results are significantly better than ToSA(GCN) embedded in the graph
structure. The relationship features between layers are obtained by constrain-
ing the unidirectional information flow in GCN. This shows that the method of
unidirectional message passing has more advantages than the traditional undi-
rected ToSA(GCN). It also shows that it is unwise to employ the undirected
graph methods to fit the task based on directed tree structure. And it’s very
effective to use the unidirectional message passing method to enhance the rep-
resentation of tree structure. Moreover, the effect of using ToSA(GCNTop) is
better than that of ToSA(GCNDown), and it also improves the model’s perfor-
mance compared with the recent models such as HiAGM [21], HARNN [9]. This
is also in line with the cognition of Top-Down decoding in the encoder-decoder
architecture, and the HTC is also decoded one by one from Top-Down.

In ToSA(BERT), we try to replace the encoder with the BERT [10]
pre-trained encoder, and compared with our best ToSA(GCNTop). The
ToSA(GCNTop) model achieves the best performance in terms of the perfor-
mance and the number of parameters. In this set of experiments, it is well
illustrate that using a GCN generative model with an enhanced tree structure
representation achieves comparable results on the HTC task to a pre-trained
model, which would have a large number of parameters and would be very time-
consuming if applied to real-life situations.

We also try to integrate the bidirectional features in ToSA(GCNCat),
we concatenate bidirectional node features, the results aren’t as good as
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ToSA(GCNTop), but it is still better than ToSA(GCN). We believe that com-
pared with undirected message passing method, unidirectional information trans-
mission proves its effectiveness again. And the performance of ToSA(GCNCat)
is better than ToSA(GCNDown), which shows that in the process of concatenat-
ing Bi-directional information, ToSA(GCNDown) absorbs valuable information
from ToSA(GCNTop), so ToSA(GCNTop) pattern is more suitable for the HTC
task.

On both the two datasets, the values of Macro F1 are generally lower than
those of Micro F1, because Macro F1 focuses more on the accuracy of the clas-
sification of each sample in the test set, while Micro F1 focuses on the weighted
distribution of the number of samples in the test set. In general, any unidi-
rectional ToSA model is better than the undirected ToSA model. The use of
generative method is helpful for hierarchical HTC tasks, and the decoder can
skillfully integrate structural information.

6 Conclusion

In this paper, we argued that using undirected graph structure to model the
directed tree structure feature is not appropriate in the HTC task. We proposed
a Top-Down hierarchical aware generative method for realizing the hierarchical
text classification by controlling the direction of message passing in a graph
embedding method and used generative method to fuse the relational features
between tags during decoding. The experiments showed the superiority of our
model. In the future, we will explore the application of more GCN variations in
the HTC task and how to extract structural features more effectively.
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Abstract. The goal of emotion-cause pair extraction (ECPE) is to
simultaneously extract all emotion clauses and their corresponding cause
clauses in a document. In most existing methods, emotion clause rep-
resentations and cause clause representations are usually obtained sepa-
rately and are then fed into neural networks. However, the close relation-
ship between emotion and cause is ignored, resulting in an insufficient
representation of the emotion clause and the cause clause. To address this
problem, we propose a new model, called the clause fusion-based emotion
embedding model, to make full use of emotion-related knowledge by uti-
lizing an emotion embedding method when obtaining the representation
of the cause clause. First, the emotion word embedding is processed by
the emotion clause encoder to get the emotion feature. Second, in clause
fusion based emotion embedding network, the emotion clause-level fea-
ture in the sliding-window is fused to fused emotion features. The fused
emotion features, cause word-level, and emotion word-level feature rep-
resentation are embedded to get emotion embedding. Third, the emotion
embedding is processed to the cause clause feature representation by a
bidirectional long short-term memory. Forth, each emotion clause-level
feature representation was paired with each cause clause-level feature
representation to produce candidate pairs representation. Finally, in the
clause pair encoder, a graph convolutional network is applied to model
the pair-level context, and then contextual features are extracted for
the candidate pairs. Experimental results show that our model achieves
state-of-the-art performance on the Chinese benchmark ECPE corpus.
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1 Introduction

Emotion cause extraction (ECE) [1,2], which is a subtask of sentiment analysis,
has attracted increasing research attention in the sentiment analysis community
in recent years. Gui et al. [2] reformalized the ECE task as a clause-level extrac-
tion problem and released a new corpus for this task. The goal of the ECE task
is to identify whether a clause in a document is the corresponding cause of the
emotion annotation. The ECE task is well defined but has one serious draw-
back. Emotions in documents need to be manually annotated in advance. The
high cost of annotation leads to limited practical application. To address this
problem, Ding et al. [3] proposed a new task called emotion-cause pair extrac-
tion (ECPE). In the ECPE task, which is a clause-level extraction task, the
goal is to extract all existing emotion-cause pairs (i.e., clause pairs consisting of
emotion clauses and their corresponding cause clauses) in a given document as
input. Fig. 1 shows an example of the ECPE task. The input in this example
is a document consisting of five clauses. Clause c4 contains the “happy” emo-
tion, and there are two corresponding causes: clause c2 (“a policeman visited the
old man with the lost money”) and clause c3 (“and told him that the thief was
caught”). The final output is a set of valid emotion-cause pairs defined at the
clause level: c4-c2, c4-c3. A two-step approach (ECPE-2Steps) was proposed by
Ding et al. [3] to address this task. ECPE-2Steps is a two-step pipeline: first,
the candidate emotion clauses and cause clauses are extracted separately. For
example, in Fig. 1, the candidate emotion clause is c4, and the candidate cause
clauses are c2 and c3. Second, candidate emotion clauses are matched with cause
clauses pairwise to generate candidate clause pairs. Specifically, the candidate
emotion-cause pairs are obtained by applying a Cartesian product to the candi-
date emotion clauses and cause clauses. Then, the candidate clause pairs are fed
into a filter to obtain the valid pairs.

c1: Yesterday morning, 

c2: a policeman visited the old man with the lost money,(cause) 

c3: and told him that the thief was caught. (cause) 

c4: The old man was very happy, (emotion) 

c5: and deposited the money in the bank.

Fig. 1. An example of the ECPE task.

Although the ECPE-2Steps approach is reasonable and achieves good perfor-
mance. However, it still has the following drawbacks: first, as a pipeline approach,
step 1 of ECPE-2Steps needs to be completed before step 2. This means that
errors produced in step 1 will be introduced into step 2. Second, the extrac-
tion of candidate emotions and cause clauses in step 1 are two independent
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sub-tasks. This means that the ECPE-2Steps approach does not use the associa-
tion information between emotions and their corresponding causes. In fact, there
is a causal relationship between emotions and their corresponding causes, and
they are mutually indicative. But they are often underutilized in most existing
approaches, and the extraction of emotion and cause feature is insufficient.

To address these shortcomings, we propose a novel end-to-end ECPE solu-
tion called the clause fusion-based emotion embedding model (CFEE). We first
obtain the emotion word-level and clause-level feature representation through an
emotion clause encoder and then feed both the emotion feature representations
and the cause word-level feature representation into a clause fusion-based emo-
tion embedding network to obtain the cause clause-level feature representation.
Next, a Cartesian product is applied to the emotion and cause clause-level fea-
ture representations to generate emotion-cause pairs. Then, the emotion-cause
pairs are fed into a graph convolutional network to obtain the final emotion-cause
pair representation.

The main contributions of our work can be highlighted as follows:

• We propose a CFEE model, which is an end-to-end framework, for ECPE.
• We design a clause fusion-based emotion embedding network to fuse the emo-

tion feature contexts and embed them into the cause word-level feature repre-
sentation to facilitate the extraction of cause clause-level feature and improve
the prediction of emotion-cause pairs.

• Experiments on the ECPE benchmark corpus demonstrate that our model
achieves state-of-the-art performance. Furthermore, ablation experiments are
performed to verify the effectiveness of the components in our model.

2 Related Work

2.1 Emotion-Cause Pair Extraction

The emotion-cause pair extraction (ECPE) task directly extracts potential
emotion-cause pairs in documents without any emotion annotations. To address
this problem, Xia and Ding et al. [3] proposed a two-step approach. In the first
step, the emotion-cause pair extraction task is transformed into two separate
subtasks, emotion extraction, and cause extraction. In the second step, emo-
tions and causes are matched pairwise and then input into a filter. However,
the approach has the following problems: 1) errors produced in step 1 will be
introduced into step 2, which further increases the overall error; and 2) emotion
extraction and cause extraction are executed independently, which means that
the mutual indication between emotion and cause have not been exploited. To
address these problems, Wei et al. [4] completed the task from a ranking point
of view and proposed an end-to-end method that focuses on sentence internal
modeling. The internal relationship between clauses in the document is mod-
eled through graph attention and clause-pair representations and enhanced with
kernel-based relative position embedding for effective ranking. In addition to
the ranking method, Ding et al. [5] introduced a joint method to solve these
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problems, which can directly extract emotion-cause pairs. They adopted a two-
dimensional representation scheme to represent emotion-cause pairs and inte-
grated the two-dimensional representation, interaction, and prediction into a
joint model. To capture the contextual information of pairs, they improved the
standard 2D converter and proposed two kinds of converters: a constrained win-
dow 2D converter and a crisscross 2D converter. Ding et al. [6] and Chen et
al. [7] also extracted emotion and cause clause representations separately and
then concatenated them as pairs and fed them into a neural network. Consider-
ing that emotion clauses are usually close to their corresponding cause clauses,
Cheng et al. [8] used a symmetric local search strategy for finding cause clauses
based on emotion clauses or finding emotion clauses based on cause clauses.

In another way, some studies applied the sequence labeling method to han-
dle this problem. Chen et al. [9] designed a special unified labeling scheme and
changed the ECPE task into a unified sequence labeling task so that more than
one emotion-cause pair could be extracted simultaneously. A new multilabel
labeling scheme was proposed by Yuan et al. [10] to encode the distance between
linked components into labels. The high computational cost caused by the Carte-
sian product of candidate clauses can be reduced by using this scheme.

However, except for the sequence labeling method, in a large number of
the existing methods, emotion extraction and cause extraction are independent
auxiliary subtasks, which means the fact that emotion and its corresponding
cause have a causal relationship is ignored. In addition, these methods do not
make full use of the association between emotion and cause.

2.2 Graph Convolutional Neural Network

The graph convolutional network (GCN) was first proposed by Kipf and
Welling [11] for node classification, which was conducted on graph-structured
data. Since then, GCN has shown powerful performance and impressive mod-
eling capability. An increasing number of researchers in the NLP community
utilize GCN in their tasks, such as relation extraction [23], emotion analysis,
and text classification. Zhang et al. [12] used GCNs to effectively bring infor-
mation together in parallel on any dependent structure and further applied a
novel pruning strategy to the input trees. Sun et al. [13] presented a convolution
over a dependency tree model for aspect-level sentiment analysis and further
enhanced the embeddings with a graph convolutional network. In addition, Yao
et al. [14] proposed using graph convolutional networks for text classification.
They constructed a single text graph based on word co-occurrence and document
word relations and then learned a text graph convolutional network. Ghosal et
al. [15] used a graph convolutional neural network for emotion recognition in
conversation. The method leveraged the self-and interspeaker dependency of the
interlocutors to model the conversational context for emotion recognition.
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3 CFEE Model

3.1 Task Definition

Given a document D = {c1, c2, . . . , cn} with n clauses where ci, i ∈ {1, 2, . . . , n}
is the ith clause. Clause pairs Cp, which are candidate emotion-cause pairs, are
formed by combining clauses in document D.

Cp = {cp1,1, c
p
1,2, . . . , c

p
n,n} (1)

cpi,j = {cei , c
c
j} (2)

where cei represents the emotion clause in the document D and ccj represents the
cause clause in the document D. The size of the set Cp is n × n. The task of
ECPE is to predict whether each candidate emotion-cause pair (cpi,j) is a true
emotion-cause pair with a one-bit binary label (0 or 1), where ‘0’ indicates that
cpi,j is not an emotional cause pair, that is, cei is not an emotion clause or cei is
the emotion clause but ccj is not the corresponding cause clause, and ‘1’ means
that cei is the emotion clause and ccj is the corresponding cause clause.

3.2 An Overview of CFEE

The overall structure of the clause fusion-based emotion embedding model for
ECPE is shown in Fig. 2, which includes a Bi-LSTM-based emotion clause
encoder network, a clause fusion-based emotion embedding network, and a graph
convolutional network-based pair encoder network.

3.3 Emotion Clause Encoder

To better obtain the sequential information about the context in the clauses, we
use the emotion clause encoder to obtain the emotion features of the clauses,
namely, the clause-level emotion feature ve. The encoder consists of two-layer
Bi-LSTM networks, including a word-level Bi-LSTM network and a clause-level
Bi-LSTM network. For an input text D with n clauses, we can obtain the emo-
tion sequential representation se = {se1, s

e
2, . . . , s

e
n} and the cause sequential

representation sc = {sc1, s
c
2, . . . , s

c
n} through the word embedding. The emotion

word-level feature representation r′e = {r′e
1, r

′e
2, . . . , r

′e
n} is obtained through the

first-layer word-level Bi-LSTM network (see Eq. 3) and r′e is fed into the clause-
level Bi-LSTM network to obtain the emotion clause-level feature representation
re = {re1, r

e
2, . . . , r

e
n} (see Eq. 4)

r′e = BiLSTMe
w(s

e) (3)

re = BiLSTMe
c (r

′e) (4)

where BiLSTMe
w is a word-level Bi-LSTM that is used to extract an emotion

word feature r′e ∈ R
2dh and BiLSTMe

c is a clause-level Bi-LSTM that is used
to extract an emotion clause-level feature representation re ∈ R

2dh .
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Fig. 2. An example of the ECPE task.

3.4 Clause Fusion-Based Emotion Embedding Network

To make better use of the enhanced effect of emotion features on the extraction
of cause features, we design a clause fusion-based emotion embedding network
to enhance the performance of extraction cause features. The network consists of
four components, including a word-level Bi-LSTM network, a clause fusion com-
ponent, an emotion embedding component, and a clause-level Bi-LSTM network.

The cause word-level feature representation r′c = {r′c
1, r

′c
2, . . . , r

′c
n} is

obtained through the word-level Bi-LSTM network. Considering that most of
the cause clauses are around the emotion clauses, we propose a sliding window-
based emotion fusion method for the clause fusion component. We make a size-
constrained window slide over the emotion clause-level feature representation
re and then fuse all feature representations in the window as the feature of
the central clause (see Fig. 3 (a)). Finally, the fused features are embedded into
the cause word-level features. Inspired by the pooling operation, we design two
fusion methods: mean fusion and sum fusion. Mean fusion refers to the average
operation is performed on the feature representations within the window. Sum
fusion means that the sum operation is performed on the feature representations
within the window. In particular, when the size of the window is 0 means no
feature representations need to be fused. In other words, the emotion and cause
clause features are extracted independently. The calculation of the fused emotion
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feature representation re
′
is as in Eq. 5 and Eq. 6:

re
′
= fusiont

mean(r
e) (5)

re
′
= fusiont

sum(re) (6)

where fusionmean represents the mean fusion, fusionsum represents the sum
fusion, and t ∈ {0, 1, 3, 5} denotes the size of the sliding window.

Fig. 3. (a) Clause fusion component with t = 3 and mean fusion, and (b) an emotion
embedding component of clause fusion-based emotion embedding network.

As shown in Fig. 3 (b), in the emotion embedding component, we concatenate
the cause word-level feature representation r′c, the emotion word-level feature
representation r′e and the fused emotion clause-level feature representation fused
r(e

′) to generate the cause word-level feature representation with emotion embed-
ded rce (see Eq. 7). Then the cause word-level representation rce was fed into
the cause clause-level Bi-LSTM network to obtain the cause clause-level feature
representation, is as in Eq. 7:

rce = [r′c, r′e, re
′
] (7)

rc = BiLSTMe
c (r

ce) (8)

where [,] is the concatenating function and BiLSTMe
c is the clause-level Bi-

LSTM that is used to extract a cause clause-level feature representation rc ∈
R

2dh .
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3.5 Clause Pair Encoder

To better obtain the contextual information at the clause-pair level, we construct
a clause-pair graph to model candidate clause pairs, changing the transfer of
clause-level contextual features into the transfer of clause pair-level contextual
features.

First, we obtain the emotion-cause pair by pairing the emotion clause and
the cause clause. An emotion-cause pair cpi,j = (cei , c

c
j) is represented as vp

i,j ,
which includes the emotion clause-level feature representation re and the cause
clause-level feature representation rc:

vp
i,j = [rei , r

c
j ] (i, j ∈ 1, 2, . . . , n) (9)

Second, taking vp
i,j as a node of the graph, all nodes with the same emotion

feature are used to build a simple graph, which is called a clause pair graph.
A document with n clauses requires a total of n clause pair graphs to be con-
structed. As the example mentioned in Fig. 1, if there are 5 clauses, then a total
of 5 clause-pair graphs need to be constructed. In addition, the distance between
a cause clause and its corresponding emotion clause is relatively close. The sta-
tistical results of the open-source ECPE Chinese corpus of Xia and Ding [1] show
that the distances between 95.80% of the emotion clauses and the corresponding
cause clauses are less than 3. So, we only use the clause pairs whose distance
from the central node is less 3 to construct the clause-pair graph. For an emotion
clause cei , the nodes in its corresponding pair graph no more than 5, as Eq. 10:

cpi,[i−2:i+2] = {cpi,i−2, c
p
i,i−1, c

p
i,i, c

p
i,i+1, c

p
i,i+2} (10)

Since the influence of adjacent nodes with different distances is different, three
different edges are designed. The first edge is the D0 edge, which is used to
represent the self-loop edge of the self-migration of nodes. The second edge is
the D1 edge connecting the nodes which have a distance of 1 between their
candidate cause clauses. e.g., node cpi,i−1 and node cpi,i need to be connected by
the D1 edge. The third edge is the D2 edge connecting the nodes which have a
distance of 2 between their candidate cause clauses. e.g., node cpi,i−1 and node
cpi,i+1 need to be connected by the D2 edge.

For node cpi,j , its feature representation gpi,j is obtained by transferring the
feature from the clause-level encoding network. Specifically, the feature gpi,j in
the clause pair graph is obtained by integrating the nodes connected to it using
different transformation parameters according to different edges they are linked
to:

gpi,j = σ

(
1
z
vp
i,jWD0 +

1
z

∑
k∈D1

vp
i,kWD1 +

1
z

∑
t∈D2

vp
i,tWD2

)
(11)

where WD0 ∈ R
din×dout , WD1 ∈ R

din×dout and WD2 ∈ R
din×dout are the weight

matrices for the nodes lined to node cpi,j with D0 edge, D1 edges, and D2 respec-
tively, z is the normalization factor whose value is equal to the degree of the
node, σ represents the nonlinear activation function, and ReLU [23] is used as
the activation function.
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3.6 Classification

Since most of the distances between emotions and causes are less than 3, it is
helpful to add distance information when classifying emotion-cause pairs. There-
fore, the classification representation of the node cpi,j for the candidate clause is
the concatenation of gpi,j and di,j . Where di,j ∈ R

ddis is the distance embedding.
The softmax function is as follow:

ŷi,j = softmax
(
WT

p [gpi,j , di,j ] + bp
)

(12)

where Wp ∈ R
(dout+ddis)×dp is the weight matrix and bp ∈ R

dpout is the bias
vector. Finally, the probability distribution ŷi,j and the corresponding predicted
label ÊCi,j of the prediction of the candidate clause to node cpi,j are obtained.

Model training uses cross-entropy loss as the loss function.

4 Experiment

4.1 Dataset and Experimental Settings

We use the Chinese benchmark dataset for ECPE released by Xia and Ding [3],
which was reconstructed from the benchmark Chinese ECE dataset [2]. In the
ECPE dataset, there are 1,945 documents, of which 1746 documents have one
emotion-cause pair, 177 documents have two emotion-cause pairs and 22 doc-
uments have more than two emotion-cause pairs, and the percentages of the
dataset are 89.77%, 91.0% and 1.13%, respectively. In addition, in 95.8% of the
documents in the dataset, the distance between the emotion and the correspond-
ing cause is less than or equal to 2. The specific statistics are shown in Table 1
For fair comparisons with Chen et al. [7], we use the same ratio to split the data:
90% are randomly selected for training, and the remaining data are used for test-
ing. The results reported in the following experiments are an average of 10-fold
cross-validation. Similarly, we repeat the experiments 20 times and report the
average result. We use the precision (P), recall (R), and F1-score as evaluation
metrics for the ECPE task as well as two subtasks: emotion extraction and cause
extraction. In our experiments, we use word embedding, which was pretrained
on 1.1 million Chinese Weibo corpora with the word2vec toolkit [16], and the
dimension of word embedding is 200. Moreover, BERT representations [17] are

Table 1. Statistics of the distances between emotion clauses and their cause clauses
in the Chinese ECPE corpus (Xia and Ding 2019)

Distance Number Percentage Distance Number Percentage

0 511 23.6% ≤0 511 23.6%
1 1342 61.9% ≤1 1853 85.5%
2 224 10.3% ≤2 2077 95.8%



Clause Fusion-Based Emotion Embedding Model 47

also utilized, where we use the base Chinese model. For word2vec, the dimen-
sion of word embeddings is 200, and the hidden units of Bi-LSTM and GCN are
both 100. For BERT, the dimension of word embeddings is 768, and the hidden
units of Bi-LSTM and GCN are both 200. While training, we use the Adam
optimizer [18] to update all parameters. The mini-batch size and the learning
rate are set to 32 and 0.005, respectively. To reduce overfitting, dropout [19] is
applied to all feature vectors, including word embeddings and hidden represen-
tations, and it is set to 0.5. The method of emotion embedding uses mean fusion
with a sliding window size of 1.

4.2 Comparative Approaches
1. Inter-CE [3]: This is an enhanced version of Indep [3] that is capable of cap-

turing the correlation between emotions and causes. While extracting emotion
clauses and cause clauses, emotion-cause extraction is used to improve emo-
tion extraction. The method failure to fully exploit the causal relationship
between emotion and cause.

2. Inter-EC [3]: This is another enhanced version of Indep. It uses emotion
extraction to improve emotion-cause extraction while extracting emotion
clauses and cause clauses.

3. PairGCN [7]: This method constructs a graph using the pair nodes and a
pair graph convolutional network to model the dependency relations among
candidate pairs. To make a fair, we use the results reproduced locally based
on the author’s open-source code for comparison.

4. Hier-Bi-LSTM: This is an end-to-end model that extracts emotion features
and cause features using two hierarchical Bi-LSTMs independently, and the
concatenation of an emotion feature and a cause feature is used to represent
a candidate pair. Specifically, the hierarchical Bi-LSTM is similar to the one
used in our clause-level context encoder, except that the input to the clause-
level Bi-LSTM in the cause encoder is only the word-level cause feature.

5. MTNECP [20]: MTNECP is a unified multitask learning framework. It
shares useful features across tasks and utilizes position-aware emotion infor-
mation for cause extraction.

6. MAM-SD [21]: It is a mutually auxiliary multitask model to promote the
extraction of emotion and cause clauses by adding two auxiliary tasks which
are identical to the original tasks. It is also a self-distillation method for
pairwise tasks to train the proposed model.

7. Inter-EC-WC-BERT [5]: This is a joint model that adopts a two-
dimensional representation scheme to represent emotion-cause pairs, integrat-
ing the two-dimensional representation, interaction, and prediction. Window-
constrained 2D transformer is applied in the model.

8. Inter-EC-CR-BERT [5]: This is a joint model that adopts a two-
dimensional representation scheme to represent emotion-cause pairs, integrat-
ing the two-dimensional representation, interaction, and prediction. Cross-
road 2D transformer is applied in the model.

9. Trans-ECPE [22]: This is a transition-based method that transforms the
task into a parsing-like directed graph construction procedure.
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4.3 Experimental Results

Table 2. Performance of our model and baselines without BERT using precision,
recall, and F1-score as metrics on the ECPE task as well as the two subtasks. The best
performance is in bold, the second-best performance is underlined, and ‘*’ indicates
the results reproduced locally based on the author’s open-source code.

Model EC pair extraction Emotion extraction Cause extraction
P R F1 P R F1 P R F1

Inter-CE 69.02 51.35 59.01 84.94 81.22 83.00 68.09 56.34 61.51
Inter-EC 67.21 57.05 61.28 83.64 81.07 82.30 70.41 60.83 65.07
Hier-Bi-LSTM 69.25 53.71 60.30 86.16 66.29 74.80 72.27 55.32 62.48
MTNECP 68.28 58.94 63.21 86.62 83.39 85.20 74.00 63.78 68.44
PairGCN* 71.03 56.29 62.68 87.07 70.54 77.84 73.53 57.89 64.66
MAM-SD 69.63 57.99 63.20 85.86 81.41 83.39 72.02 63.75 67.51
CFEE 73.88 56.54 63.98 88.35 69.30 77.62 75.73 57.98 65.60

Table 3. Performance of our model and baselines with BERT using precision, recall,
and F1-score as metrics on the ECPE task as well as the two subtasks. The best
performance is in bold, the second-best performance is underlined, and ‘*’ indicates
the results reproduced locally based on the author’s open-source code.

Model EC pair extraction Emotion extraction Cause extraction
P R F1 P R F1 P R F1

Inter-EC-WC-BERT 72.92 65.44 68.89 86.27 92.21 89.10 73.36 69.34 71.23
Inter-EC-CR-BERT 69.35 67.85 68.37 85.48 92.44 88.78 69.35 67.85 68.37
Trans-ECPE 73.74 63.07 67.99 87.16 82.44 84.74 75.62 64.71 69.74
Hier-Bi-LSTM-BERT 75.37 64.34 69.26 88.80 74.70 81.00 78.03 65.35 70.96
PairGCN-BERT* 76.50 67.17 71.42 88.12 78.73 83.05 79.08 68.78 73.46
CFEE-BERT 79.19 67.35 72.63 91.50 79.23 84.82 80.93 68.49 74.06

Table 2 and Table 3 show the results of the emotion-cause pair extraction (ECPE)
task and two subtasks: emotion clause extraction (EE) and cause clause extrac-
tion (CE). The CFEE model and the CFEE-BERT model achieved the best
results in the ECPE task. Specifically, our CFEE and CFEE-BERT models
achieve 1.22% and 1.69% F1-score improvements for ECPE compared to the pre-
vious best models, MTNECP and PairGCN-BERT, respectively. CFEE-BERT
also achieves a 3.52% precision improvement for ECPE compared to the previ-
ous best model PairGCN-BERT. We argue that the clause fusion-based emo-
tion embedding network plays an important role in this process. It enhances
clause-pair feature capture by embedding emotion context information. More-
over, for the cause extraction task, CFEE-BERT outperforms the baseline model
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PairGCN-BERT in all three metrics. This finding indicates that the clause
fusion-based emotion embedding network strengthens the ability of cause clause
prediction.

The reason why our model outperforms the current state-of-the-art models is
mainly because we use an emotion embedding model that adopts an end-to-end
form to directly predict emotion-cause pairs. However, in previous research, the
relationship between emotion and cause was not well utilized. And the extraction
of emotion and cause is executed as two separate subtasks.

4.4 Effect of Emotional Embedding Position

Fig. 4. Performance of our model with different positions of the emotion embedding
on the ECPE task.

To study the effect of the position of emotion embedding in our full model (i.e.,
CFEE and CFEE-BERT), we design a set of ablation experiments for different
embedding positions. To better test the influence of the embedding position, in
the emotion fusion of the mode, the fusion window size is set to l. The experi-
mental results of ECPE are shown in Fig. 4

• 0#: Clause-level feature representation extractions of emotion and cause are
completely independent.

• 1#: The cause word-level feature representation is directly concatenated with
the emotion word-level feature representation and then fed into a Bi-LSTM
network to obtain the cause clause-level feature representation.

• 2#: The cause word-level feature representation is directly concatenated with
the emotion clause-level feature representation and then fed into a Bi-LSTM
network to obtain the cause clause-level feature representation.

• 3#: Concatenate cause word-level feature representation, emotion word-level
feature representation, and emotion clause-level feature representation and
then fed into a Bi-LSTM network to obtain the cause clause-level encoding.

From the results in Fig. 4, we know that not only does the performance of the
model change with the position of the emotion embedding, but the three met-
rics of the model also have the same trend. Different positions of the emotion
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embedding can produce a maximum performance gap of more than 2%. This
means that the position of the emotion embedding is very important.

We also conduct experiments on the effect of the emotion fusion method and
the size of the sliding window on the model effect. Based on embedding position
3#, we design multiple sets of experiments. The result of ECPE is shown in
Fig. 5.

Fig. 5. Performance of our model with different positions of the emotion embedding
on the ECPE task.

From Fig. 5, we can see that both fusion methods have trend performance
decreases as the size of the sliding window increases. The reason is probably that
a larger sliding window introduces more noise information. The results show that
the size 1 sliding window is enough to capture the emotion feature we need.

5 Conclusion and Future Work

In this paper, we propose a novel clause fusion-based emotion embedding model
(CFEE) to enhance the extraction of cause features, and further improve the
extraction of emotion-cause pair. CFEE makes full use of the causal relationship
between emotions and causes among local neighborhood clauses. The experi-
ments on the Chinese benchmark corpus show that our model achieves state-of-
the-art performance, and the ablation experiments demonstrate the effectiveness
of our proposed modules. In the future, we would like to address the problem by
increasing the mutual interaction between emotion and cause.
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Abstract. Extracting a good representative subset of tuples that meets
the user’s needs from a large database is an important problem in multi-
criteria decision making. Many queries have been proposed for this pur-
pose, including the top-k query and the skyline query. Unfortunately,
these traditional queries either ask the user to specify their needs explic-
itly or overwhelm users with a large output size. Recently, an α-happiness
query was proposed, which overcomes the deficiencies of existing queries:
users do not need to specify any preference, while they can obtain a small
set of tuples such that users are happy with the results, i.e., their favorite
tuples in the returned subset is guaranteed to be not much worse than
their favorite tuples in the whole database. In this paper, we study the
α-happiness query. Inspired by the techniques of incremental convex hull
computation, we develop two accelerated algorithms, which maintain use-
ful information to avoid redundant computation, in both 2-dimensional
and d-dimensional space (d > 2). We performed extensive experiments,
comparing against the best-known method under various settings on
both real and synthetic datasets. Our superiority is demonstrated: we
can achieve up to two orders and 7 times of improvements in execution
times in 2-dimensional and d-dimensional space, respectively.

Keywords: α-happiness · Incremental convex hull · Decision making

1 Introduction

Nowadays, a database system usually contains millions of tuples and end users
may only want to find those tuples that fit their needs. This problem is known
as multi-criteria decision making [5,18,19], and various queries were proposed
to obtain a small representative subset of tuples without asking the user to scan
the whole database. An example is the traditional top-k query [18,19], where a
user has to provide her preference function, called the utility function. Based on
the user’s utility function, the utility of each tuple for this user can be computed,
where a higher utility means that the tuple is more preferred. Finally, the best k
tuples with the highest utilities are returned. Unfortunately, requiring the user
to provide the exact utility function is too restrictive in many scenarios. In this
case, the skyline query can be applied [5], which adopts the “dominance” concept.
A tuple p is said to dominate another tuple q if p is not worse than q on each
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Li et al. (Eds.): APWeb-WAIM 2022, LNCS 13422, pp. 53–68, 2023.
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attribute and p is better than q on at least one attribute. Intuitively, p will have a
higher utility than q w.r.t. all monotonic utility functions. Tuples which are not
dominated by any other tuples are returned in the skyline query. However, since
there is no constraint on the output size of a skyline query, a skyline query can
overwhelm the user with many results (at worst the whole database). Motivated
by this, a query called α-happiness query was studied recently in [27] to overcome
the deficiencies of both the top-k query (which requires the users to specify their
utility functions) and the skyline query (which might have a large output size).

Informally, an α-happiness query computes a set of tuples, with size as small
as possible, that makes the users happy where the degree of happiness is quanti-
fied as the happiness ratio of the user. Specifically, given a set of tuples, a user is
x% happy with the set if the highest utility of tuples in the set is at least x% of
the highest utility of all tuples in the whole database. In this case, we say that the
happiness ratio of the user is x%. Clearly, the happiness ratio is a value from 0 to
1. The larger the happiness ratio, the happier the user. The α-happiness query
guarantees the happiness ratio of an end user is at least α. In practice, more
tuples have to be returned to guarantee a higher happiness level, as expected.
However, with more tuples returned, users have to spend more effort to examine
the output, which is not desirable as they did in the skyline query. Hence, we
want the solution to be as small as possible, to ensure the given happiness level.

Consider a car database application. Assume that Alice wants to buy a car
from the car database where each car is described by two attributes, namely
horse power (HP) and miles per gallon (MPG). To help Alice for finding her
desired car, Alice can specify an α value, which represents the least happiness
level she expects. In practice, Alice can set α to be 0.9, indicating that she wants
a set of cars whose highest utility is at least 90% of the highest utility of all cars in
the database. Then, we execute the α-happiness query, which returns a small set
of cars from the database, hoping that Alice will be satisfied (since the happiness
ratio of Alice is at least α, as specified). However, if Alice is not satisfied with
those cars, she can increase the value of α, and execute the α-happiness query
again to obtain more cars with better quality to ensure a higher α.

Although it is NP-hard to solve the α-happiness query [27], various practical
algorithms were proposed in the literature. The best-known previous approach
for the α-happiness query is Cone-Greedy [27]. However, when we experimen-
tally evaluated Cone-Greedy, its execution time is unnecessarily long. This
is because Cone-Greedy did not keep sufficient information and thus, might
perform redundant computation, resulting in a long query time. The situation
is even worse when the user wants to perform multiple α-happiness queries with
different values of α on the same database, which is common in reality since users
might adjust the value of α to obtain more/less tuples to fit their needs. Moti-
vated by this, we propose two novel approaches which accelerate Cone-Greedy
in both 2-dimensional and d-dimensional space (d > 2). Our algorithms are
inspired by the incremental convex hull computation in computational geome-
try, and different from Cone-Greedy, they effectively maintain the information
needed during the computation and re-use them when necessary. Our exper-
iments show that our algorithms substantially outperform Cone-Greedy in
execution time. Our major contributions are summarized as follows:
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– To the best of our knowledge, we are the first one who connect the α-happiness
query with the problem of incremental convex hull computation.

– We propose a 2-dimensional algorithm, called 2D-CH, for solving the α-
happiness query exactly when each tuple is described by two attributes.

– In d-dimensional space, we propose a novel algorithm for the α-happiness
query. In particular, our algorithm effectively maintain useful information,
which can be re-used repeatedly, speeding up the overall query.

– We present extensive experiments on both synthetic and real datasets. Our
evaluation shows that the proposed algorithms outperform the competi-
tors substantially. Under some practical settings, our 2-dimensional algo-
rithms achieve up to two orders improvement in running time, while our
d-dimensional algorithms are around 7 times faster than the exiting ones.

Organization. The rest paper is organized as follows. We discuss the related
works in Sect. 2. The α-happiness query and the solution overview are formally
introduced in Sect. 3. In Sect. 4, we present the exact algorithm for the α-
happiness query in 2-dimensional space and its d-dimensional extension. Finally,
experiments are presented in Sect. 5 and Sect. 6 concludes this paper.

2 Related Work

Traditional queries for multi-criteria decision making include top-k queries and
skyline queries. In top-k queries [10,13,19,21,28], a concrete utility function is
given. Based on the function, the k tuples with the highest utilities are returned.
However, it is sometimes difficult to obtain the exact utility function in practice.
Alternatively, skyline queries [5] can be applied. However, it is found that the
skyline query has a large output size, which is not desirable. Although there are
some variants of skyline queries [9,15,20] which alleviate this drawback by intro-
ducing an integer k, which controls the output size, it is difficult for these queries
to provide theoretical guarantee without knowing the exact utility function.

The α-happiness query was first considered in [2,12], called the min-size regret
query, and it is later formalized by Xie et al. in [27]. Specifically, given a real number
α, an α-happiness query minimizes the output size while keeping the users at least
α happy (i.e., the minimum happiness ratio is at least α). The α-happiness query
can be considered as a dual version of the well-known k-regret query [15,24,26],
which, given an integer k, returns a set S of at most k tuples such that the “utility
difference” between the maximum utility of S and the whole dataset D is mini-
mized. See [25] for a recent survey. It has been shown that both the α-happiness
query and the k-regret query are NP-hard problems [2,6,7,27].

Algorithms were proposed to get a solution for the α-happiness query, cat-
egorized as follows. (1) ε-kernel based. The first approach formulated it as the
well-known ε-kernel problem [1] and several algorithms [2,6] were proposed to
obtain a good approximation. (2) Space partitioning based. [2,3] discretized the
function space and formulated the α-happiness query as a hitting set problem
(or a set cover problem), which provides user-controlled approximations on hap-
piness ratios and output sizes. (3) Hybrid. [12] proposed an algorithm which



56 M. Xie

Table 1. Car database and utilities

Car HP MPG f0.4,0.6(p) f0.2,0.8(p) f0.7,0.3(p) Car HP MPG f0.4,0.6(p) f0.2,0.8(p) f0.7,0.3(p)

p1 0.2 1 0.68 0.84 0.44 p4 1 0.2 0.52 0.36 0.76
p2 0.6 0.9 0.78 0.84 0.69 p5 0.35 0.2 0.26 0.23 0.305
p3 0.9 0.6 0.72 0.66 0.81 p6 0.3 0.6 0.48 0.54 0.39

combines the ε-kernel and hitting set approaches, improving the efficiency of the
existing algorithms. (4) Geometric-based. Xie et al. [27] provided a novel geomet-
ric interpretation of the α-happiness query, based on which they proposed the
state-of-the-art algorithm, denoted by Cone-Greedy for solving the problem.
According to the experiments in [27], Cone-Greedy outperforms the existing
methods in both output sizes and execution times. We use it as the baseline in
our experiments.

Compared with the existing studies [2,3,6,12,27], we utilize the techniques
in incremental convex hull construction and propose accelerated algorithms. In
particular, we maintain useful information so that intermediate results can be
re-used repeatedly to avoid redundant computation. Our algorithms performs
particularly well when the users execute multiple α-happiness queries on the
same dataset. Our experimental superiority will be demonstrated in Sect. 5.

3 Problem and Overview

The input to our problem is a set D of n tuples (i.e., |D| = n) in a d-dimensional
space (i.e., each tuple in D is described by d attributes). In this paper, we assume
that d is a fixed constant. In the following, we first introduce the terminologies
and the background. Then, we give an overview of our solution.

3.1 Preliminary

We use the same terminology as in [27]. We denote the i-th dimensional value
of a tuple p in D by p[i] where i ∈ [1, d]. In the rest paper, we also call each
tuple as a point in a d-dimensional space. Without loss of generality, we assume
that each dimension is normalized to (0, 1], such that there exists a point p in
D and p[i] = 1 for each i ∈ [1, d] and a larger value on each dimension is more
preferable to all users. Recall that in the car database, each car is associated with
2 attributes, HP and MPG; in the example shown in Table 1, the car database
D = {p1, p2, p3, p4, p5, p6} consists of 6 cars with normalized attribute values.

Following the assumption in existing studies [14,15,24,26,27], we assume
that user’s happiness is measured by an unknown utility function, which can be
regarded as a mapping f : Rd

+ → R+. The utility of a point p w.r.t. f is denoted
by f(p). A user wants a point which maximizes the utility w.r.t. his/her utility
function. Given a utility function f and S ⊆ D, we define the maximum utility
of S w.r.t. f , denoted by Umax(S, f), to be maxp∈S f(p).
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In the following, we introduce two important terms, namely the function-wise
ratio (happiness ratio) and the minimum happiness ratio.

Definition 1. Given a set S ⊆ D and a utility function f , the function-wise
ratio of S w.r.t. f , denoted by fRatio(S, f), is defined to be Umax(S,f)

Umax(D,f) .

Clearly, the value of a function-wise ratio ranges from 0 to 1 since
Umax(S, f) ≤ Umax(D, f). Intuitively, when the maximum utility of S is closer
to the maximum utility of D, the function-wise ratio of S w.r.t. the user’s utility
function becomes larger, which indicates that the user feels more satisfied with
S. In this sense, the function-wise ratio is also called the happiness ratio.

As discussed in Sect. 1, it is difficult to know the user’s exact utility function.
Thus, we assume that all users’ utility functions belong to a function class,
denoted by FC. A function class is defined to be a set of functions which share
some common characteristics, e.g., the class of linear utility functions [15]. Given
the function class FC, the minimum happiness ratio of a set S can be regarded
as the worst-case function-wise ratio w.r.t. a utility function in FC.

Definition 2. Given a set S ⊆ D and a function class FC, the minimum hap-
piness ratio of S over FC is defined to be inff∈FC fRatio(S, f).

Example 1. To illustrate, assume that FC has 3 utility functions, namely f0.4,0.6,
f0.2,0.8 and f0.7,0.3 where fa,b(p) = a× p[1]+ b× p[2]. Consider p1 in Table 1. Its
utility w.r.t. f0.4,0.6 is f0.4,0.6(p1) = 0.4×0.2+0.6×1 = 0.68. The utilities of other
points in D are computed similarly. Given S = {p1, p4}, the maximum utility
of S w.r.t. f0.4,0.6 is Umax(S, f0.4,0.6) = maxp∈S f0.4,0.6(p) = f0.4,0.6(p1) = 0.68.
Similarly, Umax(D, f0.4,0.6) is 0.78. Then, fRatio(S, f0.4,0.6) = Umax(S,f0.4,0.6)

Umax(D,f0.4,0.6)
=

0.68
0.78 = 0.872. Similarly, fRatio(S, f0.2,0.8) = 1 and fRatio(S, f0.7,0.3) = 0.938. The
minimum happiness ratio of S over FC is min{0.872, 1, 0.938} = 0.872. ��

Same as [2,12,14,15], we focus on the class of linear utility functions, denoted
by L, due to its popularity in modeling user preferences and assume each function
in L is equally probable to be used by users. Other classes and distributions of
utility functions are considered in [8,17,27] and are not our focus.

Specifically, we assume that each linear utility function f in L is associated
with a d-dimensional non-negative utility vector u where u[i] denotes the impor-
tance of the i-th dimension in user’s preference. Mathematically, we can write:
f(p) =

∑d
i=1 u[i]p[i] = u ·p. Without loss of generality, we assume

∑d
i=1 u[i] = 1.

Thus, L = {f | f(p) = u · p where u ∈ R
d
+ and

∑d
i=1 u[i] = 1}. When it is clear,

we refer each f in L by its utility vector u. Let minHap(S) be the minimum
happiness ratio of S over L. The α-happiness query is stated as follows.

Problem 1. Given a real number α ∈ [0, 1], the α-happiness query returns a set
S ⊆ D with minHap(S) ≥ α such that the size of S, i.e., |S|, is minimized.

When there are multiple sets with the minimum size, an α-happiness query
simply returns one of them. As stated in Sect. 1, the α-happiness query takes the
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advantages of both the top-k query and the skyline query: same as the skyline
query, a user does not need to specify any preference and meanwhile, it returns
a set with size as small as possible. Recall that minHap(S) is defined to be the
worst-case happiness ratio w.r.t. any utility function in L. If minHap(S) ≥ α, for
each user, s/he will be at least α happy with S no matter which function s/he
uses from L. The α-happiness query is an NP-hard problem [2,6,7].

3.2 Geometric Interpretation

Note that L contains an infinite number of utility functions. Thus, it is not easy
to compute minHap(S) for a given S directly according to Definition 2. To com-
pute minHap(S) tractably, Xie et al. [27] interprets the problem geometrically.

We first introduce some geometric concepts. For each point p ∈ D, we define
the orthotope set of p, denoted by Orth(p), to be a set of 2d d-dimensional
points constructed by {0, p[1]} × ... × {0, p[d]}. That is, for each i ∈ [1, d], the
i-dimensional value of a point in Orth(p) is equal to either 0 or p[i]. Given a set
S ⊆ D, we define the orthotope set of S, denoted by Orth(S), to be

⋃
p∈S Orth(p).

Given a set S ⊆ D, let Conv(S) be the convex hull (the smallest convex set) of
the orthotope set of S [16]. Moreover, a point p ∈ Conv(S) is said to be a vertex
of Conv(S) if p is not in the convex hull of the other points in Orth(S). A facet
of a convex hull is a bounded flat surface that forms a part of the boundary of
the convex hull. We denote a facet by the set of points forming it.

Example 2. To illustrate, consider Table 1 where D = {p1, p2, p3, p4, p5, p6}. For
the ease of presentation, we first visualize D in Fig. 1 where the X1 and X2

coordinate represent HP and MPG, respectively. The points in Orth(p2) = {p2,
p′
2, p′′

2 , O} are shown in Fig. 1 where p′
2 = (0, p2[2]), p′′

2 = (p2[1], 0) and O is the
origin. Similarly, Orth(p3) is shown in the same figure.

Given S = {p2, p3}, we define Orth(S) to be Orth(p2) ∪ Orth(p3). Then, the
convex hull Conv(S) is shown in Fig. 2. There are 5 vertices in Conv(S), namely
O, p′

2, p2, p3 and p′′
3 (labeled in Fig. 1), each of which is not in the convex hull of

the other points in Orth(S). {p2, p3} is a facet of Conv(S). ��
Given a real value α ∈ [0, 1], we define the α-shrunk set of D, denoted by

D′
α, to be {p′

α|p′
α = αp,∀p ∈ D} where p′

α is a proportionally shrunk point of
p. When α is clear, we denote D′

α by D′ and denote a point in D′ by p′. Unless
stated explicitly, we stick to the above notations in the rest of this paper.

Given two point sets, say S and T , if for each p ∈ S, p is inside Conv(T ), we
say Conv(T ) covers Conv(S) since Conv(S) is totally contained inside Conv(T ).

Example 3. Let α = 0.9. The α-shrunk set D′ (shown in white dots) of D (shown
in black dots) is drawn in Fig. 2 where each point in D′ is a proportionally scaled
point in D. Given S = {p2, p3}, it is easy to observe from the figure that Conv(S)
covers Conv(D′) since Conv(D′) is totally contained inside Conv(S). ��

Xie et al. [27] shows that the α-happiness from the geometric perspective.

Lemma 1 ([27]). Given S ⊆ D and α ∈ [0, 1], S is a feasible set of the α-
happiness query if Conv(S) covers Conv(D′), where D′ is the α-shrunk set of D.
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Fig. 1. Orthotope set Fig. 2. Convex hull Fig. 3. Conical hull

3.3 Solution Overview

According to Lemma 1, we can solve the α-happiness query by finding a minimum
size set S such that Conv(S) covers Conv(D′). To find such S, the Cone-Greedy
algorithm in [27] has the following two major steps (note that the correctness of
the procedure below is proven in [27] and we omit it here for lack of space):

1. (Step 1) For each p in D, it computes a function set Fp, whose utilities are
maximized by p over points in D′, i.e., Fp = {f ∈ L | f(p) ≥ f(p′) ∀p′ ∈ D′}.

2. (Step 2) If finds a set S of tuples from D such that
⋃

p∈S Fp = L.

Step 2 of Cone-Greedy is reduced to the well-known set-cover problem in
[27], where the greedy algorithm is adopted and it gives theoretical guarantees on
the output size. We adopt the same approach for Step 2 in this paper. Interested
readers can find more details in [27], and we focus on Step 1 next.

Note that when performing Step 1 in Cone-Greedy, redundant operations
might be done when computing Fp for distinct points in D. This is inefficient. In
this paper, we adopt a novel strategy for computing Fp, which maintains useful
information for all points in D, so that we can re-use those information as much
as possible. In the following, we briefly review the procedure in Cone-Greedy
and explain why it is inefficient. In Sect. 4, we give our advanced procedures.

Computing Fp in Cone-Greedy. We first define “conical hull”. Given a
point p in D, let Vp = {t − p| for each vertex t of Conv(D′)}. Then we define a
conical hull of p, denoted by Cone(p), to be Cone(p) = {q ∈ R

d| q = p+
∑

v∈Vp
wv

where w ≥ 0}. Intuitively, Cone(p) can be regarded as a convex cone with apex
at p. The boundaries of Cone(p) are unbounded facets, each of which is enclosed
by some vectors in Vp and is a flat surface that forms the boundary of Cone(p).

In geometry, each facet of a conical hull is contained by a unique hyperplane
(i.e., a subspace of dimensionality d − 1). Then, for each facet F of Cone(p), we
define an extreme vector to be the unit vector (pointing out) perpendicular to
the hyperplane containing F . Denote the set of extreme vectors of p by Ext(p).
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Example 4. Consider the point p2 in Fig. 3 as an example. We draw the vectors
in Vp2 = {t− p2| for each vertex t of Conv(D′)} in solid arrows. It is constructed
by creating a vector for each vertex of Conv(D′). The conical hull Cone(p2) is
showed in the shaded region in the figure, which is the set of all vectors with the
form p2+

∑
v∈Vp2

wv where w ≥ 0. In this 2-dimensional example, the boundaries
of Cone(p2) are two unbounded facets, i.e., the rays shooting from p2 to p′

1 and
from p2 to p′

3. The extreme vectors of p2 are dashed arrows Ext(p2) = {v1, v2},
each of which is perpendicular to a boundary facet of Cone(p2). ��

Based on the above concepts, Xie et al. [27] define the function set Fp, which
is a set of utility functions whose utilities are maximized by p, as follows.

Definition 3. Given p in D and its Ext(p), the function set of p, denoted by
Fp, is defined to be {f ∈ FC| f(p) = u · p and u =

∑
v∈Ext(p) wv where w ≥ 0}.

According to [27], Fp is uniquely defined by the extreme vectors in Ext(p).
Thus, Cone-Greedy obtain Fp by computing Ext(p) as follows:

1. It first computes the vertices in Conv(D′);
2. For each p in D, it computes the set Vp = {t−p| for each vertex t of Conv(D′)}

and the corresponding conical hull Cone(p); and
3. It obtains the extreme vectors Ext(p) based on boundary facets of Cone(p).

Note that in Cone-Greedy, although the vertices in Conv(D′) are used for
all points in D, the vector set Vp is different for each distinct p in D. Therefore,
the conical hull Cone(p) will be computed independently for distinct p in D, which
might incur redundant computation, since the common information Conv(D′) is
not well utilized. In Sect. 4, we show our alternative ways for computing Ext(p),
by maintaining useful information to avoid such redundant computation. Our
algorithms are especially efficient when the user wants to execute multiple α-
happiness queries on the same D with different values of α. Our experiments
show that we are more efficient than the counterpart in Cone-Greedy.

4 Algorithm

4.1 Conceptual Idea

Our algorithm is inspired by the incremental approach of convex hull computa-
tion [11]. Specifically, in incremental convex hull computation, a convex hull is
built by inserting points iteratively. At the i-th iteration, we have the convex hull
of the first i points, and we need to modify this convex hull to include the i-th
point. For example in Fig. 4, if we are inserting p2 to Conv(D′) (shown in solid
lines), the convex hull is updated and the vertices become {b1, p2, p

′
3, p

′
4, b2, O}.

To update Conv(D′), new facets (e.g., {p2, p
′
3}, shown in dashed lines) are cre-

ated, and old facets are removed (e.g., {p′
1, p

′
2} and {p′

2, p
′
3}). It is not hard to

observe that the newly created facets indeed give us the desired extreme vectors
Ext(p), since each extreme vector is perpendicular to exactly one newly created
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facet (i.e., it is perpendicular to the unique hyperplane containing that facet).
For example in Fig. 4, v2, an extreme vector of p2, is perpendicular to the newly
created facet {p2, p

′
3}. Motivated by this, we can compute the desired Ext(p) for

each p in D, by adapting the techniques of incremental convex hull computation,
pretending that we are inserting p to the convex hull Conv(D′).

4.2 Two-Dimensional Case: 2D-CH

In 2-dimensional space, the vertices (excluding the origin O) of the convex
hull Conv(D′) can be organized in a clockwise manner, say t1, t2, . . . , tk, where
{ti, ti+1} (i ∈ [1, k−1]) is a facet. For example, in Fig. 4, vertices of Conv(D′) can
be organized in order: b1, p′

1, p′
2, p′

3, p′
4, b2, where b1 and b2 are two orthotope

points in Orth(D′). {p′
2, p

′
3} is facet of Conv(D′). We store vertices of Conv(D′)

clockwise in a doubly-linked list so that we can create new facets efficiently.
Specifically, our 2-dimensional algorithm, called 2D-CH, is proposed by

adopting the following strategy for computing the extreme vectors Ext(p) for
p:

1. We first compute the convex hull Conv(D′) and maintain its vertices in a
doubly-linked list for efficient facet traversal for all points in D;

2. For each p in D that is not contained inside Conv(D′), we compute the new
facets, by pretending that we are inserting p to Conv(D′) (see details below);

3. For each newly created facet, we obtain a desired extreme vector in Ext(p),
which is the unique vector perpendicular to the new facet.

To insert a point p to Conv(D′), we need to determine the correct positions for
constructing the new facets. For example, in Fig. 4, p′

3 is the desired position, and
a new facet is created by connecting p2 and p′

3. To determine such positions, we
need the notion of “visibility”. Formally, given a point p and a facet {ti, ti+1} of
Conv(D′), {ti, ti+1} is visible to p if p is above the unique hyperplane containing
{ti, ti+1}. The following lemma (proof is intuitive and is omitted) tells us how
to determine the correct positions with the notion of “visibility”.

Lemma 2. Given point p and two adjacent facets of Conv(D′), say F1 =
{ti−1, ti} and F2 = {ti, ti+1}, when inserting p to Conv(D′), we create a new
facet by connecting p and ti iff one facet in {F1, F2} is visible to p and the other
is not.

For example in Fig. 4, {p′
2, p

′
3} is visible to p2, while {p′

3, p
′
4} is not. To insert

p2 to Conv(D′), we create a new facet by connecting p2 and p′
3 by Lemma 2. Since

we maintain vertices of Conv(D′) in a doubly-linked list, the correct position for
creating facets can be found efficiently by binary search in the list.

After obtaining the new facets, the extreme vector set construction is
straightforward. Note that in 2-dimensional space, there are exactly two extreme
vectors for each p. Therefore, the corresponding function set Fp can be concisely
represented by an angle interval. Specifically, we define the angle of a vector v in
2-dimensional spaces as the angle between the vector Ov and the y-axis, denoted
by Ang(v). Given Ext(p) = {v1, v2} of a point p, we define the angle interval of p
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to be [Ang(v1),Ang(v2)]. Then, it is easy to show that finding a set S such that⋃
p∈S Fp = L is equivalent to finding a set S whose angle intervals covers [0, π

2 ],
where the latter problem is the interval cover problem [4]. We then employ the
popular greedy strategy to solve the interval cover problem optimally.

Example 5. Consider p2 in Fig. 4 where Ext(p2) = {v1, v2}. Since Ang(v1) = 0
and Ang(v2) = 1.04, we represent the function set Fp2 as an angle interval
[0, 1.04] (labeled in the figure). Similarly, we can compute the angle intervals for
other points in D. By the greedy strategy, we find that the angle intervals of p2
and p3 covers the entire [0, π

2 ], which gives us the desired set S = {p2, p3}. ��

Fig. 4. 2D case Fig. 5. 3D case

4.3 High-Dimensional Case: HD-CH

The problem is more complicated in the higher-dimensional case, since there is
no natural order in the facets of a convex hull and each facet can have multiple
adjacent facets (unlike exactly two adjacent facets in the 2-dimensional case).

To extend our algorithm to the high-dimensional case, we define the following
notions in a high-dimensional convex hull. The boundaries of a facet are called
ridges. Intuitively, the ridge signifies the adjacency of two neighbouring facets.
For example, the ridges in a 2-dimensional space are points and the ridges in
a 3-dimensional space are edges (i.e., the line segment jointed by two points).
Given a point p, a ridge is called horizon ridge of p if it signifies the adjacency
of a visible facet and an invisible facet of p. Intuitively, a horizon ridge indicates
the maximum visible region from p to the convex hull. For example in Fig. 5,
if F1 is visible to p and F2 is not visible to p, the ridge (i.e., edge in this case)
{t1, t2}, which signifies the adjacency of F1 and F2, is a horizon ridge of p.
For each horizon edge, we define an extreme vector of p to be the unit vector
perpendicular to the unique hyperplane containing p and the horizon ridge.

With the above definitions, our high-dimensional algorithm, denoted as HD-
CH, computes the extreme vector set Ext(p) as follows:



Accelerated Algorithms for α-Happiness Query 63

1. It first computes the convex hull Conv(D′);
2. For each p in D, we maintain its visible facets in a queue Q and horizon ridges

in a set H. Initially, H is empty and we obtain the first facet F in Q by facet
traversal on Conv(D′). Neighboring facets of F is marked as “unchecked” ;

3. When there is a facet F in Q with unchecked neighboring facets, we pop F
from Q and check its neighboring facets. Specifically, for each visible neighbor-
ing facet, we add it to Q for later processing; and for each invisible neighboring
facet, we obtain a horizon ridge for p and it is inserted to H;

4. Finally, for each horizon ridge in H, we get an extreme vector (i.e., the unit
vector perpendicular to the hyperplane containing p and the horizon ridge).

After obtaining the extreme vector set Ext(p), we adopt the same strategy
as Cone-Greedy for constructing the solution S. Note that HD-CH enjoys
the same theoretical guarantee on the output size as Cone-Greedy by similar
analysis. Interested readers can find more details in [27] and we omit them here.

4.4 Discussion

Compared with the best-known previous approach Cone-Greedy, our 2D-
CH and HD-CH algorithms mainly differ in the procedure of constructing the
extreme vector set Ext(p), by employing incremental computation on the convex
hull Conv(D′). Note that Conv(D′) is a α-shrunk convex hull of Conv(D). There-
fore, we can compute Conv(D) once and use it for α-happiness queries with dif-
ferent values of α, by properly scaling Conv(D). Moreover, given the convex hull
Conv(D′), we can use it for all points in D, for computing the desired function
set Fp via facet traversal. In contrast, although Cone-Greedy also computes
the vertices Conv(D′) for all points in D, it constructs the conical hull Cone(p)
independently for each p in D, resulting in a large overall execution time. Even
worse, when the user wants to execute an α-happiness query with a different
value of α on the same dataset, the conical hull Cone(p) has to be re-computed
from scratch for all points in D, since the vector set Vp = {t − p| for each vertex
t of Conv(D′)} is radically different under different values of α.

5 Experimental Evaluation

We conducted experiments on a machine with 3.20 GHz CPU and 8 GB RAM.
All programs were implemented in C/C++. Most experimental settings follow
those in [2,12,27]. Both synthetic and real datasets were used in our experiments.

We generated the widely used anti-correlated datasets by a dataset genera-
tor [5]. Unless stated explicitly, for each synthetic dataset, the number of tuples
is set to be 100,000 (i.e., n = 100,000), the dimensionality is set to be 3 (i.e.,
d = 3) and α is set to be 0.99. Following existing studies, we used three real
datasets in our experiments: the Island dataset [15,27], the Household dataset
[26] and the El Nino dataset [2,7,27]. Island is 2-dimensional, containing 63,383
points, which characterize geographic positions. Household consists of 1,048,576
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family tuples in US in 2012 where each family is described by three economic
attributes. El Nino contains 178,080 tuples with four oceanographic attributes
taken at the Pacific Ocean. For all datasets, each attribute is normalized
to (0, 1].

We implemented our algorithms, 2D-CH and HD-CH, and two variants 2D-
CHreuse and HD-CHreuse, which pre-compute the vertices and convex hulls and
re-use them under different values of α. Our algorithms are compared against
the state-of-the-art algorithm, Cone-Greedy [27], for the α-happiness query.
Note that although there are other algorithms proposed in the literature, [2,6,
12,15], they are shown to be worse than Cone-Greedy in [27] and thus, we
only compared Cone-Greedy in the experiments for the ease of presentation.
We used the same parameters reported in [27]. Unless specified explicitly, the
performance of each algorithm is measured in terms of the execution time. Since
2D-CH and HD-CH only differ from Cone-Greedy in the way of computing
the function sets, their outputs are the same and we omit them for lack of space.

In the following, we show the experiments on the synthetic and real datasets
in Sect. 5.1 and Sect. 5.2. We summarize our findings in Sect. 5.3.

Fig. 6. 2D synthetic Fig. 7. 3D synthetic Fig. 8. 4D synthetic

Fig. 9. Vary n Fig. 10. Vary d

5.1 Results on Synthetic Datasets

In Fig. 6, we evaluated our 2-dimensional algorithms, 2D-CH and 2D-CHreuse

on a 2d anti-correlated dataset. For completeness, we also include the d-
dimensional algorithm, HD-CH and HD-CHreuse, in the figure (however, their
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performance will be analyzed in later experiments). As shown there, 2D-CH
runs much faster than the other algorithms. In particular, it takes less than 0.2 s
for all α and its running time is not sensitive to the value of α. This is because
in a 2-dimensional dataset, there is an ordering on the vertices, and thus, con-
structing the functions sets on the α-shrunk convex hull Conv(D′) can be done
efficiently via binary search, which is not sensitive to α compared with the other
methods. The performance of 2D-CH is further improved by 2D-CHreuse, by
pre-computing the vertices and re-using them for all points in D under different
values of α. Note that Cone-Greedy is the slowest in most cases, e.g., 2D-
CH (resp. 2D-CHreuse) achieves 5 times (resp. two orders) of improvements in
execution times compared with Cone-Greedy when α = 0.99.

We proceed with the performance evaluation of our d-dimensional algorithms,
HD-CH and HD-CHreuse, on 3d and 4d anti-correlated datasets. The results
are presented in Figs. 7 and 8. With the increasing value of α, all algorithms
take less time to execute, in the cost of larger output sizes (not shown). This is
because when α is large, the convex hull Conv(D′) is “close” to Conv(D) and thus,
each point in D can only “see” a small portion of Conv(D′). Hence, it takes each
point a shorter amount of time to construct the function set, which dominates
the computational cost, but we need more points to cover the entire Conv(D′).
Nevertheless, Cone-Greedy still has the largest execution time, e.g., it takes
Cone-Greedy 21 s on the 4-dimensional dataset when α = 0.999, as opposed
to 12 s by HD-CH. HD-CHreuse further improves the execution time of HD-
CH by around 30%, This confirms our claim that our algorithms are especially
efficient when the user wants to execute the α-happiness query on the same D
with different values of α, since the convex hull can be efficiently pre-computed
and used for different α-happiness queries.

We next evaluated the scalability of HD-CH and HD-CHreuse, by vary-
ing the dimensionality d and the dataset size n in Figs. 9 and 10, where other
parameters are fixed to the default setting stated at the beginning of this section.
According to the results, we can see that our algorithm scales well w.r.t. both d
and n. For example, on a large dataset with 1 million points, HD-CHreuse only
takes 3 s to execute, 3 times and 7 times faster than HD-CH and Cone-Greedy,
respectively. When the dimensionality is 4, the execution time of Cone-Greedy,
HD-CH and HD-CHreuse is 42 s, 29 s and 26 s, respectively. In other words, HD-

Fig. 11. Island Fig. 12. Household Fig. 13. El Nino
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CH and HD-CHreuse outperform the state-of-the-art approach, w.r.t. both n
and d, by accelerating the querying time.

5.2 Results on Real Datasets

In this section, we conducted experiments on three commonly used real datasets.
The results are shown in Figs. 11, 12 and 13, respectively.

On the 2-dimensional Island dataset (Fig. 11), we plot the performance of
both 2-dimensional and d-dimensional algorithms. Consistent to the performance
on the synthetic datasets, the running times of our algorithms are much faster
than the existing algorithms. For our d-dimensional algorithms HD-CH and HD-
CHreuse, they achieves 30% speedup against the state-of-the-art Cone-Greedy
algorithm. When considering our 2D-CH and 2D-CHreuse algorithms, which
are designed for the 2-dimensional case, the improvement of execution time is
significant, e.g., one order and two orders of improvement when α = 0.999.

The result on the Household dataset are similar and it is shown in Fig. 12.
Note that due to the small skyline size on Household, the execution times of all
algorithms are not sensitive to the value of α. In this scenario, HD-CH still out-
performs Cone-Greedy, e.g., by reducing the average execution time from 7.2 s
to 3.5 s. HD-CHreuse further improves the average execution time of HD-CH
to 1.3 s, which clearly demonstrates that pre-computing the auxiliary structures
is a promising way to speedup the query process. By maintaining intermediate
information, we efficiently support the α-happiness queries for different values
of α. Note that similar speedup cannot be achieved by the Cone-Greedy algo-
rithm. Although it also computes the vertices of Conv(D′) for all points in D, it
has to construct the conical hull independently for each point in D, resulting in
a large overall execution time.

Finally, consider the experiments on the El Nino dataset in Fig. 13. Similar
to the previous experiments, the performance of Cone-Greedy is worse than
that of HD-CH and HD-CHreuse. When α = 0.999, HD-CHreuse only spends
half of the time compared with Cone-Greedy to obtain the desired solution.

5.3 Summary

The experiments on both real and synthetic datasets demonstrated our superi-
ority over the best-known previous approach. We observe the following. (1) On
the 2-dimensional datasets, 2D-CH and 2D-CHreuse are the best algorithms, by
achieving up to two orders of improvement in execution time, compared with the
state-of-the-art algorithm. (2) On the d-dimensional datasets, HD-CH and HD-
CHreuse runs much faster than the competitor, e.g., on the Household dataset,
the average execution times of HD-CH, HD-CHreuse and Cone-Greedy are
3.5 s, 1.3 s and 7.2 s, respectively. (3) Pre-computing the vertices and convex hulls
is a promising way for reducing the query time, especially when the users want to
execute multiple α-happiness queries on the same datasets. For example, when
n = 1, 000, 000, it only takes HD-CHreuse 3 s to execute, 3 times faster than the
HD-CH algorithm. (4) The scalability of our solutions is demonstrated, e.g.,
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when varying the dimensionality or the dataset size, our algorithms are consis-
tently faster than Cone-Greedy.

6 Conclusions

This paper proposed two accelerated algorithms for the α-happiness query. Com-
pared with the existing methods, we maintain useful information to avoid redun-
dant computation, accelerating the query process. Our algorithms are particu-
larly good at executing the α-happiness queries with different values of α on the
same dataset D. We conducted comprehensive experiments to verify the speedup
of our algorithms, which achieve up to two orders of improvement in execution
time, compared with the best-known approach. As for future research, we con-
sider introducing user interaction [22–24] in α-happiness queries, so that we can
further reduce the solution set size while guaranteeing the happiness ratio.
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Abstract. Text summarization models are often trained to produce
summaries that meet human quality requirements. However, the existing
evaluation metrics for summary text are only rough proxies for summary
quality, suffering from low correlation with human scoring and inhibition
of summary diversity. To solve these problems, we propose SummScore,
a comprehensive metric for summary quality evaluation based on Cross-
Encoder. Firstly, by adopting the original-summary measurement mode
and comparing the semantics of the original text, SummScore gets rid of
the inhibition of summary diversity. With the help of the text-matching
pre-training Cross-Encoder, SummScore can effectively capture the sub-
tle differences between the semantics of summaries. Secondly, to improve
the comprehensiveness and interpretability, SummScore consists of four
fine-grained submodels, which measure Coherence, Consistency, Fluency,
and Relevance separately. We use semi-supervised multi-rounds of train-
ing to improve the performance of our model on extremely limited anno-
tated data. Extensive experiments show that SummScore significantly
outperforms existing evaluation metrics in the above four dimensions in
correlation with human scoring. We also provide the quality evaluation
results of SummScore on 16 mainstream summarization models for later
research.

Keywords: SummScore · Comprehensive metric · Summary quality
evaluation

1 Introduction

Automatic text summarization technology aims to compress a long document
into a fluent short text, which is consistent with the key information of the origi-
nal text and preserves the most salient information in the source document [6]. In
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recent years, automatic text summarization technologies have been significantly
developed. However, the research on automatic summarization evaluation still
fell behind [7]. Today, the mainstream evaluation metrics for automatic text
summarization, such as ROUGE, BLEU, and Meteor, simply calculate n-gram
overlap between candidates and references [1,11,14]. Studies [12,19] have shown
that they are only rough proxies for summary quality evaluation. Some concerns
of these metrics are shown as follows.

Firstly, the existing evaluation metrics strongly rely on expert-generated
summaries as references, which are difficult to obtain. What’s more, these met-
rics inhibit the diversity of summaries generated by the summarization model.
Because the mainstream metrics only rely on the interaction between the refer-
ence summary. However, different summaries written by readers with different
knowledge reserves and for different purposes are also correct. We cannot force
different summaries to be evaluated simply by measuring the degree of align-
ment with a single reference summary. Such an evaluation metric will limit the
diversity of summaries generated by the summarization model.

Secondly, some studies show that the mainstream evaluation metrics scor-
ing do not correlate well with human scoring [3,19]. When humans evaluate the
quality of summaries, they usually consider multiple fine-grained quality dimen-
sions, such as rich information, non-redundancy, coherence, and well-structured.
However, these metrics mainly focus on the similarity of literal and expressions,
which cannot well evaluate semantic relevance and topic consistency. Moreover,
they ignore the evaluation of language quality, such as logical consistency and
language fluency. Many of the above-mentioned factors can affect the compre-
hensiveness and interpretability of the summary quality evaluation.

As illustrated in the examples in Fig. 1. Comparing the reference with the
original text, when experts score the summary generated by model Bottom-Up,
they find that the generated summary has factual errors (gray shaded fonts).
The fact is that Manuel Pellegrini (Manchester City) wants to sign Evange-
los Patoulidis. Therefore, except for Fluency, the experts give low scores for
all quality dimensions. However, because of the large overlap of n-grams (blue
fonts) between the summary and the reference, ROUGE scores high. For the
BART model, because the generated summaries almost focus on the important
information (orange fonts), and the text is of high quality and no redundant
information. So, experts give it high marks. However, the wording is different
from the reference summary, so ROUGE gives the summary a low rating. It
can be seen from these two examples that ROUGE is a rough proxy that is
unable to recognize semantic factual errors. Moreover, over-reliance on the lit-
eral matching of reference may lead to a suppression of the diversity of generated
summaries. Therefore, a good summarization evaluation metric should be able
to help identify: (i) semantically correct summaries with good word overlap with
the original text or reference, and (ii) non-redundant and fluent summaries that
contain enough correct facts, even if their wording is different from the reference.

To solve these problems, we propose SummScore, a comprehensive metric
for summary quality evaluation based on Cross-Encoder. SummScore adopts the
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Fig. 1. A typical example showing ROUGE’s problems.

original-summary paired measurement mode. The summaries are scored by com-
paring the semantics of the original text, avoiding the suppression of the diversity
of the summaries caused by the forced alignment of a single reference summary.
With the help of the text-matching pre-training Cross-Encoder, SummScore can
effectively capture the subtle differences between the semantics of summaries.
To improve the comprehensiveness and interpretability, SummScore consists of
four fine-grained submodels, which measure Coherence, Consistency, Fluency,
and Relevance separately.

We conduct our experiment in SummEval [7] dataset and measure the quality
of our SummScore by calculating the Pearson correlation and Spearman corre-
lation coefficient between SummScore scores and human annotation scores. We
use semi-supervised multi-rounds of training to improve the performance of our
model on extremely limited annotated data. Extensive experiments show that
SummScore significantly outperforms existing evaluation metrics. In addition,
we evaluate 16 mainstream summarization models with SummScore and publish
the results for later research. Our contributions are summarized as follows:

– We propose SummScore, a novel evaluation metric for summary quality, which
uses original text instead of the hard-to-obtain expert-generated gold sum-
mary as the reference to evaluate the quality of the generated summary.

– We trained four submodels of SummScore based on the Cross-Encoder frame-
work to automatically evaluate the four fine-grained qualities of Relevance,
Consistency, Fluency, and Coherence respectively. Experiments show Summ-
Score has strong human relevance on all the four fine-grained dimensions.

– We evaluate 16 mainstream summarization models with SummScore and pub-
lish the results for later research.

2 Related Work

In this section, we will first introduce the common metrics on summarization and
their main problems. Next, we will introduce the context-dependent metrics and
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the trained metrics in the evaluation of related natural language generation tasks.
By borrowing the principles and advantages of the context-dependent metrics
and the trained metrics, we design SummScore for summary quality evaluation.

Common Metrics in Summarization. The early common summary metrics
are mainly represented by ROUGE [11], BLEU [14] and METEOR [1]. All of
them obtain the summary quality score by calculating the token n-gram over-
lap between the summary and the reference. However, these lexical-based over-
lap metrics cannot capture the changes in semantics and grammar. Therefore,
BERTscore [20] and MoverScore [21] use BERT to extract contextual embeddings
and use embeddings matching to complete the similarity calculation between
summary and references. However, these metrics, which rely on the alignment
of single-reference abstracts, bring about suppression of abstract diversity.

Context-Dependent Metrics. To get rid of the constraints of reference sum-
maries, ROUGE-C [9] improves ROUGE, which compares summaries with the
original texts instead of reference summaries. ROUGE-C proves that using orig-
inal text instead of reference can yield positive benefits, especially when the
reference summary is not available. SUPERT [8] is an unsupervised reference-
less summarization evaluation metric. SUPERT enables the quality assessment
of the generated summaries with the help of pseudo-reference summaries created
by salient sentences from the original text. Our model is also a context-dependent
metric. Experiments show that our method not only gets rid of the comfort of
reference summary but also supports the diversity of summary text generation.

TrainedMetrics. There are training-based evaluation metrics in related natural
language generation tasks. For machine translation, BLEND [13] and BEER [18]
train a scoring model by combining a variety of existing untrained metrics, such as
BLEU, METEOR, and ROUGE. As the pre-training models show promising per-
formance, BERT for MTE [17] and BLEURT [16] are proposed for the machine
translation system. By performing BERT fine-tuning training on a small amount
of labeled data, they compute the similarity of the candidate and reference sen-
tences. The difference is that BLEURT innovatively designs a set of pre-training
signals and pre-trains BERT. We propose a trained-based summary evaluation
metric SummScore, which consists of four submodels, corresponding to four qual-
ity dimensions. We believe that a single model may not be able to take into account
the evaluation of various quality dimensions of the summary texts. At the same
time, the independent scoring of multiple dimensions also helps to improve the
interpretability of the summary quality score.

3 Our Methodology

3.1 Problem Definition

Our SummScore model is based on the Cross-Encoder [5] model in the field
of information retrieval. In QA (Question answering) retrieval, when sorting
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Fig. 2. Structural diagram of SummScore’s submodels.

the candidate answers, the higher the similarity score between the answer and
the question, the more accurate the answer is considered. The specific process
can be realized by stitching the subword sequences of question text and answer
text with [SEP] and inputting them into the Cross-Encoder model for training.
Similarly, a summary can be regarded as a semantically similar text obtained
after the original text is compressed. A heuristic idea is that the more similar
the summary is to the original text, the higher the quality of the summary. The
similarity here includes semantic similarity, content consistency, etc. Inspired by
QA retrieval, we also regard the scoring of summary quality as a process of text
similarity calculation between the original text and summary text.

As shown in Fig. 2, we formally define the summary quality evaluation prob-
lem as follows. Given the subword sequence O of the source document, where
O = {o1, ..., on}. Suppose that the subword sequence of the generated summary
is S, where S = {s1, ..., sm}. The goal is to implement a function score(O,S) and
predict a score y to represent the similarity between document O and summary
S. Given the training data with human annotation scores on summary quality,
our goal is to train the function score(O,S) so that it can regress to the human
annotation score y

′
.

3.2 Structure of Model

The structure of SummScore’s submodels is based on the Cross-Encoder. The
Cross-Encoder [15] believes that the spliced sentence pair is a reasonable input
mode, which is suitable for NSP(Next Sentence Prediction) [4] pre-training
task and natural language inference task. Our SummScore is designed based on
the principle of semantic similarity computation, and the used Cross-Encoder
is pre-trained on related tasks. Hugging Face SentenceTransformers provides
researchers with Cross-Encoder1 after training on the semantic similarity bench-
mark dataset STS [2]. By inputting sentence pairs, the Cross-Encoder will predict
a score between 0 and 5 representing the semantic similarity of the two texts.

Subsequently, we use the pre-trained Cross-Encoder to perform fine-tuning
on fine-grained quality human-annotated data. Specifically, we add a regression
1 https://www.sbert.net/examples/training/cross-encoder/README.html.

https://www.sbert.net/examples/training/cross-encoder/README.html
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model based on MLP (Multilayer Perceptron) to Cross-Encoder to evaluate the
score. The format of the input is a patchwork of sentence pairs. The first token
of each sentence pair is always a special mark [CLS], and the sentences are
separated by [SEP]. Finally, the final hidden state corresponding to the first
special [CLS] token is taken as the sentence feature of the overall input. Feed
the [CLS] embedding V[CLS] into the MLP to get the predicted score y:

V[CLS] = Cross − Encoder([CLS], O, [SEP ], S) (1)
y = WV[CLS] + b (2)

where W and b are learnable parameters. The learning goal of the whole model
is to fit the gold label y′ with y. Our squared regression loss is:

L =
1
N

N∑

n=1

‖y − y′‖2 (3)

where N is the size of the sample.

3.3 Training Method of Submodels

Proxy metrics such as ROUGE and BERTscore usually return only a single value
for the summary quality. It is difficult for people to clearly know how good or bad
the current summary is from this score value. For example, does this summary
capture the topic of the original text? How fluent is this summary? What are the
main problems in this summary? That is, proxy metrics such as ROUGE and
BERTscore are not well interpretable. Due to the poor interpretability of metrics
scoring, it is also difficult for the summarization model to further improve the
quality of the generated summary and the performance of the model.

The counterpart to machine scoring is human evaluation. It is a common fact
that the human evaluation will first divide the quality of summaries into multi-
ple fine-grained quality dimensions, and then score on the specific dimensions. A
popular division is to divide the quality of the summary into four fine-grained qual-
ity dimensions (Coherence, Consistency, Fluency, and Relevance) [7,10].
Specifically, Coherence: the summary should be a coherent set of information
about a topic, and whether the organizational structure between sentences is log-
ical. Consistency: the summary should contain only the facts and themes of the
original text. Both should be presented consistently and without hallucinatory
facts.Fluency: the quality of the language. Whether there are grammatical errors
that affect reading.Relevance: the summary should only contain important infor-
mation from the source document, penalizing the summary that contains redun-
dant information. Following this principle, our SummScore is also composed of four
scoring submodels, and each corresponds to one of the above quality dimensions.
Therefore, SummScore has the human-like ability to comprehensively evaluate the
quality of summaries across multiple quality dimensions.

The model structures of the four submodels are consistent, but the mode of
data input of the submodels of Coherence and Fluency is different. As shown in
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Algorithm 1. The semi-supervised multi-round training
Input: Initial submodel M0, annotated dataset DL(D

train
L ∪Dval

L ), unannotated data
subset DU = {D1, ..., Dk}, epoch size for fine-tuning ep
Output: The best submodel Mbest

1: /*Part1: the first round of supervised training with Dtrain
L .*/

2: Let Mbest
0 = M0

3: for each i ∈ {0, 1, ..., ep − 1} do
4: Train M0 on Dtrain

L an epoch agin and obtain Mi+1

5: if f(Mi+1, D
val
L ) > f(Mbest, D

val
L ) then

6: Mbest
0 = Mi+1

7: end if
8: end for

9: /*Part2: multiple rounds of semi-supervised training. */
10: Let D = Dtrain

L ,Mbest = Mbest
0

11: for each t ∈ {1, 2, ..., k} do
12: Annotate Dt with Mbest

t−1 and obtain pseudo-annotated data Dpseudo
t

13: D = D ∪ Dpseudo
t

14: Let Mbest
t = M0

15: for each i ∈ {0, 1, ..., ep − 1} do
16: Train Mi on Dtrain

L an epoch agin and obtain Mi+1

17: if f(Mi+1, D
val
L ) > f(Mbest

t , Dval
L ) then

18: Mbest
t = Mi+1

19: end if
20: end for
21: if f(Mbest

t , Dval
L ) > f(Mbest, Dval

L ) then
22: Mbest = Mbest

t

23: end if
24: end for

Fig. 2, among them, the scoring submodels for Fluency and Coherence no longer
use the training mode of sentence pair. Because Fluency evaluates the linguistic
quality of the summary itself. When experts annotate Fluency’s scores, they
can do it without referring to the original text. For the Coherence dimension,
experts only focus on whether the summary text itself has a clear theme and
rigorous sentence logic. In contrast, when experts score the quality dimensions of
Consistency and Relevance, it is necessary to repeatedly compare the generated
summary with the original text. Therefore, for the submodels of Coherence and
Fluency dimension, we remove the original text information and change the
formula (1) to the following form:

V[CLS] = Cross − Encoder([CLS], S, [SEP ]) (4)

Because the annotation data resources are very limited, we adopt a semi-
supervised multi-round training method to maximize the correlation between
SummScore and human ratings. The input of the algorithm includes the pre-
trained Cross-Encoder M0, which is used as the initial state of the SummScore’s
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submodel. We have a small-scale manually annotated supervised dataset DL.
We divide DL into the training set Dtrain

L and validation set Dval
L . In addition,

we have a large amount of unsupervised data DU generated by several main-
stream summarization models. DU is randomly divided into sub-datasets of the
same size {D1, ...,Dk}. Moreover, we also have a scoring function f(·) to judge
whether the submodel is good or bad, which is achieved by comparing the correla-
tion between the scores predicted by the submodel and the manually annotated
scores on Dval

L . f(·) can be chosen from max(Pearson), max(Spearma) and
max(Pearson ∗ Spearma). Our goal is to obtain the globally optimal submodel
Mbest with limited annotation data.

Our training is mainly divided into two parts, as shown in lines 1–8 and
9–24 of the Algorithm 1 respectively. In the first part of the algorithm, we first
train the submodel on the small-scale supervised data Dtrain

L . In the beginning,
we assume that the best submodel M best

0 in the first round of training is M0

(line 2). Then, we perform fine-tuning training for ep times (line 3). After the
i-th fine-tuning, the submodel is trained from Mi to Mi+1 (line 4). After each
fine-tuning, we compare the quality of M best

0 and Mi+1, and save the best model
as M best

0 (line 5–7). After the first round of supervised training, we get the best
model of the first round M best

0 .
In the second part of the algorithm, we will carry out multiple rounds of semi-

supervised training to improve the performance of the submodel using unlabeled
data. We assume that the initial global optimal model is M best

0 , and the cur-
rent training available dataset D is Dtrain

L (line 10). Because the unsupervised
dataset DU is divided into k blocks, the algorithm will perform k rounds of
semi-supervised training (Line 11). At the beginning of the t-th round of semi-
supervised training, we will use the optimal model of the previous round M best

t−1

to label the sub-data Dt, and get the pseudo-labeled dataset Dpseudo
t (line 12).

Then, the newly obtained pseudo-label data Dpseudo
t is extended to the avail-

able dataset D for the next round of semi-supervised training (line 13). After
that, like the steps of Part1, start with the initial Cross-Encoder M0 and fine-
tune the submodel ep epochs on data D (line 14–20). After the end of each
epoch fine-tuning, the optimal submodel M best

t of round t is retained (line 18).
After each t-th round of semi-supervised training, we will also compare M best

and M best
t , and keep the best model as the global optimal model M best(line

22). After all t rounds of semi-supervised training, we finally obtain the globally
optimal submodel M best of SummScore for each fine-grained quality dimension.

4 Experiments Settings

We conduct experiments on SummEval [7] dataset, which contains 1600 manu-
ally annotated summaries. Each summary is evaluated on the four fine-grained
quality dimensions according to criteria [10] and is scored by 5 independent
crowdsource workers and 3 independent experts. Annotation scores span from
1 (worst) to 5 (best). We calculate the average of the annotation scores of the
3 experts as the final supervision score for each data and randomly divide the
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data into a training set Dtrain
L of 1000 pieces of data and a test set Dtest

L of 600
pieces of data. At the beginning of each round of semi-supervised training, we
randomly sample 100 pieces of data from the training set Dtrain

L as the validation
set Dval

L for model selection and pass it to f(·) for model selection.
In addition to the above small-scale annotated data, we also use a large

amount of unannotated data consisting of original texts and machine-generated
summaries. These unannotated data will be randomly divided into k equal-sized
parts in the experiment. Specifically, these divided data are mainly used in the
semi-supervised training of the model to further help SummScore improve per-
formance.

Our SummScore is based on Cross-Encoder2 of Hugging Face SentenceTrans-
formers. We expect that the scoring process of SummScore will be as fast as
possible without taking up too much video memory of the machine. There-
fore, we abandon the pre-training model with large-scale parameters, such as
RoBERTaLARGE (24 layers), and only select the public DistilRoBERTaBASE

(6 layers), and RoBERTaBASE (12 layers) for fine-tuning. So the GeForce GTX
1060 can meet all the experimental needs of SummScore. We set the epoch size
for fine-tuning to be 6 and the batch size to be 4. When the amount of newly
expanded pseudo-annotated data reaches 10,000 (about ten times the annotated
data), the model can obtain satisfactory performance. At the beginning of each
new round of semi-supervised training, SummScore will perform linner warmup
training with 1/10 of the single round steps. We use Adam as our optimizer
with a learning rate of 2e−5 and a weight decay of 0.01. Consistent with previ-
ous research works [17,20], we use Pearson and Spearman correlation coefficients
to judge the correlation between the scoring metrics and manual scoring.

5 Experiments

5.1 Comparative Experiments

For the convenience of comparison, we conduct our comparative experiments
in groups. First, we compare our model with several well-known training-free
metrics. These metrics include BLEU [14], TF-IDF, ROUGE, BERTscore, and
SUPERT. These metrics have their innovative principles and advantages, which
have a profound impact on the development of the corresponding field. In par-
ticular, ROUGE and BERTscore are very popular and well-received in summary
quality evaluation. Our SummScore is based on pre-training fine-tuning. There-
fore, we also select two representative metrics based on the pre-trained model
fine-tuning: BLEURT and BERT for MTE. For a fair comparison, we maintain
the experimental design consistent with SummScore and conduct fine-tuning on
the same data. Similarly, BLEURT and BERT for MTE also adopt multi-round
semi-supervised training to eliminate the influence of training methods.

Table 1 shows our experimental results. Scores represent the Pearson corre-
lation and Spearman correlation of each metric with respect to human annota-
tions. It can be seen that compared with the training-free metrics, SummScore
2 https://www.sbert.net/examples/training/cross-encoder/README.html.

https://www.sbert.net/examples/training/cross-encoder/README.html
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Table 1. The results of the correlation experiment of the evaluation metrics on the
test set of SummEval

Quality dimension Coherence Consistency Fluency Relevance
Metric Pearson Spearma Pearson Spearma Pearson Spearma Pearson Spearma

Training-free BLEU-1 0.0278 0.0272 0.2023 0.1552 0.1367 0.0696 0.2459 0.1992
BLEU-2 0.0419 0.0384 0.1531 0.1456 0.1206 0.0810 0.2104 0.2002
BLEU-3 0.0588 0.0668 0.1129 0.1367 0.1092 0.0841 0.1901 0.2240
BLEU-4 0.0513 0.0764 0.0896 0.1271 0.1053 0.0898 0.1567 0.2193
TF-IDF 0.0667 0.0689 0.0772 0.0930 0.0797 0.0727 0.0893 0.0472
ROUGE-1 0.1757 0.1593 0.2242 0.1767 0.1651 0.1055 0.3264 0.2955
ROUGE-2 0.1229 0.1237 0.1515 0.1489 0.1297 0.1062 0.2502 0.2509
ROUGE-3 0.1219 0.1339 0.1184 0.1319 0.1182 0.1106 0.2160 0.2472
ROUGE-L 0.1569 0.1457 0.1671 0.1486 0.1578 0.1499 0.2415 0.2284
BERTscore-r 0.1414 0.1297 0.2456 0.1921 0.2142 0.1553 0.3474 0.2960
BERTscore-p 0.1746 0.1428 0.1059 0.0821 0.2414 0.1683 0.1930 0.1513
BERTscore-f 0.1792 0.1534 0.2043 0.1750 0.2614 0.1811 0.3135 0.2694
SUPERT 0.2853 0.2599 0.3230 0.2931 0.3062 0.2280 0.3703 0.3256

Trained BLEURT 0.4631 0.4410 0.3206 0.2233 0.4639 0.2193 0.5621 0.5286
BERT for MTE 0.5532 0.5324 0.3721 0.3058 0.4601 0.2645 0.5638 0.5315
BERT for MTEDistilRobertaBase 0.6080 0.6036 0.4630 0.3512 0.4787 0.3509 0.5813 0.5500

Ours SummScoreDistilRobertaBase 0.6704 0.6684 0.4839 0.4080 0.7071 0.5586 0.6018 0.5538
SummScoreRobertaBase 0.7061 0.7116 0.4852 0.4497 0.7348 0.5855 0.6746 0.6391

far exceeds them. Moreover, except for SUPERT, these metrics have a low cor-
relation with human annotations in all fine-grained dimensions. However, we
find that they (e.g. BLEU, ROUGE, and SUPERT) tend to be more relevant to
human judgments than Coherence and Fluency on Relevance and Consistency
quality dimensions. The reason is that these metrics all need to compare the
literal n-gram or semantic information of the reference summary when scoring.
Because the reference summary is a compressed text that captures the central
idea of the original text. Therefore, these metrics can achieve the purpose of pre-
liminarily measuring the Relevance and Consistency of the original text topic
semantics of the generated summary. Unfortunately, they are designed without
considering the quality requirements of Coherence and Fluency. So these metrics
tend to work poorly in the Coherence and Fluency dimensions.

Compared with the trained metric group, our model also outperforms all
of them. However, we find that these metrics also perform well after multiple
rounds of semi-supervised training on data. To eliminate the influence of the
pre-trained language model, we also replace the pre-trained model of BERT for
MTE with the same DistilRobertaBase trained on the STS dataset. We find
that the performance of BERT for MTE model is more competitive. This proves
that the idea of SummScore’s quality evaluation design, which is inspired by the
similarity matching principle of information retrieval, is reasonable.

5.2 Ablation Results

We believe that multi-round semi-supervised training is an important factor for
improving SummScore. Because this training method brings about the rapid
expansion of pseudo-annotated data and alleviates the problem of the small



SummScore 79

Fig. 3. Ablation experiments on the impact of pseudo-annotated data volume on the
Fluency dimension of SummScoreRobertaBase.

amount of data. In order to explore the influence of the amount of pseudo-
annotated data, we conduct corresponding ablation experiments. Only the abla-
tion experiments of SummScoreRobertaBase on the Fluency quality dimension
are introduced here, and other quality dimensions have the same conclusion. In
the ablation experiments, we expand the pseudo-annotation data with a span
of 2000 pieces per round. The results of the ablation experiment are shown in
Fig. 3. It can be clearly found that the performance of the model is significantly
improved with the increase of pseudo-annotation data in the early stage. This
indicates that the scale of data volume is an important factor to limit the model
performance during this period. When the expanded pseudo-annotation data
reaches about 10,000 (10 times the annotation data), the correlation of Fluency
reaches its peak. This shows that at this time, the model has maximized the
benefits from the increase in data volume. Subsequently, even with more data,
the performance of the model does not improve and even begins to degrade. The
ablation experiments show that reasonable multi-round semi-supervised training
can effectively improve the performance of the SummScore in the case of scarce
annotated data. This also provides a new training idea for later researchers to
alleviate the limitation of small data volume in similar experimental scenes.

To explore the difference between original-summary pairing [O||S] and com-
mon summary-reference [S||ref ] (adopted by BLEURT, BERT for MTE, and
other models), we also conduct relevant analysis experiments. Table 2 shows the
correlation of the two input methods on the SummScoreRobertaBase model with
human evaluation in the dimensions of Consistency and Relevance, respectively.
We can find that [O||S] can achieve better results than [S||ref ]. Originally, we
are also worried that the longer original information in [O||S] may be more
difficult for SummScore to learn than the short reference summary in [S||ref ].
Analyzing the reasons for the better results of [O||S], we believe that the rea-
son is that the form of [O||S] may be more consistent with the scoring process
of humans in the dimensions of Consistency and Relevance. Because, normally,
humans start to write a summary after reading the original text. In real life,
few golden summaries can be repeatedly referred to write the new summaries.



80 W. Lin et al.

In the scoring process, experts often score only after reading the original text.
The input mode [O||S] is also consistent with the expert scoring process.

Further experiments, we find that the original-summary mode [O||S] can sup-
port the diversity of textual representations of summaries. The lower the ROUGE
score, the more different the expression of the summary and the reference. How-
ever, those semantically correct summaries, which are expressed differently from
the reference summaries, are also qualified summaries. Qualified summary met-
rics should be able to identify summaries that are diverse in expression but of
acceptable quality. From the SummEval annotation data, we extract summary
data with a low ROUGE score but a high human score. We plot the scatter
plots of human scores and SummScore scores for these two input modes, respec-
tively. Only the experiments in the Relevance dimension are listed here, and the
results are shown in Fig. 4. We can find that [O||S] is closer to the distribution of
human scoring. However, for the summaries with high human scores, [S||ref ] is
more likely to give low scores. Therefore, this can be illustrated that [O||S] can
recognize summaries with different literal expressions but qualified quality. This
also shows that the [O||S] mode can help to improve the diversity of summary
generation.

Table 2. Ablation experiments on the influence of input modes [S||ref ] and [O||S] on
Consistency and Relevance.

Pearson Spearma

Consistency[S||ref ] 0.4291 0.3290
Consistency[O||S] 0.4852 0.4497
Relevance[S||ref ] 0.6519 0.6172
Relevance[O||S] 0.6746 0.6391

Fig. 4. Ablation experiments exploring the effect of input modes [S||ref ] and [O||S]
on the diversity of summaries.

5.3 Case Analysis

In Fig. 5, we show a typical example for case analysis. By reading the origi-
nal text and the reference summary, we know that the original text is about
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Fig. 5. A classic example of performance comparison between SummScore and other
metrics. (Color figure online)

River Plate are keen to sign Manchester United striker Radamel Falcao (orange
fonts), and then some information about Radamel Falcao is introduced. However,
we can find that the summary under test completely fails to capture the central
idea of the original text. Therefore, in the Relevance dimension, both Summ-
Score and experts give a low score of less than 2 points, but the baseline BERT
for MTE scores a qualified score of 3 points. Further analysis, we find that there
are hallucination errors (blue shaded text) in the summary under test. Radamel
Falcao has good goalscoring form in Colombia rather than Manchester United.
So both SummScore and experts give low marks for Consistency. Analyzing the
structure between sentences, we find that the semantics of the summary to be
tested is lack logic. For one moment, the summary tells us Radamel Falcao has
good goalscoring form and another point that he struggles at Manchester United.
Due to the lack of logic between sentences, it is difficult to read. So both Summ-
Score and experts score low on the Coherence dimension, but BERT for MTE
scores a high score close to 5. In terms of fine-grained quality dimension, it can
be said that SummScore has better scoring ability than BERT for MTE, and
the scoring effect is closer to human scoring. Because of the good n-gram overlap
between the summary and the reference, ROUGE-1 gave this incomplete sum-
mary a high score of 0.436. As you can see, ROUGE is indeed a rough proxy
indicator without explanatory power. ROUGE cannot tell us the specific quality
of the summary, such as whether factual errors and grammatical errors exist.

5.4 Mainstream Summarization Models Evaluation

Finally, we use SummScore to evaluate the performance of 16 mainstream sum-
marization models on the CNN/DailyMail dataset, and the scoring results are
shown in Table 3. Please refer to the work SummEval [7] for a detailed intro-
duction to these mainstream summarization models. We bold the top 5 scores of
each quality dimension for further experimental analysis. We find that ROUGE
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Table 3. Evaluation results of mainstream models on the SummScore indicator on the
CNN/DailyMail.

Metrics ROUGE-1 ROUGE-2 ROUGE-L Coherence Consistency Fluency Relevance

Extractive models
LEAD-3 0.3994 0.1746 0.3606 3.9146 4.9766 4.9430 4.4264
NEUSUM 0.4130 0.1893 0.3768 3.1327 4.9712 4.9031 4.1876
BanditSum 0.4137 0.1868 0.3759 3.2399 4.9738 4.9139 4.2007
RNES 0.4088 0.1878 0.3719 3.7673 4.9771 4.9041 4.4521
Abstractive models
Pointer Generator 0.3921 0.1723 0.3599 3.3892 4.9654 4.9401 4.1721
Fast-abs-rl 0.4057 0.1774 0.3806 2.2031 4.9255 4.6389 3.9024
Bottom-Up 0.4124 0.1870 0.3815 2.8551 4.9113 4.7716 3.8890
Improve-abs 0.3985 0.1720 0.3730 2.1961 4.8243 4.5633 3.6758
Unified-ext-abs 0.4038 0.1790 0.3675 3.4100 4.9736 4.8955 4.2684
ROUGESa 0.4016 0.1797 0.3679 3.2674 4.9700 4.8688 4.1793
Multi-task (Ent + QG) 0.3952 0.1758 0.3625 3.3573 4.9633 4.8870 4.1208
Closed book decoder 0.3976 0.1760 0.3636 3.3825 4.9688 4.8908 4.1866
T5 0.4479 0.2205 0.4172 3.6991 4.9126 4.8703 4.3365
GPT-2 (supervised) 0.3981 0.1758 0.3674 3.7410 3.9252 3.8176 3.6069
BART 0.4416 0.2128 0.4100 4.2064 4.9707 4.8545 4.5683
Pegasus 0.4408 0.2147 0.4103 3.7148 4.9176 4.8522 4.3421

favors the abstractive models, but SummScore seems to prefer the extractive
models. In particular, the LEAD-3 model has achieved high SummScore scores
on all four fine-grained qualities. The reason is that the first three sentences of
the news are the most important part of the full text and the LEAD-3 is very
suitable for news data. For Fluency and Consistency, extractive models tend to
achieve higher scores. This is reasonable, because the summary of the abstrac-
tive model is generated according to the probability distribution of words, and
the problems of fragment repetition and syntax errors can not be avoided. The
generated summary may also have illusory facts that are inconsistent with the
facts of the original text. However, the extractive model produces summaries by
splicing sentences extracted from the original text. Because the sentences are
written manually, this avoids grammatical errors and repetition. Moreover, the
sentences are derived from the original, so there is no illusory fact. For Coherence
and Relevance, there is a strong correlation between the two scores. Moreover,
the ROUGE score is also correlated with the score of SummScore in these two
quality dimensions. Almost models with high ROUGE scores also have high
scores of Coherence and Relevance and vice versa.

6 Conclusion

In this paper, we propose SummScore based on the semantic matching prin-
ciple of information retrieval, which is a trained scoring metric for summary
quality evaluation based on Cross-Encoder. SummScore has good interpretabil-
ity. It consists of four submodels, which measures the quality of the summary
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comprehensively from four fine-grained qualities of Coherence, Consistency, Flu-
ency, and Relevance. We use semi-supervised multi-round training to improve
model performance on limited annotated data. Extensive experiments show that
SummScore significantly outperforms existing metrics in terms of human rele-
vancy and helps improve the diversity of generated summaries. Finally, we also
use SummScore to evaluate 16 mainstream summarization models and publish
the results for later research.
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Abstract. Locality sensitive hashing (LSH) has been extensively
employed to solve the problem of c-approximate nearest neighbor search
(c-ANNS) in high-dimensional spaces. However, the search performance
of LSH is degenerated with the number of data increasing. To this end,
we propose an efficient method called Data Aware Sensitive Hashing
(DASH) to deal with this drawback. DASH is the data-dependent hash-
ing algorithm under considering the residual distance prior. DASH lever-
ages this prior knowledge and provides theoretical guarantee for search
results. Our experimental results with various datasets show that DASH
achieves better search performance and the running time can reach up
to about 4–40x speedups compared with other state-of-the-art methods.

Keywords: LSH · ANNS · High dimensions · Data-dependent hashing

1 Introduction

The nearest neighbor search (NNS) is the research focus all the time, which has
been extensively applied to various fields, such as databases, machine learning
and data mining. Given a query point q with dimension d in the Euclidean
space, the problem of NNS is to return a point o∗ in the dataset D with mini-
mum distance to q. For low-dimensional NNS, the exact solutions have already
been reported by based-tree methods. However, it has a great challenge to find
the exact results for NNS in high-dimensional space due to the curse of dimen-
sionality. Hence, an alternative scheme, i.e., the approximate nearest neighbor
search (ANNS), has been extensively studied in recent two decades. Formally,
the purpose of c-ANNS is to report a point o ∈ D, whose distance with q is
within c × r∗, where r∗ represents the distance between the query q and its
exact nearest neighbor.

Locality sensitive hashing (LSH) is one of most effective techniques to solve
high-dimensional c-ANNS problems, which is originally proposed for hamming
space in [1], and later is extended to Euclidean space based on p-stable distri-
bution [2]. Since LSH often needs to build hundreds of hash tables for achieving
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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good search results. This leads to prohibitively large space consumption. To deal
with this problem, many LSH variants have been designed, e.g. [3–5]. However,
LSH and its variants are data-independent hashing schemes.

As a matter of fact, many researchers turn to study the data-dependent hash-
ing schemes to enhance the search performance for ANNS. In [7], the best LSH
data structure is constructed by partitioning the original datasets into several
subsets to form data-dependent hashing scheme. Based on [7], another data-
dependent hashing scheme is proposed via spectral theorem [8]. Although the
both methods have rigorous theoretical guarantee for search results returned,
it is hard to put them to practice. Moreover, DSH [9] improves the hashing
functions to address the problem that the elements of buckets for traditional
LSH are unbalance. But DSH is lack of similar probability guarantee with tradi-
tional LSH. Our proposal DASH is the data-dependent hashing algorithm under
considering the residual distance prior, and has the nature of probability guar-
antee for LSH. Similarly, BayesLSH [23] also puts forward a prior distribution
and exploits Bayes inference to give the probability guarantee for the results
returned, while its prior distribution is data-independent.

Motivations. Most of LSH and its variants have desirable theoretical guaran-
tee for the search results, but often suffer from time inefficient, although they
can achieve answering c-ANN queries with sub-linear query overhead. Also, the
calculation cost on Euclidean distance between the query and its candidates is
great because of finding a large amount of useless candidates. Product quan-
tization (PQ) [10] provides effective means to estimate Euclidean distance for
any high-dimensional points in Euclidean space. It constructs pre-calculation
distance table by the manner of the asymmetric distance computation (ADC)
or symmetric distance computation (SDC). This speeds up the distance com-
putation for any two points, compared against computing Euclidean distance
directly. By taking the merit of LSH and PQ into account, we are expected to
design an algorithm that not only has probability guarantee for c-ANNS, but
also is able to speed up query processing.

Contributions. The main contributions of the paper are concluded as follow:

• we propose an algorithm called Data Aware Sensitive Hashing (DASH) to
answer the k -ANNS in high-dimensional Euclidean space. DASH is time effi-
cient method and provides quality guarantee for the search results returned
with preassigned success probability.

• We propose a novel prior (residual distance prior) – the key observation for
DASH, which is based on the statistics of residual distance on data points
to any random query. Equipped with this prior knowledge, DASH is able to
address the k -NNS problem in more efficient manner.

• Extensive experiments demonstrate that DASH achieves desirable search per-
formance for a variety of real datasets with different sizes. Compared against
other state-of-the-art algorithms, DASH can obtain at least 4x speedup in
the running time over different datasets.



DASH: Data Aware Locality Sensitive Hashing 87

Organization. The rest of this paper is organized as follows. Some preliminar-
ies are reviewed in Sect. 2. A key observation is found in Sect. 3. Our method
and probability analysis are presented in Sect. 4. Experimental results and anal-
ysis are reported in Sect. 5. Section 6 discusses the related work. Finally, a brief
conclusion is drawn in Sect. 7.

2 Preliminaries

2.1 Problem Definitions

In this paper, we consider a dataset D with n points denoted as vectors in a d -
dimensional Euclidean space Rd. For any point o and query q, let d(o, q) represent

the Euclidean distance that is defined as d(o, q) =
√∑d

i (o[i] − q[i])2, where o[i]
and q[i] are the coordinate value of i -th dimension for o and q, respectively. Given
a query q and the distance measure d(·, ·), the exact nearest neighbor (NN) o∗ of q
is the point in D with the minimum distance to q, namely o∗ = argmino∈Dd(o, q).
Then, the c-approximate nearest neighbor search (c-ANNS) is defined as follows:

Definition 1. Given an approximate ratio c (c ≥ 1), any query q ∈ Rd and the
distance measure d(·, ·), the problem of c-ANNS is to establish a data structure,
which retrieves a point o ∈ D satisfying d(o, q) ≤ c × d(o∗, q), in which o∗ ∈ D
denotes the exact NN of q.

The c-ANNS can be extended to more generalized form of c-k -ANNS. Sim-
ilarly, the problem of c-k -ANNS is to establish a data structure, which for any
query q ∈ Rd, retrieves a set of k ordered points oi ∈ D (1 ≤ i ≤ k) satisfying
d(oi, q) ≤ c × d(o∗

i , q), in which o∗
i ∈ D denotes the i -th exact NN of q.

2.2 Product Quantization

Product Quantization (PQ) [10] has been proposed to address the ANNS prob-
lem in high-dimensional space. It divides the d -dimensional original space into M
subspaces equally, with the dimension of each subspace being d

M . Correspond-
ingly, all the original vectors are divided into M subvectors and the dimension of
each subvector is d

M . Then all the subvectors in each subspace are quantized to
k∗ different centroids, which are learned from a part of original data by k -means
algorithm. That is, each subvector is denoted by the index of its nearest centroid,
where the index is an integer over interval [1, k∗]. Thus, each original vector is
denoted by a tuple of M integers, which are called as PQ-code. All the M · k∗

centroids are compose of the codebook C of the product quantizer jointly.
With the codebook and PQ-codes, the Euclidean distance between any two

vectors in the original space is estimated from their PQ-codes. There exists
two manners to estimate the distance, i.e., the asymmetric distance calculation
(ADC, the distance is calculated by a original vector and a PQ-code) and sym-
metric distance calculation (SDC, the distance is calculated by two PQ-codes).
When a query vector arrives, a M ·k∗ pre-calculation distance table is built with
ADC manner.
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2.3 Query-Aware LSH Scheme

Assume that there is a random projection vector �a of dimension d, namely
�a = [a1, a2, . . . , ad], whose each entry is an i.i.d random variable drawn from
Gaussian distribution N (0, 1), independently. Given a vector �o of dimension d,
the hash function between two vectors �a and �o represented as h(o) = 〈�a, �o〉 is
the projection of o along �a, which is regarded as an LSH signature. According
to the property of p-stable distribution for p = 2 [2], for any given points o1, o2,
h(o1) − h(o2) follows Gaussian distribution N (0, d2(o1, o2)).

Given a bucket width 2w, the strategy of query-aware is that when query
point q arrives, its LSH signature is located as the projected centre to identify
the interval with bucket width 2w, i.e., the interval [h(q) − w, h(q) + w]. For
arbitrary point o, let s = d(o, q), if the LSH signature of a point o falls in the
hash bucket with width 2w, i.e., |h(o) − h(q)| ≤ w, then o collides with q under
the hash function h(·). Accordingly, the collision probability is formalized as
following form:

p(s) = Pr(ψ(o) ≤ w) =
∫ w

s

− w
s

ϕ(x)dx (1)

with ψ(o) = |h(o) − h(q)| and ϕ(x) being the probability density function of
Gaussian Distribution N (0, 1).

Suppose that the number of independent hash functions and the collision
threshold are m and l, respectively, where l ≤ m. According to the collision
counting technique [4], it is easy to derive that the probability P(†Col(o) ≥ l)
of point returned obeys Binomial distribution B(m, p(s)), with

P(†Col(o) ≥ l) =
m∑
i=l

(
m

i

)
(p(s))i(1 − p(s))m−i (2)

in which †Col(o) is the number of collision between q and o under m hash
functions.

3 Residual Distance Prior

The residual distance prior is based on the following observation that the differ-
ence of approximate distance and Euclidean distance with respect to a random
query point forms a specific distribution. To elaborate this observation formally,
we first define the notion of residual distance. For a random query point q and
an arbitrary point o, their residual distance (denoted by e) is given as following
form:

e = d(o, q) − d̂(o, q) (3)

where d(o, q) denotes the Euclidean distance between the original vector o and
query q, while d̂(o, q) denotes the approximate distance of d(o, q). Clearly, the
residual distance is query-dependent.
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Observation. We fit e over different datasets, as shown in Fig. 1 and Fig. 2. One
important finding is that e fitted over many existing datasets asymptotically
follow a common distribution family, i.e., Gaussian distribution.

Next, we will show how to obtain the universal residual distance distributions.
This is similar to the previous works [11]. For a random query point q, we first
compute the Euclidean distances d(o, q) and d̂(o, q) to obtain their difference e.
Then the histogram on the difference e forms the residual distance distribution
with respect to this query q. Actually, the residual distance distributions con-
structed for various queries could be discrepant. However, we observe that these
residual distance distributions have similar shapes, but their scales are different.
If a single residual distribution is only selected in one of the residual distance
distributions as an universal distribution, errors will be resulted in. Therefore,
in order to reduce error, we select the residual distance distributions for certain
queries to approximate the universal residual distance distribution.

Concretely, we show how to extract statistical parameters from various
datasets and conduct parameter estimation for the Gaussian distribution.
According to the description above, we propose to fit the residual distance by
the Gaussian distribution, whose probability density function is formalized as
follows:

f(x|μ, σ2) =
1√
2πσ

exp

(
− (x−μ)2

2σ2

)
(4)

with μ being the shape parameter; σ being the scale parameter. In practice, the
purpose we select the Gaussian distribution is that it has distinct advantages.

First, the Gaussian distribution fits the residual distances with respect to
various datasets, as shown in Fig. 1 and Fig. 2. Please see Subsect. 5.1 for more
details about the datasets. One can be found that the residual distance distribu-
tions follow Gaussian distribution asymptotically. Since the accuracy of d̂(o, q)
depends on M, namely the larger M, the more accuracy d̂(o, q) would be, the
residual distance distributions vary with M. To verify the availability, we present
different results with the variation of M. In Fig. 1, d̂(o, q) over various datasets
are computed with PQ under M = 8, except the dataset ImageNet with M = 10.
While in Fig. 2, M = 25 for ImageNet, and other datasets are M = 16. Note
that the residual distance distributions are also fitted to be the Gaussian dis-
tribution when increase the magnitude of M, where we only show part of the
residual distance distributions due to the limitation of space.

Next, there exists an effective method to estimate the parameters of residual
distance distribution, which can be estimated by Maximum Likelihood Esti-
mation (MLE). For any sample with n i.i.d. Gaussian random variables, i.e.,
{x1, x2, . . . , xn}, the likelihood function is given by following form:

L(μ, σ) =
n∏

i=1

f(xi|u, σ2) (5)

then we maximize the log-likelihood function ln(L(μ, σ)). By respectively com-
puting the partial derivatives of ln(L(μ, σ)) for both two parameters μ and σ,
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Fig. 1. The residual distance distribution (RD) asymptotically follows the Gaussian
distribution (GD) for M = 8 and M = 10.

Fig. 2. The residual distance distribution (RD) asymptotically follows the Gaussian
distribution (GD) for M = 16 and M = 25.

their estimation can be solved as μ̂ = 1
n

n∑
i=1

xi and σ̂2 = 1
n

n∑
i=1

(xi − μ̂)2. It can be

found that the estimated parameters only hinge on arithmetic mean and variance
of the sample, such that they can be easily obtained from given dataset.

4 Our Approach and Theoretical Analysis

4.1 Overview

Our algorithm is based on the search framework of QALSH [5]. It achieves that
the exact distance calculation between the query and its candidates is converted
to a look-up table operation, which greatly speeds up search time. Also, the
similar probability guarantee with LSH is still obtained.
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4.2 Algorithm Achievement

Our algorithm is based on the framework for memory version of QALSH [5],
which can be divided into two parts: indexing construction and query processing.

Indexing Construction. We first select m LSH random projection vectors
�a generated from N (0, 1). Then, each o ∈ D is randomly projected from d -
dimensional space to m hash values hi(o), i ∈ {1, 2, . . . ,m}. For each projection
vector �ai, we construct a sorted hash table to store the key-value pair (ID(o),
hi(o)) for all points, where key ID(o) is the identifier (ID) of each point o,
and the hash table is sorted in the ascending order of hi(o). Finally, m hash
tables reside on memory. Meanwhile, we employ PQ quantifying the dataset D
to form PQ-codes and the pre-calculation distance tables for various queries are
constructed with ADC manner.

Query Processing. When a query point q ∈ Rd arrives, we also use m hash
functions h(·) mapping it into corresponding hash values hi(q). Then for given
bucket width 2w, we will conduct a range search [hi(q) − w, hi(q) + w] over each
hash table. During this search processing, †Col(o) for each point o is updated
dynamically. Recall that †Col(o) is the number of collision between o and q.

The pseudo-code of the probabilistic NNS on DASH is shown in Algorithm 1.
DASH locates the hash values hi(q) via binary search, and the range search is
conducted by gradually extending bucket width 2w by adding �w (Line 3),
which is similar to the process of virtual rehashing [4,5] to access more points.
However, the most significant difference of extending 2w is that it positively
impacts the collision probability for supporting our probabilistic terminal con-
dition, which will be discussed in the next subsection. When |hi(o)−hi(q)| ≤ w,
†Col(o) is updated (Line 5-6). If †Col(o) is not lower than the collision threshold
l, o is regarded as the candidate of q (Line 7-8). Then, the calculation of exact
distance d(o, q) is converted to a look-up table operation, i.e., d(o, q) is approx-
imated with d̂(o, q) calculated by the pre-calculation distance table constructed
with PQ. Such an operation accelerates the query processing greatly.

Due to the fact that d̂(o, q) is an estimation distance that has certain error
with d(o, q), DASH is unable to obtain desirable search accuracy under fixed
bucket width compared with QALSH. To this end, we supplement the loss �
based on d̂(o, q) to obtain a more accuracy distance, where � is a constant
value determined by Gaussian distribution N (μ̂, σ̂2), and we will present how
to determine � in Subsect. 4.3. Finally, d(o, q) is estimated as d̂(o, q) + �. As
d̂(o, q)+� is large enough, i.e., d̂(o, q)+� > d(o, q), it leads to DASH extending
the bucket width to bring in more points in comparison with QALSH. This
because for any given success probability P ∗, the bucket width 2w is proportional
to d̂(o, q)+�. If d̂(o, q)+� > d(o, q), QALSH and DASH will be terminated early
in 2w′ and 2w′′ respectively, with w′ < w′′. Furthermore, another method is to
heighten the success probability P ∗. This condition is rigorous, which promotes
DASH to return more candidates. Hence, DASH enhances the search accuracy
effectively with the methods above.
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Algorithm 1: NNS on DASH
Input: query point q, m hash tables, collision threshold l, bucket width 2w,

success probability P ∗, approximate ratio c;
Output: omin in the set of C

1 w = 0; †Col(o) = 0;
2 while true do
3 2w = 2w + �w;
4 for each i = 1 to m do
5 for |hi(o) − hi(q)| ≤ w for o in i-th hash table do
6 †Col(o) = †Col(o) + 1;
7 if †Col(o) ≥ l then
8 C = C ∪ o;

9 Calculate (̂d(o, q) + �) and Pr(̂d(o, q) + �);

10 if Pr(̂d(o, q) + �) ≥ P ∗ then
11 break the while-loop;

12 return omin ∈ C;

If PQ is directly exploited to the acceleration, it will lead to the destruc-
tion on probability guarantee of LSH. Fortunately, we observe that the residual
distance prior follows an universal distribution, as described in Sect. 3. Accord-
ing to the key observation, we determine the loss � as a constant value with
certain probability. Then by taking this probability into account, we develop a
new probability guarantee based on the framework of QALSH as the terminal
condition of DASH. Actually the probability guarantee is similar to that in LSH,
which is given in Subsect. 4.3. With the estimated distance d̂(o, q)+�, it is easy
to derive the collision probability Pr(d̂(o, q) + �) (Line 9). Assume the terminal
condition has already been satisfied (Line 10), omin in the set C is reported as
the final result (Line 12).

k-NN Search. Our method can also be extended to perform k -NN search.
It is sufficient to modify the terminal condition as |C| ≥ k and Pr(d̂(o, q) +
�) ≥ P ∗ (Line 10 of Algorithm 1), and finally return k neighbors, i.e.,
{o1min, o2min, . . . , okmin}. Hence, with this search framework, DASH can conduct
probabilistic NNS and k -NNS.

4.3 Probability Analysis

Assume that the point o is the candidate of q. As discussed above, their estimated
distance is d̂(o, q) + �, and the loss � is determined based on N (μ̂, σ̂2). Next,
we mainly focus how to obtain � with desirable probability.

According to the jσ rule of Gaussian distribution, here j ∈ {1, 2, 3}, the
probability P(μ, jσ) for random variables drawn within [μ − jσ, μ + jσ] is given
as:
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P(μ, jσ) = F (μ + jσ) − F (μ − jσ) =
2√
π

∫ j√
2

0

dx (6)

where F (·) is the cumulative distribution function (CDF) of Gaussian distri-
bution. From the Eq. (3), we have d(o, q) = d̂(o, q) + e, where e ∼ N (μ̂, σ̂2).
Then, one can derive based on Eq. (6) that d(o, q) falls into the interval
[d̂(o, q) + μ̂ − jσ̂, d̂(o, q) + μ̂ + jσ̂] with probability P(μ̂, jσ̂). Hence, the loss
� is determined as � = μ̂+jσ̂, which is the worst-case to estimate d(o, q) under
P(μ̂, jσ̂), with d(o, q) = d̂(o, q) + μ̂ + jσ̂.

Recall that ψ(o) = |h(o)−h(q)|. For given bucket width 2w and approximate
ratio c, the collision probability p(d̂(o, q) + �) for both q and o is given as
following form:

p(d̂(o, q) + �) = Pr(ψ(o) ≤ cw) =
∫ cw

d̂(o,q)+�

− cw

d̂(o,q)+�

ϕ(x)dx (7)

where ϕ(x) is the probability density function of N (0, 1). A simple calcu-
lation for the Eq. (7) is p(d̂(o, q) + �) = 2norm( cw

d̂(o,q)+� ) − 1, in which

norm(x) =
∫ x

−∞ ϕ(t)dt. Note that norm(x) is the CDF of N (0, 1), which is
the monotonically increasing function with respect to x. When c and 2w are
fixed, norm( cw

d̂(o,q)+� ) is monotonically decreasing with d̂(o, q) + � increasing,

so p(d̂(o, q) + �) monotonically decreases with d̂(o, q) + � increasing. We know
that d̂(o, q)+� is the worse-case to estimate d(o, q). Since � is a random variable
drawn from N (μ̂, σ̂2) with probability P(μ, jσ), there is d̂(o, q) + � ≤ d(o, q) or
d̂(o, q) + � ≥ d(o, q).

Since p(d̂(o, q) + �) is known, P(†Col(o) ≥ l) is obtained via the Eq. (2).
To achieve the probability guarantee of the algorithm, we first make an assump-
tion that the two events on the loss Δ determined and the nearest neighbor
returned by collision counting are mutually independent under DASH, i.e., the
both probability P(†Col(o) ≥ l) and P(μ, jσ) obtained are independent. Then
the overall probability Pr(d̂(o, q)+�) of finding the nearest neighbor for DASH
can be expressed as:

Pr(d̂(o, q) + �) = P(†Col(o) ≥ l) · P(μ, jσ) (8)

This is regarded as the probabilistic terminal condition for DASH. Furthermore,
if we could acquire d̂(o, q) + � in advance, then p(d̂(o, q) + �) is determined
immediately by the Eq. (7). We only require to select suitable m, l and P(μ, jσ)
to realize the success probability P ∗ specified beforehand, such that

Pr(d̂(o, q) + �) = P ∗ (9)

Example 1. Suppose the point o has been the candidate of q, and their estimated
distance is d̂(o, q) + μ + 2σ. This means � = μ + 2σ, with P(μ, 2σ) = 0.9544.
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If the collision probability P(†Col(o) ≥ l) = 0.9, then the overall probability
Pr(d̂(o, q)+�) = 0.9× 0.9544 ≈ 0.86. Similarly, when d(o, q) = d̂(o, q)+μ+3σ,
we obtain P(μ, 3σ) = 0.9974, such that Pr(d̂(o, q) + �) = 0.9 × 0.9974 ≈ 0.9.

To sum up, it is natural to yield the theorems below for the search results
under DASH.

Theorem 1. DASH returns the NN (omin) of query q with the success proba-
bility at least P ∗.

Proof. First, we define the two events below:
E1 : the loss � is determined based on residual distance distribution.
E2 : the omin is found by DASH.
Recall that we make an assumption on E1 and E2 being independent. As

discussed earlier, if the points are contained under the fixed bucket width 2w,
then P [E1] and P [E2] can be obtained by the Eq. (6) and Eq. (2), respectively.
Since the both events are mutually independent, P [E1E2] = P [E1]P [E2]. How-
ever, DASH is guaranteed to answer the omin with success probability P ∗, then
we have P [E1E2] ≥ P ∗. Hence, this theorem is proved. ��
Theorem 2. DASH returns the k-NN ({oimin}ki=1) of query q with the success
probability at least P ∗.

Proof. The proof of this theorem is similar to Theorem 1. ��

5 Performance Evaluation

Our method is implemented in C++ and compiled with g++ 9.3 with -O3
optimization. The experiments for general-scale datasets were conducted on a
laptop with six-cores Intel(R), i7-8750H @ 2.20GHz CPUs and 32 GB RAM, in
Ubuntu 20.04. While others for large-scale datasets were conducted on a server
with eight-cores Intel(R), E5-2620 v4 @2.1GHz CPUs and 256 GB RAM.

5.1 Datasets and Experiment Setting

We employ some publicly available real-life datasets in our experiments, whose
data types cover audio, image and deep-learning data. Also, the 50 points are
chose randomly from corresponding test sets as queries.

• Cifar. The Cifar dataset is a collection of 0.05 million 512-dimensional GIST
feature vectors extracted from TinyImage.

• Audio. It is a 192-dimensional dastset that is composed of about 0.05 million
audio feature vectors from DARPA TIMIT audio speed dataset.

• Mnist. The Mnist dataset contains about 0.07 million images of hand-written
digits, which are represented as 784-dimensional vectors.

• Notre. It has about 0.3 million 128-dimensional features of a set of Flickr
images and a reconstruction.
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• Sift. The Sift dataset contains 1 million 128-dimensional SIFT vectors.
• Deep. The Deep dataset has 1 million data points with 256 dimensions that

are deep neural codes of natural images obtained from the activations of a
convolutional neural network.

• Ukbench. It is about 1 million 128-dimensional features of images.
• ImageNet. The ImageNet consists of about 2.4 million data points with

150-dimensional dense SIFT features.
• Sift10M. This dataset contains 10 million 128-dimensional SIFT vectors.
• Sift100M. This dataset contains 100 million 128-dimensional SIFT vectors.
• Deep10M. This dataset contains 10 million 96-dimensional DEEP vectors.
• Deep100M. This dataset contains 100 million 96-dimensional DEEP vectors.

The parameters have an important influence on the performance of our
method. To this end, we empirically determine some near optimal parameters
with respect to different datasets. For data compression, each vector is divided
into M = d

2 subvectors and the centroids of each subspace are k∗ = 256. The
details for building the pre-calculation table can refer to [10]. In addition, we
select the number of hash function m = 60 and the collision threshold l = 50 as
the default for the experiments.

5.2 Evaluation Metrics

We employ the following metrics to evaluate the performance of our algorithm.

• Recall. We employ recall as a criterion to measure the accuracy for different
algorithms. For the k -NNS, the recall is defined as the fraction on how many
the k points answered by an algorithm are appeared in the true k nearest
neighbors. Hence, it can be formalized as

Recall =
|R′ ∩ R|

|R|
where R′ is a set of k points answered for a query and R is a set of true k
nearest neighbors for the query. In our experiment, the Recall is computed as
R1@1, R10@10, . . . , R100@100.

• Query Answering Time. Another evaluation metrics is the query answer-
ing time, which is defined as the wall-clock time of an algorithm to answer
k -NN.

In our experiments, we report the average recall and average running time
as the final results, where both of them are the average over the queries.

5.3 Baseline Algorithms

There are many the state-of-the-art algorithms for approximate nearest neigh-
bor search (ANNS), such as QALSH [5], VHP [6], PMLSH [18], R2LSH [19],
SRS [20], HD-index [21], PQBF [22]. Since R2LSH performs better for ANNS
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compared with SRS, Hd-index and PQBF [19]. Also, we find that VHP, PMLSH
and R2LSH are not compared with each other. Hence we select QALSH, VHP,
PMLSH, R2LSH as baselines. Note that those algorithms work on memory. To
implement the best performance of VHP, we use some parameter values pre-
sented in [6], in which hash functions m = 60, success probability P ∗ = 0.9 and
the initial search window t0 = 1.4. For QALSH, we employ the improved version,
which can achieve higher accuracy and support c = 1. VHP and QALSH use
identical hash functions m and collision threshold l. For PMLSH, we choose the
parameters proposed in [18], with m = 15, P ∗ = 1 − 1/e and the number of piv-
ots s = 5. Also, the parameters of R2LSH are set as the default value suggested
by the authors in [19], where m = 40 and P ∗ = 0.9. For the c-k -ANNS, we set
c = 1 and k ∈ {1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.

5.4 Results and Analysis

Our method is based on the framework of QALSH. Due to the employment of
PQ, our method requires to add extra consumption to construct indexing com-
pared with QALSH, whereas the consumption is relatively small. For example,
with respect to the large-scale dataset Deep100 M of size 36 GB used in the
experiments, the additional time and space consumption are around 470 s and
4.5 GB, respectively, where QALSH needs about 46 GB memory space for con-
structing hash tables and the corresponding time is close to 820 s. It can be found
that the additional time and memory space are only around a half and tenth of
QALSH, respectively.

General-Scale Data. We study the performance mainly focusing on the aver-
age recall and query answering time. The distance for any two points is estimated
with PQ, it is inevitable to result in certain estimated error and the destruction
of probability guarantee. Nevertheless, our method can speed up the search pro-
cessing with the pre-calculation distance table and obtain the similar probability
guarantee with LSH based on residual prior distribution. Since the distance cal-
culation with PQ negatively impacts the search accuracy, we use the original data
to solve this issue. More explicitly, we consider that the real k nearest neighbors
for any query are within the top-k′ points returned, where k′ > k is a predefined
constant. If we reorder the top-k′ points with Euclidean distance, then it has
higher possibility to find top-k exact nearest neighbors. Hence, we answer the
best top-k in top-k′ points as the final results for any query to achieve higher
accuracy. The average recall Rk@k by varying k from 1 to 100 under the success
probability P ∗ = 0.9 is given in Fig. 3. One can be found that the average recall
Rk@k for our method is almost higher than other state-of-the-art methods with
respect to different datasets.

Correspondingly, the running time curves for k -NNS are shown in Fig. 4. One
can observe that the running time for R2LSH, PMLSH and VHP presents dif-
ferent over various datasets, while DASH is lower significantly than them. This
is because when the candidates have been retrieved, other methods need to cal-
culate the Euclidean distance, which cost a large amount of time; by contrast,
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Fig. 3. The comparison on the accuracy among different methods.

Fig. 4. The comparison on the running time among different methods.

DASH only needs to calculate the approximate distance by the pre-calculation
distance table, so that the time consumption is relatively less. This means that
DASH is more promising as k varies. For the dataset Mnist with high dimen-
sionality, DASH performs better than those with low dimensionality, in which
the speed can reach up to more than 40x in comparison with QALSH. Generally,
DASH can achieve at least 5x speedup than other methods. Therefore, DASH
is more superior pertaining to high dimensional datasets. Note that the cost of
running time for finding k nearest neighbors is proportional to the increment
of k, while the corresponding curve for DASH looks pretty stable than other
algorithms because the magnitude of increment is relatively small.

Large-Scale Data. When DASH is applied to process more large-scale data, it
also has significant superiority on accuracy and running time, as shown in Fig. 5.
From the results, we can see that the accuracy obtain by DASH is higher than
other algorithms with k increasing. The main reason is that DASH could access
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Fig. 5. The comparison on the search performance among different methods.

more points to obtain desired accuracy under the suitable success probability. In
addition, DASH is able to achieve at least 4x speedups than other algorithms. It
is benefited from the acceleration property of PQ. This indicates that the search
performance of DASH has prominent superiority than other algorithms as the
scale of datasets increases.

6 Related Work

Approximate nearest neighbor search (ANNS) has attracted extensive attention
over decades. There exists a vast majority of works to solve the ANNS problem.
For example, the space partitioning methods [12,13] perform well in the low-
dimensional space, while their performance greatly decreases due to the“curse
of dimensionality”. The quantization-based methods play an important role in
data compression at the cost of bringing the quantization error, e.g. PQ [10],
such that query accuracy is relatively lower. Hence, many methods have been
proposed to decrease the quantization error, such as OPQ [14] and TQ [15].
The graph-based methods [16,17] have favourable results for high-dimensional
ANNS, which are benefited from effective indexing structure. Although it could
reach up to high recall with few time, they are lack of quality guarantee. In
addition, the hash-based methods employ a family of hash functions mapping
the nearby points to the same bucket with high probability than the distant
points. However, LSH needs to construct many hash tables to achieve desired
accuracy. For this drawback, many LSH-based variants have been proposed,
e.g., [18,19].

7 Conclusion

In this paper, we propose a time efficient data-dependent hashing sheme called
Data Aware Sensitive Hashing (DASH) for approximate nearest neighbor search
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in high-dimensional space. DASH is based on the search framework of QALSH
and takes the residual distance prior into account to evaluate a common dis-
tribution family for achieving probability guarantee. The extensive experiments
are conducted to verify the efficiency and effectiveness of DASH by employing
several real-life datasets. The results show that DASH obtains better search
performance under the same reported quality compared against other methods.
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Abstract. Aspect-opinion pair extraction (AOPE) task, aiming at
extracting aspect terms and their corresponding opinion terms in pairs,
has caused widespread attention in recent years. Most studies focus on
incorporating external knowledge, such as syntactic information. How-
ever, they are limited by the inadequate ability to capture long-distance
information, and the utilization of external knowledge is more costly. In
this paper, we propose AOPSS, a joint learning framework, to explore
the AOPE task as semantic segmentation. As in most prior studies, we
divide the AOPE task into two subtasks: entity recognition and relation
detection. Specifically, AOPSS can synchronously capture task-invariant
and task-specific features for the two subtasks without integrating any
additional knowledge. Furthermore, we consider the interaction between
entity and relation feature representations, which can improve the mutual
heuristic effect for the two subtasks. Experimental results illustrate that
our method achieves state-of-the-art performance on four public datasets,
and we take further analysis to demonstrate the effectiveness of our app-
roach.

Keywords: Sentiment analysis · Relation extraction · Entity
recognition · Semantic segmentation · Joint learning

1 Introduction

In recent studies, scholars have focused on fine-grained aspect-based sentiment
analysis (ABSA), which helps people to obtain sentiment polarity from the
review sentences of a product or service. The subtasks of ABSA, aspect terms
extraction (ATE) and opinion terms extraction (OTE), are usually treated as
two independent tasks in former studies. ATE is to extract entities or phrases
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Li et al. (Eds.): APWeb-WAIM 2022, LNCS 13422, pp. 101–113, 2023.
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[22], and OTE is to extract the expressions with sentiment polarity [3]. To obtain
more fine-grained results, some efforts attempt to explore the aspect-opinion pair
extraction (AOPE) task, aiming at extracting aspect terms and their correspond-
ing opinion terms in pairs. To better clarify the difference between ATE, OTE,
and AOPE tasks, we provide an example in Fig. 1.

Fig. 1. A case explains the difference between ATE, OTE, and AOPE tasks. Below
the review sentence is the sequence tags, where B-A/B-P represents the beginning of
an aspect/opinion term, I-A/I-P represents the inside of an aspect/opinion term, and
O represents it doesn’t belong to any aspect or opinion term.

The AOPE task can be divided into two subtasks: entity recognition and rela-
tion detection. According to the statistics provided by [17], the overlap problem
is about 24.42 % of the dataset. The case shown in Fig. 1 contains an overlap
problem. For entity recognition, we expect to extract an aspect term “wait staff”
by assigning B-A and I-A to “wait” and “staff”. Simultaneously, we expect to
extract two opinion terms “friendly” and “not overly efficient” by assigning B-P
to “friendly” and “not”, and I-P to “overly” and “efficient”. For relation detec-
tion, we expect to obtain two aspect-opinion pairs {(“wait staff”, “friendly”),
(“wait staff”, “not overly efficient”)}.

Conventional methods utilize pipeline manner to extract aspect and opin-
ion terms first and then perform pairing, but these extract-then-pairing models
have the error propagation problem. The existing joint learning methods have
difficulty in capturing long-distance information, which leads to the problem
of local short-term feature combinations [1,19,29]. In this paper, we propose
Aspect-Opinion Pair extraction as Semantic Segmentation (AOPSS), a joint
learning framework, which can achieve good performance without introducing
external knowledge and can capture long-distance information to extract aspect-
opinion pairs more precisely. Specifically, we first calculate the interaction matrix
of entity and relation feature representations in the encoding module. Subse-
quently, in the dual-channel semantic segmentation module, AOPSS can cap-
ture both local context and global interdependency, and obtain task-invariant
and task-specific features synchronously for the two subtasks. Finally, we exploit
the tagging and classification module for entity recognition and relation detec-
tion, respectively.
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We conduct a series of experiments and analyses, demonstrating that AOPSS
brings a significant outperformance over several current SOTA baselines, which
verifies the effectiveness of our approach. In summary, the main contributions of
our paper are threefold:

– We propose a joint learning framework to solve the AOPE task as semantic
segmentation, which takes entity recognition and relation detection subtasks
simultaneously without relying on external knowledge and not be affected by
error propagation.

– Benefiting from the dual-channel semantic segmentation module, our app-
roach can better capture both local context and global interdependency for
the two subtasks, and it can leverage long-distance information sufficiently to
solve the problem of local short-term feature combinations.

– Experimental results on four benchmark datasets show that our approach
achieves state-of-the-art performance compared with baselines.

2 Related Work

Aspect-Opinion Pair Extraction. As a fine-grained sentiment analysis task,
the AOPE task has attracted extensive attention in early research. [5,12] pro-
pose rule-based pipeline methods, which lay the foundation for the AOPE task.
However, these methods are limited by template rules, and the pipeline-based
methods are usually affected by error propagation. Subsequently, [6,21] propose
joint learning methods, which are based on traditional machine learning and
hand-craft feature. Although they provide a good direction for solving the issue
of error propagation, the patterns that are not contained in the rules are also
unrecognizable. Then, [3,20] utilize neural networks [23,26] to capture features
automatically. However, their methods are limited by insufficient feature repre-
sentation, and their extract-then-pairing models have error propagation prob-
lems. Recently, joint learning-based models [19,29] has drawn much attention,
which effectively relieve the impact of error propagation, and achieve advanced
performance.

Semantic Segmentation. At present, deep learning are widely applied in the
field of medical data analysis [15,16,24,25]. Semantic segmentation is a funda-
mental task in computer vision, which has achieved impressive achievements in
performing diagnosis and treatment of diseases. U-Net [13] is a frequently-used
backbone for semantic segmentation, which can obtain a pixel-level segmenta-
tion matrix by fusing multi-scale features. [8,27] first introduce semantic seg-
mentation into NLP tasks, achieving competitive results in their fields. Specif-
ically, they utilize a U-shaped network, to extract high-dimensional features.
Meanwhile, high-level semantic information and low-level surface information
are combined through a skip-connection mechanism to complement the informa-
tion lost.
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3 Methodology

We will describe our proposed AOPSS, as shown in Fig. 2. It mainly consists of
three modules: encoding module (Sect. 3.2), dual-channel semantic segmentation
module (Sect. 3.3), and tagging and classification module (Sect. 3.4).

Fig. 2. The overview of our proposed AOPSS framework, which mainly consists of
encoding module (left), dual-channel semantic segmentation module (middle), and
tagging and classification module (right).

3.1 Problem Definition

Given a review sentence with N tokens: S = {w1, . . . , wN}, where wi denotes
the i− th token in sequence S. The relation detection subtask is to assign a label
yR
m,n ∈ {1, 0} to identify whether a token pair is related. Thus, we regard it as

a binary classification task, utilizing the relation segmentation matrix to obtain
all possible aspect-opinion pairs. The entity recognition subtask is to assign a
tag to each token wi. Thus, we regard it as a sequence tagging task, converting
the entity segmentation matrix into sequence form and then assigning a tag
yE
i ∈ {B − A, I − A,B − P, I − P,O} to each token with CRF [7].

3.2 Encoding Module

BERT Encoder. We adopt pretrained BERT language model to obtain the ini-
tial representation for each token. We expect to convert an input review sentence
S = {w1, · · · , wN} containing N tokens into a sequence of representations:

He = BERT ({w1, · · · , wN}) , (1)

where the sentence embedding He = {h1, · · · , hN} ∈ R
N×d, and d is the embed-

ding hidden dimension.
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Interaction Matrix Calculation. We first utilize the entity feature repre-
sentation to calculate the token-level relation feature representation, in which
we adopt the similarity-based strategy mentioned by [27]. And then, we take
the interaction between entity and relation feature representations to obtain the
interaction matrix. The similarity-based strategy is calculated by concatenating
element-wise similarity, cosine similarity, and bilinear similarity between hm and
hn defined as follows:

F (hm, hn) =[hm � hn; cos (hm, hn) ;hmWhn] + He, (2)

where F (hm, hn) ∈ R
N×N×D is the interaction matrix, token embedding

hm, hn ∈ He, D is the number of channels, and W is the learnable weight.

3.3 Dual-Channel Semantic Segmentation Module

Semantic segmentation applied in NLP tasks [8,27] have achieved excellent per-
formance. They adopt a serial structure to perform feature extraction by a mod-
ified Unet. Inspired by their works, we design the dual-channel semantic segmen-
tation module, a parallel structure, to perform both entity recognition and rela-
tion detection subtasks concurrently. It contains one down-sampling process and
two up-sampling processes. We show the components of the module in the mid-
dle portion of Fig. 2. The down-sampling process consists of two down-sampling
blocks, where each down-sampling block contains two separate convolution layers
and a max-pooling layer. In addition, each up-sampling process is composed of
two down-sampling blocks with skip-connection, where each up-sampling block
contains two separate convolution layers and a deconvolution layer.

We first take the interaction matrix F (hm, hn) obtained from the encoding
module (Sect. 3.2) as the input and convert it into a high-dimensional matrix
to capture the task-invariant features by the down-sampling process. The down-
sampling process doubles the D-channel matrix, which expands the receptive
field to obtain the contextual semantic information of the segmentation target
in the high-dimensional matrix to obtain rich global information. Then, we adopt
the dual-channel strategy to perform entity recognition and relation detection
subtasks simultaneously with the small-size high-dimensional matrix obtained
from the down-sampling process. The two up-sampling processes halve the D-
channel matrix, and the small-size high-dimensional matrix is restored to the
original size, which can capture task-specific features for both two subtasks.

Since the down-sampling process leads to the loss of information, we adopt
the skip-connection mechanism to provide supplementary information. For entity
recognition, we introduce entity feature representation, which provides complete
local semantic information. Then, we take the interaction between entity fea-
ture representation and low-level convolutional features in order to obtain the
shared feature representation of entities and relations. For relation detection, we
directly concatenate the cropped low-level feature representation. With the help
of the skip-connection mechanism, the feature representation can be enhanced
and gradient disappearance and network degradation problems can be reduced
as well.
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3.4 Tagging and Classification Module

After passing the dual-channel semantic segmentation module (Sect. 3.3), we can
obtain the entity segmentation matrix and the relation segmentation matrix with
N × N dimensions. Subsequently, the entity segmentation matrix is converted
to a token-level entity feature sequence. And then, we take the sequence tagging
and the relation classification subtasks, respectively.

Tagging Strategy. For entity recognition, it can be seen as a sequence tagging
task. More specifically, we convert the entity segmentation matrix into a token-
level entity feature sequence E = {e1, . . . , eN} ∈ R

N , and adopt CRF as our
sequence tagging model to calculate the joint probability distribution of the
sequence E. It finds the global optimal solution by calculating the correlation of
adjacent labels. Formally, given a label sequence yE =

{
yE
1 , . . . , yE

N

}
, CRF aims

to calculate the conditional probability as follows:

P
(
yE | E

)
=

exp
(
s
(
E, yE

))
∑

yE′ ∈Y exp (s (E, yE′))
,

s
(
E, yE

)
=

N∑

i=1

(
WyE

i−1,y
E
i

· ei + byE
i−1,y

E
i

)
,

(3)

where WyE
i−1,y

E
i

and byE
i−1,y

E
i

are learnable weight and bias corresponding to the
neighboring labels

(
yE
i−1, y

E
i

)
, and Y is the set of all possible tags.

Then, we take the negative log-likelihood function as the loss function of
entity recognition subtask as follows:

Lentity = log
∑

yE∗∈Y

(
exp(s(E, yE∗)) − s(E, yE)

)
, (4)

where yE∗ is the gold label sequence of the entity feature sequence E.

Classification Strategy. For relation detection, it can be seen as a binary
classification task. More specifically, we adopt BCELoss1 to identify a token pair
is related or not. Formally, with the relation segmentation matrix R ∈ R

N×N ,
we can obtain the predicted relation distribution yR

m,n ∈ {1, 0} by calculating
the conditional probability distribution P

(
yR
m,n | (hm, hn)

)
of each token pair.

The loss function of relation detection subtask is constructed by calculating the
BCELoss as follows:

Lrelation =
∑

yR∗
m,n∈P

BCELoss
(
yR
m,n, yR∗

m,n

)
, (5)

where yR∗
m,n = P

(
yR∗
m,n | (wm, wn)

)
denotes the gold relation distribution of rela-

tion segmentation matrix, and P is the set of all possible relations.

1 BCELoss(x, y) = −(ylogx + (1 − y)log(1 − x)).



AOPSS: Aspect-Opinion Pair Extraction as Semantic Segmentation 107

Training. The loss function L is to guide the model during training, which
consists of two parts: Lentity and Lrelation. Our training object is to minimize
the loss function L as follows:

L = λLentity + (1 − λ)Lrelation, (6)

where λ is the balance weight for joint learning strategy.

4 Experiments

4.1 Dataset

We evaluate our model on four public datasets annotated by [3], including 14Lap,
14Res, 15Res, and 16Res, which annotate aspect and opinion terms in pairs based
on the original SemEval datasets derived from the SemEval challenge [9–11]. The
statistics of datasets are shown in Table 1.

Table 1. Statistics of the experimental datasets, where #Sentences, #Aspects, #Opin-
ions, and #Pairs denote the number of sentences, aspect terms, opinion terms, and
aspect-opinion pairs.

4.2 Experimental Settings

We fine-tune the uncased BERT-base2 pretrained model and set the hidden
dimension d to 768. We adopt AdamW as the parameter optimizer with 0.1
warmup rate. The fine-tuning learning rate is set to 2e − 5, and the training
learning rate is set to 1e − 4. In addition, the maximum sequence length is set
to 100, and the batch size is set to 12. The balance weight λ is set to 0.1.
We adjust the above hyper-parameters with the cross-validation method and
evaluate our model with F1-score. Finally, we perform five experiments with
random initialization and report the average experimental results. Our model is
trained on the GeForce GTX 1080 Ti GPU.
2 https://github.com/google-research/bert.

https://github.com/google-research/bert
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4.3 Baselines

We compare AOPSS with both pipeline-based models and joint learning-based
models. We select two representative pipeline models as the baselines:

– CMLA+CGCN first employs CMLA [14] to jointly co-extract aspects and
opinions, and then introduces CGCN [30] to perform pairing.

– RINANTE+IOG first utilizes RINANTE [2], a semi-supervised model, to
extract aspects and opinions, and then it adopts IOG [3] to perform pairing.

Since joint-learning can solve the error propagation problem well, it achieves
advanced performance in the AOPE. We select seven models as our baselines:

– SpanMlt [29] proposes a multi-task learning model, which extracts all candi-
date spans first and then performs entity recognition and relation detection.

– GTS [19] designs the Grid Tagging Scheme, composed of an arbitrary encoder
and a designed inference strategy, to assign entity and relation tags.

– SDRN [1] proposes a synchronous double-channel recurrent network, which
utilizes two channels for entity recognition and relation detection subtasks.

– STER [28] designs a group of gated RNNs networks to track all entities of a
sentence in parallel.

– ESGCN [18] proposes an edge-enhanced syntactic graph convolutional net-
work for enhancing the extraction and pairing of aspect and opinion terms.

– SynFue+LAGCN [17] incorporates rich syntactic features and adopts a
high-order scoring method to calculate potential aspect-opinion pairs.

– QDSL [4] first conducts aspect term extraction by a question generation
model and then obtains aspect-opinion pairs by conducting aspect-specified
opinion terms extraction.

4.4 Main Results

The main results are shown in Table 2. We observe that our proposed AOPSS
achieves the best results on eleven of twelve metrics.

For pipeline-based models, they adopt an extract-then-pairing manner, which
can cause error propagation and lead to significant performance degradation.
For joint learning-based models, SpanMlt, GTS, and SDRN employ the first
order scoring mechanism that considers only one potential aspect-opinion pair
when calculating the pairing score. For the four datasets, the RF, AF, and OF of
AOPSS is 5.53%, 3.25%, and 2.86% higher than these methods on average. Mean-
while, ESGCN and SynFue+LAGCN utilize the higher order scoring mechanism
to improve the calculation strategy of the pairing score. For the four datasets,
the RF of AOPSS is 2.33% higher than these methods on average. Furthermore,
STER provides a powerful baseline in entity recognition subtask. For the four
datasets, the RF, AF, and OF of AOPSS is 2.81%, 0.85%, and 1.03% higher
than STER on average. It takes advantage of the entity tracking network, which
performs well in entity recognition, but has the limitation of its LSTM-based
model to capture long-distance information. Simultaneously, QDSL establishes
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Table 2. The experimental results on the annotation datasets of [3]. RF, AF, and
OF represent the F1-score (%) of relation detection, aspect extraction, and opinion
extraction, respectively. We conduct five experiments with random initialization on
each model and then report the average experimental results.

a strong baseline in relation detection subtask. For the four datasets, the RF of
AOPSS is 0.57% higher than QDSL on average. It adopts a question generation
model to capture aspect terms first and then match them with opinion terms.
The results heavily depend on its question generation model.

To sum up, our proposed method achieves state-of-the-art performance on
four datasets and takes advantage of its structural advantages to reduce gradient
disappearance and network degradation problems effectively.

4.5 Ablation Study

We conduct ablation experiments to investigate the effectiveness of each module
by comparing the RF-score. The results are shown in Table 3.

– w/o BERT means using GloVe3 with Bi-LSTM to obtain the initialized
embedding.

– w/o Interaction Matrix indicates that only the relation feature represen-
tation is used as input of the dual-channel semantic segmentation module
without considering the interaction with the entity feature representation.

Table 3. The ablation study results on the four benchmark datasets, here we present
RF-score (%) to illustrate the impact of each module.

3 https://nlp.stanford.edu/projects/glove.

https://nlp.stanford.edu/projects/glove
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– w/o Entity Connection implies removing the entity feature representation
of the dual-channel semantic segmentation module.

– w/o Dual-Channel represents adopting a classify-then-extract strategy for
semantic segmentation. It first obtains a token-level relation segmentation
matrix for relation detection and then converts it into a sequence form and
assigns a tag to each token with CRF for entity recognition.

In conclusion, our model has a performance degradation of 0.97 % – 5.3%
for ablating each module, which demonstrates that each component of AOPSS
is designed reasonably and effectively.

4.6 Closer Analysis

We conduct an in-depth analysis of the above experiments and list five repre-
sentative cases, as shown in Table 4.

Table 4. Five representative cases selected from the annotated test dataset of [3].

We compare the case study results of AOPSS with SDRN and STER to
show the superior performance of our proposed method. From the experimental
results, SDRN tends to give solutions in terms of syntactic structure, but the
performance is limited by the first-order scoring method. In addition, STER
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is limited by its LSTM-based model, which has deficiencies in capturing long-
distance information.

Our proposed method provides a good solution to the above-mentioned ques-
tions. The first review contains an overlap problem, where AOPSS can extract
the aspect term “OS” and make pairings precisely. The results demonstrate that
AOPSS is more adapted to annotated datasets. The second review includes a
one-to-one pairing problem, but the relative positions of aspect-opinion pairs
are not fixed in the sentence. The results prove that AOPSS can be more flexi-
ble to accommodate different syntactic structures. The third and fourth reviews
contain two overlap problems involving complex entities and relations. AOPSS
can better capture both local context and global interdependency for the two
subtasks. Specifically, it can not only extract appropriate phrases, such as “heat
output” in the third review and “hasn’t changed” in the fourth review, but also
capture long-distance relation pairs, such as (“operation”, “nicest”) in the third
review. For the fifth review, both “fully” and “satisfied” can describe “per-
formance” syntactically, but “satisfied” is more appropriate in semantics. The
results illustrate that AOPSS can better understand the semantic information
of the review sentence.

5 Conclusions

In this paper, we propose AOPSS, a joint learning framework, extracting aspect
terms and their corresponding opinion terms in pairs. It provides a high capabil-
ity, easy expansibility, and good interpretability scheme for solving the AOPE
task. Concretely, we regard the AOPE task as two subtasks: entity recogni-
tion and relation detection, which can be solved by sequence tagging and binary
classification, respectively. The two subtasks share the same down-sampling pro-
cess to capture task-invariant features and use different up-sampling processes
to obtain task-specific features. In addition, since the two subtasks are highly
dependent, we take the interaction between entity and relation feature represen-
tation to enhance the mutual heuristic effect for the two subtasks. Experimental
results on four benchmark datasets show that AOPSS outperforms other state-
of-the-art baselines. Through closer analysis, we prove the effectiveness of our
approach. In our future works, we hope to expand our work to other NLP fields
to explore the application of semantic segmentation further.
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Abstract. Event causalities organize events into a graph according to
causal logics, which assists humans in decision making by causal reason-
ing among events. Despite many efforts to identify event causalities, most
of them assume that only one causality exists in a sentence or causalities
only occur in adjacent sentences, leading to the incapability of detect-
ing multiple causalities or document-level causalities. In this paper, we
propose a novel model for document-level event causality identification
named DocECI. We define two heterogeneous document graphs, namely
text structure graph and mention relation graph, and encode them with
relational graph convolutional networks, which gradually aggregate the
information of multi-granular nodes in a cascade manner and capture
the causality patterns. Experiments on a benchmark dataset show that
DocECI outperforms existing models by a significant margin. Moreover, a
new experiment is conducted on causality direction identification, which
is overlooked by existing models.

Keywords: Event causality · Document graph · R-GCN

1 Introduction

As an important semantic relation, event causalities organize events into an event
graph according to causal logics, assisting humans to make better decisions in
event prediction [21], public opinion monitoring [26] and many other scenarios. A
causality is typically defined as a relation between two events if the occurrence of
one leads to the other, which are called cause and effect, respectively. Causalities
can be further divided into implicit and explicit, as well as intra-sentence and
cross-sentence, depending on whether there is a causal connective and whether
cause and effect appear within the same sentence.

Existing works on identifying event causalities can be classified into three
categories [35]: pattern models, statistical models, and deep models. The former
two suffer from the difficulty of feature engineering and limited expressiveness.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Fig. 1. A real example excerpted from the ESC dataset [2]. The document is annotated
with event (bold font), participant and location (italic font) mentions, coreference
relations (dashed lines), intra-sentence and cross-sentence causalities (solid lines with
arrows, where arrows indicate the directions of causalities from causes to effects).

Deep models can capture patterns of implicit causalities, benefiting from the
powerful expression capability of neural networks.

However, there are still many challenges such as multiple and document-level
causality identification. Most existing works ignore the multiple causalities by
making an impractical assumption that there is only one causality in a sentence
[35]. However, as a real example shown in Fig. 1, there are two causalities in S1:
austerity measures result in riots, which lead to three policemen dead. There
are two common ways to handle multiple causalities [5]: The first method is to
encode the sentence once for each causality, which requires huge computation.
The second splits the sentence into several sub-instances with only one causal-
ity, but this makes the information in the sub-instances incomplete. Recently,
some researchers [5,20] have attempted to address this issue by treating it as a
sequence labeling task. However, their methods are infeasible for document-level
causalities.

As for document-level causality identification, it is more challenging due to
the long spans in documents. As shown in Fig. 1, there is a causality between
S1 and S24: riots led to deaths. In fact, dead in S1 and deaths in S24 are
coreferential due to the participant (policemen) and the location (the streets of
Athens) are both coreferential. Although some works [8,27] combine statistical
models with integer linear programming to identify document-level causalities,
they face the problem of costly feature engineering and weak expressiveness.

Aiming at these two challenges, in this paper we propose a Document-level
Event Causality Identification model named DocECI. Specifically, given a doc-
ument, we first construct two heterogeneous document graphs called text struc-
ture graph and mention relation graph, and use relational graph convolutional
networks (R-GCNs) [29] to model them. Then, we aggregate event and con-
text representations through a context-aware aggregation layer, and identify all
causalities in the document.

We evaluate our model on a benchmark dataset called ESC [2]. Our experi-
mental results show that DocECI achieves the state-of-the-art performance. We
also validate the indispensability of all components in DocECI through an abla-
tion study. Additionally, we conduct a new experiment on causality direction
identification, which is overlooked by the existing works.
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To summarize, our main contributions in this paper are threefold:

– We study complex event causality identification. We find by our empirical
study that a comprehensive understanding of event context and coreferential
relations between event mentions can benefit this task.

– We propose a document-level event causality identification model named
DocECI, which constructs a text structure graph and a mention relation
graph to model global causality information at the document level.

– We conduct extensive experiments and show that DocECI sets up a new state-
of-the-art for event causality identification. We also conduct a new experiment
overlooked by the existing work on causality direction identification.

2 Related Work

2.1 Event Causality Identification

Early studies rely on manually-defined linguistic patterns to identify event
causalities [9,15,16,28]. Their solutions are laborious and limited to small cor-
pora, so they may not identify implicit causalities. Later works combine pat-
terns with machine learning to improve the performance and reduce manual
labor [1,10,38]. Gao et al. [8] propose a constraint-based method, which trains
classifiers with linguistic features and improves the performance via integer lin-
ear programming. Other works extend the task of event causality identification
to the joint identification task of event causalities and other relations, such as
temporal relations [23,25] and event-arguments relations [27].

Intra-sentence Causality. Most existing works leverage deep models with external
knowledge to identify intra-sentence causalities. De Silva et al. [6] combine lin-
guistic features from WordNet with CNN. Li and Mao [19] propose a knowledge-
oriented CNN to learn additional linguistic features from external knowledge
bases. Liu et al. [22] present a knowledge enhanced model, which leverages Con-
ceptNet to enrich event representations and uses a masking mechanism to mine
event-agnostic, context-specific patterns. Zuo et al. [41] propose a knowledge
enhanced data augmentation model KnowDis, which obtains unlabeled data via
distant supervision and employs self-training to train models. Moreover, some
works convert the event causality identification tasks into sequence labeling.
They cope well with multiple causalities [5,20], but are difficult to identify cross-
sentence causalities, especially causalities of long distance.

Cross-Sentence Causality. Kruengkrai et al. [18] propose a multi-column CNN,
which takes dependency paths among causes and effects as background knowl-
edge. Jin et al. [14] propose a cascade multi-structure neural network, which
employs CNN to capture important features and causality patterns. These mod-
els are sentence-level. They focus on cross-sentence causalities between adjacent
sentences, but pay less attention to document-level causalities.
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2.2 Document-Level Relation Extraction

Most existing document-level relation extraction models aim to extract the rela-
tions among entities [12,24,30,32,40]. Specifically, the document graph-based
methods [11,13] usually convert a document into a graph by taking entity men-
tions as nodes and relations as edges, and apply graph neural networks (GNNs)
to model it. Subsequent works [4,37] improve these methods by modifying the
graph and model structures. They construct multi-granular graph nodes, includ-
ing words, mentions, entities, etc., and define different kinds of edges with heuris-
tic rules.

3 Proposed Model

We define the document-level event causality identification task as follows.
For an annotated document D = [w1, . . . , wnw

] with event mentions M =
[m1, . . . ,mnm

], where wi (1 ≤ i ≤ nw) denotes the i-th word in the docu-
ment, mj = [wq, . . . , wp] (1 ≤ j ≤ nm) denotes the j-th event mention with
p − q + 1 words, given any event pair (mi,mj) in M, we aim to predict its rela-
tion r ∈ {CauseEffect ,None}, i.e., whether there exists a causality between mi

and mj or not.
The framework of our DocECI can be divided into five layers: (1) Encod-

ing Layer transforms input words into dense vector representations; (2) Text
Structure Modeling Layer (TSML) models word nodes and sentence nodes with
the structural information of the document; (3) Mention Relation Modeling
Layer (MRML) models mention nodes and sentence nodes with the relational
information among different mentions to obtain potential patterns of causalities;
(4) Context-aware Aggregation Layer (CAL) aggregates event representations
with context representations from mentions and sentences. (5) Output Layer
predicts a possible relation for each event mention pair.

3.1 Encoding Layer

In the encoding layer, we use BERT [7] and a BiLSTM network to obtain initial
word representations. Given that the length of the document usually exceeds the
maximum encoding length of BERT, we split a document into several segments
and encode them separately:

[w1, . . . ,wnk
] = BERT

(
[w1, . . . , wnk

]
)
, (1)

where wi ∈ R
dw , dw denotes the size of word representations from BERT, and

[w1, . . . , wnk
] denotes the k-th segment of the document.

This split operation results in the break of contextual information. Therefore,
we use a BiLSTM network to integrate contextual information among different
segments:

W = [w1, . . . ,wnw
] = F1

(
BiLSTM

(
[w1, . . . ,wnw

]
))

, (2)

where wi ∈ R
dw , F1 : R2×dw → R

dw denotes to a linear function, and nw denotes
the length of the document.
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Fig. 2. Text structure graph. Fig. 3. Mention relation graph.

3.2 Text Structure Modeling Layer

Inspired by Zhang et al. [37], we take words and sentences as nodes and define five
types of edges to depict the relations among different nodes. Then, we construct
an undirected text structure document graph G = (V, E , C) shown in Fig. 2,
where V, E , C denotes the sets of nodes, edges and edge types, respectively. The
five edge types are:

– WWA: Two word nodes are linked with an adjacency edge if they are adjacent
within a sentence, which captures the word sequential information.

– WWD: A dependency edge is used to link two word nodes with an intra-
sentence dependency relation, which captures the shallow syntactic structure.
We use the spaCy tool1 to obtain dependency relation.

– WSF: An affiliation edge between a word node and a sentence node if the word
is in the sentence, depicting the hierarchical information of the document.

– SSA: Two sentence nodes are linked with an adjacency edge if they are adja-
cent, which captures the sentence sequential information.

– SSC: Two non-adjacent sentence nodes are linked with a complement edge to
transmit the information of word nodes in distant sentences by 1-hop relation.

We use R-GCN to model this graph. For any word node vi ∈ V, we use the
word representation wi in W to initialize its representation v(0)

i . For sentence
node vi = [wq, . . . , wp], a max-pooling operation is applied over all corresponding
word nodes to obtain its representation: v(0)

i = max([wq, . . . ,wp]). At the (l+1)-
th layer, R-GCN updates the representation of a node by aggregating its adjacent
node representations through the message passing strategy. We also adopt a
gating mechanism [37] to selectively remember the information contained in the
node to prevent the over-smoothing problem of R-GCN [17]:

1 https://spacy.io/.

https://spacy.io/
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u(l)
i =

∑

c∈C

∑

j∈N c
i

1
|N c

i |W
(l)
c v(l)

j + W(l)
0 v(l)

i ,

g
(l)
i = sigmoid

(
F2

(
[u(l)

i ;σ(u(l)
i )]

))
,

v(l+1)
i = g

(l)
i � tanh(u(l)

i ) + (1 − g
(l)
i ) � σ(u(l)

i ),

(3)

where N c
i is the set of nodes adjacent to vi with edge type c ∈ C, W(l)

c ∈ R
dw×dw

denotes an edge type-specific weight matrix and W(l)
0 ∈ R

dw×dw denotes the
weight matrix for self-connection edge, F2 : R2×dw → R

dw denotes to a linear
function, σ(·) denotes the activation function, and � stands for element-wise mul-
tiplication. Finally, we can get all node representations in G: V = [v(L)

1 , . . . ,v(L)
|V| ],

where L is the R-GCN layers.

3.3 Mention Relation Modeling Layer

Through the previous layer, the node representations contain the hierarchical,
sequential, syntactic information, but miss the potential relational information
among mentions. In this layer, we take sentences and mentions as nodes and
define three types of edges in addition to SSA and SSC. Then, we construct an
undirected mention relation document graph Ḡ = (V̄, Ē , C̄), where V̄ shown in
Fig. 3, Ē , C̄ represents the sets of nodes, edges and edge types, respectively. The
three new edge types are:

– MMO: Two mention nodes in the same sentence are linked with a co-
occurrence edge, indicating the potential correlation between them.

– MMR: Two coreferential mention nodes are linked with a coreference edge,
which helps model the relations among mentions across sentences. We assume
that the coreference information is annotated beforehand.

– MSF: An affiliation edge is used to link a mention node and a sentence node
if the mention is in the sentence. Unlike G, affiliation edges in Ḡ propagate the
contextual information contained in the sentence node to the mention node.

We use R-GCN to model this graph as well. First, we leverage the idea of
dense connection [34,37] and concatenate the representations of the 0-th and
L-th layer in Sect. 3.2 with a linear transformation F3 : R2×dw → R

dw to obtain
the new representations:

V̂ = [v̂1, v̂2, . . . , v̂|V|]

=
[
F3

(
[v(0)

1 ;v(L)
1 ]

)
,F3

(
[v(0)

2 ;v(L)
2 ]

)
, . . . ,F3

(
[v(0)

|V|;v
(L)
|V| ]

)]
.

(4)

We adopt V̂ = [v̂1, . . . , v̂|V|] to initialize the node representations: (1) For
mention node v̄i = [wq, . . . , wp], a mean-pooling operation is applied; (2) For
sentence node, we directly get its node representation from V̂. Then, we update
the representations in the same way as previous layers. Finally, we obtain the
node representations V̄ = [v̄L̄

1 , . . . , v̄L̄
|V̄|], where L̄ is the number of R-GCN layers.
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3.4 Context-Aware Aggregation Layer

The representations of nodes in Ḡ contain different types of information. Mention
nodes contain the semantic information of the corresponding text mentions and
the relational information with other mentions, while sentence nodes contain
the contextual information, which is important for the relation reasoning among
mentions. To further integrate the information in the representations of nodes
in Ḡ, we propose an aggregation methods based on multi-head attention [31],
which can capture different information in different subspaces.

The aggregation method organizes sentence representations from V̄ into the
matrix Hs ∈ R

ns×dw , where ns denotes the number of sentences. Then, we take
Hs as the query, key and value matrices to obtain the new sentence representa-
tion matrix Ĥs, which contains the global contextual information:

Ĥs = MultiHead(Hs,Hs,Hs). (5)

Finally, we concatenate the representation hm of a mention from V̄ and the
representation ĥs ∈ Ĥs of the sentence in which the mention lies to form the
final representation of mention:

ĥm = [hm; ĥs]. (6)

3.5 Output Layer

In this layer, we aim to predict the relation of an event pair. For each event
mention pair (mi,mj), we first concatenate two event representations ĥi, ĥj with
their relative distance representation d(i,j) as its ultimate representation, and
then use a fully-connected layer with softmax to predict its relation. The relative
distance of two events is the distance of their belonging sentences. Finally, we
use a fully-connected layer with softmax to predict its relation:

y(i,j) = softmax
(
FC

(
[ĥi; ĥj ;d(i,j)]

))
,

y(i,j) = argmax(y(i,j)).
(7)

We use cross-entropy as the training loss:

J = −
∑

mi,mj∈M
i�=j

[
y∗
(i,j) log(p(i,j)) + (1 − y∗

(i,j)) log(1 − p(i,j))
]
, (8)

where y∗
(i,j) ∈ {0, 1} denotes the true relation of (mi,mj), and p(i,j) denotes the

probability of y(i,j) = 1.
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Table 1. Statistics of the ESC dataset.

Intra-sentence Cross-sentence

CauseEffect None CauseEffect None

Training & Testing 1,859 4,662 3,818 34,475

Development 243 1,130 772 7,632

4 Experiments

4.1 Dataset and Experimental Settings

Our experiments are conducted on a benchmark dataset named EventStory-
Line Corpus (abbr. ESC) [2]. ESC is the largest publicly available dataset for
document-level event causality identification, which consists of 258 documents
from 22 different topics, such as natural disasters and crimes. As suggested in
[8], we use the last two topics as the development set, and conduct a 5-fold cross-
validation on the remaining 20 topics (80% for training and 20% for testing).
The statistics of the dataset are shown in Table 1. We employ Precision (P),
Recall (R) and F1-score (F1) as the evaluation metrics, and report the average
results on the five folds.

We leverage PyTorch to implement DocECI. We use BERT-base-cased as the
default setting for BERT. The dimension size of LSTM hidden unit and relative
distance representation are set to 256 and 50, respectively. The layer number
of TSML and MRML are both set to 2. All edges in G, Ḡ are undirected and
the default activation functions are ReLU. The model is trained with AdamW
optimizer and the batch size is 12. The initial learning rate of BERT is 0.00004,
while for the remaining modules is 0.002. We also use a negative sampling rate
of 0.5 for training, owing to the sparseness of positive examples. Beyond that,
we run spaCy tool to generate dependency parse trees. All experiments are
conducted with an Intel Xeon 2.5 GHz CPU and a NVIDIA Tesla V100 GPU.

4.2 Comparative Models

Five sentence-level and document-level models are picked for comparison:

– With external knowledge: (1) Tri-CNN [6] is a knowledge-based model that
constructs extra linguistic features via causal connectives and WordNet. (2)
KnowDis [41] is for knowledge enhanced distant data augmentation. It
obtains plenty of unlabeled data via distant supervision and adopts self-
training to train model. (3) MMG [22] is a BERT-based model that leverages
external knowledge from ConceptNet for reasoning and mines event-agnostic,
context-specific patterns via mention masking generalization.

– Without external knowledge: (1) SDP-LSTM [3] is a dependency path-based
sequential model that is first used for identifying event temporal relations. The
work in [8] re-implements it as a baseline for event causality identification.
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(2) DCS [8] is a constraint-based model, which identifies event causalities
at the document level by modeling the global and fine-grained aspects of
document-level causal structures and conducts optimization with integer lin-
ear programming.

Additionally, we use three sentence-level models for relation extraction,
migrating them to the event causality identification task: Att-LSTM [39], C-
GCN [36] and R-BERT [33]. Two methods are adopted to construct cross-
sentence samples to make these models suitable for cross-sentence causality
identification. Assume that two events are in S1 and S5, respectively. The first
method combines these five sentences into one sentence as input, while the other
only combines these two sentences into one sentence as input. Best results of the
two methods are reported for comparison.

4.3 Score Replacement

The default training approach of DocECI is to train a classifier and predict
intra-sentence and cross-sentence causalities uniformly. However, given that the
underlying expression patterns of intra-sentence and cross-sentence causalities
may be different, this approach may impair the performance of either intra-
sentence causality identification or cross-sentence causality identification.

Following [8], we adopt an alternating training approach for DocECI: training
three different classifiers for intra-sentence, cross-sentence and all pairs, respec-
tively, and use the intra-sentence classifier to help predict cross-sentence pairs,
which is called score replacement. For any cross-sentence pair, if it can be con-
verted into an intra-sentence case through coreference relations and the score
from intra-sentence classifier is higher, we use the prediction of intra-sentence
classifier instead. A cross-sentence pair may have more than one intra-sentence
case, we use the highest score produced by intra-sentence classifier as the final
score. With score replacement, the learning rate of BERT is still 0.00004, while
for the intra-sentence task, the cross-sentence task and the overall task, the
learning rates are 0.002, 0.004 and 0.004, respectively.

4.4 Main Results

Table 2 shows the results of DocECI against the competitors on ESC. On
the intra-sentence task: (1) DocECI achieves 53.8% on F1-score, which signif-
icantly outperforms other models and validates the effectiveness of our model.
(2) Although Tri-CNN, KnowDis and MMG introduce external knowledge to
improve the performance on the intra-sentence task, DocECI still outperforms
these models, showing that DocECI can capture more information about event
causalities. (3) Comparing DocECI with DCS, we find that our two document
graphs are more helpful than the global causal structures of DCS on the intra-
sentence task by a margin of 9.2% on F1-score. (4) R-BERT is a competitive
model migrated from relation extraction, which obtains the second best preci-
sion among all competitors, just lags behind DocECI. This shows that DocECI
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Table 2. Results on the ESC dataset. DocECIsr denotes DocECI with score replace-
ment. The results with asterisk (*) are from original papers, the remainings are repro-
duced on the current dataset, based on the source code or our re-implementations.

Intra-sentence Cross-sentence Overall

P R F1 P R F1 P R F1

Tri-CNN 27.0 44.9 33.7 12.6 37.8 18.9 15.6 49.8 23.8

KnowDis* 39.7 66.5 49.7 – – – – – –

MMG 41.9 62.5 50.1 23.1 26.0 24.5 28.7 37.6 32.6

SDP-LSTM* 34.0 41.5 37.4 13.5 30.3 18.7 17.6 33.9 23.2

DCS* 38.8 52.4 44.6 35.1 48.2 40.6 36.2 49.5 41.9

Att-LSTM 34.7 44.6 39.0 17.5 44.7 25.1 22.5 42.4 29.4

C-GCN 32.1 57.5 41.2 19.3 40.3 26.1 22.3 50.9 31.0

R-BERT 42.8 54.5 48.0 36.2 30.2 33.0 41.4 34.9 37.9

DocECI 43.3 71.2 53.8 37.5 42.5 39.8 39.9 50.7 44.6

DocECIsr 45.8 67.9 54.7 44.3 59.5 50.8 45.3 62.5 52.5

is more powerful to capture event causalities in the context than BERT. (5)
With score replacement, DocECI achieves the highest F1-score (54.7%), show-
ing that DocECI can capture more event causality patterns with the help of
score replacement.

On the cross-sentence task, the performance of all models has varied degrees
of decline, indicating that this task is more difficult. From the results, we have
several findings: (1) DocECI achieves the best F1-score and significantly outper-
forms other models except DCS, which still shows the effectiveness of DocECI.
(2) Compared with MMG, DocECI is clearly better by a margin of 15.3% on F1-
score, which indicates that the event causalities patterns captured by DocECI
are more helpful than the external knowledge from WordNet and ConceptNet.
(3) Compared with DCS, DocECI slightly lags behind on F1-score(-0.8%). DCS
achieves the second best F1-score (40.6%) due to the usage of score replace-
ment. (4) Compared with the BERT-based models R-BERT and MMG, DocECI
achieves substantial improvement of 6.8%–15.3%, which reflects the advantage
of using document graphs to model documents. (5) With score replacement,
DocECI obtains the best F1-score (50.8%), which indicates that score replace-
ment really helps the cross-sentence task by converting it to the intra-sentence
task.

In overall, DocECI achieves the best F1-score among all competitors, and
score replacement brings a further improvement for it.

4.5 Causality Direction Identification

To study the sensitivity of models to causality directions, we conduct a new
experiment overlooked by the existing works on causality direction identification.
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Table 3. Results of causality direction identification on the ESC dataset.

Intra-sentence Cross-sentence Overall

P R F1 P R F1 P R F1

Tri-CNN 15.2 22.4 18.1 6.1 19.5 9.3 8.0 25.1 12.1

MMG 43.0 52.2 47.2 14.4 16.3 15.3 29.3 31.6 30.4

Att-LSTM 21.9 16.7 19.0 10.1 25.5 14.5 11.9 28.0 16.7

C-GCN 21.2 47.8 29.4 14.1 28.2 18.8 14.6 38.8 21.2

R-BERT 42.4 41.1 41.8 30.2 18.6 23.0 37.9 25.6 28.9

DocECI 34.9 48.0 40.4 35.5 24.0 28.7 34.7 32.0 33.3

DocECIsr 33.6 47.4 39.3 26.6 29.9 28.2 29.8 32.5 31.1

Specifically, we model it as a three-label classification problem, which is required
to predict which event is cause and which is effect if there is a causality between
this event pair. Table 3 depicts that the performance of all models on the task
decreases. The main reason is that the models may need prior knowledge to
identify subtle differences between two directions.

Our findings are: (1) DocECI still performs best on the causality direction
identification task. (2) On the intra-sentence task, DocECI performs not well and
lags slightly behind R-BERT and MMG. We argue that both R-BERT and MMG
are sentence-level models, and they are better to capture the detailed context
in a sentence rather than capture the document-level context, because their
performance drops dramatically on the cross-sentence task, as shown in the table.
(3) On the cross-sentence task, DocECI is superior to all baseline models, its
F1-scores are 5.7% and 13.4% higher than R-BERT and MMG, respectively. (4)
Score replacement slightly decreases the performance of DocECI. We argue that
further distinguishing directions would lead to fewer positive samples, resulting
in inadequate learning. In this case, instead of training three different classifiers,
training a uniform classifier can make up for fewer positive samples.

4.6 Ablation Study

We conduct an ablation study to verify the influence of each module in DocECI.
The results in Table 4 show that each module contributes to the final perfor-
mance. We also conduct another ablation study about edge types, and the
results are shown in Table 5. We can see that MMO and MMR contribute
most to DocECI, showing that the relations among mentions (co-occurence and
coreference) are more important for causality identification, especially for cross-
sentence causality. WSF and MSF decrease the performance of DocECI on the
intra-sentence task. We argue that the edges of these two types mainly capture
information to improve cross-sentence causalities and they contribute most to
the cross-sentence task.
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Table 4. Results of ablation study on the ESC dataset.

Intra-sentence Cross-sentence Overall

P R F1 P R F1 P R F1

DocECIsr 45.8 67.9 54.7 44.3 59.5 50.8 45.3 62.5 52.5

w/o BERT 38.8 55.8 45.8 42.3 51.2 46.3 40.2 54.3 46.2

w/o TSML 43.9 64.2 52.2 45.7 52.5 48.9 44.5 58.3 50.5

w/o MRML 44.8 63.5 52.5 39.6 48.5 43.6 44.1 52.9 48.1

w/o CAL 44.5 60.8 51.4 41.1 58.7 48.3 43.7 59.8 50.5

Table 5. Results of ablation study of different types of edges on the ESC dataset.

Intra-sentence Cross-sentence Overall

P R F1 P R F1 P R F1

DocECIsr 45.8 67.9 54.7 44.3 59.5 50.8 45.3 62.5 52.5

w/o WWA & WWD 45.0 67.0 53.9 41.6 57.7 48.4 44.3 58.9 50.6

w/o MMO & MMR 44.3 61.4 51.5 29.5 26.5 27.9 39.4 34.7 36.9

w/o SSA & SSC 43.0 64.3 51.6 44.1 55.9 49.3 45.6 55.4 50.1

w/o WSF & MSF 46.1 68.5 55.1 41.8 57.1 48.3 45.0 56.9 50.2

4.7 Error Analysis

We illustrate two incorrect examples in Fig. 4, and the analysis is as follows:

– The first example is a false negative case. DocECI fails to identify the causal-
ity: fire causes in. The main reason is that DocECI cannot know the under-
lying semantics of such colloquial expressions using prepositions to express
events. In the training, from the observation of existing data, DocECI is more
inclined to think this is the expression of a preposition, so the representations
learned by DocECI cannot cover the information at the event level.

– The second example is a false positive case. DocECI identifies a causality that
is not in the references. We argue that there are two main reasons: (1) On
one hand, DocECI fails to fully learn the deep-level causality patterns due to
the small size of training data; (2) On the other hand, there may indeed have
some causalities in the dataset that have not been labeled but captured by
DocECI. In this example, O’Brien was fired, thus King needed to find a new
coach and checked with Cheeks. In this sense, it is reasonable for DocECI
to believe that there is a causality between these two events.

4.8 Hyper-parameter Sensitivity

We study the impact of the number of R-GCN layers used in TSML and MRML.
We respectively set L and L̄ from 1 to 3, and the results are shown in Table 6.
It can be observed that DocECI performs differently on different tasks under
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False Negative:
[S4] Nearly three weeks after the Sixers ended their season, King decided
to fire O'Brien, who still has two years and $8 million left on the
contract, …
[S54] But O'Brien is gone now and Cheeks is in.
False Positive:
[S17] King said he decided on Saturday to fire O'Brien, and then checked
with Cheeks to see if he'd be interested in the job.

Fig. 4. Examples of incorrect prediction by DocECI.

Table 6. Results of DocECI w.r.t. different layer numbers on the ESC dataset.

Intra-sentence Cross-sentence Overall

P R F1 P R F1 P R F1

L = 1 L̄ = 1 49.4 63.1 55.4 48.0 51.9 49.8 48.3 56.0 51.9

L̄ = 2 45.7 61.7 52.5 42.7 57.6 49.0 46.4 58.7 51.8

L̄ = 3 45.7 59.0 51.5 38.5 58.5 46.4 43.6 57.3 49.5

L = 2 L̄ = 1 47.6 67.4 55.8 44.9 57.2 50.3 45.7 60.3 52.0

L̄ = 2 45.8 67.9 54.7 44.3 59.5 50.8 45.3 62.5 52.5

L̄ = 3 37.7 76.8 50.6 39.5 65.8 49.4 40.2 64.2 49.4

L = 3 L̄ = 1 48.1 65.8 55.6 43.0 55.7 48.5 43.6 63.1 51.5

L̄ = 2 44.4 68.0 53.7 42.1 56.6 48.3 45.3 61.1 52.0

L̄ = 3 38.3 68.2 49.0 37.1 63.9 47.0 39.8 64.3 49.2

various settings. For example, DocECI achieves the best result (55.8%) on intra-
sentence task when L = 2 and L̄ = 1, while it achieves the best result (50.8%)
on the cross-sentence task when L = 2 and L̄ = 2. This shows that it is feasible
to further improve the performance of model by training different classifiers
for different tasks. Also from the results, we can find that choosing the proper
number of R-GCN layers is important for modeling document. More layers may
lead to the over-smoothing problem that all representations of nodes tend to be
similar, while less layers may lead to inadequate expressiveness of model. Both
of them have a negative impact on the model.

5 Conclusion and Future Work

In this paper, we present DocECI, a new model for document-level event causal-
ity identification with dual graph convolutional networks. We define text struc-
ture graph and mention relation graph to capture the structural information of
text and the relational information among mentions, respectively, and use R-
GCNs to encode them. Extensive experiments and ablation studies show that
DocECI achieves the state-of-the-art performance on the ESC dataset. In future
work, we will study causality direction identification, try to integrate external
knowledge as prior knowledge, and explore more document modeling methods.
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Abstract. Perceiving multiple objects within an image without the
labels’ supervision is the challenge of multi-label image hashing tasks.
Existing unsupervised hashing approaches do reconstruction or con-
trastive learning for the representation of the object of interest but ignore
the other objects in the image. We propose to use pseudo labels to provide
candidate objects, making the image match the possible objects’ features
by the co-occurrence correlations between labels. As a result, we explore
the co-occurrence correlations based on empirical models and design a
data augmentation strategy in a self-supervised learning framework to
learn label-level embeddings. We also build the image visual correlations
and design a dual overlapping group sum-pooling (OGSP) component
to fuse label-level and visual-level embeddings into image representa-
tions, alleviating noise from empirical models. Extensive experiments on
public multi-label image datasets using pseudo labels demonstrate that
our self-supervised label-visual correlation hashing framework outper-
forms state-of-the-art label-free hashing algorithms for retrieval. GitHub
address: https://github.com/lzHZWZ/SS-LVH.git.

Keywords: Multi-label image hashing · Self-supervised learning ·
Co-occurrence correlations

1 Introduction

In label-free scenarios, image hashing algorithms [25] remain tricky for learning
accurate hash codes for an image containing multiple objects. Existing unsuper-
vised hashing methods ignore the existence of other objects and only perceive
the object of interest in an image, resulting in limited performance. If features
of all objects are extracted in advance using techniques like object detection [9],
the computational cost will be a huge problem.

Recently, the study of co-occurrence correlation [4] has attracted our inter-
est. This correlation reveals the probability of different objects appearing in an
image. It can serve as potential supervisory information to aid in the perception
of objects of interest. Meanwhile, since the co-occurrence correlation reflects a

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Li et al. (Eds.): APWeb-WAIM 2022, LNCS 13422, pp. 129–143, 2023.
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Fig. 1. The architecture of SS-LVH. (1) In the label co-occurrence embedding learning
branch (blue frame), C denotes the number of labels, L1 to LC denote word vectors
corresponding to pseudo labels, and E1

1 to EC
1 denote label-level co-occurrence embed-

dings corresponding to L1 to LC . (2) In the image representation learning branch (red
frame), the input is image pairs with trusted or untrusted similarity. Conv5_x is a
layer generating the image feature. E2 denotes the image representation calculated via
global max-pooling layer with the feature. (3) In the visual correlation embedding learn-
ing branch (orange frame), M denotes the number of images sampled from the target
dataset, R1 to RM denote high-dimensional feature vectors corresponding to sampled
images, and E1

3 to EM
3 denote visual-level similarity embeddings corresponding to R1

to RM . (4) The purple frame denotes the dual OGSP component. Based on overlapping
group (a dotted box) sum-pooling, Q1 (i.e., semantic similarity representations) is fused
by each Ei

1 (i ∈ {1, 2, . . . , C}) and E2, and Q2 (i.e., visual similarity representations)
is fused by each Ej

3 (j ∈ {1, 2, . . . ,M}) and E2, where ◦ denotes Hadmard Product.
The label-visual representation Q is acquired by concatenating Q1 with Q2. (5) The
cyan frame completes self-supervised learning for Q in the way of BYOL. The Tanh
function is added to improve the adaptation of hashing. (6) The golden frame achieves
hash learning by the Cauchy distribution loss functions [25] consisting of Cauchy cross-
entropy loss and Cauchy quantization loss. (Color figure online)

common phenomenon in the real world, it is reliable in label-free scenarios. As
a result, the labels’ co-occurrence correlations of the empirical model can pro-
vide relatively accurate priori information. Although some labels in the empirical
model may not exist in the target dataset, co-occurrence correlation can ensure
that the relevant objects (e.g., basketball and players) in the image are simul-
taneously activated by Graph Convolutional Networks (GCNs) [25], partially
solving the multi-object perception problem of unlabeled images.

Based on this motivation, we propose to incorporate co-occurrence corre-
lations of pseudo labels [16] (i.e., labels of the empirical model) into a self-
supervised learning (SSL) framework [8] to design a multi-object hashing model.
The architecture is shown in Fig. 1. We gather the co-occurrence probability
of each pseudo label to build the adjacency matrix, and input the matrix into
GCNs for the label-level embedding learning. To alleviate the noise caused by
applying the empirical models to out-of-distribution (o.o.d) data, we introduce
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the adjacency matrix based on the visual correlations of all/sampling images
(See Sect. 3), and input the matrix into the other GCN branch for the visual-
level embedding learning. Since it is derived from images rather than labels, this
visual-level embedding is more representative of the distribution of the target
dataset [2]. We also use a feature extraction backbone to generate image repre-
sentations. With the embeddings and image representations, we design a dual
overlapping group sum-pooling (OGSP) component to fuse them. The embed-
dings and representations are fused into a vector by Hadmard Product and then
is mapped to multiple cells by group sum-pooling with overlapped windows.
Compared with the Multi-modal Factorized Bilinear (MFB) component used in
LAH [25], the dual OGSP component preserves richer spatial information. As
a result, the regions of interest will be highlighted through more representa-
tions. Furthermore, it can balance the activated representations based on two
embeddings, improving generalization ability and accuracy. Finally, we employ
the Cauchy distribution loss functions [1] to learn the activated representations
into hash codes.

In this paper, we propose a self-supervised label-visual correlation hashing
(SS-LVH) framework for multi-label image retrieval. In practice, we employ
Bootstrap Your Own Latent (BYOL) [8] as the SSL framework in that we can
learn compact representations without negative sampling. For this limitation,
we design a data augmentation strategy that fuses the two images via different
weights as the pretext task, used to enhance the learning for co-occurrence corre-
lations. In addition, we incorporate the Tanh function into the BYOL framework
to adapt hash learning. For the embeddings learning, we use BERT [5] to gener-
ate label embeddings and select the Classification Transformer (C-Tran) model
pre-trained on Visual Genome 500 (VG-500) [13]) as the empirical model, the
ResNet-101 [24] model as the representation backbone. Note that we will first use
the BYOL framework to pre-train the model, and then access the hash loss func-
tions for hashing. Extensive experiments on public multi-label image datasets
using pseudo labels demonstrate that SS-LVH is conducive to retrieving images
that share at least one label. Its performance is better than state-of-the-art label-
free hashing methods. In addition, we demonstrate that all the components we
introduced can improve retrieval performance.

The contributions of SS-LVH are summarized below.

(1) We proposed a novel SSL framework, i.e., SS-LVH, for image hashing using
co-occurrence correlations of pseudo labels. By perceiving multiple objects in
an image via pseudo labels and their co-occurrence correlations, we achieve
self-supervised hashing in a multi-label learning pattern.

(2) We designed a series of tricks to resist noise from o.o.d data, including the
label-visual correlation learning scheme and the dual OGSP component,
resulting in accurate multi-object activation.

(3) SS-LVH outperforms state-of-the-art unsupervised/self-supervised hashing
methods in terms of multi-label image retrieval on three public datasets. We
demonstrate that the co-occurrence correlations can benefit the label-free
hash learning performance.
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2 Related Work

The SS-LVH is designed via the co-occurrence information of objects in images
and the SSL framework. Recent research in these fields is described below.

Co-occurrence Correlations. The object co-occurrence correlations in the
images can represent the intrinsic logical relation of objects included by images.
Wang et al. propose CNN-RNN [22], utilizing the semantic redundancy and the
co-occurrence dependency to construct an end-to-end classification model. ML-
GCN [4] is a novel trainable multi-object image recognition framework, which
employs GCN to map the label representations (i.e., word embeddings), includ-
ing co-occurrence information and inter-dependency of objects in images. In
SS-LVH, we also exploit this insight to construct a co-occurrence correlation
matrix to delegate the object’s inter-dependency.

Multi-label Image Hashing. The multi-label hashing methods can improve
the accuracy of image retrieval. Lai et al. propose Instance-aware hashing
(IAH) [12], which first conducts the instance-aware retrieval via learning-based
hashing. Song et al. propose Deep Region Hashing (DRH) [20] with a cost-free
hashing strategy, and can generate the hash codes for whole image as well as the
object candidate regions. Xie et al. propose Label-Attended Hashing (LAH) [25]
that combines the co-occurrence correlations of labels to learn hash codes.

Self-supervised Learning. We follow SSL for guiding our model to acquire
the appropriate image representations without hand-crafted labels. In this field,
contrastive methods [3,8] have shown impressive results, with the fundamental
ideology pulling representations of different views transformed from the same
sample closer together (i.e., positive pairs) while spreading representations of
different data views (i.e., negative pairs). Chen et al. propose the method Sim-
CLR [3] based on contrastive insight, which utilizes a learnable nonlinear trans-
formation between data representations and the contrastive loss, thus improving
the quality of representations. BYOL [8] utilizes the learnable target network as
‘target’ and weighted moving average to make target network learning smoother
and efficiently.

3 Preliminary on SS-LVH

We introduce how to create correlations and training image pairs. Given the
target image dataset XD = {xi}N

i=1 and a subset XS = {xi}M
i=1 of XD, where

xi ∈ R
D is the i -th image, C, N, and M are the number of labels, images, and

sampled images, respectively.

Label Co-occurrence Correlation Matrix. As shown in Fig. 2, we employ
LL = {Li}C

i=1 to calculate the correlation matrix ML ∈ R
C×C based on the

co-occurrence probability of each label, where LL is a set of word vectors. For
the image xi, we gather the label probability pi ∈ R

C×1 from the last layer of
C-Tran, where pi denotes the probability of each object contained in the i -th
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Fig. 2. The generation of the co-occurrence correlation matrix and visual correlation
matrix. (Color figure online)

image and it is the i -th column of the label probability matrix MP ∈ R
C×N .

Assume that MP (i, j) denotes the element of the i -th row and the j -th column
in MP . We change the values of MP (i, j) ≥ 0.5 to 1, reserve the values of
0.5 > MP (i, j) ≥ 0.3 (expanding the range of candidates to correct bias), and
assign the rest of elements to 0. Note that these settings were determined after
we calculated the difference between the generated labels and the actual labels
on VOC2007 [6]. To alleviate the sparsity issue caused by a large C, we generalize
the method in LAH that regards the occurrence of a label as a discrete state (0
or 1) and calculate the co-occurrence probability Pj,i, i.e., the probability of the
j -th label’s occurrence when the i -th label appears, as below.

Pj,i =
Tj,i

Ti
=

∑N
k =1 MP (i, k) × MP (j, k)

∑N
k =1 MP (i, k)

, (1)

where Ti denotes the expectation number of occurrences for the i -th label and Tj,i

denotes the expectation number of co-occurrences between the i -th label and the
j -th one. Note that although Ti,j = Tj,i, Pj,i �= Pi,j when Ti �= Tj . As shown
in Fig. 2, only three images contain the girl or cat, where Pcat,girl �= Pgirl,cat

because Tgirl = 2 (purple triangle) and Tcat = 1.45 (red triangle). To promote
the convergence efficiency and prevent over-fitting, we lower the long-tail effect
by using the threshold μ to binarize Pj,i. Then, we fill ML by Pj,i, which can
be described as:

ML(i, j) =

{
0, if Pj,i ≤ μ,

1, otherwise .

To further overcome the problem of over-smooth caused by using the correlation
matrix in GCNs, we employ the weighted scheme like LAH to determine ML.
The ML is described below.

ML(i, j) =

{
α∑C

j =1,i�=j ML(i,j)
, if i �= j,

1 − α, otherwise ,
(2)

where α ∈ (0, 1). We update a node feature with the effect from α. For instance,
a node feature will be more determined by its neighbor nodes when α → 1.
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Fig. 3. Data augmentation strategy. The black lines represent fusion weights. And
the blue lines and orange dotted lines represent trusted and untrusted similarities,
respectively. (Color figure online)

Image Visual Correlation Matrix. We employ RV = {Ri}M
i=1 to calcu-

late the correlation matrix MV ∈ R
M×M . Nevertheless, we are caught between

employing XS , which results in information loss, and using XD, which results in
a huge cost. Therefore, we learn the embeddings for XD and sample the embed-
dings. As shown in Fig. 2, we collect XD through the C-Tran model. Different
from conventional features acquired from the convolution layer, our features
consist of Z1 to ZH×W , where each Zi ∈ R

1×2048 consists of values at the same
position for all feature maps, H and W represent the width and height of the
feature map, respectively. Since features in C-Tran are generated by the rela-
tionship between pixels, we pick the top-k (See Sect. 5) values on each Zi to
construct Ri, i.e., the high-dimension feature of the i-th image. Then, we form
the adjacency matrix MA by cosine distances between Ri and Rj for the graph
embedding learning. Assume that ui = MA(i, ·) denotes the vector in the i -th
row of MA. It also represents the similarity between the i -th image and others
in XD. We employ SDNE [21] to encode ui into the embedding Ei

0, and get the
subset {Ei

0}M
i=1 of {Ei

0}N
i=1 to calculate MV , where {Ei

0}M
i=1 is obtained by

random sampling, but preferably in an amount equal to the number of pseudo
labels and covering all categories in the target dataset. Each element of MV is
calculated by cosine distances between Ei

0 and Ej
0.

Data Augmentation Strategy. We propose a label similarity transformation
strategy (2 patterns) to fuse two images via different weights. As shown in Fig. 3,
xi and xj are images in XD, while x1

i,j and x2
i,j are images composed by xi and

xj with different weights, where weights are a and 1 − a, and a ∈ (0, 1) (See
Sect. 5). We depict the method of point-to-point pixel summation and average
in Fig. 3(a) and the splicing method along with the horizontal and vertical in
Fig. 3(b). The label similarity transformation strategy produces more image pairs
with the trusted similarity, alleviating the sparsity issue of similar pairs when
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C is too large. Note that, since the composite images don’t contaminate the
correlation matrices, the co-occurrence correlations from the target dataset still
are decisive.

4 SS-LVH

SS-LVH learns a nonlinear hash function fh : x �→ h ∈ {−1, 1}K from input
space to Hamming space using CNNs and two GCNs, encoding each image x
into a K-bit hash code h = fh(x). For the target images (untrusted pairs) or
composite images (trusted pairs), i.e., xi and xj , if their pseudo-multi-labels
contain at least one same label, their similarity labels sij = 1. Otherwise, sij = 0.
fh(x) should preserve the similarities, i.e., S = {sij}, in hash codes.

In the representation learning stage, we input LL and ML, pairwise images
{(xi, xj , sij)}, and RV and MV into the label co-occurrence embedding learning
branch, the image representation learning branch, and the visual correlation
embedding learning branch, respectively. Then, {Ei

1}C
i=1, E2, and {Ei

3}M
i=1 are

generated and sent to the dual OGSP component. The fusion results Q1 and Q2

are concatenated to the label-visual representation Q. SS-LVH learns Q in the
way of BYOL. In the hash learning stage, we fix the learned parameters and
learn with the Cauchy distribution loss functions. Finally, SS-LVH transforms
Q into a K-dimensional continuous code Z ∈ R

K in the fc layer, and then
transforms Z into a K-dimensional hash code by h = sgn(tanh(Z)) ∈ {1,−1}K

in the fch layer. Finally, preserving similarity of pairwise images and lowering
the quantization error, SS-LVH learns the non-linear hash function fh(x). The
details of each part are described below.

Image Representation Learning. Following LAH, we employ ResNet-101 as
the backbone to learn the image representation. For the image x that has been
transformed to the dimension of D = 448 × 448 × 3, i.e., x ∈ R

448×448×3,
we capture a 2048×14×14-dimensional feature vector from the conv5_x layer.
Then, we generate E2 ∈ R

2048×1 through the global max-pooling (GMP) layer.

GCN for Learning of Embeddings. GCN can smooth the features by the
given correlation. More specifically, by the propagation of weights, it learns a
function fgcn on the graph to achieve feature extraction. For example, on the
label co-occurrence embedding learning branch, we assume that L(i)

L represents
the input in the i -th layer and L(i+1)

L denotes updated node features. The prop-
agation function in each GCN layer is described below.

L(i+1)
L = fgcn(M̂LL(i)

L W(i)
L ), (3)

where W(i)
L is the weight on the i -th graph layer, M̂L = D̃− 1

2 M̃LD̃− 1
2 with

M̃L = ML + IC and D̃(i, i) =
∑

j M̃L(i, j). In the implementation, we use
two GCN layers with word vectors generated by BERT. The dimensions of the
last layer of LL and RV are designed to match E2.
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Fig. 4. Self-supervised learning process.

Dual OGSP for Activation. OGSP employs a one-dimensional overlapping
window to perform sum-pooling over vectors and utilizes Hadmard Product (i.e.,
◦) to fuse embeddings and image representations. Each fusion result is mapped
onto multiple values corresponding to multiple groups (i.e., dotted boxes shown
in Fig. 1), resulting in richer information highlighting regions of interest. For the
i -th label activated representation Qi

L, we define that the size of the group is
iGg

L and the stride is iGs
L, where i ∈ {1, 2, . . . , C}. Meanwhile, Qi

L = Ei
1 ◦ E2,

where Ei
1, E2 ∈ R

2048×1 and Qi
L(k) denotes the k -th element of Qi

L. Thus, the
j -th element of Qi

L is described below.

Qi
L(j) =

iGg
L+(j−1)·iGs

L∑

k =1+(j−1)·iGs
L

Qi
L(k), (4)

where j ∈ {1, 2, . . . , 	 2048−iGg
L+iGs

L
iGs

L

}. Note that when the number of elements is

not enough, we fetch elements from the head of vector to fill. Based on this, Qi
L =

[Qi
L(1);Qi

L(2); . . . ;Qi
L(� 2048−iGg

L
+iGs

L
iGs

L

�)] and the label semantic similarity representation
Q1 is described below.

Q1 = [Q1
L;Q

2
L; . . . ;Q

C
L ], (5)

where Q1 ∈ R

∑C
i=1� 2048−iGg

L
+iGs

L
iGs

L

�×1
. In the same way, we define and calculate

iGg
V , iGs

V , Qi
V = Ei

3 ◦E2, and Qi
V . Then, the visual similarity representation Q2

is described below.
Q2 = [Q1

V ;Q2
V ; . . . ;QM

V ], (6)

where Q2 ∈ R

∑M
i=1� 2048−iGg

V
+iGs

V
iGs

V

�×1
. Finally, the label-visual representation Q is

described below.
Q = [Q1;Q2]. (7)

Generally, we recommend that ∀i, iGs
L = iGs

V =Gs, iGg
L = iGg

V =Gg (See Sect. 5)
because Q ∈ R

∑C+M
i=1 � 2048−Gg+Gs

Gs �×1 conduces to the trade-off between two repre-
sentations.

Self-supervised Learning. As shown in Fig. 4, the framework consists of the
online (brown dotted frame) and target (green dotted frame) networks, whose
parameters are θ and ξ respectively. The parameters ξ are an exponential moving
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average of θ. Given a target decay rate τ ∈ [0, 1], the update after each training
step is described below.

ξ ← τξ + (1 − τ)θ. (8)

The target network has the same architecture as the online network except
for the prediction function q. The two views V and V ′ come from image aug-
mentations T and T ′ respectively. In our task, T and T ′ can be conventional
methods for a single image, or our similarity transformation strategy for xi and
xj . f denotes the representation extraction function corresponding to networks
in blue, red, orange and purple frames shown in Fig. 1. Representation corre-
sponds to Q shown in Fig. 1. Q = fθ(V ) and Q′ = fξ(V ′). g is a projection
function consists of the BatchNorm layer (BN ), ReLU, fc layer and Tanh, where
Tanh is injected to adapt to hash task. H = gθ(Q) and H ′ = gξ(Q′). q is a
prediction function and H ′′ = qθ(H), where q has the same architecture as g.
Finally, we L2-normalize Ĥ ′ = H′

‖H′‖2
and Ĥ ′′ = H′′

‖H′′‖2
. The loss between the

normalized predictions and target projections is described below.

Lθ,ξ = ‖Ĥ ′ − Ĥ ′′‖22 = 2 − 2〈H ′,H ′′〉
‖H ′‖2 · ‖H ′′‖2

. (9)

According to Eq. (9), we calculate Lθ,ξ by feeding V to the target network and
V ′ to the online network. At each training step, the task is to minimize L̂θ,ξ =
Lθ,ξ +Lθ,ξ with respect to θ only. The optimizer of self-supervised learning are
described below.

θ ← Opt(θ,∇θL̂θ,ξ, η), (10)

where Opt is the stochastic gradient descent optimizer and η is a learning rate.
When we use conventional augmentation strategies, we will initialize a low learn-
ing rate for label co-occurrence embedding learning branch that enhances acti-
vation ability for global visual similarity representations. Contrastively, when we
adopt our similarity transformation strategy, we will initialize lower the learn-
ing rate for visual correlation embedding learning branch to enhance activation
ability for local semantic similarity representations. Finally, we only keep fθ

involving in hash function learning.

Cauchy Loss for Hash Learning. To generate hash codes with high aggre-
gation degree of similar samples within short Hamming distance, we employ
Cauchy loss functions used in DCH [1], resulting in the best retrieval perfor-
mance in Hamming radius ≤ 2.

The Cauchy loss functions consist of the Cauchy cross-entropy loss and the
Cauchy quantization loss. For the hi and hj corresponding to {(xi, xj , sij)}, the
probability function based on the Cauchy distribution is written as:

Γ (δ(hi, hj)) =
γ

γ + δ(hi, hj)
, (11)

where Γ (∗) is well-defined probability function, δ(hi, hj) denotes the Hamming
distance between hi and hj , γ is the scale hyper-parameter of the Cauchy dis-
tribution and controls aggregation degree. Generally, γ = 0.15.
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Assume that hi(j) is the j-th element of hi. The sign function sgn(hi) is
described below.

sgn(hi(j)) =

{
−1, if hi(j) ≤ 0,
1, otherwise .

(12)

For the quantization error ‖ h − sgn(h) ‖, we combine γ and the Cauchy distri-
bution to describe the prior for each hash code as:

φhi
=

γ

γ + δ(|hi|,1)
, (13)

where 1 ∈ R
K. To cooperate with continuous relaxation, we set δ(hi, hj) =

K
2 (1 − 〈hi,hj〉

‖hi‖2·‖hj‖2
) to approximate the Hamming distance and to optimize the

loss function.
Based on Eq. (11) and the logarithm Maximum a Posteriori estimation of the

hash codes, the Cauchy cross-entropy loss function LC is described below.

LC =
∑

sij

ωij(sij log
δ(hi, hj)

γ
+ log(1 +

γ

δ(hi, hj)
)), (14)

where

ωij =

{
|S|/|Ss|, sij = 1,
|S|/|Sd|, sij = 0,

where Ss = {sij ∈ S : sij = 1} is the set of similar pairs, Sd = {sij ∈ S : sij =
0} is the set of dissimilar pairs. For ∀i, j and i �= j, if ∃MP (i, k) = MP (j, k) =
1, we obtain sij = 1; otherwise, sij = 0. Meanwhile, according to Eq. (13), the
Cauchy quantization loss function LQ is described below.

LQ =
N∑

i=1

log(1 +
δ(|hi|,1)

γ
). (15)

According to the deduction of Bayesian learning in DCH [1], the complete
hash loss function is described below.

L = λLC + (1 − λ)LQ, (16)

where λ is a hyper-parameter to balance two loss functions.

5 Experiment

Experimental Settings. We select three multi-label image datasets, includ-
ing MS-COCO [15], VOC2007 [6], and MIRFLICKR-25K [10]. We randomly
select 10,000, 4,000, and 5,000 images from three datasets respectively as target
datasets to train models. Following parameters in LAH and BYOL, we train
all datasets without using hand-crafted labels. Then, we randomly select 5000,
1000, and 1000 images from remaining images as the query set to test mod-
els respectively. The classification results in terms of Mean Average Precision
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Table 1. MAP of re-ranking within Hamming radius 2 (MAP@H ≤ 2) at different bits
on three public multi-label image datasets.

Method MS-COCO VOC2007 MIRFLICKR-25K
16 bits 32 bits 48 bits 64 bits 128 bits 16 bits 32 bits 48 bits 64 bits 128 bits 16 bits 32 bits 48 bits 64 bits 128 bits

DistillHash [26] 0.605 0.617 0.628 0.630 0.627 0.403 0.410 0.424 0.422 0.420 0.628 0.631 0.633 0.636 0.637
DU3H [27] 0.611 0.620 0.630 0.634 0.633 0.421 0.442 0.448 0.446 0.444 0.636 0.645 0.647 0.646 0.643
TBH [19] 0.607 0.613 0.615 0.618 0.617 0.423 0.441 0.447 0.451 0.448 0.638 0.639 0.642 0.646 0.645
DHNR [23] 0.606 0.609 0.611 0.613 0.611 0.434 0.438 0.439 0.438 0.437 0.624 0.631 0.637 0.647 0.645
Bi-half [14] 0.609 0.616 0.622 0.626 0.626 0.428 0.433 0.438 0.442 0.441 0.640 0.642 0.647 0.650 0.649
WDHT [7] 0.594 0.597 0.608 0.613 0.610 0.389 0.393 0.401 0.411 0.410 0.603 0.616 0.621 0.623 0.616
MGRN [11] 0.618 0.621 0.627 0.636 0.636 0.447 0.449 0.452 0.452 0.452 0.631 0.636 0.641 0.645 0.649
DATE [17] 0.611 0.621 0.633 0.639 0.638 0.481 0.488 0.493 0.505 0.507 0.641 0.650 0.656 0.657 0.657
CIBHash [18] 0.617 0.623 0.638 0.641 0.641 0.489 0.504 0.517 0.519 0.518 0.644 0.655 0.659 0.660 0.659
SS-LVH 0.617 0.637 0.644 0.653 0.658 0.509 0.513 0.519 0.526 0.531 0.639 0.655 0.661 0.663 0.663

Fig. 5. P@H ≤ 2 and R@H ≤ 2 with different code lengths on the MS-COCO (C),
VOC2007 (V) and MIRFLICKR-25K (F) datasets.

(MAP) on MS-COCO, VOC2007, and MIRFLICKR-25K are 0.518, 0.403, and
0.451, respectively when we test datasets by the empirical model. In addition,
we employ the methods of the word vectors generation and evaluation met-
rics used in LAH, where LAH measures the quality of hash codes within Ham-
ming radius 2: MAP within Hamming Radius 2 (MAP@H ≤ 2), Precision curves
within Hamming Radius 2 (P@H≤ 2), and Recall curves within Hamming Radius
(R@H≤ 2).

We compare SS-LVH with nine state-of-the-art label-free hashing methods,
including five unsupervised methods (DistillHash [26], DU3H [27], TBH [19],
DHNR [23], and Bi-half [14]), two label-embedding-based weakly-supervised
methods (WDHT [7] and MGRN [11]), and two SSL methods, i.e., contrastive
learning methods (DATE [17] and CIBHash [18]).

Implementation Details. For the label-level co-occurrence embeddings learn-
ing, we employ labels of VG-500 and set C = 500. For the label-level visual
similarity embeddings learning, we set k = 10, and M = 500 to equal C. For
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Table 2. MAP within Hamming radius 2 (MAP@H ≤ 2) of SS-LVH and its variants
on three public multi-label image datasets. VB denotes Visual Correlation Embedding
Learning Branch. GSP denotes Group Sum-Pooling. OW denotes Overlapping Window.
SSL denotes Self-Supervised Learning. STS denotes Label Similarity Transformation
Strategy. � means to enable the component, otherwise disable it.

Order VB MFB GSP OW SSL Tanh STS MS-COCO VOC2007 MIRFLICKR-25K
32 bits 64 bits 128 bits 32 bits 64 bits 128 bits 32 bits 64 bits 128 bits

1 � � � � � � 0.637 0.653 0.658 0.513 0.526 0.531 0.655 0.663 0.663
2 � � � � � 0.620 0.624 0.623 0.485 0.487 0.481 0.626 0.633 0.618
3 � � � � � 0.441 0.451 0.451 0.354 0.358 0.359 0.406 0.411 0.403
4 � � � � � 0.632 0.648 0.652 0.510 0.519 0.524 0.648 0.650 0.652
5 � � � 0.531 0.568 0.570 0.367 0.374 0.377 0.541 0.544 0.546
6 � � � � 0.623 0.630 0.635 0.483 0.513 0.518 0.634 0.647 0.653
7 � � � � � 0.633 0.639 0.653 0.510 0.522 0.529 0.650 0.660 0.661
8 � � � � � 0.628 0.643 0.649 0.507 0.514 0.527 0.637 0.654 0.659

OGSP, we set Gg = 128 and Gs = 32. For BYOL, we adopt color transforma-
tion as the conventional data augmentation strategy. When we input untrusted
pairs transformed by the conventional strategy, we initialize η1 = 0.05, η2 = 0.05,
η3 = 0.1 and η4 = 0.03, where η1, η2, η3 and η4 denote learning rates of the
label co-occurrence embedding learning branch, image representation learning
branch, visual correlation embedding learning branch, and other components
respectively. When we input trusted pairs using our strategy, we set a = 0.35,
η1 = 0.1, and η3 = 0.05. With 1000 epochs, we set the batch sizes to 128 and 32
for the conventional data augmentation strategy and our one respectively, the
weight decay to 10−6, and the base target decay rate to τ = 0.99. For the hash
learning, we set η1 = η2 = η3 = 10−4 and η5 = 0.05 with batch size 128, where η5
is the learning rate of hash learning component. The momentum of optimization
is 0.9 and the weight decay is 10−4.

Comparisons with State-of-the-Arts. The MAP@H ≤ 2 of all comparison
methods are listed in Table 1, where the underline and bold fonts represent the
highest value in the comparison algorithms and all algorithms respectively. These
results show that SS-LVH has a stable advantage over other algorithms. Espe-
cially at 128 bits, the improvements are 1.7%, 1.3% and 0.4% on MS-COCO,
VOC2007 and MIRFLICKR-25K, respectively. Meanwhile, we find that except
for contrastive learning methods, the performance of other algorithms will decline
when the code length is beyond 32 or 64 bits. We think that the generalization
ability derived from visual correlation improves the ability of hash code for car-
rying semantic information, while our incorporation pattern for the semantic
and visual information can enhance this advantage.

To reflect the proportion of retrieved images related to the query image,
we show the P@H ≤ 2 performance in Fig. 5(a), Fig. 5(b), and Fig. 5(c). SS-LVH
achieves remarkable results on three datasets, and averagely exceeds the runner-
up algorithm (i.e., CIBHash) by 0.87%, 0.63% and 0.16% respectively. These
results verify the superiority of SS-LVH in the perception of objects and semantic
information. In addition, we show the aggregation degree of similar image and the
R@H≤ 2 performance in Fig. 5(d), Fig. 5(e), and Fig. 5(f). SS-LVH is dominant
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Fig. 6. The top 10 images returned by SS-LVH when we input query images.

Fig. 7. MAP@H ≤ 2 w.r.t. k, Gg, and a with 128 bits hash codes on the MS-COCO,
VOC2007 and MIRFLICKR-25K datasets.

on three datasets and averagely exceeds the runner-up algorithm (i.e., CIBHash)
by 0.86%, 1.78% and 3.01% respectively. These results verify the superiority of
SS-LVH in the aggregating similar data and the perception of inter-dependency.

To further demonstrate the retrieval effect of SS-LVH, we visualize the top
10 returned images for three query images in Fig. 6.

Ablation Study. To verify contributions of components including the visual
correlation embedding learning branch, OGSP, Tanh, and label similarity trans-
formation strategy, we list the influence on MAP@H ≤ 2 at different code lengths
using different combinations in Table 2. The 1st row denotes the performance
of SS-LVH as a benchmark. The performance without the visual correlation
embedding learning branch shows in the 2nd row, where the performance aver-
agely decreases by 2.7%, 3.9%, and 3.47% on three datasets, respectively. These
declines manifest the necessity of incorporating this visual branch and only
employing SSL is not enough to alleviate the noise problem. In addition, the
degradation of performance at 128 bits is remarkable. This result confirms that
the visual branch helps the hash code carry more semantic information. In the
3rd and 4th rows, we verify the effect of OGSP. Obviously, MFB is not compat-
ible with these SSL components. We believe that this is because the factorized
matrices of MFB disturb the spatial information during activation. Furthermore,
the overlapping window brings 1.33%, 0.57%, and 1.53% of increments of per-
formance on three datasets. Finally, we notice the influence of SSL components
in the 5th to 8th rows. The result in the 5th row means the performance using
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pseudo labels without SSL components. Compared with this result, on average,
the performance in the 6th row improves 7.3%, 13.2%, and 10.1%, respec-
tively on three datasets. This result shows that the SSL method is important for
improvement of hashing performance. Based on SSL, the incorporation of Tanh
brings 1.23%, 1.57%, and 1.23% of benefits, respectively, and the label similarity
transformation strategy also brings 1.07%, 1.13%, and 0.53% of benefits, respec-
tively, on three datasets on average. All in all, our components contribute to
performance improvement and the configuration of SS-LVH is optimal.

Hyper-Parameters Sensitivity Analysis. We fix the hyper-parameters that
have been verified in other papers and investigate the sensitivity of the designed
components’ parameters including top-k, Gg(Gs = 32), and a. We determine the
best hyper-parameter by fixing others with the default values and performing
the linear search in candidates. Figure 7 illustrates MAP@H≤ 2 with 128 bits
hash codes on three datasets. According to highest values, SS-LVH can achieve
the best retrieval performance when k = 10, Gg = 128 and a= 0.35.

6 Conclusion

This paper proposes an SS-LVH framework for multi-label image retrieval. Com-
pared with existing methods, we preserve the advantage derived from label co-
occurrence correlations and perceive image visual correlation to alleviate the
noise problem. The results on three datasets demonstrate the generalization
ability and superiority of SS-LVH. Our dual OGSP component, label similarity
transformation strategy, and introduction of Tanh in BYOL can improve the
retrieval performance.
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Abstract. Talking face generation is synthesizing a lip synchronized
talking face video by inputting an arbitrary face image and audio clips.
People naturally conduct spontaneous head motions to enhance their
speeches while giving talks. Head motion generation from the speech is
inherently difficult due to the nondeterministic mapping from speech to
head motions. Most existing works map speech to motion in a determin-
istic way by conditioning certain styles, leading to sub-optimal results.
In this paper, we decompose the speech motion into two complementary
parts: pose modes and rhythmic dynamics. Accordingly, we introduce a
shallow diffusion motion model (SDM) by equipping a two-stream archi-
tecture, i.e., a pose mode branch for primary posture generation, and a
rhythmic motion branch for rhythmic dynamics synthesis. On one hand,
diverse pose modes are generated by conditional sampling in a latent
space, guided by speech semantics. On the other hand, rhythmic dynam-
ics are synced with the speech prosody. Extensive experiments demon-
strate the superior performance against several baselines, in terms of
fidelity, similarity, and syncing with speech.

Keywords: Talking face · Shallow diffusion · Head motion
generation · Speech

1 Introduction

Head motion generation from the speech is to synthesize spontaneous head
motions synchronized with input speech audio. Professional speakers are experts
in utilizing such motions to effectively deliver information. This task is essential
for applications such as digital avatars and social robots [11]. Notably, with this
technique, amateur speakers can also generate their own “professional” talking
videos, by mimicking moves from professional speakers.

With the development of deep neural networks for generation-related
tasks [29,31,38,43,44], talking face can be driven by audio speech. While gen-
erating lip motions has been extensively studied in talking face generation [23],
synthesizing plausible speech head motions remains an open issue. Specifically,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Li et al. (Eds.): APWeb-WAIM 2022, LNCS 13422, pp. 144–157, 2023.
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lip motions can be well matched with the input audio using a deterministic
mapping, i.e., one to one mapping from phonemes to lip shapes. However, such
models can not be trivially extended to the head, due to the highly stochastic
nature of head motions during a talk speech. Practically, the speech head motion
is highly freedom. Even if the same person gives the same speech twice in a row,
there is no guarantee that the speaker would exhibit the same head motions.
Moreover, a person usually switches poses from time to time during a long talk-
ing speech. The same speech audio does not necessarily lead to a fixed form of
motions, and different speeches may go well with the same motion sequence.

Most existing works treat head and lip motion generation in a similar way [14,
41,46], i.e., the head landmarks are directly inferred from the input audio via a
deep network. To simplify the non-deterministic mapping, some methods [15,18]
rely on a set of pre-defined postures, or condition on person-specific styles and
templates. These solutions can mimic motions of certain speakers/styles to some
degree, but they are limited in terms of motion diversity and fidelity, especially
for long talk speeches. Therefore, it is critical to developing algorithms that
model the non-deterministic mapping between speech and head motions.

Based on studies in linguistics and psychology [39], speech motion helps the
organization and presentation during speech delivery and contributes to both
semantics and intonation. Semantically, head motions contribute to the utter-
ance content. For example, some motions are conventionalized and attached to
certain linguistic properties (e.g., “nod”). These motions are widely used to
facilitate communication. In terms of intonation, the rhythmic movement that
matches the prosody of audio could attract the attention of the audience, with
the stressed syllable during speech. Moreover, proper rhythmic motions also
reflect the progress of the speech and deliver a vivid listening experience. Such
speech motion usually has no specific linguistic meaning and manifests as simple
and fast hand dynamics related to prosody.

Motivated by these studies, we consider the structure of speech motions from
a novel perspective. We introduce the concept of pose mode as the mode of the
pose distribution that speakers have for fragments of speech. Considering the
speaker’s posture in a speech video as a random vector, it follows a multi-modal
distribution in the high dimensional space. Modes in such distribution (values
with local maximal density) correspond to the habitual postures of speakers.
Our work focuses on motions in talk videos, where speakers organize a long
speech around a certain topic. Under this setting, the pose modes are mostly
habitual postures with no specific global meaning. Consequently, the structure
of speech motions can be considered as the sequential transitions of pose modes
with rhythmic dynamics under each pose mode. Therefore, the non-deterministic
mapping from speech to head motion is decomposed into two parts: a stochastic
mapping from speech semantics to pose modes, and the mapping from speech
prosody to rhythmic motion dynamics. Our contributions are summarized as
follows:

1. To address the non-deterministic mapping from speech to head motions, we
propose to decompose the motion into pose modes and rhythmic motions.
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The former is stochastically generated with a shallow diffusion model, and
the latter is effectively inferred by speech prosody.

2. Extensive experiments demonstrate that our model generates plausible free-
dom motions well synced with the speech, outperforming other baselines in
terms of the fidelity, similarity, and syncing with speech.

2 Related Work

Talking face generation is a cross-modal image synthesis task, Brand et al. [2]
proposed Voice Puppetry for the generation of full facial animation from speech.
With audio-driven facial animation, it can assist animation generation and film
production. In the following paragraphs, we will overview the prior works about
the audio-driven facial animation methods, which consist of facial landmarks,
lip-sync animation, speaker-related animation, and image generation.

Facial Landmarks. A deep neural network-based facial landmarks generation is
proposed by Eskimez et al. [10]. It was used in the talking face generation and
improved speech intelligibility robust to noisy conditions. Chen et al. [5] proposed
a cascade GAN-based method to generate a talking face, instead of learning a
direct mapping between audio and image, a high-level structure of facial land-
marks is used as a middle representation. First, transfer audio to landmarks and
then generate the image conditioned on the landmarks. Greenwood et al. [13]
jointly learn full-face animation and head pose, the landmarks were used as the
image representation. In the image, each person had 62 landmarks distributed
about the face, the landmarks along with lip edges and eyes. and translation
combined.

Lip-Sync Animation. Given an arbitrary audio speech and one image of an arbi-
trary speaker, generating lip movement sync with the speech content is the lip-
sync animation task. With the increased power of GPU computation, end-to-end
learning [24,25,27,30,35] from audio to video frames have huge progress. Chen
et al. [4] proposed to train an end-to-end model with a novel correlation loss
to synchronize lip changes and speech changes, which is robust to view angels,
lip shapes, and facial texture. Song et al. [26] propose a conditional recurrent
generation network to build a temporal model for accurate lip synchronization,
it considers the temporal dependency across video frames. To boost the accu-
racy of lip synchronization, a lip-reading discriminator is added. Vougioukas et
al. [34] proposed an end-to-end method, using a static image of a speaker and an
audio speech, without relying on handcrafted intermediate features. The model is
based on a temporal GAN, that uses discriminators for the audio-visual synchro-
nization, it generates lip movements sync with the speech. The speech styles like
shouting or mumbling are related to the motion of face motion, Zhou et al. [47]
proposed a three-stage LSTM network architecture to produce animator-centric
speech motion curves, it is a real-time lip-sync from audio.
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Speaker Related Animation. Given audio of a specific person, to synthesize a
high-quality video of him speaking, replicate the sound and cadence of a person’s
voice. The speaker-related animation needs to model not only the speech content,
but also requires to model the target style how it speaks, and how it expresses
itself. Suwajanakorn et al. [28] used a recurrent neural network to learn the
mapping between audio to mouth shapes conditioned on the same person of
Obama. With the speaker-related model, it learns the texture of the lip. Cudeiro
et al. [8] proposed a model that factors identity from facial motion, conditioning
on speaker labels during training allows the model to learn different speaking
styles. Thies et al. [32] proposed method with a latent variable to model the face
of the target speaker, it learns temporal stability while rendering to generate
video frames.

Image Generation. Fǐser et al. [12] introduced a method of wrapping-based
portrait video generation, with a controllable amount of landmarks to perform
non-parametric texture synthesis. For the face image, image to image translation
is popularly used to talking face synthesis. Thies et al. [33] proposed Face2Face
to animate the facial expressions of the target speaker and re-render the output
video in a photo-realistic fashion. It shows the robust appearance of face transfer
between talking face videos. GAN-based method was proposed by Kim et al. [19],
a recurrent GAN captures the Spatio-temporal features of talking face and could
copy facial expressions from source to target speaker. A cycle-consistency loss [42]
is added to the model for the facial expression styles transfer. Zakharov et al. [40]
proposed few-shot talking face generation method, it performs meta-learning on
a large dataset. The model embeds the face landmarks into embedding vectors,
and the generator network maps the face landmarks into the output frames.

3 Method

We proposed a method called the shallow diffusion motion model (SDM) to
generate a talking face sequence according to a given speech. To this end, a
mapping from speech to face motion is required. We decomposed the talking
face into pose motion and rhythmic motion. Additionally, to address the over-
smoothing of generation of the talking face, a shallow diffusion mechanism was
proposed for the generation of the motion sequence. Correspondingly, there are
three modules for the proposed method, and the framework is shown in Fig. 1.
For the input image and the video frames, we use a pre-trained face landmark
detector [3] to do a preprocess and use the movement of the landmarks as the
motion of the talking face.

Given a speech audio S and the corresponding video frame sequence contain
the taking face F . The content encoder extracted feature on the input speech S,
the content encoder is built up by four convolutional layers. The model of SDM
is to learn the mapping between S(i) and F(i) of the ith frame. In this work,
we used mel-spectrum as the feature representation of speech S(i) and keypoint
landmarks of the human face as the representation of the visual face frame F(i).
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Fig. 1. The framework of talking face motion model with shallow diffusion model. The
whole framework consists of two branches, a speech branch for the mapping of speech
content and rhythm motions, a visual branch to learn the pose motion between frames.

To learn this mapping, we decompose the motion of talking face F(i) into two
parts:

F(i) = F (i) + ˜F(i) (1)

where F (i) is content-related motion, and ˜F(i) is the rhythmic related motion
of the talking face. The content-related motion can be regarded as the main
motion of the head and the rhythmic-related motion could be the dynamics of
the talking head. Finally, we use a shallow diffusion mechanism model for image
generation.

3.1 Pose Motion Generation

The pose motion contains a motion encoder and a motion decoder. The content
related pose motion conditioning on the content of the audio speech Scont and
the pose motion of the previous frame F(i−1).

F
∗
(i) = Gc(F(i−1), Scont) (2)

where the Gc represent the content related pose motion generator, and we use
the superscript ∗ for the representation of the result of the generator.

The motion encoder encodes the Frame F(i) and F(i−1) into the latent vec-
tors M(i) and M(i−1) separately. Conducting a subtraction between the neighbor
frames could get the change the motion. With the condition on speech content
to sync the motion change with the speech. The motion decoder does a recon-
struction of the previous frame F(i−1) with the motion change variable and the
latent vector M(i). The content-related motion can be formulated as a condi-
tion motion predictor. During the training phase, for each frame F(i) has fixed
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the previous frame of F(i−1), the module of the motion decoder conducts the
reconstruction of the motion of frame F(i−1) as:

M∗
(i−1) = fdec(z,M(i)) = fdec(M(i−1)) (3)

where fdec is the motion decoder, and z is the latent variable of the layer henc.
We use the the motion reconstruct to regularize the embedding space of the
motion encoder and decoder:

Lreg = ||M(i) − fdec(M(i))|| + ||M(i−1) − fdec(M(i−1))|| (4)

This forces the motion decoder to use the information of the latent variable
z.

3.2 Rhythmic Motion Generation

The rhythmic motion is changed according to the temporal domain, it is impor-
tant for the talking face to control the motion with dynamics. We generate the
rhythmic motion through the rhythmic dynamics of the prosodic information in
speech. It can keep the sync of prosody between the visual and audio.

In the control of rhythmic motion generation, we use a rhythmic generator
for the dynamics motion embedding. The rhythmic generator is mainly built
up with a convolutional network. The rhythmic motion is independent of the
motion learned from the contend related pose motion, and the loss is defined as:

Lind = ||˜M∗
(i) − M∗

(i)|| (5)

The Lind ensures the generated rhythmic motion pose ˜M∗
(i) independent to

the content related motion pose M∗
(i). It helps the dynamics of motion are not

affected by the content of speech.

3.3 Shallow Diffusion Mechanism

The shallow diffusion mechanism is applied to the image animation generation.
The main module of the shallow diffusion mechanism comes from the diffusion
model [20–22]. The diffusion model contains two processes, a diffusion process to
convert the image data into a Gaussian distribution step by step, and a reverse
process to reconstruct the image data from Gaussian white noise. The pipeline
of a diffusion model is shown in Fig. 2.

Diffusion Process. Let the distribution of data F 0
(i) as p(F 0

(i)), the diffusion pro-
cess converts the F 0

(i) into FT
(i) step by step with a Markov chain with fixed

parameters. The T steps conversion can be formulated as:

q(F 1:T
(i) |F 0

(i)) =
T

∏

t=1

q(FT
(i)|F t−1

(i) ) (6)
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Fig. 2. The two processes of diffusion model. The diffusion process is from F 0
(i) to FT

(i),

the reverse process is from FT
(i) to F 0

(i).

At each step t ∈ (1, T ), a Gaussian noise multiply with a variance of α ∈
[α1, · · · , αT ] is added to the F t−1

(i) to obtain F t
(i).

q(F t
(i)|F t−1

(i) ) = N (F t
(i);

√
1 − αtF

t−1
(i) , αtI) (7)

If the parameters of α are well designed, and the step T is larger enough, the
final q(FT

(i)) is equally an isotropic Gaussian distribution.

Reverse Process. The reverse process is from FT
(i) to F 0

(i), which is follow the
Markov chain with learnable parameters θ. The reverse process can be approx-
imate it with the neural networks with the parameters θ. It can be formulated
as:

pθ(F 0:T
(i) ) = p(FT

(i))
T

∏

t=1

pθ(F t−1
(i) |F t

(i)) (8)

To learn the parameters θ, we optimizing the loss with stochastic gradient
descent on:

Ldiff = DKL(q(F t−1
(i) |F t

(i), F
0
(i))||pθ(F t−1

(i) |F t
(i))) (9)

where DKL() is the Kullback-Leibler divergence. Finally, with the trained net-
work, we can sample from p(FT

(i)) ∼ N (0, I) to generate the target data with the
reverse process.

When the step of T is big enough, the trajectory from F 0
(i) to Gaussian FT

(i)

and the trajectory from FT
(i) to F 0

(i) will meet in a step t. Inspired by this point,
we can use an auxiliary predictor to predict the step of t. With the step of t to
do a shallow diffusion process. And the reverse process could also start at the
predicted step of t.
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3.4 Training Losses

The reconstruct loss is applied to final reconstution of the image F ∗
i :

Lrec = ||F ∗
i − F(i)|| (10)

Overall the total loss is defined as:

Ltotal = λ1Lreg + λ2Lind + λ3Lrec (11)

where the λ1 ∼ λ3 is hyperparameters for balancing the different losses.

3.5 Testing Stage

The pipeline of talking face inference phase is followed as the function:

F ∗
(i) = G(F ∗

(i−1), S(i))

= fdenoi(fdec(fcon(S(i)), fenc(F(i−1))), frhy(S(i)), t, F(i)t)
(12)

where fdenoi is the reverse processes of diffusion, frhy is the rhythmic generator.
The final results of talking face video are a stack of the frames F ∗

(1), · · · , F ∗
(n)

with the tool of ffmpeg.

4 Experiments and Results

4.1 Experimental Setup

Datasets. We used three datasets for the experimental evaluation, it contains
VoxCeleb2 [6], LRW [7] and LRS3-TED [1]. The VoxCeleb2 contains more than
6000 celebrities and covers 1 million utterances in speech. The LRW is a large
dataset containing 1000 speakers, and each speaker spoke 500 different words.
The LRS3-TED includes face track over 400 h of videos from TED and TEDx, it
has more challenges with head movements than others. We follow the raw split
as the ratio of the dataset.

Training Details. We use the optimizer of ADAM with the learning rate of
2 × 10−4, and the β1 of 0.4, β2 of 0.999. In the traning phase, we set the loss
weight in Eq. 11 as λ1 of 5, λ2 of 2, and λ3 of 1. The experiment was conducted
on a single GPU of NVIDIA Tesla V100 with 16 GB memory.

Metrics of Evaluation. For the quantitative evaluation, we adopted several crite-
ria, it includes Frchet Inception Distance (FID) [16], which was used to quantify
the fidelity of the synthesized image, and structured similarity (SSIM) [36], it
was used to compare the similarity of the synthesized image and real images.
We use cosine similarity (CSIM) [40] to identify the speaker identity preserving
ability, which computed the cosine distance between the embedding vectors of
a face recognition network [9]. To check if the synthesized video contains sync
movement of the lip to speech content, we use Landmarks Distance (LMD) [4]
for evaluation.
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4.2 Results and Analysis

Comparision with Talking Face Methods. We first compare the proposed method
with the related works of talking face methods, we select the audio-driven
method. With given a single images and an audio to generate the video of talk-
ing face, which has been studied in Zhou et al. [45], Song et al. [26], Chung et
al. [17], Vougioukas et al. [34], Chen et al. [5], and Wiles et al. [37]. For a fair
comparison, all the methods were input with the same image and speech from
the test dataset. And we do a preprocess on the input image with the same
cropping area. The quantitative evaluation results are shown in Table 1.

Table 1. Comparisions with different audio to video methods on the three public
dataset of VoxCeleb2, LRW, and LRS3-TED. The score of FID and LMD smaller is
better, while for SSIM and CSIM bigger is better. We bold each leading score.

Method Datasets

VoxCeleb2 LRW LRS3-TED

FID SSIM CSIM LMD FID SSIM CSIM LMD FID SSIM CSIM LMD

Zhou et al. [45] 137 0.84 0.32 4.8 149 0.85 0.39 3.7 221 0.72 0.27 6.2

Song et al. [26] 163 0.78 0.27 5.6 134 0.91 0.45 3.1 204 0.62 0.28 6.5

Chung et al. [17] 159 0.79 0.29 5.4 132 0.91 0.44 3.1 212 0.58 0.32 6.7

Vougioukas et al. [34] 127 0.85 0.33 6.3 116 0.88 0.35 3.6 196 0.63 0.26 6.4

Chen et al. [5] 142 0.82 0.31 4.9 151 0.84 0.38 3.3 294 0.66 0.31 4.8

Wiles et al. [37] 117 0.65 0.31 4.8 107 0.69 0.31 3.2 172 0.57 0.28 5.6

Ours 97 0.74 0.42 3.4 102 0.76 0.49 3.1 122 0.79 0.44 3.2

Fig. 3. The ablation studies with visualization, three main modules of pose motion
generation, rhythmic motion generation, and shallow diffusion mechnism are compaired
with the full model.

Note that in the preprocess of our method, we did not include the affine
transformation, which leads to a lower score in terms of SSIM. From the results
shown in Table 1, we can see except for the SSIM score, our method could achieve
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the best performance than other related audio to video methods in most eval-
uation metrics. As shown, the proposed method outperforms other baselines,
suggesting better generation ability in relating audio and motion. Our model
shows strong performances on the fidelity of the synthesized image by the low
FID scores, while other baselines fail to generate high fidelity images on some
speakers. Our model is more robust to lip motion syncing, leading to lower aver-
aged LMD scores. Our model is more accurate keep the speaker identity in the
synthesized image, which leads to a high score of CSIM.

"Today, we are introducing our talking face method of ..."

Fig. 4. End to end video generation results. From bottom to top row are speech text,
speech audio, generation keypoint, and the final video sequence.

Ablation Studies. We compare the contributions of different modules in the abla-
tion studies, the primary modules described in Sect. 3. We conduct the experi-
ments on the dataset of VoxCeleb2. As shown in Fig. 3, we visualize the result
of each module compared with the full model.

From the results shown in Fig. 3, we can see the synthesized frames without
a shallow diffusion mechanism in the fourth column, the motion of the face
has a bigger distance from the groundtruth. We attribute this to the shallow
diffusion model, the diffusion-based module could synthesize the target image
more robustly, which could stabilize the generation and could lead to a faster
convergence during training. Another case we found in the ablation studies is
the pose motion generation module affects the lip part of the face in the second
column. Without the pose motion generation module, the synthesized image
could not control the mouth for the speech content.
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Video Results. Further, we show the results based on our generated motion to
the video frames in Fig. 4. The video can be generated end to end by inputting a
speech and an image. We can apply the method to the arbitrary input image in
the wild, it can generate any identity. It can be used for the recording of video
presentations.

5 Conclusion

In this work, we propose an approach based on a shallow diffusion mechanism
that synchronizes faces with speech content through rhythmic movements of
the head. We solve the non-deterministic mapping problem by decomposing
the difficult task into complementary parts. Given input speech audio, pose
motion generation generates different pose patterns sequentially through condi-
tional sampling, while rhythmic motion generation simultaneously enriches each
pose pattern dynamically with audio-conditioned rhythms to achieve sponta-
neous movements. Our model generates highly diverse and visually plausible
face images in a shallow diffusion mode, from the prediction time step to con-
ducting the reverse process of diffusion.
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Abstract. Social network analysis has become widespread in recent
years, especially in digital tourism. Indeed, the vast amount of data that
tourists produce during their travels represents an effective source for
interpreting their behaviors (geographics, demographics, psychograph-
ics, movement patterns). Since the classic measures unfit to those kind
of information, this article presents a new measure to determine tourist
profiles thanks to the digital traces left on social networks. This mea-
sure is based on geographic, demographic and pattern’s behaviors of
the tourists as the context and the content of their trips. The approach
is simulated and evaluated experimentally with a hierarchical cluster-
ing on the traces left by tourists on TripAdvisor in the French capital
Paris. Clusters found correspond to tourism segment determined by the
Tourism Office of Paris.

Keywords: Tourism profiling · Machine learning · Distance measure

1 Introduction

The World Tourism Organization recorded 1.5 billion international tourist
arrivals worldwide in 2019, an increase of 4% over 2018. Tourism is responsi-
ble for 10.3% of the world’s gross domestic product and is considered one of
the largest and fastest-growing industries. Tourism actors such as tourist offices,
cultural and commercial services analyze the behavior of tourists to know their
motivations as profiles, to adapt to their demands, and thus to help them make
decisions [8]. Profiles are typically determined by surveys and polls. However,
the emergence of social networks, such as Facebook, Flickr, TripAdvisor, and
Booking, has created a new paradigm for the study of tourism profiling.

In the literature, to create tourist profiles, tourist experiences are processed
and common characteristics of tourists with similar experiences are captured to
extract knowledge. Profiling is mostly performed as in the case of recommenda-
tion systems by finding similar people as filtering methods. Those methods are
biased because the profiles are selected in advance. In order not to induce bias,
we consider that profiling should be unsupervised.

In this paper, we propose a new measure called Tourists Profile Measure
(TPM), used by a hierarchical clustering, to determine tourist profiles considering
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geographic, demographic and behavioral information left by tourist on social
medias. From the TPM measure, an hierarchical clustering algorithm determines
groups of tourists’ stays. They are examined to extract information, as a profile
and perform various comparisons between them. This method can be applied to
any dataset without the need for expertise.

The main contributions of our work can be summarized as follows:

– A summary of tourists’ stays based on data shared via social networks.
– TPM, a new measure to qualify the proximity between two tourist stays.
– A knowledge extraction of profiles.

This article is organized as follows. In Sect. 2, we present related work on
tourism profiling. In Sect. 3, we formalize and enrich our dataset. In Sect. 4, we
present our new measure to compare the tourist experience and to generate the
tourist profile using the classification method presented in Sect. 5. Our method
is implemented and is the subject of a case study on a TripAdvisor dataset in
Sect. 6. We finish with a conclusion about the presented works.

2 Literature Review

Our objective in this study is to establish tourism profiles that are not biased
by this preliminary choice. We seek to create profiles using an unsupervised
method to extract knowledge. To achieve this goal, we must address three major
challenges. The first is how to define an experience in the context of tourism; the
second is how to define tourist profiles and the third is how to extract knowledge
from these profiles. The literature review presented below is structured along
these three axes.

To Define Tourist’s Experiences. The initial challenge of profiling tourists is
to identify the key characteristics of tourist experiences. In the literature, some
studies consider the demographic data of the tourist as a characteristic to achieve
a classification [11]. Other studies explore other features such as interests, order
of visits, semantic analysis of comments, or photo location [5]. Some studies
consider stays with their context i.e. season, duration, weather, etc. [9]. The
objective of our study is to determine tourist profiles, so we need all the infor-
mation about tourists, the context of their stays, and their interests.

Define Profiles. Apart filtering methods and polls, most studies use machine
learning approaches (supervised and unsupervised). Concerning supervised
learning, many recent studies use polls and/or social network data to improve the
profiling of tourists and enrich existing (already labeled) profiles [3]. Popular clas-
sification algorithms for profile enrichment include K-Nearest Neighbors, Naive
Bayes and Support Vector Machine [4]. However, supervised learning methods
have the same biases as filtering methods. In this case, an apriori choice of pro-
files on which to infer the rest of the data. About unsupervised learning, studies
dealing with tourism recommendation systems consider a matrix composed of
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the set of tourism locations and implement methods such as Latent Class Analy-
sis on it [6]. However, given the diversity of tourist places, it is often unlikely to
find tourists with similar visiting experiences. Many other studies group tourists
based on point-of-interest ratings to find tourist preferences [7]. However, the
context of the stays or the social information of the tourists is often neglected.

Extracting Knowledge. Although unsupervised learning represents a popular and
useful approach, it is more difficult to handle than supervised learning. One rea-
son is the often opaque meaning or meaningless of the clusters discovered by
unsupervised learning algorithms. It is a significant challenge to extract knowl-
edge from them and analyze it against reality.

Many studies focus on a very precise piece of information deduced from
tourists’ stays and ignore essential elements such as the content of the stay
(points of interest visited) or the context of the stay (duration and season). In
the absence of a measure that can compare all of this information, the studies
focus on either the content or the context. The main contribution of the paper
is a new measure dedicated to the tourism profiling.

3 Touristic Data

We focus this on the study and analysis of tourist profiles based on the digital
traces left by tourists on social networks. Digital traces refer to the digital data
intentionally left by tourists on these networks. Data includes information about
tourists, information about the places they visit, and their interactions.

Tourists’ behaviors and decisions are influenced by a set of external parame-
ters called contextual factors. They refer to the general background within which
the tourist operates, like the season, weather conditions, length of the stay, social
factors, etc. Contextual factors are not present during the extraction of digital
traces. Therefore, we will enrich the data set.

Tourists make a series of stays consisting of visits to various places. A stay
refers to a length of time beginning with the time the tourist leaves its usual
place of residence and the time the tourist leave the destination area. Each stay
is a chronological succession of places that the tourist has visited. To build this
set of stays, we will rely on the comments left by tourists on the networks. The
method was previously presented in a previous paper [1].

Contextual factors of a stay can be of two kinds, push factors and pull factors.
Push factors cause tourists to go. These include natural motivations like the
climate of the home country and institutionalized ones like school vacations.
Pull factors attract tourists and relate to the destination area. They include
the climate of the country visited, cultural events, or sports seasons. To study
tourism profiling, we will focus on pull factors. We compute season and length
of stay from the stay’s building.

Determining the season of the tourist’s country of origin is complex due to
the lack of information of its departure. We will take into account only the season
of the destination deduced from the dates of the beginning and the end of a stay
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Table 1. Ontology of places.

Category Subcategory

Heritage Monuments, Parks and Gardens, Urbanism (neighborhoods,
bridges, cemeteries, streets)

Cultural Buildings Art galleries and Museums, Holy sites and Places of worship,
Historic buildings, Theaters and Auditorium

Food and Services Shops, Restaurants and Bars, Gastronomy, Hotels

Entertainment Music buildings (concerts, discotheques), Cinemas, Amusement
park, Sports

Viewpoints (no sub-categories)

Nature Woods, Watering place (river, lake), Beaches and Mountains

and the country visited. The duration of the stay is equal to the date difference
between the first comment of the stay and the last comment of the same stay.

To study tourism content, we will classify tourist places based on an ontology.
In the literature, many studies propose ontologies to categorize tourist places
[2,10]. We compute a resume of these studies in Table 1. The first level will be
composed of six key categories and the second level will be composed of several
subcategories. Each place belongs to at least one category and one subcategory.
Note that a place can belong to several categories and subcategories.

4 Tourism Profiling Measure

To use an unsupervised clustering algorithm, we propose a measure Tourists
Profile Measure (TPM) that allows comparing stays. Our measure is used to
compute the similarity between two stays by taking into account the context
and the content of the stays. The TPM between two stays can be seen as the sum
between the context distance and the content distance, both normalized. Given
Sa and Sb two stays:

TPM(Sa, Sb) = distancecontext(Sa, Sb) + distancecontent(Sa, Sb) (1)

The context distance is defined as an addition of the duration distance and the
season distance. Let Sa and Sb be two stays with ΔSa and ΔSb their respective
duration, p represents the normal distribution on the duration, the distance of
duration between these two stays is defined as follows:

distancecontextduration
(Sa, Sb) = |p(ΔSa)− p(ΔSb)| (2)

We base our season distance on the seasonal calendar. Since the seasons are
cyclical, we can represent them in a cyclic graph where the seasons are nodes.
Let Sa and Sb be two stays with Seasona and Seasonb their respective seasons:
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distancecontextseason
(Sa, Sb) =

⎧
⎨

⎩

0 if Seasona and Seasonb are the same node
0.5 if Seasona and Seasonb are adjacent
1 if Seasona and Seasonb are distant nodes

(3)

Content Distance. We recall that a stay contains a set of visited places. Our
ontology allows us to know the number of visited places for each category and
subcategory. It is composed of six subvectors corresponding of the main cate-
gories counting the monument of each subcategory. To calculate the distance
between two content vectors, we sum the distance cosinus of each sub-vector.
The cosinus compare the distribution of two vectors, not their magnitude which
fit with a behaviours comparison. Note that we are computing a distance, so we
are inverting the bounds of the cosine.

5 Creating Profiles

The unsupervised algorithm will work on the stays independently of the tourists
who made them, which means that stays made by the same tourist can be in
different groups. As a result, it is necessary to re-inject the tourist’s demographic
information into each of his or her stays. We generate the tourist profiles using
a machine learning method that will consist of:

– To construct the distance matrix by calculating the distance based on the
text between the stays in pairs. This matrix is symmetric.

– To use an unsupervised clustering algorithm that will take the distance matrix
as input and derive groups. We use AGNES [12], a hierarchical algorithm with
a Ward linkage and Elbow method for the number of clusters.

– To inject the tourists’ demographic data into the groups containing at least
one of his stays.

Each cluster is then analyzed to extract the tourist profile. The summary of a
cluster consists in calculating: 1) the statistics on the length of the stay: average
and standard variation; 2) the statistics on the cluster: average and standard
variation of the numerical traces by stay and by group size; 3) the distribution
of seasons; 4) the distribution of nationalities; 5) the distribution of categories
and sub-categories of the content of the stays. In addition to a summary for
each cluster, an overall summary of the data set is constructed. Finally, these
summaries are analyzed to extract interesting information about tourist behavior
to create typical tourist profiles.

6 Result and Discussion

To validate our tourism profiling method, we will apply it to data from the social
network TripAdvisor over a period from 2015 to 2018. For our case study, we
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Table 2. Statistics for each cluster.

Cluster Duration Places Number of stays
Mean Standard deviation Mean Standard deviation

Global 1.92 2.139 4.935 2.923 100%
1 1.3 0.747 3.736 2.021 5%

2 2.065 2.513 4.673 3.034 5.8%

3 1.624 1.615 3.621 2.039 7.6%

4 1.994 2.106 4.972 3.038 16.8%

5 1.332 0.761 5.435 2.353 6.3%

6 2.314 2.584 4.999 3.179 12.1%

7 4.191 3.458 6.987 3.681 4%

8 1.245 0.604 5.515 2.345 16.4%

9 1.269 0.664 5.827 2.434 4.4%

10 1.29 0.734 5.874 2.525 6.4%

11 1.565 1.422 3.532 2.093 15.2%

Fig. 1. Profiles summaries.

have chosen the city of Paris, because it is one of the most attractive cities in
the world, regularly ranking first among the most visited cities in the world.

Our database is composed of 4, 222, 838 comments distributed among
1, 571, 362 tourists for a ratio of approximately 2.7 comments per tourist (with
the date of the comment and the concerned monument). We compute the stays
and we obtain a set of 150, 306 stays. The Elbow method returns a total of 11
clusters, we summarise them and the whole data set in Table 2.
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We can notice cluster 7 represents the biggest average of duration of stays
of 4.19 days with an average of visited places the most important in the event
6.98 (two more than the average) but with the lowest density per day, the cluster
represents 4% of the total. We can observe in Fig. 1a representing the percentage
distribution of the visited subcategories in each cluster, the visits made in cluster
7 are very close to the global summary. We notice the presence of the 10 most
represented nationalities in the global summary as seen in Fig. 1b. From the
Fig. 1c, the entirety of the stays is realized during the Parisian summer period.
We can conclude that cluster 7 contains tourists without any particular prefer-
ences on the visited places. These tourists tend to make/comment few visits to
places during their long stay, which may imply a desire to take advantage of the
summer sun and to enjoy the streets of Paris.

The analysis of cluster 7 is made without context, i.e. without comparisons to
the results of sociological studies on tourist behaviors. For the remainder of the
analysis, we will compare the profiles obtained with studies from tourist offices
and sociological research on tourism. In the discussions, we will refer specifically
to the public reports of the Paris regional tourism committee1.

We notice, for example, that clusters 3 and 11 are mainly interested in amuse-
ment parks and the infrastructures that accompany them such as hotels and
restaurants. Two nationalities are mainly present, France and United Kingdom.
According to the Table and the Figure, both clusters come to Paris on average
for one day and a half in winter (15.2% of all stays) and in spring (7.6%) to
enjoy the amusement parks. This profile is confirmed by the reports from the
Paris tourist office of French, and British tourists.

A similar observation can be made about clusters 5, 8, 9 and 10 (correspond-
ing to the four seasons). The most represented categories of places are Viewpoints
and Monuments. In terms of nationalities, countries from the anglosphere are
the most present corresponding to the reports from the Paris tourist office.

Clusters 4 and 6 show a similar distribution of categories of places visited.
In this case, an overwhelming proportion of places are related to the culture
and urbanism of Paris for an average stay of two days. Nationalities far from
France are more present showing the cultural appeal of Paris in the world. This
tourism, having a particular attraction for indoor visits, is more dominant during
the winter and spring seasons, with fewer outdoor attractions.

Clusters 1 and 2 represent a similar distribution of categories of places visited
and nationalities with 5.0% and 5.8% of the total number of stays respectively
with a majority of parks/gardens, urbanism and amusement parks. These clusters
represent a summer tourism profile, privileging outdoor activities and summer
attractions of Paris (fairs, amusement parks, music festivals).

The tourism profiles found by our method are very interesting in their accu-
racy with real-world data. Similar data set on the Hauts-de-France region and
Nouvelle-Aquitaine region (popular region of France) have been studied in a
similar way with equal relevant results.

1 https://pro.visitparisregion.com/chiffres-du-tourisme/profil-clientele-tourisme.

https://pro.visitparisregion.com/chiffres-du-tourisme/profil-clientele-tourisme
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7 Conclusion

In this article, we propose a method to discover tourist profiling. We have pro-
posed a measure of distance based on both context and content data from tourist
stays. We have shown that this measure highlights tourist profiles heretofore
known in the literature, but with a finer knowledge. Our experiments demon-
strate the validity of our results by comparing them to tourism management
reports. Thus, the tourism industry can widely exploit our method in any geo-
graphical area without resorting to sociological studies of tourism, which are
often complex to set up and must be spread over many years.
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Abstract. We study online learning to rank (OL2R), where a param-
eterized ranking model is optimized based on sequential feedback from
users. A natural and popular approach for OL2R is to formulate it as
a multi-armed dueling bandits problem, where each arm corresponds to
a ranker, i.e., the ranking model with a specific parameter configura-
tion. While the dueling bandits and its application to OL2R have been
extensively studied in the literature, existing works focus on static envi-
ronments where the preference order over rankers is assumed to be sta-
tionary. However, this assumption is often violated in real-world OL2R
applications as user preference typically changes with time and so does
the optimal ranker. To address this problem, we propose non-stationary
dueling bandits where the preference order over rankers is modeled by
a time-variant function. We develop an efficient and adaptive method
for non-stationary dueling bandits with strong theoretical guarantees.
The main idea of our method is to run multiple dueling bandits gradi-
ent descent (DBGD) algorithms with different step sizes in parallel and
employ a meta algorithm to dynamically combine these DBGD algo-
rithms according to their real-time performance. With straightforward
extensions, our method can also apply to existing DBGD-type algo-
rithms.

Keywords: Online learning to rank · Dueling bandits ·
Non-stationary environments

1 Introduction

As a powerful ranking optimization paradigm, learning to rank has found appli-
cations in a variety of information retrieval scenarios such as web search, online
advertising, and recommendation systems [7,15]. In the classical offline learn-
ing to rank, a parameterized ranking model is first trained on collected queries
and documents with relevance labels, and then deployed to respond to users’
queries with predicted relevant documents. A drawback of offline learning to
rank is that the process of collecting training data with relevance labels is highly
time-consuming and expensive in large-scale applications [4]. Furthermore, as
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Li et al. (Eds.): APWeb-WAIM 2022, LNCS 13422, pp. 166–174, 2023.
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the ranking model is fixed after being deployed, it cannot track the evolution of
user needs [6].

To address these issues, recent advances in information retrieval have intro-
duced online learning to rank (OL2R), where the ranking model is optimized
based on its interactions with users on the fly [3]. Compared to its offline counter-
part, OL2R has lighter computational overhead and higher updating frequency.
At the heart of OL2R lies the trade-off between exploring new rankers and
exploiting the seemingly optimal ranker. Thus, a natural and popular approach
for OL2R is to formulate it as a dueling bandits problem [13,14], where each
ranker is viewed as an arm and the ranking model is optimized through sequential
noisy comparisons between rankers. While the dueling bandits based methods
have been widely studied for OL2R, they are limited in that the preference order
over rankers is assumed to follow stationary probability distributions. However,
in real-world scenarios, user preference typically changes with time, making the
stationary assumption invalid.

To better cope with real-world ranking tasks, we investigate dueling bandits
with non-stationary preference probability distributions for OL2R. Specifically,
let w and w′ be two points in the parameter space of the ranking model. We
model the probability that users prefer the ranking results produced by a ranker
with parameter w over those of a ranker with parameter w′ by a composite
function ft(w,w′) = σ(vt(w) − vt(w′)), where σ is a static link function, and
vt denotes the utility function in round t. Compared to the existing works on
dueling bandits, the novelty of our model is that the utility function can change
with time t, capturing the non-stationarity of user preference. Since vt and vt′ can
be different for t �= t′, the optimal parameter w∗

t that maximizes vt and hence
the optimal ranker can change with time, making the non-stationary dueling
bandits much harder to deal with than its stationary counterpart.

Nevertheless, by drawing inspiration from recent progress in dynamic online
optimization [16,17], we develop an efficient and adaptive method for non-
stationary dueling bandits. Our method follows the prediction with expert advice
framework [1] and has a two layer hierarchical structure: multiple dueling ban-
dits gradient descent (DBGD) [14] algorithms running parallel in the bottom
and a meta algorithm aggregating the outputs of DBGDs in the top. Generally
speaking, DBGDs aim at balancing the exploration-exploitation tradeoff, which
also exists in the classical stationary dueling bandits, and the meta algorithm is
responsible for tracking the change of utility functions, which is a new task aris-
ing only in our non-stationary setting. Under mild assumptions, we prove that
our method guarantees no-regret learning, indicating that when the number of
rounds goes infinity, the average performance of our method is the same as that
of a clairvoyant who knows the optimal ranker in each round. Furthermore, we
show that our method, while developed in the context of DBGD, can be also
straightforwardly extended to existing variants of DBGD. Finally, we conduct
extensive experiments on public datasets to demonstrate the effectiveness and
efficiency of our method for OL2R in non-stationary environments.1

1 Due to space limitation, proofs and experiments are postponed to the full version of
this paper: www.lamda.nju.edu.cn/lusy/ns-ol2r.pdf.

www.lamda.nju.edu.cn/lusy/ns-ol2r.pdf
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2 Problem Setup

We study non-stationary dueling bandits for online learning to rank, which pro-
ceeds in a sequence of rounds. Let W ⊆ R

d be the parameter space of a ranking
model and T be the number of rounds. Following previous work [8,11,12], we
refer to the ranking model with a specific parameter configuration as a ranker.
In each round t ∈ [T ] = {1, . . . , T}, firstly a learner chooses two rankers with
parameters wt ∈ W and w′

t ∈ W, respectively. Then, the ranking lists produced
by the rankers are merged by an interleaving method [5,9]. The merged list
is displayed to a user and a noisy preference order over the rankers is inferred
from the user’s click feedback. Specifically, the ranker whose ranking list receives
more clicks is preferred. Finally, the learner updates the parameter of the ranking
model based on the inferred preference order.

We denote by w � w′ the event that users prefer the ranking list produced by
the ranker w than that of the ranker w′. While the existing works only consider
the setting where the probability of this event is fixed, we allow the probability to
change with time so as to capture the non-stationary nature of user preference.
Specifically, in round t, the probability of the event w � w′ is defined as

Pr(w � w′|t) = ft(w,w′) = σ(vt(w) − vt(w′)) (1)

where σ is a static link function, and vt denotes the utility function in round t.
Following previous work [11,14], we make some standard assumptions as follows:

– The parameter space of the ranking model W is bounded

max
w∈W

‖w‖2 ≤ R. (2)

– The link function σ is rotation-symmetric

σ(x) = 1 − σ(−x). (3)

– The link function σ is monotonically increasing and satisfies

σ(−∞) = 0, σ(0) = 1/2, σ(∞) = 1.

– The link function σ is Lσ-Lipschitz, and all utility functions vt, t ∈ [T ] are Lv-
Lipschitz. Furthermore, the link function σ is also second order L2-Lipschitz.2

Denoting L = LσLv, the above assumptions directly imply the functions ft, t ∈
[T ] are L-Lipschitz in both arguments.

Let w∗
t = argmaxw∈W vt(w) denote the optimal ranker achieving the maxi-

mum utility in round t. We adopt dynamic regret as performance metric, defined
as

DR(T ) =
T∑

t=1

(
ft(w∗

t ,wt) + ft(w∗
t ,w′

t) − 2ft(w∗
t ,w∗

t )
)
.

Our goal is to design an online learning method for minimizing the above
dynamic regret.
2 In OL2R, a widely used link function is the sigmoid function σ(x) = 1/

(
1+exp(−x)

)
,

which satisfies all of our assumptions.
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3 Method

In this section, we first review the dueling bandits gradient descent (DBGD)
algorithm and derive its dynamic regret bound, then present our method as well
as its theoretical guarantee, and finally discuss the extensions of our method to
existing DBGD-type algorithms.

3.1 Dueling Bandits Gradient Descent

As outlined in Algorithm 1, DBGD has two hyperparameters δ and γ, corre-
sponding to the step sizes of exploration and exploitation, respectively. In each
round t, DBGD first draws a vector ut uniformly at random from the unit sphere
S � {x ∈ R

d : ‖x‖2 = 1} as an exploratory direction. Then, a candidate ranker
is created with parameter

w′
t = ΠW [wt + δut] (4)

where wt is the current parameter of the ranking model and ΠW [·] denotes the
operation of projecting a point to the parameter space W. Next, the two rankers
wt and w′

t are compared by the probabilistic interleaving method [5], which can
merge the ranking lists produced by the two rankers and infer a preference order
over the two rankers from user clicks on the merged ranking list. Finally, based on
the preference order, DBGD updates the parameter of the ranking model for the
next round. Specifically, if w′

t wins, which reveals that the exploratory direction
leads to better ranking performance, then the parameter of the ranking model
moves along the exploratory direction with step size γ: wt+1 = ΠW [wt + γut].
Otherwise, the ranking model remains unchanged.

We rigorously analyze the learning properties of DBGD and derive a sub-
linear dynamic regret bound as follows.

Theorem 1. Let CT be the path length of the optimal rankers over T rounds,
defined as

CT =
T∑

t=2

‖w∗
t − w∗

t−1‖2. (5)

By setting δ =
√

2λd
(11+2λ)L

√
T
and γ =

√
5R2+2RCT

T , the dynamic regret of DBGD
satisfies

E[DR(T )] ≤
√

2(11 + 2λ)λdL
(
1 +

√
5R2 + 2RCT

)
T

3
4 .

3.2 DBGD Meets Meta Learning

While DBGD can achieve a sub-linear dynamic regret bound for CT = o(
√

T ),
it requires the value of the path-length CT for tuning the step size γ, which is
clearly impossible in practice since CT depends on the unknown optimal rankers
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Algorithm 1. DBGD
Require: step sizes of exploration δ and exploitation γ
1: Initialize a ranker w1 ∈ W arbitrarily
2: for t = 1, 2, . . . , T do
3: Draw a vector ut uniformly at random from S

4: Create an exploratory ranker w′
t = ΠW [wt + δut]

5: Compare wt and w′
t by probabilistic interleaving

6: if w′
t � wt then

7: Set wt+1 = ΠW [wt + γut]
8: else
9: Set wt+1 = wt

10: end if
11: end for

w∗
1, . . . ,w

∗
T . To address this issue, we employ the meta learning technique to

automatically tune the step size γ, which has exhibited successes in online convex
optimization [2,16,17]. The basic idea is to run multiple DBGDs in parallel,
each of which is configured with a different step size γ and admits the sub-
linear dynamic regret bound for a class of path length. We develop our method
in the prediction with expert advice framework, where each DBGD is viewed
as an expert and the outputs of DBGDs are combined by an expert-tracking
algorithm.

We now describe our method in detail, which is termed as DBGD Meets Meta
Learning (DM2L) and consists of a meta algorithm and an expert algorithm.

Meta Algorithm As outlined in Algorithm 2, at the beginning of the meta algo-
rithm, we invoke the expert algorithm with different step size γ. According to
our theoretical analysis, we maintain

N =
⌈
log2

√
1 + 4T/5

⌉
+ 1 (6)

experts and the step size γ of the i-th expert is configured as

γi = 2i−1R
√
5/T , i = 1, . . . , N. (7)

Each expert i ∈ [N ] is associated with a time-variant weight πi
t, which is dynam-

ically adjusted according to the real time performance of expert i. For deriving
a tighter dynamic regret bound, we take a nonuniform initialization of weights:

πi
1 =

N + 1
i(i + 1)N

, i = 1, . . . , N. (8)

In each round t, we first receive a ranker wi
t from each expert i ∈ [N ] and

aggregate these rankers according to the weights of experts πi
t, i ∈ [N ] as wt =
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∑N
i=1 πi

tw
i
t. Then, we sample a vector ut from the unit sphere S uniformly at

random and compare wt with w′
t = ΠW [wt + δut] by invoking the probabilistic

interleaving method, which returns a noisy preference order I{w′
t�wt}. Next, we

update the weight of each expert using an exponential scheme

πi
t+1 =

πi
t exp(−α	t(wi

t))∑N
j=1 πj

t exp(−α	t(w
j
t ))

, i = 1, . . . , N (9)

where 	t(w) is a surrogate loss function, defined as

	t(w) = −d

δ
〈I{w′

t�wt}ut,w − wt〉

which approximately evaluates the real-time performance of the experts. Finally,
both the preference order I{w′

t�wt} and the exploratory direction ut are sent to
each expert so that they can update their own rankers accordingly.

Expert Algorithm. As summarized in Algorithm 3, the expert algorithm is a
variant of DBGD. In each round t, each expert i ∈ [N ] first sends its current
ranker wi

t to the meta algorithm. Then, each expert receives the same preference
order I{w′

t�wt} and exploratory direction ut from the meta algorithm. Finally,
each expert updates its own ranker as

wi
t+1 = ΠW [wi

t + γiI{w′
t�wt}ut], i = 1, . . . , N. (10)

Different from DBGD, we here take the same updating direction I{w′
t�wt}ut

for all experts so that only two rankers wt,w′
t need to be compared in each

round. While the updating direction is no longer opposite to the gradient of the
smoothed function ∇ht(wi

t), it is the inverse of the gradient of the surrogate loss
function ∇	t(wi

t). Thus, the updating rule of each expert can still be viewed as
gradient descent and the dynamic regret of each expert can be analyzed following
the proof of Theorem 1.

We present the theoretical guarantee of our method DM2L in the follow-
ing theorem. Compared to DBGD, the main advantage of DM2L is that it can
achieve the sub-linear dynamic regret bound without prior knowledge of the path
length CT and thus can adapt to unknown non-stationarity of environments.

Theorem 2. By setting δ =
√

3λd
(11+2λ)L

√
T

and α = 4/
√

T and using the con-

figurations in (6) and (7), DM2L achieves the following dynamic regret bound

E[DR(T )] ≤
√

3(11 + 2λ)λdL
(
1 +

√
5R2 + 2RCT

)
T

3
4 + λ(1 + ln (N + 1))

√
T .

3.3 Extensions to DBGD-Type Algorithms

While our meta learning method is developed in the context of DBGD, it be also
straightforwardly extended to existing DBGD-type algorithms such as MGD [10]
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Algorithm 2. DM2L: Meta Algorithm
Require: number of experts N , step sizes δ, γ1, . . . , γN , learning rate α
1: Invoke Algorithm 3 with γi for each expert i ∈ [N ]
2: Initialize the weights of experts πi

1, i ∈ [N ] by (8)
3: for t = 1, 2, . . . , T do
4: Receive ranker wi

t from each expert i ∈ [N ]
5: Aggregate the rankers as wt =

∑N
i=1 πi

tw
i
t

6: Draw a vector ut uniformly at random from S

7: Create an exploratory ranker w′
t = ΠW [wt + δut]

8: Compare wt and w′
t by probabilistic interleaving

9: Update the weight of each expert πi
t, i ∈ [N ] by (9)

10: Send I{w′
t�wt} and ut to each expert i ∈ [N ]

11: end for

Algorithm 3. DM2L: Expert Algorithm
Require: step size of exploitation γi

1: Initialize a ranker wi
1 ∈ W arbitrarily

2: for t = 1, 2, . . . , T do
3: Send ranker wi

t to Algorithm 2
4: Receive I{w′

t�wt} and ut from Algorithm 2
5: Update ranker wi

t+1 = ΠW [wi
t + γiI{w′

t�wt}ut]
6: end for

and NSGD-DSP [11,12]. Note that the existing DBGD-type algorithms only dif-
fer in the exploratory direction and the updating direction. Thus, we can replace
Steps 6–8 at Algorithm 2 with the corresponding exploration pseudocodes of the
DBGD-type algorithm and set ut used in Steps 9–10 at Algorithm 2 as the
updating direction in the DBGD-type algorithm, while keeping Algorithm 3 and
the other steps of Algorithm 2 unchanged. We termed the algorithms obtained
by applying our meta learning method to MGD and NSGD-DSP as M3L (MGD
Meets Meta Learning) and NM2L (NSGD-DSP Meets Meta Learning), respec-
tively.

4 Conclusion

We have formulated a new bandits model for OL2R, termed as non-stationary
dueling bandits, where the preference order over rankers can change with time.
For this bandits model, we developed a meta learning method, which dynami-
cally aggregates multiple DBGD algorithms with different step sizes. Theoretical
analysis showed that under mild assumptions, our meta learning method enjoys
a sub-linear dynamic regret bound. We also discuss the extensions of our meta
learning method to existing DBGD-type algorithms. Extensive experiments on
public datasets demonstrate the effectiveness and efficiency of our meta learning
method for OL2R in non-stationary environments.
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Abstract. Benefitting from the superb storage and computational effi-
ciency, hashing has received considerable research attention on large-
scale multi-modal retrieval. However, most existing methods are mainly
built based upon matrix optimization without high-order correlation
and equally treat the training instances, which fail to fuse heteroge-
neous sources and ignore the heuristic information contained by the sam-
pling order. To this end, we, for the first time, propose a novel tensor-
based supervised discrete learning framework named Discrete Multi-
modal Correlation Hashing (DMCH) to perform a high-order correla-
tion preserved semantic hash learning. Specifically, DMCH stacks all
the modality-private matrices into a third-order tensor to simultane-
ously exploit the high-order intrinsic correlations across heterogeneous
sources, which explicitly enforces the consistent and private properties of
different modalities. Moreover, DMCH selects the training samples from
reliable to unreliable ones to extract heuristic information contained by
the instance learning order, which increases the robustness of the model.
Furthermore, the specific semantic labels are utilized as specific prior
knowledge to preserve full-scale supervision instead of the widely-used
pair-wise similarity. Finally, the jointly learning objective is formulated to
concurrently preserve the modality-common information and modality-
private semantics in the learned hash codes. Extensive experiments on
four public datasets demonstrate the state-of-the-art performance of our
proposed method.

Keywords: Multi-modal hashing · Tensor optimization · Similarity
learning · Information retrieval

1 Introduction

With the explosion of digital social networks, large amounts of multimedia infor-
mation are explosively generated and accumulated. How to efficiently retrieve the
desired content from massive multimedia data is a hot research area. Typically,
multi-modal hashing supporting fast similarity retrieval with the low-cost stor-
age property [11], which collaborates heterogeneous features for discrete codes
representation learning.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Multi-modal hashing algorithm maps continuous heterogeneous multi-sources
features into discrete hamming space for efficient retrieval. Existing multi-modal
hashing methods can be roughly categorized into unsupervised and supervised
ones. Unsupervised methods [4,6–8,12] model the training data based on their
inter-modality and intra-modality relationship by multiple graphs or matrix
factorization without considering any precise classified information. But they
neglect the most descriptive element, semantic labels, resulting in sub-optimal
representative hash codes. In contrast, the supervised ones [5,6,10] concentrate
on facilitating the representation of the learned hash codes by integrating seman-
tic labels to learn a more discriminative representation space, generating more
representative discrete codes.

There are two deficiencies in the existing supervised hashing methods: 1)
Inadequate modality fusion. Most existing hashing methods are based upon a
matrix learning framework [1]. They naively utilize linear or non-linear projec-
tion to merge different modality-private projections as well as explore correla-
tions between single modality features and discrete codes, without fully bridging
the heterogeneous high-order correlation lying under multiple modalities, lead-
ing to insufficient modality exploration. 2) Equal importance of each instance.
Existing methods impose equal weight on each item, which inevitably mixes
noise and outliers into the model and weakens the model robustness.

In this work, we propose Discrete Multi-modal Correlation Hashing (DMCH)
for multi-modal retrieval to address the two mentioned drawbacks. DMCH stacks
all the projection matrices into a third-order tensor called projection tensor,
which can depict both common semantic and private information of the differ-
ent modalities. Moreover, we develop a heuristic strategy to progressively convert
the continuous feature vectors into a discrete hash representation, by which the
complementary semantics of different modalities can be adequately preserved
into the learned discrete codes. Particularly, we leverage a modality-private pro-
jection matrix to convert high-dimensional features generated by the Gaussian
kernel into the target discrete space. Finally, we apply label regression to enforce
the specific category information into the target discrete space to improve the
representation of the learned hash codes.

The main contributions are:

• To the best of our knowledge, DMCH is the first tensor-based multi-modal
hashing retrieval framework to capture the high-order correlation by a uni-
fied projection tensor, bridging the heterogeneous gaps of all modalities and
exploiting the private properties of each modality and boosting the retrieval
performance.

• We develop a heuristic learning strategy by cognitively constructing the train-
ing sequence from the easy to complex samples to reduce the negative influ-
ence of outliers and increase the robustness of the learned hash method.

• Extensive experimental results show that our method can outperform these
baselines.
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2 Discrete Multi-modal Correlation Hashing

See Fig. 1.

Fig. 1. The framework of DMCH. Firstly, it utilizes non-linear kernel to separate the
high dimension original features. Then it stacks every modal-private matrix calculated
with the cognitive learning strategy as the slice into a third-order projection tensor to
capture the high-order coherent correlation. Finally, the learned projection tensor is
applied in one-step hash method for the online multi-modal retrieval.

2.1 Preliminary Notation

Multi-modal hashing retrieval aims to learn the unified discrete codes V =
[v1, · · · ,vN ] ∈ {−1, 1}r×N for the heterogeneous data, where vn ∈ {−1, 1}r×1

denotes the hash codes for the n-th sample. In this work, bold lower-case let-
ters is the symbol of a column vector, e.g. k, and the bold capital letters, e.g.
W, represents for a matrix, WT is the transpose of W, Wp,q represents the
(p, q)-element of W. Frobenius norm of W is written as ‖W‖2F = tr(WTW).
Moreover, the calligraphy, e.g. Z denotes a third-order tensor. Ẑ represents
the fast Fourier transform of Z. ‖Z‖� denotes the tensor nuclear norm of
Z, which is defined as the average of singular values of all the frontal slices
of Ẑ. Given multi-modal training set with M modalities and N instances as
T = {X1,X2, · · · ,XM}, where the representation of m-th modality is written
as Xm = [x1

m,x2
m, · · · ,xN

m] ∈ R
dm×N and the m-th modality has dm dimensional

features. We utilize the same label provided by Y ∈ {0, 1}c×N for N paired text-
visual instances belonging to c categories, where Yfg = 1 suggests xg belongs
to f -th class, otherwise Yfg = 0.

2.2 Framework Construction

In this subsection, we introduce the construction process of our DMCH frame-
work. We firstly construct the modality-private semantic extraction, then intro-
duce the proposed cognitive strategy for the modality-private semantic extrac-
tion. In addition, the definition of the tensor-based high-order correlation explo-
ration is given followed by the specific semantic supervision.
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In order to separate the linear indivisibility heterogeneous features, all
of the formulations in this section are based on the non-linear similarity-
preserve mapping method with Gaussian kernel function. Specifically, for
Xt = [x1

t ,x
2
t , · · · ,xN

t ] ∈ R
dt×N , after the nonlinear conversion we have

the following module ϕ(Xt) = [ϕ1
t , ϕ

2
t , · · · , ϕN

t ] ∈ Rp×n. Particularly, ϕk
t =

[exp(−‖xk
t −a1

t‖2

2σ2 ), · · · , exp(−‖xk
t −ap

t ‖2

2σ2 )]T is the nonlinear feature vector for the
k-th instance of the t-th modality, and {aj

t}p
j=1 are the randomly sampled p

anchor points selected from training samples, and σ is the Gaussian kernel width.

Modality-Private Semantic Extraction. To avoid the loss of information,
we directly explore the relation between the modality feature space and the dis-
crete space, which averts the construction of the intermediate continuous space
that accumulates quantization errors. The formulation of this module is given

by min
Pt

∑M
t=1 α(t)‖V − Ptϕ(Xt)‖2F , s.t.

M∑

t=1
a(t) = 1, 0 < a(t) < 1, where V is

the hashing space, Pt is the private semantic projection of the t-th modality,
and α(t) is the modality fusion weight that indicates the contribution of the t-th
modality for the continuous-discrete conversion.

Heuristic Training Strategy for Modality-Private Semantic Extrac-
tion. There are always inevitable outliers among the training data. In order
to alleviate their negative influence and improve the model robustness, we
introduce a cognitive learning strategy with the help of self-paced learning.
It constructs the cognitive weighting vector that extracts heuristic knowledge
from the reliable easy instances to the unreliable complex ones by calculat-
ing their different weights in each iteration. This module is given as follows:

min
α(t),Pt,V

M∑

t=1
α(t)‖(V−Ptϕ(Xt))diag(

√

rspl
t )‖2F +f(γ, rspl), s.t.

M∑

i=1

a(i) = 1, 0 <

a(i) < 1, where f(γ, rspl) is the regulation term of cognitive vector rspl, rt indi-
cates the different importance of each instance from the t-th modality with the
cognitive sample selecting strategy, and γ is the penalty parameter.

In order to jointly explore the high-order intra-modality relations of hetero-
geneous sources, we propose to construct a novel third-order projection tensor to
capture the high-order correlation among the different modalities. Specifically,
after learning the private information by Pt, we stack all Pt into a projection
tensor P. P contains three dimensions, where the first two dimensions denote the
slice of the high-order tensor, and the last represents the count of modalities,
which induces modality-joint optimization. Considering the upper superiority
and inspired by the huge success of the tensor nuclear norm in multi-modal clus-
tering [3], and hyperspectral image restoration [2], we adopt the tensor singular
value decomposition-based tensor nuclear norm to explore the low-rankess of the
projection tensor. More details can be referred to in [9]. Then the object function

is formulated as follows: min
Pt

∑M
t=1 α(t)‖V−Ptϕ(Xt)‖2F +λ‖P‖�, s.t.

M∑

t=1
a(t) =
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1, 0 < a(t) < 1, where P = φ(P1,P2, · · · ,PM ),φ(P1,P2, · · · ,PM ) denotes the
operation to form tensor P ∈ R

r×p×M , ‖P‖� = 1
M

∑M
t=1 ‖P̂t‖∗, and P̂ represents

the fast Fourier transform of P calculated by P̂ = fft(P, [·], 3).

Specific Semantic Supervision. The specific category labels are the most
discriminative elements in all of the learning sources. After heuristically extract-
ing information from the real-data into discrete hashing space, we develop a
maximizing semantic preservation strategy to enforce the specific classification
knowledge into the learning process. In particular, considering both the target
hashing space and semantic space are binary, we adopt linear regression to min-
imize the gap to strengthen the semantic supervision by the matrix R. The

model is formulated as follows: min
V,R,P

∑M
t=1 α(t)‖(V −Ptϕ(Xt))diag(

√

rspl
t )‖2F +

f(γ, rspl) + λ‖P‖� + β‖RV − Y‖2F + η‖R‖2F , s.t.
M∑

t=1
a(t) = 1, 0 < a(t) < 1,V ∈

{−1, 1}r×n,Y ∈ {0, 1}c×n.
After generating the query discrete hash codes, our method returns multi-

modal retrieval results by ranking the Hamming distance between the query
codes and the learned hash codes of the database.

3 Experiments

In this paper, we use four public datasets to evaluate our methods, which are
Wiki1, MIRFlickr-25K2, NUS-WIDE3, and MS COCO4.

3.1 Experiment Results

In this section, we report experimental comparisons and convergence efficiency.

Retrieval Accuracy Comparison. We report the experimental results comparison
of 8, 16 and 32 bits hash codes with baseline methods including four unsupervised
methods and two supervised ones. We use three commonly-used criterias i.e.,
mean Average Precision (mAP), top K-precision and precision-recall curve to
measure the performance of our model and baselines.

Table 1 gives the mAP result of our method from 8bits to 32bits, compared
with other methods. It shows that the mAP of our method is always better than
the compared methods. And with different length of hash codes, our methods
has stable performance. Other methods, on the contrary, show worse stability.

We report the 16 and 32 bits result on the MIR Flickr and NUS-WIDE
in the figures. As shown in Fig. 2, with the increasing numbers of queries, the
1 https://huggingface.co/datasets/wikipedia.
2 https://press.liacs.nl/mirflickr/.
3 https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/NUS-

WIDE.html.
4 https://cocodataset.org/.

https://huggingface.co/datasets/wikipedia
https://press.liacs.nl/mirflickr/
https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/NUS-WIDE.html
https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/NUS-WIDE.html
https://cocodataset.org/
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Table 1. mAP comparison of different methods under different length of hash codes.

Methods Wiki MIRFlickr-25k NUS-WIDE MS COCO

8 bits 16 bits 32 bits 8 bits 16 bits 32 bits 8 bits 16 bits 32 bits 8 bits 16 bits 32 bits

MFH [8] 0.2889 0.4364 0.4899 0.5841 0.5842 0.5844 0.3268 0.3272 0.3279 0.3957 0.3960 0.3963

MAH [4] 0.1111 0.1151 0.4118 0.5818 0.5818 0.5818 0.3225 0.3225 0.3225 0.3963 0.3963 0.3963

MVLH [7] 0.4064 0.4268 0.4671 0.6766 0.6286 0.6334 0.4504 0.4442 0.3638 0.4096 0.4200 0.4264

MvDH [6] 0.4548 0.4174 0.5356 0.6501 0.6593 0.7126 0.4821 0.4934 0.4963 0.3965 0.3972 0.3972

DMVH [10] 0.5274 0.5364 0.5335 0.5818 0.5818 0.5818 0.3225 0.3225 0.3225 0.3962 0.3962 0.3982

OMH-DQ [5] 0.5271 0.5908 0.5926 0.6406 0.6522 0.7372 0.4522 0.5471 0.5372 0.4176 0.4131 0.4418

Our method 0.5702 0.5518 0.5930 0.8119 0.8520 0.8609 0.7236 0.7527 0.7468 0.5850 0.6112 0.6379

topK-precision curves of 16, 32 bits hash codes DMCH returns more relevant
results against baselines. As plotted in Fig. 3, our method has better balance of
precision and the recall for the online retrieval task.

Fig. 2. Comparison of precision@TopK on MIR Flicker and NUS-WIDE of 16bits hash
codes and 32bits hash codes, between baselines and our method.

Fig. 3. Comparison of Precision-Recall curve on MIR Flicker and NUS-WIDE of 16bits
hash codes and 32bits hash codes, between baselines and our method.

3.2 Ablation Study

In this section, we design a group of ablation experiments and give the analysis to
prove the efficiency of our proposed modules. The comparison results of DMCH
and its variations are reported in Table 2.

Ablation Study of High-Order Correlation. We propose a matrix-based opti-
mization method without tensor construction called DMCH-matrix and other
steps are the same with DMCH to prove the semantic preserved ability of the
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tensor structure in our proposed DMCH method. The Pt optimization is given
as Pt = α(t)Vϕ(Xt)

α(t)ϕ(Xt)ϕ(Xt)T+λI
, where Ip×p is the identity matrix. From the map

of DMCH-matrix in Table 2, we can find that the retrieval accuracy obviously
declines compared with DMCH.

Ablation Study of the Cognitive Learning Strategy. We eliminate the sample
weighting vector and design a variation of DMCH with equally weighted training
sequence named DMCH-equal, and other optimization steps are the same with
DMCH. The object function of Pt is −2α(t)Vϕ(Xt)T + 2α(t)Ptϕ(Xt)ϕ(Xt)T +
ρPt−ρZt+πt = 0. Hence, we have Pt = 2α(t)Vϕ(Xt)

T+ρZt−πt

2α(t)ϕ(Xt)ϕ(Xt)T+ρI
. From the compar-

ison of DMCH-equal and DMCH in Table 2, we can obvious that our cognitive
learning strategy can improve the robustness of the model and promote the
retrieval accuracy.

Ablation Study of the One-Step Hashing Method. At the period of online retrieval,
DMCH utilizes the learned projection tensor to preserve more semantic features
into the discrete hash codes. To confirm its efficiency we design a two-step vari-
ation method called DMCH-twostep. The object function of the extract hash

function W is min
W

‖V − ∑M
t=1 α(t)Wϕ(Xt)‖2F , s.t.

M∑

t=1
a(t) = 1, 0 < a(t) <

1,V ∈ {−1, 1}r×n. W is optimized as W = V
∑M

t=1 α(t)ϕ(Xt)

(
∑M

t=1 α(t)ϕ(Xt))(
∑M

t=1 α(t)ϕ(Xt))T+I
.

So, we can get out-of-sample discrete codes as Vtst =
∑M

t=1 αtWϕ(Xtst
t ), where

Xtst
t is the t-th modality of input sample, and Vtst is our retrieval hash codes.

Compare the results of DMCH-twostep and DMCH in Table 2, we can easily
find that the one-step learning method can preserve more representative infor-
mation than the ablated compared method DMCH-twostep and improves the
multimodal retrieval accuracy. From Table 2, we can find that every module in
our DMCH performs obvious positive effect on the retrieval precision.

Table 2. mAP comparisons of DMCH and its variants with different bits of hash codes.

Methods Wiki MIRFlicker

8bits 16bits 32bits 8bits 16bits 32bits

DMCH-matrix 0.6067 0.5721 0.5552 0.8030 0.8359 0.8514

DMCH-equal 0.4917 0.6256 0.5374 0.8187 0.8405 0.8573

DMCH-twosteps 0.5123 0.5633 0.5107 0.8049 0.8256 0.8579

DMCH 0.6249 0.6352 0.6134 0.8263 0.8426 0.8641

Methods NUS-WIDE MS COCO

8bits 16bits 32bits 8bits 16bits 32bits

DMCH-matrix 0.6860 0.7532 0.7776 0.5779 0.6094 0.6486

DMCH-equal 0.7357 0.7627 0.7810 0.5733 0.6138 0.6509

DMCH-twosteps 0.7494 0.7782 0.7668 0.5754 0.6107 0.6487

DMCH 0.7392 0.7791 0.7828 0.5770 0.6152 0.6527
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4 Conclusion

In this work, we developed the first cognitive tensor-based supervised multi-
modal hashing framework named Discrete Multi-modal Correlation Hashing
(DMCH). A cognitive third-order tensor based hash learning method is intro-
duced to explore the inter-modality pair-wise relation between single-modality
features and the learned hash bits, and it simultaneously captures the intra-
modality high-order correlation among different modalities under the supervision
of the specific label matrix. Then we develop a series of extensive experiments
on various real-world datasets and achieve promising performance by comparing
to some state-of-the-art methods.
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Abstract. Named entity recognition (NER) is a basic task in natural
language processing and can be used in a wide range of downstream tasks,
such as question answering, text summarization, and machine transla-
tion. In recent years, deep-learning based methods achieve great perfor-
mance in the NER task. It often demands a huge amount of data to train
models. However, it is very expensive to collect sufficient training data
in many real-world applications. Thus, it is important to develop NER
systems for few-shot settings. In this paper, we propose a self-training
approach for NER that employs the framework of the machine read-
ing comprehension model when lacking training samples. Experimental
results on NER benchmarks demonstrate that the proposed method in
this paper outperforms the state-of-the-art methods.

Keywords: Named entity recognition · Few-shot learning · Semi
supervised learning · Self-training

1 Introduction

Named entity recognition (NER) is an important task of natural language pro-
cessing, it recognizes the predefined entity types from the input text. Early
NER systems, e.g., NetOwl [1], relied on manually-defined rules. Some feature-
based supervised learning methods regard the NER task as a multi-classification
problem or sequence labeling problem, e.g., CRF [2]. However, traditional NER
methods cannot capture the semantic information in the text, so it is difficult to
improve the performance of these methods further. As deep learning methods,
e.g., BiLSTM + CRF [3], have been widely applied in NER tasks, these meth-
ods can capture hidden features and exhibit better generalization ability than
traditional methods.

Although deep-learning based methods have achieved great progress in NER
tasks, many challenges remain to address, such as the lack of sufficient annotation
data in some low-resource fields. Many NER systems have good results in general
domain data sets, but they need a large amount of annotation data to train
the model, and the acquisition of annotation data usually requires rich domain
knowledge, as well as huge labor costs. However, high-quality annotation data
is scarce in many practical scenarios. Therefore, it is of great significance to
develop NER systems for few-shot settings.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Li et al. (Eds.): APWeb-WAIM 2022, LNCS 13422, pp. 183–191, 2023.
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Fig. 1. Framework of our model Fig. 2. Trigger representation learning

In this paper, we propose a few-shot NER model based on self-training,
taking machine reading comprehension (MRC) as a built-in block. The overall
structure of our model is shown in Fig. 1. Specifically, it is mainly composed of
three steps: 1) The base model is trained first by using labeled data; 2) Compute
the confidence of weak annotation data inferred by the trained model in the
former step, and select high-confidence data to expand labeled data; 3) Iterate
from step 1 to step 2 until the stop condition is achieved. The introduction of
the MRC-based model can encode external knowledge about entities by setting
appropriate queries, which benefits the application in few-shot settings. While
the framework of self-training is adopted, we use entity triggers to compute the
confidence of weak annotation data, which can mine information from different
perspectives of labeled data and provide effective filtering rules to filter out noisy
data. As self training has proved its effectiveness in few-shot settings, we apply a
new confidence measure to the process of self-training and conduct experiments
to show the effectiveness of our method.

In summary, the contributions of the paper can be summarized as follows:

• We propose a self-training based framework to recognize named entities in
few-shot settings.

• We select machine reading comprehension model as the base model of our
self-training framework, and the NER task is regarded as answering the cor-
responding queries. Besides, we compute confidence of weak labeled data
based on entity triggers.

• Extensive experiments are conducted on two benchmarks to confirm the effec-
tiveness of the proposed method.

2 Our Model

2.1 MRC-NER

We first transform the tagging-style annotation NER dataset into MRC-style.
Specifically, we generate the query set Q = {qy1 , . . . , qyk

}, where qyi
denotes
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Fig. 3. Example of entity trigger

the query of entity type yi. Then we can get corresponding answer set A ={
astart1,end1 , . . . , astartp,endp

}
of input S, where astartp,endp

= {wstart, . . . , wend}
denotes the corresponding entity mention. Therefore, we can get MRC-style
annotation sample (Question,Answer, Context). After transforming tagging-
style dataset into MRC-style, we can extract the entity by answering the ques-
tion of a certain type. Solving NER tasks by the MRC-based model has a key
advantage against traditional methods: we can encode prior knowledge about
entity categories through the query, and the specific description of similar entity
categories can effectively eliminate ambiguity.

For few-shot learning, due to the limited annotation data, it is necessary to
import external knowledge. Thus, we choose the MRC-based NER method [5]
as the base model and improve its performance through self-training.

2.2 Entity Triggers

Entity Triggers [6] are defined as a set of words that help explain the entity
recognition process in a sentence. When we recognize some entity in a sentence,
we usually take certain words or phrases in the sentence as the basis for our
judgment, even if it is a word we are not familiar with. In short, entity triggers
can effectively help us understand the training process of the model and enable
the model to summarize the information of entity categories better. This method
was proposed by Lin et al. [6], and it achieved good results in few-shot settings
by using labeled data with entity triggers. Fig. 3 presents such an example, where
ti denotes an entity and its corresponding trigger.

When it lacks enough annotation data, entity triggers may provide us sup-
plementary information different from the original label information. It can be
regarded as supplementary annotations in the case of insufficient annotation
data, so as to help the model learn and summarize better from the limited anno-
tation data. Therefore, we select relevant information of entity triggers as an
auxiliary to compute the confidence of weak labeled data during self-training
process, and it can effectively filter out noisy data and improve the performance
of our model.

Trigger Extractor. Although annotating entity triggers manually may have
high quality, it needs domain knowledge and high labor costs, which is not
practical for NER tasks in few-shot settings. Therefore, we design a model for
automatic extraction of triggers based on the AutoTrigger model proposed by
Lee et al. [7]. We use SOC (Sampling and Occlusion) [8] algorithm to compute
the context-independent importance of phrases, which can be used to extract
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triggers. SOC is a technique for model interpretation. The expression of the
importance score of the phrase p in input sequence x is:

φ (p, x) =
1

|S|
∑

x̂δ∈S

[
s (x−δ; x̂δ) − s

(
x−{δ,p}; x̂δ; 0p

)]
(1)

where s (x) denotes the predict score of the model, x−δ denotes the sequence after
masking a context of length N surrounding the phrase p from input sequence x,
x̂δ denotes the sequence of length N obtained according to sampling probability
distribution p (x̂δ|x−δ) based on the pre-trained language model, 0p denotes
paddings for phrase p, and S denotes a collection of samples x̂δ from a pre-
trained language model. Therefore, the importance score of phrase p can be
interpreted as the expectation of difference between predict scores after masking
phrase p in all possible context x̂δ of p, which can also eliminate the relationship
between the importance score and the context of the phrase.

The process of automatic trigger extraction can be simply described as fol-
lows:

1) It first trains a classifier Mt based on annotation data DL. For the input
x =

(
x(1), x(2), . . . , x(n)

)
, the classifier Mt uses conditional probability P (y|x)

to denote its output, y is the corresponding label sequence. The predict score
of target entity e can be expressed as the following formula:

s (x, e) =
1
|e|

∑

x(j)∈e

P
(
y(j)|x(j)

)
(2)

2) Then generate the candidate trigger set P according to the set of phrase
nodes from the constituency parse tree, and calculate the importance score
of its target entity for each phrase pi ∈ P :

φ (pi, x, e) =
1

|S|
∑

x̂δ∈S

[
s (x−δ, e; x̂δ) − s

(
x−{δ,pi}, e; x̂δ; 0pi

)]
(3)

3) For all candidate triggers pi ∈ P , select top-K triggers with the highest score
after computing the importance score.

2.3 Self-training Framework

Trigger Representation Learning. After extracting entity triggers, we train
the model to learn the representation of triggers.

First, for the annotation data with triggers, we obtain the embedding of input
sentence S and trigger t according to the method proposed by Lin et al. [9],
denoted as gs and gt respectively. gs is the weighted sum of token embeddings
in the sentence, and gt is the weighted sum of embeddings of triggers in the
sentence. Then we learn the weight matrix by training in two tasks and obtain
the trigger embedding. Fig. 2 shows the framework. For the first task, we learn
trigger vectors by using entity types as supervision. The second task aims at
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making the trigger vector and sentence matched. The final loss is the weighted
sum of the loss of these two tasks.

Confidence. In the iterative process of self-training, how to find and remove
noisy data is critical. By selecting reliable weak annotation data, we can improve
the quality of expanded labeled data, and then improve and model performance.

Based on trigger vectors learned in last subsection, we compute the distance
d = ‖gx − gt‖2 between trigger t and weak annotation sentence x, and set the

threshold λ. For the set of triggers Tx =
{

t
(1)
x , t

(2)
x , . . .

}
satisfying d < λ, the cor-

responding entity type and quantity set is Ex = {(e1, n1) , (e2, n2) , . . . , (ek, nk)},
where ei denotes the corresponding entity type and ni denotes the number of
triggers belong to this entity type.

For weak annotation data (x, y), the annotation entity type is ei and its
entity type and quantity set is Ex, if the following conditions are satisfied, we
will regard this weak annotation data as reliable one:

ni
∑k

j=1 nj

≥ θ1 or ni ≥ θ2 (4)

where θ1 and θ2 are thresholds. For the reliable weak annotation data obtained
after each iteration and the previous labeled data, we define the loss function in
the next iteration as follows:

LST =
1

|DL|
∑

(x,y)∈DL

L (f (x) , y) +
λ

|DU |
∑

(x,y)∈DU

L (f (x) , y) (5)

where f (·) denotes new trained model based on DL and DU , and λU denotes
weight. Self-training is carried out iteratively according to the corresponding
steps until reaches the maximum number of iterations or meets stop conditions.

3 Experiments

3.1 Datasets

We use two datasets CoNLL2003 [10] and BC5CDR [11] for experiments.
CoNLL2003 is an English general domain dataset, including four named enti-
ties: Location, Organization, Person, and Miscellaneous. BC5CDR is an English
dataset in the biomedical field, including two named entities: Disease and Chem-
ical. Tagging-style annotation data in two datasets are transformed into corre-
sponding MRC-style annotation data. The queries corresponding to the entity
category are obtained from the annotation guide notes.

3.2 Baselines

We select the following models as baselines:

• BiLSTM-CRF [3]: A classical sequence labeling model.
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Table 1. Results on CoNLL2003, where P and R denote Precision and Recall, respec-
tively

Per. BiLSTM-CRF TMN TMN+self-training BERT-tagger STM

P R F1 P R F1 P R F1 P R F1 P R F1

1% 41.88 17.62 24.81 71.43 54.27 61.68 74.13 53.53 62.17 31.53 30.47 30.99 52.92 62.18 57.18

3% 55.19 46.97 50.75 76.06 74.13 75.08 80.06 75.23 77.57 56.01 48.99 52.27 71.18 72.02 71.6

5% 70.26 53.92 61.02 80.38 79.13 79.75 80.45 81.14 80.79 59.46 57.74 58.59 76.49 79.52 77.98

7% 71.46 61.26 65.97 82.78 81.31 82.04 82.75 81.99 82.37 65.09 65.23 65.16 84.28 83.75 84.01

10% 75.41 70.43 72.83 84.55 82.43 83.48 84.55 82.59 83.56 69.18 71.88 70.5 85.28 85.16 85.22

13% 78.03 74.49 76.22 84.79 83.2 83.99 84.51 84.03 84.27 72.01 70.97 71.49 85.02 85.97 85.49

15% 79.37 76.15 77.73 85.12 83.47 84.29 86.02 83.29 84.63 73.48 73.19 73.33 84.96 86.33 85.64

17% 80.27 77.65 78.94 85.33 84.01 84.66 86.31 83.94 85.11 73.88 75.24 74.55 86.34 86.39 86.36

20% 83.11 77.2 80.05 85.5 85.64 85.57 86.32 85.47 85.89 75.26 77.14 76.19 87.23 86.51 86.87

• Trigger Matching Network (TMN) [6]: NER model based on manually labeled
triggers.

• TMN with Self-training [6]: Self-training is adopted to TMN, and the confi-
dence is computed based on MNLP proposed by Shen et al. [12].

• Bert-Tagger [4]: Sequence labeling model based on BERT.

3.3 Results and Analysis

Table 1 and Table 2 show the results in CoNLL2003 and BC5CDR respectively.
It can be observed that, when training data is 1% of the dataset, the F1 value
of BilSTM-CRF model is only 24.81%. Few training data leads to poor gen-
eralization ability of the model. Although with training samples become more,
the model performance has been significantly improved a lot, there is still a big
gap between BilSTM-CRF and our model (STM). The performance of Bert-
Tagger model is similar to that of BilSTM-CRF. STM performs much better
than BilSTM-CRF and Bert-Tagger in the case of few training samples. When
compared with two TMN (+self-training) models based on trigger matching, the
performance of STM is slightly poor when the training samples are less than 5%.
The reason may be that when the sample size is small, the quality of extracted
trigger is not high enough, and the query information imported to MRC model
cannot be learned well. But when training samples reach 7% or above, the per-
formance will be improved, and it has certain advantages when compared with
TMN (+self-training). On the whole, when training samples are less than 20%,
STM has a relatively good performance by importing external knowledge and
mining information from limited training data. The disadvantage is that when
the size of training data is too small (less than 5%), the model can not fully
filter out noisy data because of the poor quality of extracted triggers, resulting
in poor performance. Therefore, the model can be improved by improving the
quality of extracted triggers for few-shot settings, such as transferring existing
entity triggers to low-resource field.

The entity definition in the biomedical field is complex, and it’s difficult
to identify. Therefore, the overall model performance is much lower than that
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Table 2. Results on BC5CDR

Percentage TMN TMN+self-training STM

Precision Recall F1 Precision Recall F1 Precision Recall F1

1% 59.01 48.78 53.41 59 49.33 53.73 48.2 52.03 50.04

3% 66.35 57.24 61.46 65.42 59.23 62.17 60.21 73.44 66.17

5% 69.37 63.29 66.19 68.14 66.89 67.51 66.9 71.36 69.06

7% 70.29 67.89 69.07 71.46 67.7 69.53 73.17 72.91 73.04

10% 72.01 69.35 70.66 69.61 72.84 71.19 75.03 75.06 75.04

13% 73.16 70.61 71.86 75.14 69.56 72.24 77.4 76.56 76.98

15% 75.04 69.11 71.95 71.38 73.41 72.38 79.37 76.27 77.79

17% 74.72 71.01 72.81 74.13 73.64 73.88 77.63 78.22 77.93

20% 74.35 72.64 73.48 75.13 73.71 74.41 79.63 79 79.31

Fig. 4. Effect of varying percentage of
training samples on CoNLL2003

Fig. 5. Effect of varying percentage of
training samples on BC5CDR

in CoNLL2003. Compared with the results in CoNLL2003, STM has a more
significant advantage in BC5CDR (F1 value is about 4%–5% higher on average).
The possible reason is that STM can make full use of the corresponding external
knowledge for entities in the biomedical field by setting appropriate queries. In
this way, the significant features of the entity category can be extracted, and the
noisy data that is easily confused can be filtered out based on triggers, so the
advantages are more obvious than in CoNLL2003.

Corresponding line charts are drawn for the performance of STM and
BILSTM-CRF in different percentages of training data in CoNLL2003 and
BC5CDR respectively, as shown in Fig. 4 and Fig. 5. It can be seen that, less
training data, the greater advantage of STM compared with BiLSTM-CRF, the
reason is that when the size of training data is small, it is hard for BiLSTM-CRF
to learn the important features of corresponding entity category, which leads to
poor generalization ability. However, the external knowledge introduced by STM
and the information mined from different perspectives of limited training data
lead to good generalization ability even if the size of training data is small.

The results of ablation experiments are shown in Table 3. It shows the
results of STM, BERT-MRC model without self-training, and self-training based
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Table 3. Ablation results of CoNLL2003

Model Precision Recall F1

STM 52.92 62.18 57.18

MRC 48.53 61.76 54.35

STM without Triggers 61.94 44 51.45

MRC model without filtering out noisy data in only 1% training samples of
CoNLL2003. After the introduction of entity triggers to filter out noisy data
and expand training data with high-quality weak annotation data, the perfor-
mance of STM (F1 value is 57.18%) improves a lot when compared with that
of BERT-MRC model (F1 value is 54.35%). Without the process of filtering out
noisy data, STM without Triggers only use weak annotation data to expand
training data, although the size of training data has been increased, the quality
falls and prediction error of the model will be accumulated, so the model perfor-
mance falls when compared with F1 value of BERT-MRC model, it is reduced
by about 3%. Therefore, it can be concluded that the process of filtering out
noisy data by mining trigger information in training data is very important.

4 Conclusion

In this paper, we propose a self-training based NER method to improve the
generalization ability of the model in the settings of few-shot. Our model uses
MRC-based model as the base model and trains the model under the frame-
work of self-training. The experimental results show that the proposed method
outperforms the existing methods.
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Abstract. Multi-hop Knowledge Graph Question Answering (KGQA)
aims to find the answer entity via a reasoning path consisting of multiple
fact triples in the knowledge graph (KG). Most of end-to-end KGQA
approaches only pay attention to answering one-hop simple questions and
lack scalability and interpretability. Meanwhile, since the high cost for
data annotations, the lack of intermediate supervision signals becomes
a major challenge. To address these challenges, we propose a policy-
based reinforcement learning model called RPGQA which converts the
task of KGQA to a reasoning path generation task in the KG. Firstly,
in order to improve the interpretability of the model, the agent in our
model learns an effective policy to reason a path to the answer entity
as the evidence for the question. Secondly, we design an algorithm for
entity disambiguation during entity linking. After that, the topic entity
in the question can be linked as the beginning of the reasoning path.
Furthermore, we propose a reward shaping policy consisting of three
parts to enhance intermediate supervision signals, which alleviates the
problem of reward delay and sparsity of reward. Extensive experiments
on multiple benchmark datasets have demonstrated the effectiveness of
our model. RPGQA outperforms most of the state-of-art baselines on
the multi-hop KGQA task.

Keywords: Knowledge Graph Question Answering · Reinforcement
learning · Reward shaping · Reasoning path

1 Introduction

Question answering (QA) has always been an essential issue in the field of nat-
ural language processing and this task aims to provide people with the informa-
tion they need automatically. Recently, people have higher requirements for the
accuracy and interpretability of QA systems with the widespread application of
artificial intelligence. Therefore, how to introduce knowledge to build QA sys-
tems is widely concerned [7]. Thanks to the creation of large-scale knowledge
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Li et al. (Eds.): APWeb-WAIM 2022, LNCS 13422, pp. 195–209, 2023.
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graphs (KG), QA system can be armed with well-structured knowledge on spe-
cific and open domains. The goal of KGQA [21] is to find the answers based
on the natural language from the KG which is a multi-relational graph with a
number of triples, and the answers often correspond to entities in the KG.

For KGQA task, previous methods [1,26] only consider single-hop questions
which need only one triple to answer, such as “Who is Barack Obama’s wife?”.
In comparison, how to effectively answer multi-hop questions which need two
or more triples is still a big challenge. For example, the question “Where does
Barack Obama’s wife live in?” relies on multiple fact triples (Barack Obama,
Spouse, Michelle Obama) and (Michelle Obama, Places Lived, Chicago). The
absence or error of any triple will result in the wrong answer. Therefore, these
methods lack interpretability and cannot be used in medical, financial and other
fields that require a complete reasoning evidence. How to design a method with
interpretability is a challenge for multi-hop reasoning.

Another key challenge is how to generate a reasoning path leading to the
answer entity without intermediate supervision signals. The training data for QA
usually only provides question-answer pairs. Such weak supervision signals make
it difficult to figure out the unknown reasoning steps pointing to the answer. As
shown in Fig. 1, even if a reasoning path leading to the correct answer is obtained,
this path may be spurious. Spurious reasoning paths [9] will mislead the learning
process.

Fig. 1. An example of spurious paths in multi-hop KGQA. The question is “What is
the official language of the country to which the movie Band of Brothers belongs?”.
Three reasoning paths can be obtained, their beginning and ending points are the same,
two of which are spurious and one is true.

To address the challenges mentioned above, we propose a method of multi-
hop KGQA by reasoning path generation (RPGQA). The method is based on
reinforcement learning (RL) and is used to enhance intermediate supervision
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signals. We convert the multi-hop KGQA task into a path search task in the
KG. Compared to deep learning-based approaches, our model is no longer a
black box and all reasoning bases are available in the reasoning path,e.g.(Barack
Obama, Spouse, Michelle Obama, Places Lived, Chicago). With the generation
of reasoning paths, we can analyze the reasoning process and thus improve the
interpretability and scalability of the model. Recent researches [8,12] with RL
algorithm maximize the expected reward in KGQA in order to deal with the
problem of insufficient training data. Feedback can only be received after rea-
soning for a multi-hop question, which causes sparse reward and reward delay.
To alleviate the problem, we propose a reward shaping policy including two soft
rewards: semantic reward and efficiency reward. With the reward shaping policy,
the agent will get different rewards from the true path and the spurious path.

RPGQA takes the subject entity in the user’s question as the source entity,
and search along the hop-by-hop path of multiple triples < head entity, relation,
tail entity> of the knowledge graph to find the answer entity or relation. We
first use the semantic information of the question and labels of relations in the
KG for entity linking [5] which is very important for accurately locating the
source entity as the beginning point of the reasoning path. We use an entity re-
ranking [28] algorithm for entity disambiguation in the process of entity linking.
Bidirectional LSTMs (BiLSTM) and convolutional neural networks are fused to
extract semantic features of questions and relations.

The main contributions of this paper are as follows:

– We propose a novel model based on reinforcement learning for multi-hop
KGQA, which makes up for the interpretability in previous work. Reasoning
paths can explain the process of getting answers and analyze correctness.

– With a reward shaping policy, we enhance intermediate supervision signals
to alleviate the delayed and sparse reward problem during training.

– We build a semantic parsing based entity disambiguation framework during
entity linking to avoid error propagation in reasoning process, which helps
the agent identify the correct beginning point for reasoning.

2 Related Work

The approaches to solving multi-hop KGQA tasks can be generally classified
into embedding-based and path-based approaches.

Embedding-based multi-hop KGQA approaches convert questions and
answer candidates into semantic vector representations in low dimension vector
space for operation. Previous work [22] embedding the question and KG triples
to express the semantics of features. MC-CNN [4] further uses neural network
models with stronger learning capabilities to learn information of answers but
it does not adequately consider representations of answer candidates. Embed-
KGQA [15] uses link prediction based on the KG embedding to alleviate the
problem of incomplete data in multi-hop KGQA. GraftNet [19] and PullNet [18]
combine external texts and KG based on the graph neural network (GNN). In
recent years, in order to solve the problem of large-scale and incomplete KG,
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researches on the combination of logical rules and knowledge embedding [6,27]
have attracted a lot of attention. Query2Box [13] and BetaE [14] express the
query as a directed acyclic calculation graph, which indicates the steps to per-
form multi-hop KGQA.

Path based multi-hop KGQA approaches take the topic entity in the ques-
tion as the source entity and then search the answer entity along with triples
of the KG. DeepPath [23] applies reinforcement learning to path learning and
encoded the state in the continuous space through the translation embedding
method [29]. MINERVA [3] proposes an algorithm that treats the path to the
correct answer entity as a sequential decision problem. To alleviate the prob-
lem of reward delay and sparsity of reward, reward shaping policy [9] that can
enhance intermediate supervision signals is proposed. M-Malk [17] uses Monte
Carlo tree search to overcome the challenge of sparse positive reward. SRN [11]
proposes a potential-based reward shaping policy but ignores the importance of
entity linking during reinforcement learning. Our work focuses both on entity
linking and reward shaping policy and uses the feedback after each action to
generate an interpretable reasoning path.

3 Task Definition

In this section, we introduce the notations used throughout the paper and for-
mally define the task of KGQA. We use E to denote the set of entities and use R
to denote the set of relations. We can construct a knowledge graph G which is a
collection of atomic facts stored as triples 〈e1, r, e2〉, where e1, e2 ∈ E are repre-
sented as the nodes and r ∈ R as the labeled edge between them. Formally, F is
the set of all possible triples. We add the inverse relation of each relation edge,
for example,

〈
e2, r−1, e1

〉 ∈ F is the inverse relation triple of 〈e1, r, e2〉 ∈ F ,
which to allow the agent to have a retreat path when exploring potential wrong
decision. A self-loop edge 〈e, loop, e〉 ∈ F is added to each entity node to give
the agent the choice to stop at the current node e.

A question is expressed as a sequence of words Q = (q1, q2, ..., qn) as input.
The relation candidate r also has a textual representation as word sequence
r = (t1, t2, ..., tn), e.g.(place,of,birth). a is the answer node to Q. e ∈ E represents
the entity node in the knowledge graph G. Firstly we design an algorithm to find
the correct source entity es which is the subject entity of Q. Then, we define
the query condition σ = (es,Q) and train an agent to return entities from E as
answers to a given question. Historical track Hσ = (eq, r

′
1, e1, ..., en−1, r

′
n, a) can

be used as an evidence chain to enhance interpretability.

4 Methodology

In this section, we introduce our multi-hop KGQA model in Fig. 2. First, we
propose a deep neural model to learn question and relation representations. Next,
we introduce the entity disambiguation module in the process of entity linking.
Then, we introduce the reinforcement learning external environment and reward
shaping policy. Finally, we describe our policy network and training.
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Fig. 2. Overview of our model. Different colored rectangular containers indicate diverse
embeddings as dense vectors. Circles in each container represent the features in vector.

4.1 Question and Relation Representation Learning

In our work, we split each question and relation into word sequences. Then, each
token is transformed to its word embedding and two BiLSTMs are used to cap-
ture contexts for more precise semantics. At last, we get question representation
Qr and relation representation Rr.

Take question embedding input as an example, we first replace the topic
entity’s mention with a token 〈e〉 in question Q after entity linking by the entity
linker. Then, we denote e(qi) as the word embedding of word qi. Left context
lc(qi) and right context rc(qi) are dense vectors used to capture semantics:

lc (qi) = f
(
W (l)lc (qi−1) + W (sl)e (qi−1)

)
, (1)

rc (qi) = f
(
W (r)rc (qi+1) + W (sr)e (qi+1)

)
, (2)

W (l) and W (r) are matrices that convert the context to the next hidden layer.
W (sl) and W (sr) are matrices that are used to respectively fuse the left and
right context of the word and the semantics of the current word.f is a non-linear
activation function. For word qi, we define a new form of representation xq

i that
consists of three parts:

xq
i = [lc (qi) ; e (qi) ; rc (qi)] . (3)

yq
i = tanh

(
W (t)xq

i + b(t)
)

, (4)
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where xq
i is the representation of the word qi and W (t) is the matrix of the linear

transformation. Both W (t) and b(t) are parameters obtained after learning.
When inputting the relation embedding, we perform the same operations

as the question embedding. Finally, the question embedding becomes Y q =
{yq

1, ..., y
q
n} and the relation embedding becomes Y r = {yr

1, ..., y
r
m}. With the

max-pooling layer, we get the most important semantic information in the two
sequences. These two sets of vectors become the final representation Qr and Rr.
We specify a rule to compute the matching score of each relation r for question
Q as Sr (r;Q) = cos (Qr,Rr).

4.2 Entity Disambiguation for Entity Linking

Entity linking is easily disturbed by ambiguous entities. So entity disambigua-
tion is necessary to get an accurate beginning state for subsequent reinforcement
learning part. Our work uses the existing entity linker [24] to generate the top-k
entities for question Q, then operates an entity re-ranking algorithm to disam-
biguate entities.

In this part, we first select all relations or relation chains in the KG within
the two-hop range around the entity candidate generated by the entity linker
as relation candidates Re and compute their scores given question Q as input.
After that, we get the top-t relations Rt

Q in descending order of score to re-rank
the original entity candidates, then take the intersection of the two sets as the
relation r ∈ Rt

Q ∩ Re with the high confidence score for each entity candidate e.
Next, we re-rank the entities with the re-rank score S(e;Q) as follows:

S(e;Q) = α · Sl(e;Q) + (1 − α) · max
r∈Rt

Q∩Re

Sr(r;Q), (5)

where Sl(e;Q) is the original entity linker score of entity e and α is a constant
in the range of 0 to 1. At last, the entity with the highest score is selected as
the source entity of the question.

4.3 Reinforcement Learning Formulation

The reinforcement learning formulation can be viewed as a Markov decision
process (MDP) [20]. The environment of the knowledge graph G is defined as
a five-tuple (S,O,A,P,R), where S is the state space, O is the observation
space, A is the action space, P and R respectively represent the state transition
function and reward function. The main components of MDP will be explained
in detail below.

States. The state space S contains all valid combinations of knowledge graph
node information. Each state St = (et,Q, es, a) ∈ S at step t not only includes
the location of the entity node et where the agent is currently located but also
includes global information (Q, es) where Q is the question and es is the source
entity. a is the answer at the current step. Initial state SI ∈ S and termination
state ST ∈ S are represented as SI = (es,Q, es, a) and ST = (a,Q, es, a).
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Observation. The agent cannot know the answer to the question during the
reasoning process so the complete state is invisible to the agent. The reasoning
agent knows its location et at step t and the input query condition (Q, es).
Therefore, we can set the observation function as O(St) = (et, Q, es).

Action. The action space A is the combination of effective edges in the knowl-
edge graph. At step t, the set of candidate actions A(St) is composed of all the
outgoing edges of the current location et where the agent is located in. Con-
cretely, At = {(r, e)|(et, r, e) ∈ G}.

Transition. The state St and the reward Rt at step t only depend on the pre-
decessor states and actions. In other words, when the values of the predecessor
state and action are given, the specific values of these random variables, the
probability of appearing at step t is the state transition probability. The tran-
sition function P is defined as P(St, At) = (e′,Q, es, a), where At = (r′, e′) and
St = (et,Q, es, a).

Rewards. At step t, the agent performs the action At, it will accumulate the
reward as Rt ∈ R. In the traditional knowledge graph path reasoning with rein-
forcement learning, a binary reward function which has limitations is generally
used. We propose a reward shaping policy to improve it, which will be detailed
elaborated in Sect. 4.4.

4.4 Reward Shaping

In knowledge graph G, the reward for spurious reasoning paths of the binary
reward method may be the same as the one for the true reasoning path as Fig. 1.
So we propose the reward shaping policy which consists of three parts.

First, we define a semantic reward based on the relation label of each path.
We use the module that is mentioned in Sect. 4.1 and Sect. 4.2, and then evaluate
the similarity between the relation representation Rr and the question represen-
tation Qr through the cosine function. On the one hand, the cosine similarity is
highly interpretable and easy to calculate. On the other hand, cos(x) ∈ [−1, 1],
the result can be either the reward for the correct path or the penalty for the
wrong exploration path. We define the semantic reward as:

RSEMANTIC =
{

cos (Qr, Rr) , t > 1,
0, t = 1,

(6)

where t is the time step.
Meanwhile, we tend to take an efficient path to reach the answer entity. The

efficiency reward which decreases as the path grows is defined as follows:

REFFICIENCY =
β

length(Hσ)
, (7)

where β is a parameter that we can adjust during training and Hσ is the historical
track defined in Sect. 3. The length of Hσ is the number of relation edges in it.
We only calculate the efficiency reward at the end of each query.
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The last part of the reward is the binary reward called global reward:

RGLOBAL =
{

+1, et = a
0, et �= a.

(8)

Final reward R of the question Q will consist of the above three parts, and
the calculation formula is as follows:

R = RGLOBAL + REFFICIENCY +
N∑

t=1

(Rt)SEMANTIC, (9)

where N is a constant that represents the length of the path. In a query, the
reward for each subsequent step is −1 when the global reward is obtained. It
makes the agent tend to stay in the answer entity node by doing self-loop after
getting the global reward, instead of continuing to walk for the higher reward.

4.5 Policy Network

The policy network takes the current state information St and the action in
the last step At−1 as input. The purpose is to learn a parameterized policy
π = (π1, π2, ..., πn) and output the probability distribution of candidate actions
as πt : St → P {A(St)}, where St is the current state.

Formally, for the question Q = (q1, q2, ..., qn) with n words, we convert it into
the question representation of d-dimension Qr ∈ Rd as mentioned in Sect. 4.1.
The probability of reward changes with time and the agent encodes the historical
trajectory Ht = {Ht−1, At−1, 0t} which is about the sequence of previous obser-
vations and actions at step t as a continuous representation with the BiLSTM
network as follows:

Hr
t = BiLSTM

(
Hr

t−1,R
r
t−1

)
, (10)

where Hr
t−1 is the output of the recurrent neural network in the previous step

t − 1 and Rr
t−1 is the relation representation in At−1. In addition, Hr

0 and Rr
0

are both zero vectors.
Then, we use a similar approach as the one mentioned in Sect. 4.1. Like Eq. 3,

we use a BiLSTM to get the sequence of question embedding Y q = {yq
1, ..., y

q
n}.

But in the sequence Y q, we use the original topic entity instead of token 〈e〉. We
calculate the similarity Tm between relation embedding Rr and question word
yq

m:

Tm = W ′ · (Rr � yq
m) + b′, (11)

where W ′ ∈ Rd and b′ ∈ R are parameters and � denotes matrix multiplication.
Then we pass the result through a SoftMax layer to get an attention distribution
on Y q as follows:

αi =
exp (Ti)∑n

m=1 exp (Tm)
, (12)
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and the weighted sum of these vectors is obtained by the following formula:

ρq.r =
n∑

i=1

αi · yq
i . (13)

Based on the historical trajectory embedded Hr
t , the policy network decides

to select an action from all available actions A(St). The semantic score for each
action At is calculated through a perceptron. We input the historical trajectory
embedding Hr

t , the current observation Ot and the semantic score of the query
relation ρq.r into two nonlinear feedforward neural network layers, and then use
a SoftMax layer to calculate the probability of each action being selected at step
t as the policy network πt:

πt = softmax (MA (W2ReLU (W1 [Ht; Ot; ρq.r] + b1) + b2)) , (14)

where MA is a matrix that consists of all action representations and πt is the
probability distribution of all action candidates. W1 and W2 are feedforward
network weights. b1 and b2 are biases.

5 Experiments and Results

5.1 Datasets

1. MetaQA [30] is a large-scale KGQA dataset which contains more than 400k
movie questions. It consists of up to 3-hop complex multi-hop questions. For
our experiments, we used the “Vanilla” version and the “Vanilla-EU” (EU
stands for topic entity unlabeled) of questions and the knowledge graph pro-
vided with WikiMovies, which includes about 43k entities and 135k triples.

2. WebQuestionsSP [25] is a QA dataset composed of 4737 natural language
questions and their answers with Freebase [2]. Due to the scale of Freebase
being too large, we use the subgraph of Freebase knowledge graph generated
by GRAFT-NET [19] which includes about 528k entities (Table 1).

Table 1. Statistics of MetaQA and WebQuestionsSP and knowledge graphs used in
experiments. #Entity and #Relation represent the number of entities and relations of
KGs for our KGQA tasks.

Dataset Train Dev Test #Entity #Relation

MetaQA 1-hop 96,106 9,992 9,947 43,233 9

MetaQA 2-hop 118,960 14,872 14,872 43,233 9

MetaQA 3-hop 114,196 14,274 14,274 43,233 9

WebQuestionsSP 2,848 250 1,639 528,617 513
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5.2 Baselines

In order to verify the effectiveness of our method, we selected some baseline
methods to compare with RPGQA.

– KV-MemNN [10] uses texts as the external knowledge which extracts the
information in texts in the form of key-value pairs as KG triples.

– MINERVA [3] proposes a reinforcement learning approach to model the
state space based on the question. It takes the path to correct answer entities
as a sequential optimization problem based on the structure of the KG.

– VRN [30] uses a variational learning algorithm for question answering over
the knowledge graph. This method is also under weak supervision.

– GraftNet [19] proposes a question answering approach based on open
domain, which integrates text and KG.

– SRN [11] proposes a reward shaping policy based on potential, which can
accelerate the convergence speed of the training algorithm.

– R-GCN [16] proposes relational graph convolutional networks for the task
of knowledge graph completion. It is mainly designed for multi-relation data.

5.3 Training and Implementation Details

In the process of training, our goal of training is to maximize the expected
rewards when we perform question answering tasks over the knowledge graph:

J(θ) = E(Q,a)∼D

[

E(A1,A2,··· ,AT )∼πθ

[
T∑

t=1

ηt−1R (St, At) | (Q, a)

]]

, (15)

J(θ) is the gradient of a certain performance index.D is the dataset for training
and (Q, a) is a set of question answering data in it. We set η as a discount factor
in the range 0 to 1 to make the proportion of reward gradually decrease with
the increase of the number of steps. In order to encourage the agent to sample
diverse paths during training, we add the value of ε in ε-greedy algorithm, the
learning rate and so on as hyper-parameters to better maintain the balance
between exploration and exploitation.

In our work, we use the pre-trained model to initialize each word embedding.
Then we tune the hyper-parameters on development sets. The hidden dimension
of the BiLSTM in the policy network as history encoder is set to 300 and the
dropout rate is 0.3. We use ADAM as the optimizer, meanwhile, we tune the
initial learning rate λ within {0.01, 0.05, 0.1, 0.5, 1.0}. For the reinforcement
learning algorithm, we set the discount factor η = 0.9 and tune the parameter β
in the efficiency reward within (0.5, 1.0). In greedy search, we set the value of ε
gradually increasing during training and finally to 1. We tune parameter β and
learning rate λ in Fig. 3 and choose the optimal solution in training.
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Fig. 3. Performance tuning of our model.

5.4 Results and Analysis

We use Hits@1 as the index for evaluating the effect of the multi-hop KGQA
model. Regard question answering as a task of answer ranking, Hits@1 refers to
the proportion that the correct answer is the first one in the final ranking. The
detailed results of MetaQA dataset are listed in Table 2.

Table 2. Test results on the MetaQA dataset(Hits@1 in percent)

Vanilla
1-hop

Vanilla
2-hop

Vanilla
3-hop

Vanilla-EU
1-hop

Vanilla-EU
2-hop

Vanilla-EU
3-hop

KV-MemNN 93.5 84.3 53.8 85.2 80.8 35.2

MINERVA 96.3 92.9 55.2 87.7 89.1 36.1

VRN 97.5 89.9 62.5 82.0 75.6 38.3

SRN 97.0 95.1 75.2 88.4 91.2 49.2

RPGQA 96.7 93.4 76.3 93.6 91.8 52.6

For the “Vanilla” version of MetaQA, since the topic entities in questions
have been labeled, this version is mainly used to evaluate the logical reasoning
ability of the method. Although our method (RPGQA) does not achieve the
best results of “Vanilla 1-hop” and “Vanilla 2-hop”, the gap with the optimal
baseline is only about 1%. RPGQA achieves the best result of “Vanilla 3-hop”.

For the “Vanilla-EU” version of MetaQA dataset, the performance of all
baselines becomes worse for the lack of topic entity labels. However, RPGQA
is less affected compared with baselines, for we specially design the entity dis-
ambiguation module to take topic entity linking as the foundation. Therefore,
entity linking and reward shaping policy both play important roles in multi-hop
question answering under weak supervision signals.

In order to further evaluate the performance of RPGQA on datasets in differ-
ent domains and scales, we use Hits@1 and F1-score to measure the performance
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Table 3. Test results on WebQuestionsSP dataset (Hits@1 and F1 in percent)

Hits@1 F1

R-GCN 37.2 30.5

KV-MemNN 46.7 38.6

GraftNet 67.8 62.8

RPGQA 69.7 64.3

of our method and baselines on WebQuestionsSP dataset. The detailed results
are listed in Table 3. As shown in Table 3, our method (RPGQA) based on rein-
forcement learning performs better than all baselines in the test set. Facts have
proved that for complex questions with multiple hops, the system of generat-
ing reasoning path with reinforcement learning has more advantages in answer
quality.

5.5 Ablation Studies

We conduct further ablation studies to prove the effectiveness of each part. Since
the topic entities that have been labeled on “Vanilla” version of MetaQA, we
only study on “Vanilla-EU” version of MetaQA and WebQuestionsSP.

Table 4. Ablation study of RPGQA (Hits@1 in percent)

Vanilla-EU
1-hop

Vanilla-EU
2-hop

Vanilla-EU
3-hop

WebQuestionsSP

GR 87.6 84.2 35.5 58.6

GR+ER 87.9 85.7 42.1 61.3

GR+SR 88.8 86.9 48.3 64.0

GR+EDM 91.3 89.7 39.2 66.5

RSP 89.2 87.6 51.4 66.2

RPGQA 93.6 91.8 52.6 69.7

We use the entity disambiguation module (EDM) and the two additional soft
rewards including semantic reward (SR) and efficiency reward (ER) as variables
to compare the effectiveness of the experiment. The compared question answer-
ing methods include: (1) GR: the model using only global reward (GR); (2) GR
+ SR: the model using global reward and semantic reward; (3) GR + ER: the
model using global reward and efficiency reward; (4) RSP: the model using com-
plete reward shaping policy without entity disambiguation module; (5) GR +
EDM: the model using global reward and entity disambiguation module.

As the results that are shown in Table 4, efficiency reward hardly works
when answering 1-hop questions, but it can improve the effect of GR by 18.6%
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when answering 3-hop questions. Semantic reward improves the baseline effect
by 36.1% on 3-hop questions. It proves that the performance of semantic reward
is greater than the one of efficiency reward on multi-hop question answering. RSP
improves the performance of GR by 55.7%, which proves that it is necessary to
use reward shaping policy under weak supervision signals. On the other hand, the
entity disambiguation module in our model plays an important role in mutil-hop
KGQA.

Fig. 4. Performance comparison on Vanilla-EU 3-hop and WebQuestionsSP.

To compare the performance of the above models more intuitively, we selected
two typical datasets in Fig. 4. The performance fluctuation on the dataset
Vanilla-EU 3-hop is significantly greater than that on the dataset WebQues-
tionsSP. We consider the main reason for this situation is the difference in the
difficulty of questions in the two datasets. The performance difference of these
models is mainly reflected in the processing of complex questions.

6 Conclusion

In this paper, we present a novel reinforcement learning model RPGQA which
generates the reasoning path to enhance intermediate supervision signals and
then answers multi-hop questions. We employ the entity re-ranking algorithm
for entity linking to find the correct source entity as the beginning point of the
path. We design a reward shaping policy from both semantic and efficiency to
alleviate the delayed and sparse reward problem. Experimental results on two
QA datasets validate the effectiveness of the model on multi-hop KGQA.
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Abstract. Entity linking is a pivotal factor for building robust Ques-
tion Answering systems over Knowledge Graphs (KGQA), and represen-
tation of entities occupies an important position for tackling entity link-
ing for questions. To alleviate the deficiency of entity descriptions that
contextual knowledge is insufficient for entity representations, we intro-
duce entity experiences as a new text-style contextual knowledge source
to enrich entity representations, and propose an Experience Enhanced
Entity Linking framework called as E3L. For the modeling of entity
experiences, we derive embeddings using the entity mentions occurring
in history questions, and design an attention-based retriever to capture
key information relative to user questions. Then the distilled entity expe-
riences are integrated with entity descriptions to enhance entity repre-
sentations, and question representations are refined with a multi-level
attention mechanism. Finally, entity linking is improved with the entity
representations and the refined representations of questions. Experimen-
tal results on end-to-end benchmark datasets demonstrate that our app-
roach achieves state-of-the-art F1-score, and provides an effective way to
improve test performance for universal models using entity experiences
without fine-tuning.

Keywords: Question Answering over Knowledge Graphs · Entity
linking · Mention detection · Entity disambiguation · Entity experience

1 Introduction

Question Answering systems over Knowledge Graphs (KGQA), which answers
users’ natural language questions with a Knowledge Graph (KG), has emerged
as a promising technique to provide unified and user-friendly access to KGs
[6]. Entity Linking for KGQA (ELQA), which links user questions with the
entities available in KGs, is crucial for building robust KGQA, since answers
must be connected to the entity mentions in the questions via some path over
KGs [9]. ELQA typically involves two basic tasks: mention detection and entity
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Table 1. Results for linking an example question to WikiData entities using entity
introductory texts. Entity introductory texts in parentheses are from Wikipedia arti-
cles.

Question What nba teams has shaq played for?

GOLD result Shaq→“Shaquille O’Neal”(Shaquille O’Neal, known commonly as
“Shaq”, is an American former professional basketball player.)

PRED result Shaq→“Tupac Shakur”(Tupac Shakur, also known by his stage
names 2Pac and Makaveli, was an American rapper and actor.)

disambiguation [8,11]. Mention detection extracts mention spans in the questions
and entity disambiguation links these mentions to their corresponding entities
in a KG. Taking the question “what nba teams has shaq played for?” in Table 1
as an example, the mention detection task tries to identify “shaq” as a mention
and the entity disambiguation task makes attempt to link it to the appropriate
WikiData entity.

The main challenge for ELQA is that real-world user questions are typi-
cally short texts in which contextual information is scarce, leading to mention
misidentification and linkage error on ambiguous questions [9,10]. For example,
when processing the question “what nba teams has shaq played for?” without
any background knowledge, the word “played” could be explained as “giving
a show” or “sporting”. This ambiguity causes difficulty in deciding whether
“shaq” is an actor or an athlete. To tackle the challenge, numerous studies have
adopted the approaches that enrich entity representations with descriptive texts
or knowledge graph context. In detail, descriptive texts, including entity titles
and introductory texts, are used to enrich conceptual and linguistics knowledge
[1,8,11,13,14], while knowledge graph context such as entities, relations and
attributes are employed to enhance contextual knowledge [1,11]. Between the
two approaches, encodings of descriptive texts are more accessible but lack of
contextual knowledge. As shown in Table 1, mention “shaq” could be linked to
entity “Tupac Shakur” rather than “Shaquille O’Neal” when only entity intro-
ductory texts are utilized. The problem can be alleviated by applying history
questions to enrich contextual knowledge of entities. The intuition is that humans
generally understand questions by obtaining experiences from similar or related
history questions, which extends contextual knowledge of certain entities. For
example, from a previous question “when did shaq come to the nba?” with men-
tion “shaq” linked to entity “Shaquille O’Neal”, human can get hints that “shaq”
in the question of Table 1 may also be linked to “Shaquille O’Neal”, because the
contextual knowledge of “Shaquille O’Neal” is enriched with “come to the nba”
from the previous question. As a text-style contextual knowledge source, history
questions are more accessible compared with knowledge graph context, and the
idea could become effective when history questions being accumulated.

Based on the above idea, we regard the occurrences of each entity in history
questions as its experiences and propose an Experience Enhanced Entity Link-
ing framework (E3L) for KGQA. In the framework, we focus on the modeling of
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entity experiences and its utilization to enhance entity representations and ques-
tion representations. In detail, for the modeling of entity experiences, we first
derive embeddings using the entity mentions occurring in history questions, and
then capture key information relative to user questions with an attention-based
retriever. The entity representations are produced by integrating entity experi-
ences and entity descriptions, and question representations are refined with a
multi-level attention mechanism. In the follow-up stage, the resulting represen-
tations are used for mention detection and entity disambiguation by training
with joint optimization. We conduct experimental evaluations on the end-to-end
ELQA benchmark datasets WebQSPEL and GraphQEL [8]. Results of model
comparison demonstrate that our approach achieves state-of-the-art ELQA F1-
score, and provides an effective way to improve test performance for universal
models using entity experiences without fine-tuning. In addition, results of abla-
tion study and case study demonstrate the effectiveness of our design on entity
experience modeling and utilization.

The contributions of this paper are threefold.

(1) We propose to take entity experience as a new accessible knowledge source
to improve ELQA. In our knowledge, this is the first work that introduces
entity experience into ELQA modeling.

(2) We propose a framework for entity experience modeling including encod-
ing and retrieval, and the framework guarantees the applicability of entity
experience to ELQA in practice.

(3) We propose mechanisms for enhancement of entity representations and ques-
tion representations by utilizing entity experiences, which benefit ELQA
effectively.

2 Related Work

With respect to the representation of entities for ELQA task, researchers have
studied the solutions of utilizing descriptive texts and knowledge graph context.

Firstly, majority of studies employ entity labels and titles as basic features for
entity representations, and other entity descriptions such as introductory texts
are also used to enrich entity encodings. Sorokin and Gurevych [11] extract
character-level features for entity labels. Banerjee et al. [1] employ fastText
embeddings of Wikidata descriptions. Driven by recent advances in pre-training
technologies, Wu et al. [13] and Li et al. [8] apply BERT model [4] as the encoder
of Wikipedia descriptions and integrate general language knowledge into the rep-
resentations of entities.

Besides, researchers have augmented entity representations with knowledge
graph context such as entities, relations and attributes in knowledge graphs.
Sorokin and Gurevych [11] use the embeddings of entities and relations that are
connected to entity candidates, and knowledge graph embeddings are trained
with TransE algorithm [2]. Banerjee et al. [1] employ pre-computed and pre-
indexed embeddings learned by TransE algorithm over Wikidata.
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Between the two kinds of approaches, representations of descriptive texts,
which enrich conceptual and linguistics knowledge for entities, are more accessi-
ble but lack of contextual knowledge. In this paper, we explore to enrich contex-
tual knowledge for entity representations by applying history questions, which
are more accessible compared with knowledge graph context.

3 Framework

Definition 1 (Entity Experience). Given a set of entity candidates E =
{ei|1 ≤ i ≤ NE}, experiences of ei is defined as its occurrences in the history
questions:

Q (ei) = {(qij , startij , endij)|1 ≤ j ≤ NQ
i ∧ 1 ≤ startij ≤ endij ≤ Nqij}

where NQ
i = |Q (ei) |, qij is a history question containing Nqij tokens, and startij

and endij are the start location and end location for the mention of ei in qij.

For example, entity “Shaquille O’Neal” occurs in question “when did shaq
come to the nba?” as mention “shaq”, and both the start location and end
location are 3.

Definition 2 (ELQA Task). Given a user question q =
(
x1, · · · , xNq

)
con-

taining Nq tokens and the set of entity candidates E = {ei}, where ei has a set
of experiences Q (ei) and a descriptive text d (ei), the goal of ELQA is to output
a list of tuples, (e, [start, end]), whereby e ∈ E is the entity corresponding to the
mention span from start-th to end-th token in q.

Taking entity “Shaquille O’Neal” as an example, its descriptive text is an
introductory text from Wikipedia articles, as shown in Table 1.

Aiming to solve the ELQA task, our proposed framework E3L contains
five modules as shown in Fig. 1. Question Basic Encoder module derives ini-
tial token-level encodings for user questions. For each entity candidate, Entity
Encoder module encodes its entity experiences and entity description and inte-
grates them to produce entity representation. We employ a tri-encoder archi-
tecture for Question Basic Encoder and Entity Encoder, where the encoder
of entity experiences shares parameters with Question Basic Encoder. Entity
Encoder computes encodings of entity experiences based on mentions occurring
in history question texts and utilizes an attention-based retriever to capture
important information relative to user questions. With the representations of
all the entity candidates, Question Representation Refinement module refines
question representations based on a multi-level attention mechanism. Finally,
Mention Detection module computes the likelihood scores of mention spans,
and Entity Disambiguation module computes the likelihood distribution over all
the entity candidates conditioned on mentions, and they are trained with joint
optimization. In the following subsections, we detail the design of E3L.
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Fig. 1. Architecture of E3L.

3.1 Question Basic Encoder

For the user question q =
(
x1, · · · , xNq

)
, we apply an encoder T q to encode the

context of q into token-level encodings q =
(
x1, · · · ,xNq

)
,

(
x1, · · · ,xNq

)
= T q

(
x1, · · · , xNq

)
(1)

where xj ∈ R
h, 1 ≤ j ≤ Nq. Various encoders can be considered for T q. In this

paper we apply BERT pretrained model for T q, and the input token sequence
to T q is constructed as [CLS]x1 · · · xNq

[SEP ].

3.2 Entity Encoder

For each entity ei ∈ E , which has a set of experiences Q (ei) and a descriptive
text d (ei), firstly we encode Q (ei) and d (ei) into vector eQi ∈ R

h and edi ∈ R
h

respectively, and then compute entity representation ei ∈ R
h with eQi and edi :

ei = f
(
eQi , edi

)
(2)

where f (·) is a function that combines two vectors into one. In this paper, we
define f (·) based on vector addition:

f
(
eQi , edi

)
= β · eQi + α · edi (3)
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where α and β are hyperparameters and 0 ≤ α ≤ 1, 0 ≤ β ≤ 1. We describe
details on how to compute edi and eQi in the remainder of this section.

Encoding of Entity Experiences. For each entity ei ∈ E and its experiences

Q (ei) = {(qij , startij , endij)|1 ≤ j ≤ NQ
i ∧ 1 ≤ startij ≤ endij ≤ Nqij},

we first apply the question encoder T q to encode the context qij =(
xi1, · · · , xiNqij

)
into token-level encodings

(
xi1, · · · ,xiNqij

)
,

(
xi1, · · · ,xiNqij

)
= T q

(
xi1, · · · , xiNqij

)
(4)

where xit ∈ R
h, 1 ≤ t ≤ Nqij . Then we obtain mention representation eQij ∈ R

h

for the occurrence (qij , startij , endij) of ei by averaging xstartij , · · · ,xendij
:

eQij =
1

(endij − startij + 1)

endij∑

t=startij

xt (5)

where eQij represents the mention [startij , endij ] and the context surrounding
it. Thus we get a vector sequence eQi1, · · · , eQ

iNQ
i

for the entity experiences of ei,
and next we capture key information from the vector sequence by experience
retrieval.

Retrieval of Entity Experiences. Intuitively, eQi1, · · · , eQ
iNQ

i

represent dif-
ferent aspects of ei’s usage context in history questions and are related to q
in different degrees. For example, entity “Shaquille O’Neal” occurs in history
question “when did shaq come to the nba?” and “how many MVPs does shaq
have?” as mention “shaq”. Compared with the latter question, the occurrence of
“Shaquille O’Neal” in the former question is more important for understanding
“what nba teams has shaq played for?”, because “come to the nba” is more con-
textual. Formally, we first obtain a sentence-level representation qc ∈ R

h for q,
and then distill key information from eQi1, · · · , eQ

iNQ
i

with attention mechanism.

Firstly, we obtain qc with a reduction function redq (·):
qc = redq

(
x1, · · · ,xNq

)
(6)

where we choose redq (·) as the average over all the vectors to catch more com-
prehensive information. Then we compute the related weights of eQi1, · · · , eQ

iNQ
i

to qc and obtain the representation eQi of ei’s experiences:

eQi =
NQ

i∑

t=1

wite
Q
it (7)

where (
wi1, . . . , wiNQ

i

)
= softmax

(
qc · eQi1, . . . ,qc · eQ

iNQ
i

)
(8)
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Encoding of Entity Descriptions. For each entity ei ∈ E and its descriptive
text d (ei) = (xi1, · · · , xiNd

i
) containing Nd

i tokens, we apply an encoder T d to
encode d (ei) into sequence of vectors (xi1, · · · ,xiNd

i
),

(
xi1, · · · ,xiNd

i

)
= T d

(
xi1, · · · , xiNd

i

)
(9)

where xit ∈ R
h, 1 ≤ t ≤ Nd

i . Then the sequence of vectors
(
xi1, · · · ,xiNd

i

)
is

transformed into vector edi ∈ R
h by a reduction function redd (·):

edi = redd
(
xi1, · · · ,xiNd

i

)
(10)

In this paper, we apply BERT pre-trained model for encoder T d, its input token
sequence is constructed in the same manner as T q, and then we choose redd (·)
to be the last layer of the output of the [CLS] token.

3.3 Question Representation Refinement

We refine the representation of user question q with the representations of entity
candidates E . Intuitively, when considering the knowledge of E , each token of q
has different importance for the ELQA task, and meanwhile each entity in E has
different importance for understanding each token of q. We draw on the concept
of attention over attention [3] and propose a multi-level attention mechanism to
model the ideas.

Given the initial token-level representations q =
(
x1, · · · ,xj , · · · ,xNq

)
for

q and entity representations e1, · · · , ei, · · · , eNE for E , where xj ∈ R
h, ei ∈

R
h, 1 ≤ j ≤ Nq and 1 ≤ i ≤ NE , we first calculate a pair-wise matching

matrix m ∈ R
NE∗Nq between entity representations and the initial token-level

representations, and obtain individual entity-level attentions (as Eq. 12) and
individual question-level attentions (as Eq. 13) respectively:

mi,j = eTi · xj (11)

we
t = softmax(m1,t, . . . ,mNE ,t),∀xt ∈ q (12)

wq
t = softmax(mt,1, . . . ,mt,Nq

),∀et ∈ E (13)

Secondly, we calculate importance distributions over entities when looking
from the whole question. In detail, we average all the we

t to get an entity-level
attention we ∈ R

NE :

we =
1

Nq

Nq∑

t=1

we
t (14)

Thirdly, we calculate importance distributions over question tokens when
considering all the entities with weights. In detail, we obtain an attention matrix
wq ∈ R

NE∗Nq with the individual question-level attentions:

wq = [wq
1, . . . ,w

q
t , . . . ,w

q
NE ] (15)
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Regarding we as the importance weights of individual question-level attentions
in wq, we calculate the importance distributions over question tokens w ∈ R

Nq :

w = wqTwe (16)

Finally, we compute the refined token-level representations q̃ = (x̃1, · · · ,
x̃Nq

)
for q:

x̃j = (1 + μwj)xj , 1 ≤ j ≤ Nq (17)

where μ is a scaling factor and 0 ≤ μ ≤ 1.

3.4 Mention Detection and Entity Disambiguation

Base on the entity representations for E and the refined question representation
q̃ for q, we draw on the ideas of ELQ model [8] to implement mention detection
and entity disambiguation.

For mention detection, we first compute scores for each token xj in q being
the start(sl), the end(sr) and part(sp) of a mention:

sl(j) = WT
l x̃j , sr(j) = WT

r x̃j , sp(j) = WT
p x̃j (18)

where Wl,Wr,Wp ∈ R
h are learnable vectors. Then we compute the likelihood

score of each span [start, end] being an entity mention in q up to length L:

p([start, end]) = σ

(

sl(start) + sr(end) +
end∑

t=start

sp(t)

)

(19)

where 1 ≤ start ≤ end ≤ min (start + L − 1, Nq).
For entity disambiguation, we first compute the representation x̃[start,end] ∈

R
h for mention span [start, end] by averaging x̃start, · · · , x̃end:

x̃[start,end] =
1

(end − start + 1)

end∑

t=start

x̃t (20)

Then we compute the matching score between the mention and each entity e ∈ E :

s(e, [start, end]) = eT x̃[start,end] (21)

Finally we compute the likelihood distribution over all the entities in E condi-
tioned on the mention:

p(e | [start, end]) =
exp(s(e, [start, end]))

∑
e′∈E exp (s (e′, [start, end]))

(22)
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3.5 Training and Inference

We jointly train mention detection and entity disambiguation by optimizing the
sum of their losses. The loss of mention detection is defined as

LMD = − 1
Nmc

∑

1≤start≤end≤
min (start+L−1,Nq)

(y[start,end] log p([start, end])

+ (1 − y[start,end]) log(1 − p([start, end])))

(23)

whereby y[start,end] is the label for mention span, and y[start,end] = 1 if [start, end]
is a gold mention and 0 otherwise. Nmc is the total number of mention candidates
and its value is selected in the same manner as ELQ model.

The loss of entity disambiguation is defined as

LED = − log p (eg | [start, end]) (24)

whereby eg is the gold entity corresponding to mention span [start, end].
In details for training and inference:

(1) Encodings of entity experiences are updated with the gold mentions of train-
ing questions at each training epoch, and the entity experiences derived from
a training question are excluded from its own inference.

(2) Off-line generated entity descriptions and encodings of entity experiences
are cached and reused for the inference of each input question to speed up
prediction.

(3) For question representation refinement, we refine the representation for each
question with its gold entities at the training stage, and top κ entity candi-
dates at the inference stage, where κ is a hyper-parameter.

(4) For entity disambiguation of each mention, we first recall K closest entity
candidates using encodings of entity descriptions, and then re-rank them
using the whole encodings of entities.

4 Experiments

We conduct experiments on the end-to-end benchmark datasets WebQSPEL

and GraphQEL [8] to evaluate our approach. WebQSPEL and GraphQEL are
derived from publicly available QA datasets WebQSP [15] and GraphQuestions
[12]. WebQSP contains questions that were collected from web search logs, and
GraphQuestions was created by collecting manual paraphrases for automati-
cally generated questions. Based on WebQSP and GraphQuestions, Sorokin and
Gurevych [11] compile two new datasets for entity disambiguation on questions
by extracting gold entities and mapping them to Wikidata. By annotating all
mention boundary labels, Li et al. [8] further extend them and create WebQSPEL

and GraphQEL for end-to-end ELQA. Table 2 shows the statistics of WebQSPEL

and GraphQEL.
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Table 2. Dataset statistics of WebQSPEL and GraphQEL. #Q and #M indicate the
number of questions and entity mentions, respectively. #E indicates the proportion
of mentions whose groundtruth entities have experience questions in WebQSPEL train
data.

Data Train Test

#Q #M #E #Q #M #E

WebQSPEL 2974 3242 59% 1603 1806 57%

GraphQEL 2089 2253 – 2075 2229 13%

We evaluate the performance of ELQA approaches using precision, recall
and F1-score of entity linking. Following the definitions of Li et al. [8], a ELQA
prediction is correct only if the groundtruth entity is identified and the predicted
mention span overlaps with the groundtruth span.

In the following subsections, the first part is to compare our approach with
existing important models, then we conduct two ablation studies, and at last we
carry out case study.

4.1 Model Comparison

Baselines. The compared baselines for our approach include the followings.

(1) TAGME [5] is a lightweight and on-the-fly entity linking system popular for
many downstream QA tasks.

(2) VCG [11] is a jointly optimized neural architecture for ELQA. It derives
entity embeddings using entity labels and knowledge graph context.

(3) BLINK [13] is an entity disambiguation model with pre-specified mention
boundaries. It derives entity embeddings using descriptive texts.

(4) ELQ [8] is the current state-of-the-art model on WebQSPEL and GraphQEL.
It employs a BERT-based bi-encoder and also derives entity embeddings
using descriptive texts.

Experimental Settings. We employ BERTLarge
1 as the basic model for tri-

encoder, and reuse encodings of entity descriptions released by [8]. We evaluate
our framework on WebQSPEL and GraphQEL test data under two settings.

(1) WebQSPEL training setting. We implement our framework and train it on
WebQSPEL using batch size 128 and question context window size of 20
tokens, and then predict on test data. We refer to the evaluation results as
E3L.

(2) Wikipedia training setting. We implement our framework based on the infer-
ence process of Wikipedia-trained ELQ model2 and then directly predict on

1 Model available at https://huggingface.co/bert-large-uncased/tree/main.
2 Code, data and model available at https://github.com/facebookresearch/BLINK/

tree/master/elq.

https://huggingface.co/bert-large-uncased/tree/main
https://github.com/facebookresearch/BLINK/tree/master/elq
https://github.com/facebookresearch/BLINK/tree/master/elq
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test data using entity experiences, which are collected by encoding gold men-
tions of WebQSPEL train data with Wikipedia-trained ELQ model. We refer
to the evaluation results as E3L∗.

For both training and prediction, mention detection considers all the candidate
spans up to length L = 10, and 10 closest entity candidates per mention span
are retrieved by FAISS index [7] for re-ranking, i.e., K = 10, in which 3 entity
candidates are used for question representation refinement, i.e., κ = 3. Weight
α and β are set as 0 and 0.1 for deriving entity encodings used in question
representation refinement, and 1.0 and 0.01 in entity disambiguation. Scaling
factor μ is set as 0.01 for refining question representations with entity encodings.

Experimental Results. Table 3 displays the evaluation results of E3L, E3L∗

and baseline models on WebQSPEL and GraphQEL test data. We find that:

(1) Among all the models trained on WebQSPEL, E3L achieves the best pre-
cision, recall and F1-score on WebQSPEL test data, and achieves the best
precision and F1-score on GraphQEL test data. Especially, E3L obtains sig-
nificant improvement on precision, showing that entity experience modeling
benefits precision effectively when training on question-specific data.

(2) Compared with the baseline models trained on Wikipedia, E3L∗ achieves
the best precision, recall and F1-score on both WebQSPEL and GraphQEL,
demonstrating that the effects of universal models can be improved effec-
tively using entity experiences even without training.

The reason for above improvement is that contextual knowledge introduced by
entity experiences helps to reduce mention misidentification and linkage error.
We also observe that recall decreases for E3L on GraphQEL test data. The
possible reason is that some noise introduced from WebQSPEL train data leads
to mention missing or linkage error on GraphQEL test data.

In sum, the experimental results demonstrate that our approach achieves
state-of-the-art ELQA F1-score, and provides an effective way to improve uni-
versal models without fine-tuning, which is of great application value.

4.2 Ablation Study

We conduct ablation studies under the WebQSPEL training setting as Sect. 4.1.

Ablation Study for Entity Experience. We evaluate (1) whether and how
the use of entity experience in question representation refinement and entity
disambiguation contributes to our full model and (2) whether the use of entity
description on question representation refinement can improve our model. The
experiments ablate three components in detail.
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Table 3. Results of model comparison on test data. Highest scores per setting are
underlined. For baselines, we follow the results reported in [8].

Training setting Model WebQSPEL GraphQEL(zero-shot)

Prec Recall F1 Prec Recall F1

WebQSPEL VCG 82.4 68.3 74.7 54.1 30.6 39.0

ELQ 90.0 85.0 87.4 60.1 57.2 58.6

E3L 91.8 85.7 88.6 71.7 54.3 61.8

Wikipedia TAGME 53.1 27.3 36.1 49.6 36.5 42.0

BLINK 82.2 79.4 80.8 65.3 61.2 63.2

ELQ 86.1 81.8 83.9 69.8 69.8 69.8

E3L∗ 86.8 82.7 84.7 70.1 70.1 70.1

Table 4. Results of ablation study for entity experience on test data.

Training setting Model WebQSPEL GraphQEL(zero-shot)

Prec Recall F1 Prec Recall F1

WebQSPEL E3L 91.8 85.7 88.6 71.7 54.3 61.8

w/o Exprqrr 91.5 84.5 87.9 71.6 52.1 60.3

w/o Expred 91.7 84.0 87.7 70.7 52.6 60.3

w Descqrr 91.3 84.7 87.9 70.5 52.2 60.0

(1) w/o Exprqrr, where entity experiences are not used for question representa-
tion refinement, and output encodings of Question Basic Encoder module
are used for mention detection and entity disambiguation directly.

(2) w/o Expred, where entity experiences are not used for entity disambiguation,
and only encodings of entity descriptions are used for entity disambiguation.

(3) w Descqrr, where weight α of entity descriptions is set as 0.1 for deriving
entity representations used in question representation refinement.

Table 4 displays the evaluation results on WebQSPEL and GraphQEL test data.
We find that ELQA performance drops on all the test data if we remove entity
experiences from question representation refinement and entity disambiguation,
demonstrating that our design around the utilization of entity experience to
improve entity representation and question representation for end-to-end ELQA
is effective. We find that ELQA performance drops if entity descriptions are
used in question representation refinement, which is probably because descriptive
texts of entities bring more noise.

Ablation Study for Attention Mechanism. We evaluate whether and how
the attention mechanisms for experience retrieval and question representation
refinement contribute to our full model. The experiments ablate two components
in detail.
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Table 5. Results of ablation study for attention mechanisms on test data.

Training setting Model WebQSPEL GraphQEL(zero-shot)

Prec Recall F1 Prec Recall F1

WebQSPEL E3L 91.8 85.7 88.6 71.7 54.3 61.8

w/o Attexpr 91.6 83.9 87.6 70.6 51.5 59.5

w/o Attqrr 92.0 84.1 87.9 71.0 52.6 60.4

(1) w/o Attexpr, where attention is not performed in the retrieval of entity
experiences, and all the entity experiences have equal importance weights to
the current user question.

(2) w/o Attqrr, where attention is not performed to compute importance distri-
butions over entities in the question representation refinement, and all the
entities have equal importance weights for refining question representation.

Table 5 displays the evaluation results on WebQSPEL and GraphQEL test data.
We find that ELQA performance drops if we remove attention mechanisms, and
the removal on experience retriever causes much more decline in performance.
The results demonstrate the necessity to distinguish the importance of entities
and their experiences for our approach.

4.3 Case Study

Table 6 displays three typical test cases for comparing E3L and ELQ model. Case
1 shows that E3L links mention “new york” to entity “New York City” correctly
with the similar usage context of “New York City” in a history question, but
ELQ model cannot. Case 2 shows that E3L detects mention “ohio” and links it
to entity “Ohio” correctly with the similar usage context of the other entity
“Governor” in a history question, but ELQ model misses the mention. The
two examples demonstrate that E3L effectively corrects errors by mining the
usage context of entities and the implicit relations between entities from history
questions.

Case 3 is a bad case, where E3L does not detect mention “hudson”. The
possible reason is that the context from all the history questions is less related
or even noisy, which reduces the recall of ELQA. We will further tackle this bad
case and improve our approach in the future work.
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Table 6. Examples for case study. Red represents incorrect entity linking.

Case 1 Question Which competition events occurred
in new york?

ELQ New york->“New York (state)”

E3L New york->“New York City”

History questions What tv shows are taped in new
york city? new york city->“New
York City”

Case 2 Question Who is governor of ohio 2011?

ELQ Governor of ohio->“Governor”

E3L Governor->“Governor”, ohio->“Ohio”

History questions Who is the governor of california
2010? Governor->“Governor”,
california->“California”

Case 3 Question On the hudson, there is what kind of bridge?

ELQ Hudson->“Hudson River”

E3L []

History questions 1. Where does hudson river start?
hudson river->“Hudson River” 2.
Where’s the hudson river? hudson
river->“Hudson River”

5 Conclusion

In the context of KGQA, we introduce entity experience to enrich entity repre-
sentations and propose an experience enhanced framework E3L for entity linking
in this paper. In the framework, we focus on the modeling of entity experience
and its utilization to the enhancement of entity representations and question
representations for ELQA. With experimental evaluations, we demonstrate that
E3L outperforms previous state-of-the-art models on F1-score and has great
application value. In addition, we prove that our design on entity experience
modeling is effective to the enhancement of ELQA.

Despite being originally designed for ELQA, E3L has the potential for imple-
mentation on broader context of short texts, such as tweets and search queries.
This contribution helps to improve the performance of short text understanding.
To improve the recall of E3L, a further study on entity representation strategy
is needed.
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Abstract. Domain-specific knowledge graphs usually have requirements
for deeper and more accurate knowledge. Existing knowledge graphs
in academics mainly focus on authors, abstracts, keywords, and cita-
tions, which help explore themes of papers and analyze relationships
between different papers. However, these contents are summarizations
and only reveal shallow meanings, not involving cores of scientific papers.
Mathematical models, ignored by existing knowledge graphs, are what
authors really want to express through papers. Knowledge from mathe-
matical models makes it possible to use knowledge graphs for mathemat-
ical derivation, not just literal reasoning. To model this knowledge, we
propose a knowledge graph construction framework, named M2R, from
Mathematical Models to Resource Description Framework. Mathemati-
cal models are usually described in formulae. We first identify formula
positions according to pre-defined rules and find out contexts explaining
variables in the formulae. Next, we split the formulae and related con-
texts from PDF papers in the form of images, and employ optical char-
acter recognition to identify image contents. Then, regular expressions
designed based on sentence patterns are used to extract variable symbols
and variable explanations. Finally, the formulae are regarded as relations
between the variables to form triples whose subjects and objects are the
variables, and predicates are the formulae. Similar triples are fused to
generate a final knowledge graph. Experimental results demonstrate that
precision of the formula extraction is up to 76.97%. Besides, a convinc-
ing case study shows that we can effectively extract formulae and related
variables, and construct a knowledge graph about mathematical models
of scientific papers.

Keywords: Knowledge graph construction · Scientific papers ·
Mathematical models · Formulae · Variables

1 Introduction

Knowledge graph, whose early idea comes from the semantic web [4], is regarded
as a technical method to describe relations between everything in the world
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by graph models [3]. It plays an important role in many intelligent applica-
tions such as intelligent Q&A [19], big data analysis [22], and interpretability
of machine learning [20]. In domain-specific knowledge graphs, there are usually
strong requirements for depth and accuracy of knowledge. Existing knowledge
graphs in academics pay close attention to authors, abstracts, keywords, and
citations, which only convey some basic information about papers. For exam-
ple, authors and citations help identify relationships between papers by judging
whether there are the same authors; abstracts and keywords give brief summa-
rizations to papers. These knowledge graphs do not cover the cores of papers
and ignore what papers would like to express, i.e., mathematical models. These
models report principles and details for solving academic problems, which are
the keys to papers. Besides, relationships discovered from the models imply
mathematical meanings that are helpful for formal reasoning between papers.
To incorporate this knowledge from mathematical models, we propose a knowl-
edge graph construction framework, named M2R, from mathematical models to
Resource Description Framework (RDF). In the M2R, we first identify positions
of formulae and related contexts. Next, we split the formulae and contexts from
PDF papers in the form of images, and recognize image contents by optical
character recognition. Then, variable symbols and variable explanations, such
as shown in Fig. 1, are extracted from contexts according to sentence patterns.
Finally, we regard the formulae as relations between variables to form triples and
fuse similar triples from multiple papers to construct a final knowledge graph.
Experimental results demonstrate that we can effectively extract formulae and
related variables to form a knowledge graph. The knowledge graph based on
mathematical models can help researchers quickly find accurate mathematical
relations between variables, making it possible to do some related calculations
automatically according to formulae, and also be helpful in model reasoning and
discovery of new research areas.

Fig. 1. An example of what we extract from PDF papers. Formula is in the blue box.
Contexts are in the green boxes. Variable symbols are highlighted in red and variable
explanations in yellow. (Color figure online)
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Our main contributions are summarized as follows:

(1) We take the mathematical model knowledge ignored by domain-specific
knowledge graphs in the academic field into consideration and model it by
knowledge graphs.

(2) We propose a novel unified knowledge graph construction method, i.e., the
M2R, which is applicable to construct a different domain-specific knowledge
graph with mathematical model knowledge.

(3) The M2R realizes a complete and low-coupling prototype construction pro-
cess from PDF papers to a knowledge graph, and each part of it can be
easily replaced with a probably better method.

(4) Experimental results demonstrate that the M2R can effectively extract
mathematical model knowledge and construct a knowledge graph about it.

The remaining sections of this paper are arranged as follows. Section 2 intro-
duces some related works about mathematical knowledge management and
knowledge graph construction in detail. Section 3 presents the M2R framework.
Section 4 reports experiments on a collected dataset and gives a case study.
Section 5 concludes the paper and indicates the future work.

2 Related Work

Mathematical models that the M2R focuses on belong to mathematical knowl-
edge. As early as 2004, mathematical knowledge management had attracted
extensive attention. It was regarded as an interdisciplinary field, and its aim was
to better manage mathematical knowledge [11]. However, few works leverage
knowledge graphs to model this knowledge, which may result in it not being
fully used. To fill this gap, the M2R is proposed to construct such a knowledge
graph about mathematical models. The related works of mathematical knowl-
edge management and knowledge graph construction are discussed in detail as
follows.

2.1 Mathematical Knowledge Management

For a fine-grained analysis of mathematical knowledge management, Carette
et al. [7] summarized 6 perspectives of it and 25 topics that were usually dis-
cussed in previous works. One of these perspectives was digital, which focused
on handling mathematical knowledge by computers. Elizarov et al. [10] pro-
posed a mathematical knowledge analytics and management digital ecosystem
OntoMath. Mathematical objects (e.g., formulae) were extracted directly from
mathematical papers in LaTeX and used as basic classes in ontology. However,
papers in LaTeX are not available in every field, which brings some challenges to
knowledge extraction. To address this issue, Zanibbi et al. [27] gave a survey on
the recognition and retrieval of mathematical expressions. For a mathematical
formula recognition system, there were usually 3 forms of input: vector graph-
ics, strokes, and images. Expression detection, symbol extraction, layout analy-
sis, and mathematical content interpretation were the four keys of the system.
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Kacem et al. [14] proposed an automatic formula extraction method based on
fuzzy logic and propagation of context. Fuzzy logic was used to remove ambi-
guities, and propagation of context was done to group symbols properly into
units. In addition, Phong et al. [13] proposed two methods to detect mathemat-
ical variables in PDF documents. One was a rule-based method in which they
designed five rules and detected variables according to font, glyph, and bounding
box information extracted from documents. The other was a method combing
convolutional neural networks (CNNs) and machine learning algorithms. They
first used the pre-trained CNNs to extract features of word images obtained by
text image segmentation. Then support vector machine and k-nearest neighbors
were used for classification. Similarly, Yu et al. [26] identified symbols and char-
acters in terms of font and bounding box information. Then the syntax tree was
built based on a structural analysis of a formula. There were also many deep
learning extraction methods [12], but they were costly in data preparation and
model optimization.

2.2 Knowledge Graph Construction

Knowledge graph construction is to organize knowledge from different sources
by graph models. The whole construction process can be divided into four
important parts: knowledge extraction, knowledge fusion, knowledge comple-
tion, and knowledge graph generation. There are usually different emphases in
different construction methods. Elhammadi et al. [9] designed a pipeline con-
struction method, which combined multiple extraction technologies with the
financial dictionary they built to extract information from financial news for
knowledge graphs. They paid more attention to knowledge extraction. Among
methods for knowledge extraction, deep learning models [15,25] were popular,
and joint models [1,24] were used to eliminate error propagation. Bosselut et al.
[5] proposed commonsense transformers. They transferred implicit knowledge in
deep pre-trained language models to explicit knowledge. It helped complete and
extend commonsense knowledge graphs. Al-Khatib et al. [2] proposed an end-to-
end method to construct argumentation knowledge graphs, which emphasized
the simplicity of methods. Martinez-Rodrigue et al. [17] introduced open infor-
mation extraction methods to simplify knowledge querying and representation.
They focused more on the availability of generated knowledge graphs.

The M2R aims to construct knowledge graphs about mathematical model
knowledge from scientific papers, which is similar to educational and scien-
tific knowledge graph construction. In the educational field, Wang et al. [23]
proposed a rule and semantic-based method. It first recognized prior/reference
terms. Then prior terms were filtered through rules, and reference terms were
classified according to sentence semantics for coreference resolution. Chen et al.
[8] designed a construction system that extracted concepts of subjects or courses
by the neural sequence labeling algorithm and identified relations between these
concepts based on probabilistic association rules. The generated knowledge graph
only described whether there were mathematical relations but did not specify
what these relations were. In the scientific field, Buscaldi et al. [6] combined some
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state-of-the-art methods to extract entities and relations and adopted Leven-
shtein string similarity and hierarchical clustering algorithms for merging. Luan
et al. [16] proposed a unified model with multi-task setups for cross-sentence
relation extraction. Ren et al. [18] divided relations into multiple types for fine-
grained extraction. Tosi et al. [21] mined internal relations between concepts
through semantic analysis of texts. However, these knowledge graphs only focus
on authors, abstracts, keywords, and citations. Besides, the extracted relations
contain only basic information. Compared with the above methods, the M2R
provides a complete construction method for knowledge graphs about mathe-
matical model knowledge. The relations contain deeper mathematical meanings.
The M2R fills the gap that existing methods ignore and makes it possible for
mathematical reasoning.

3 M2R Framework

Different from previous works, the M2R framework focuses on mathematical
model knowledge. Its workflow is shown in Fig. 2. In the M2R, we first prepro-
cess papers and get an image for each page. Next, a rule-based method is used
to segment formula images and related context images. The image contents are
obtained by optical character recognition. Then, regular expressions designed
based on sentence patterns are used to extract variable symbols and correspond-
ing explanations from contexts. Finally, variable symbols and explanations are
combined as variable units, and formulae are used as relations between vari-
ables to form triples. We also use the cosine similarity to fuse similar triples and
construct the final knowledge graph.

Fig. 2. Workflow of the M2R framework.

3.1 Task Definition

The M2R aims to construct a knowledge graph about mathematical models.
Mathematical models are usually in scientific papers. The input of the framework
is a set of papers. To facilitate subsequent knowledge extraction, each paper is
transformed into images. The input papers are further represented as a set of
images, where an image corresponds to a page. Mathematical model knowledge
(i.e., formulae and variables) is extracted from each image and stored in the
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form of LaTeX. The obtained formulae and variables are constructed into triples
according to the inclusion between them. Similar triples are fused to form a final
knowledge graph, which is also the output of the framework. Specifically, the
M2R is divided into four modules:

(1) The preprocessing module converts each paper into multiple images;
(2) The image segmentation and identification module extracts formula images

and context images according to pre-defined rules. Then it further identifies
image contents through optical character recognition;

(3) The variable extraction module regards a variable symbol and related expla-
nation as a variable unit. Both of them are extracted based on designed
regular expressions;

(4) The triple generation and fusion module takes mathematical formulae as
relations between two variable units to generate triples. We adopt the cosine
similarity for knowledge fusion to generate the final knowledge graph.

3.2 Preprocessing

Most papers are stored in PDF format. It is difficult for machines to understand
and utilize this kind of knowledge. So we take LaTeX format as an intermediate
expression between papers and knowledge graphs. Existing methods can easily
convert LaTeX to PDF, but it is difficult to reverse directly. Images can serve as a
bridge from PDF to LaTeX. We further process images to obtain what we want.
In summary, PDF papers are transformed into images, and then mathematical
model knowledge in LaTeX is extracted from these images. A PDF paper can
be represented as a tuple 〈M,F,C, V, S,E〉, where,

– M = {mi | the image of ith page};
– F = {fij | the jth formula in image mi};
– C = {cij | the context of formula fij};
– V = {vk

ij | the kth variable unit in context cij};
– S = {skij | the variable symbol of variable unit vk

ij};
– E = {ekij | the variable explanation of variable unit vk

ij}.

3.3 Image Segmentation and Identification

A mathematical model is expressed by a set of formulae in papers. After con-
verting PDF papers to images, we further segment the images to obtain formula
and context images by a rule-based method according to formula features. These
features are as follows,

– There are usually numerical indices on the right side of formulae.
– Formulae are usually centered.
– Formulae are presented only once in the same paper.
– The distance between symbols in formulae is bigger than that in body.



M2R: From Mathematical Models to Resource Description Framework 231

According to the above features, we design different rules to screen formula
images in two steps. The first step is to roughly distinguish formula images and
non-formula images, using rules as follows,

– Consecutive white pixels on both sides of images.

lW > α1, rW > α1, ||lW − rW | − α2| < α3, (1)

where lW and rW are the numbers of consecutive white pixel columns on the
left and right sides, respectively. α∗ is a parameter.

– Ratio of black and white pixels.

α4 < ratio < α5. (2)

– Height and width.
w > h, α6 < h < α7, (3)

where w and h are the width and height of an image.
– Content. Formulae contain characters that are non-letter and non-number.

We collect 10 standard number images and 52 standard letter images in
advance. These standard images are shown in Fig. 3.

Fig. 3. Standard number images and standard letter images collected by us.

The formula images are further segmented into character images according to
the connectivity of characters. We resize the character images to be consistent
with the collected images and calculate similarity cs1 between them based on
the distributions of black and white pixels,

cs1 =

∑ch
i=1

∑cw
j=1 f(i, j)

ch × cw
, (4)

f(i, j) =
{

1, if pixels in ith row and jth column are the same,
0, otherwise, (5)
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where cw and ch are the width and height of a segmented character image. If
the similarity between a character image and all collected images is less than
a threshold γ, this character will be non-letter and non-number.

If an image meets the above rules, it is considered as a formula image.
The second step is to remove a small number of impurities such as statistical

images and citation images from the first step. The rules used are as follows,

– Same image. If the similarity between two images is greater than α8, then
they are not formula images.

– Number of long consecutive white pixel column segments. If the number is
greater than 3, the image is not a formula image.

– Length of consecutive black pixel columns and rows. If the length meets the
following conditions, the image is not a formula image,

XBmax > α9, Y Bmax < α10, (6)

where XBmax and Y Bmax are the maximum numbers of consecutive black
pixel columns and rows.

– Average height of characters. If the average height is greater than α11, the
image is not a formula image.

After formula images are extracted, the related context images are obtained
according to the positions of formula images. Optical character recognition is
used to identify image contents. Formulae are directly used as predicates of
triples. As for contexts, we need to further extract variable symbols and expla-
nations from them.

3.4 Variable Extraction

Sentences describing the variables in a formula usually have fixed patterns.
Therefore, we design regular expressions according to these patterns and use
them to extract variable symbols and explanations. The common fixed sentence
patterns describing variables are,

– “variable symbol” is “variable explanation”.
– “variable explanation” (“variable symbol”).

Regular expressions are designed based on the above patterns. With the help of
regular expressions, we can extract variable symbols and corresponding expla-
nations from each sentence effectively. There may be parameters in formulae,
but we also regard them as special variables. The purpose is to make all sym-
bols and corresponding explanations included in the knowledge graph, which is
convenient for numerical calculation and reasoning by the knowledge graph.
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3.5 Triple Generation and Fusion

Variable symbols and explanations are regarded as variable units. Formulae are
used as relations between two units. We take variable units as subjects and
objects, and formulae as predicates to form triples. In addition, we use cosine sim-
ilarity to measure the similarity between two variables for triple fusion. Firstly,
a temporary dictionary is constructed according to two variable explanations
E1 = {w1

1, w
1
2, . . . , w

1
nE1

} and E2 = {w2
1, w

2
2, . . . , w

2
nE2

},

D = E1 ∪ E2, (7)

where w∗ is a word of two variable explanations in its original form and
stop words are removed in advance. Then, we generate vectors

−−−→
V ec1 =

{x1
1, x

1
2, . . . , x

1
|D|} and

−−−→
V ec2 = {x2

1, x
2
2, . . . , x

2
|D|} for variable explanations based

on the dictionary,

xi =
{

1, if a variable explanation contains ith word in the dictionary,
0, otherwise, (8)

where |D| is the number of words in the dictionary. Finally, we calculate the
cosine similarity cs2 between two vectors,

cs2 =
−−−→
V ec1 · −−−→

V ec2

‖−−−→
V ec1‖‖−−−→

V ec2‖
. (9)

If the similarity is greater than a threshold β, the two variables are the same.
According to the similarity of variables, we remove similar triples and complete
the construction of a knowledge graph based on mathematical model knowledge.

In summary, the M2R is mainly based on some classical methods, such as the
rule-based method for formula extraction and the regular expressions for variable
extraction. These methods may not be better than learning-based methods in
performance, but they are able to solve problems quickly and are capable of
relatively good performance. Besides, the M2R is a prototype framework that
realizes a whole construction process from mathematical models in PDF papers
to a knowledge graph. It is low-coupling, so the methods for tasks in the M2R
can be easily replaced if there are better ones.

4 Experiments

In this section, we use the proposed M2R framework to conduct experiments on
a collected dataset of water conservancy papers. Besides, we give a case study
to show a knowledge graph constructed based on a random paper. We also build
a search application based on it and compare the application with others to
illustrate its specific advantages.



234 C. Zou et al.

4.1 Dataset

The dataset used in this paper is constructed by ourselves. The aim of the M2R is
to construct a domain-specific knowledge graph. We collect papers about flood
forecasting in the water conservancy field to form a water conservancy paper
dataset. There are 400 papers in the dataset. To ensure the quality of samples,
these papers are collected from three top journals: Journal of hydrology, Water
Resources Research, and Advances in Water Resources. We only use the keyword
“flood forecast” to retrieve papers and further select related papers through
abstracts. This dataset is used as the input to the framework.

4.2 Experimental Setup

First, we use the PDFBox1 tool to transform PDF papers into images. Next,
the rule-based method is used to segment formula images and corresponding
context images. Each image is black & white. The parameters of the rules are
set as α1 = 50, α2 = 120, α3 = 20, α4 = 0.015, α5 = 0.1, α6 = 30, α7 = 350,
α8 = 0.5, α9 = 500, α10 = 200, α11 = 16, and γ = 0.8. Further, we use the
optical character recognition to obtain image contents in LaTeX. Then, two
regular expressions are designed to extract variable symbols and explanations,

(.∗?)(is|denotes|represents| =)(.∗?)$, (10)

\(([A − Z]+)\). (11)
Finally, triples are constructed, and the similarity between variables is calculated
for knowledge fusion, where the similarity threshold is set as β = 0.8.

The M2R involves some external tools, but it is not dependent on these tools.
It is low-coupling, and these tools can be replaced with other better solutions.
We set many parameters in the M2R so that it can be extended more easily.
Values of the parameters are determined according to performance on a small
number of random papers. Besides, we do not give baselines to compare with
the M2R because there are few similar methods for this special knowledge about
mathematical models. It is meaningless to forcibly transfer some slightly related
methods to solve the problem we focus on. Therefore, an additional case study
is given to support the M2R.

4.3 Experimental Results

The final knowledge graph we have constructed is shown in Fig. 4. There are
1607 entities and 1154 relations, and a total of 8063 triples are formed in the
knowledge graph. Experimental results demonstrate that the knowledge graph
is capable of a certain scale and availability. Especially, formula extraction is
an important part of the M2R framework, so we randomly select some papers
to evaluate this part individually. More than 500 formulae in these papers are
evaluated in the experiment. The precision, recall, and F1 scores of formula
extraction are 76.97%, 74.75%, and 75.84%, demonstrating that the M2R can
extract mathematical model knowledge effectively.
1 https://pdfbox.apache.org/.

https://pdfbox.apache.org/
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Fig. 4. The final knowledge graph constructed by our M2R framework.

4.4 Case Study

We randomly select a paper and use the proposed M2R framework to build a
micro knowledge graph (mKG). The formula and related contexts are shown
in Fig. 1. To display the mKG, we store the generated knowledge graph as an
OWL ontology file and show it with protégé tool2 which is shown in Fig. 5.
Variable units: “the estimated value:x”, “the reference value:y”, and “the average
reference value:\bar{y}” are successfully extracted and used as variable nodes in
the knowledge graph. The formula, whose URI is “http://hydrology/#Nash=1-
\ f rac{\sum {i=1}̂ {n}(x i-y i)̂ 2}{\sum {i=1}̂ {n}(y i-\bar{y})̂ 2} ”, is used as
a mathematical relation between every two units.

Fig. 5. Generated knowledge graph shown in protégé.

To illustrate the effectiveness of the knowledge graph, we use Elasticsearch3

to build a simple search engine (S-mKG). The knowledge graph is served as

2 https://protege.stanford.edu/.
3 https://www.elastic.co/cn/elasticsearch/.

https://protege.stanford.edu/
https://www.elastic.co/cn/elasticsearch/
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the supporting data of this search engine. Elasticsearch helps automatically con-
struct indexes for entities and relations. We input “estimated value” as search-
ing keywords and obtain different returned results shown in Fig. 6 from S-mKG,
Wikipedia4, Microsoft Bing5, and Baidu6. It is worth noting that these search
engines are all based on knowledge graphs and what they return depends on the
knowledge in knowledge graphs. The S-mKG can give an accurate mathematical
relation. If values of the variables are known, it will be easy to calculate the
Nash. However, the results from other well-known search engines cannot even
show a complete variable, because they do not consider mathematical model
knowledge in their supporting knowledge graphs. The knowledge graph con-
structed by the M2R may not be better than these knowledge graphs, but it fills
the gap of mathematical knowledge in knowledge graphs, making it possible to
use knowledge graphs for mathematical reasoning.

Fig. 6. The query results from (a) S-mKG, (b) Wikipedia, (c) Microsoft Bing, and (d)
Baidu.

5 Conclusions

This paper proposes a knowledge graph construction framework based on math-
ematical model knowledge. This knowledge is the core of scientific papers but is
4 https://en.wikipedia.beta.wmflabs.org/wiki/Main Page.
5 https://cn.bing.com/.
6 https://www.baidu.com/.

https://en.wikipedia.beta.wmflabs.org/wiki/Main_Page
https://cn.bing.com/
https://www.baidu.com/
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ignored by previous knowledge graphs. The advantages of our framework lie in
its flexibility and automation. It is applicable to the construction of knowledge
graphs with mathematical models in different fields, and the whole construction
process does not require human participation. The experiments and the case
study demonstrate that our framework can extract formulae and variables from
papers effectively, and construct a feasible knowledge graph.

In future work, we will concentrate on the extraction of variable symbols and
explanations, and the transformation from PDF to LaTeX, which will make the
overall framework more integrated and automated. Besides, we will explore how
to reason and solve mathematical problems in terms of our generated knowledge
graph.
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14. Kacem, A., Beläıd, A., Ben Ahmed, M.: Automatic extraction of printed math-
ematical formulas using fuzzy logic and propagation of context. Int. J. Docum.
Anal. Recogn. 4(2), 97–108 (2001)

15. Li, X., Feng, J., Meng, Y., Han, Q., Wu, F., Li, J.: A unified MRC framework
for named entity recognition. In: Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pp. 5849–5859 (2020)

16. Luan, Y., He, L., Ostendorf, M., Hajishirzi, H.: Multi-task identification of entities,
relations, and coreference for scientific knowledge graph construction. In: Proceed-
ings of the 2018 Conference on Empirical Methods in Natural Language Processing,
pp. 3219–3232 (2018)
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Abstract. For more accurate, diversified and interpretable personalized recom-
mendation, the joint consideration of user-item interaction information and side
information in knowledge graph has become a research hotspot. Traditional mod-
els based on collaborative filtering usually have cold start and sparse problems. The
existing recommendation model based on knowledge graph can enrich the repre-
sentation of users and items by using graph structure information from the knowl-
edge graph, and make it more interpretable. Although the efforts have achieved a
certain performance improvement, they consider all entities in knowledge graph
globally for all users, and the aggregation strategy is single. In this paper, we
propose KEP-Rec, a Knowledge Enhanced User-Item Relation Prediction Model
for Personalized Recommendation. For a given target user and candidate item,
KEP-Rec represents the user and item with enhanced information by knowledge
graph for predicting the interacted probability between them and further person-
alized recommendation. In detail, KEP-Rec takes into account the changes in
preferences of specific users and the differences in user perception of relations.
Based on the idea of collaborative filtering, KEP-Rec selects an extended entity
set of the items relevant with target user and candidate item as the initial set to
propagate in knowledge graph. Moreover, KEP-Rec sets an item-aware attention
mechanism to consider the interaction of candidate items with different weights
given by target user’s historical preferences to realize the diverse representation of
the user preferences. In the propagation process alone knowledge graph, the rela-
tion embedding is considered for target user to achieve personalization. Empirical
results on three real datasets of music, books, and movies show that KEP-Rec
significantly outperforms state-of-the-art methods.

Keywords: User-Item Relation Prediction · Personalized recommendation ·
User and item embedding · Knowledge graph · Entity propagation

1 Introduction

At present, the recommender system (RS) becomes an effective approach to solve how
users can efficiently obtain items they are interested in under the situation of “informa-
tion overload”. An effective traditional recommendationmethod is collaborative filtering
(CF), which represents users and items as vectors, and models the historical interactions
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between users and items as a matrix through operations such as inner product or neu-
ral network. However, CF-based models generally suffer from cold start and sparsity
issues. In order to solve these problems, using knowledge graph as auxiliary informa-
tion into the recommender system has attracted researchers. Knowledge graph (KG) is a
heterogeneous graph, in which nodes are entities and edges represent relations between
entities. The items and their attributes in the recommender system can be mapped to
KG’s entities which makes it easy to learn more about the relationship between items.
Integrating user information into KG can capture more diverse user preferences. The
existing KG-based recommender system models can be divided into embedding-based,
path-based, and comprehensive methods [5]. The embedding-based approach enriches
the item or user’s presentation by directly using KG, but it ignores the connectivity of
entities in KG. The path-based algorithm is used to explore multiple meta-paths between
user and item in KG to infer the user preferences, but it will cost highly for artificially
setting paths, and the rich structural information stored in KG is ignored. Both of them
cannot mine and utilize well enough the comprehensive correlation between user and
item. So comprehensive methods based on GNN have been proposed. For example, rip-
ple2vec [25] proposes to implement node embedding by constructing a context graph
via a new defined ripple distance over ripple vectors. GNN can directly model the high-
order connectivity between entities. This high-order connection contains rich semantics
that can refine the entity representation by leveraging the entity’s multi-hop neighbor
information.

Although these methods have improved interpretability and performance, they still
have three limitations:

(1) Incorporating knowledge graph can contain more information, but there are fewer
items that can align entities in the knowledge graph due to the user-item interaction
sparse data. so that is not enough to mine more user-preferred entities.

(2) Directly using the items interacted by a user and mapping them to the knowledge
graph can obtain more knowledge information, but this information is based on the
user’s historical behavior. In fact, a user’s preference may be changeable. How to
dynamically measure a user’s diversified preference based on his history for the
current candidate item is the key to recommender systems.

(3) Using GNN can refine the entity representation, which shows that using neighbor-
hood information can greatly promote the completion of recommendation tasks.
However, this method ignores that different users have different weight for the
same relation in the graph. This weight can also be understood as different users’
different cognition of entities and relations in the knowledge graph.

In order to solve the above problems, we propose KEP-Rec, aKnowledge Enhanced
User-Item Relation Prediction Model for Personalized Recommendation that considers
preference changes and collaborative interaction for specific users. For a given target
user and candidate item, KEP-Rec represents the user and item by knowledge graph
for predicting the interacted probability between them and further personalized recom-
mendation. Similar with CKAN [18], KEP-Rec analyzes the items related with target
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user and the users related with candidate item and more relevant items. However, KEP-
Rec considers the influence of candidate items on user preferences and pays different
attention to the relation of the target users in KG by two attention mechanisms.

In general, our contributions are the following:

(1) We propose KEP-Rec model, an end-to-end collaborative knowledge propagation
user-item representation framework for user-item relation predicting and further
personalized recommendation.

(2) We construct a diversified representation of user preferences, that is, the impact of
candidate items on users’ historical preferences has changed the user’s preferences.
Moreover, the user-specific relation perception can obtain the preference of the
target user to the knowledge relations.

(3) We conducted empirical experiments in three real-world recommendation scenarios
datasets, and the results showed that our KEP-Rec is better than the existing state-
of-the-art baselines.

2 Related Work

Now, recommender systems based on KG have been implemented in three ways:
embedding-based methods, path-based methods and comprehensive methods [5].

2.1 Embedding-Based Recommendation

This method directly encodes entities into low-rank embeddings and uses the semantic
information of the user/item in the KG for recommendation. The algorithm models can
be divided commonly into two categories: translation distance models, such as TransE
[1], TransH [19], TransR [9], and semantic matching models, such as DistMult [20].
The classic CKE [22] model integrates various auxiliary information in the framework
of collaborative filtering which uses the TransR algorithm to encode item’s structured
knowledge and integrates the content knowledge to represent the item. Another model
called CFKG [23] constructs a user-item knowledge graph. In that KG, user, item and
their related attributes are regarded as entities, and the users’ historical behaviors are
regarded as a special type of relationship between entities. Based on a specific distance
function, the model can learn user/item embeddings which is the implementation of
semantic matching models.

2.2 Path-Based Recommendation

The common path-based method calculates the semantic similarity between entities on
different paths to make recommendation. In HeteRec [21], L different types of meta-
paths connecting users and items are defined. The similarity of items in each path is
measured by PathSim [12] and formed L item extendedmatrices. Because the interaction
matrices between users and items, multiplying with the item extended matrices can get L
extended interaction matrices. Finally, the non-negative matrix factorization technique
[3] is applied to obtain the latent vectors of users and items in different meta-paths which
enriches users’ and items’ representations.
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2.3 Comprehensive Methods

Both embedding-based and path-based methods only use partial information in knowl-
edge graph. In order to make better use of knowledge graph, a comprehensive method
is proposed to extend the embedding of the entity in the graph, directly model the high-
order connectivity between entities, and use the entity’s multi-hop neighbor information
to refine the entity representation. RippleNet [15] is the first to propose the concept of
preference propagation, which enriches user representations by aggregating the multi-
hop neighbors of the user’s historical interactive items. KGCN [16] is to aggregate the
candidate item with its multi-hop neighbors to update the item’s representation. In the
aggregation process, the weight of the neighbor is jointly determined by the user and the
candidate item, so that the user’s preferences are implicitly existing in the entity repre-
sentation. Another model, such as KGAT [17], combines user-item interaction matrix
with a knowledge graph containing attribute information and uniformly represents users
and items in the same graph. Then users and items are aggregated with their respec-
tive multi-hop neighbors in the graph to enrich their representations. Recently, CKAN
[18] uses a heterogeneous propagation strategy to explicitly encode collaborative sig-
nals and knowledge associations and applies a knowledge-aware attention mechanism
to distinguish the contributions of different neighbors.

Although the above methods achieve a certain performance improvement, they con-
sider all entities in the knowledge graph at a global level and the aggregation strategy is
single. Inspired by GARG [26], which takes full advantage of the collaborative, sequen-
tial and content-aware information, we first use collaborative information to expand the
initial entity set of users and items. In particular, we think that for a specific target user,
the relation between users, items, and entities in KG is not fully equal, so the KEP-Rec
model considers the influence of candidate items on user preferences and pays different
attention to the relation of the target users in KG.

3 Problem Definition

There are a set of M users and a set of N items are expressed as U = {u1, u2, …, uM}
and V = {v1, v2, …, vN} respectively in a typical recommender system. We define the
user-item interaction as a binary matrix Y = {yuv |u ∈ U, v ∈ V}, where yuv = 1 means
that the user u ever interacted with the item v, such as clicking, collecting or purchasing;
otherwise yuv = 0. Note, the value of 1 for yuv indicates that there is an explicit interaction
between the user u and the item v, but doesn’t necessarily mean u’s preference over v.

In addition, we have a knowledge graph which consists of
massive knowledge triples. Each triple (h, r, t) demonstrates that a relation r exists
between head entity h and tail entity t. And the sets of entities and relations in are
denoted as . It is also mentioned in [27] that representing machine-interpretable
statements in the form of subject-predicate-object triples is a mature practice for cap-
turing the semantics of structured data. For example, the triple (A Song of Ice and
Fire, book.book.author, George Martin) states the fact that George Martin writes the
book “A Song of Ice and Fire”. In this triple, A Song of Ice and Fire is head entity,
book.book.author is relation, and George Martin is tail entity.
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The problem we want to solve is defined as follows: given a knowledge graph and
the historical interaction matrix Y between user set U and item set V, for a target user
uT ∈ U and a candidate item vC ∈ V, predict the probability that uT would interacts
with vC which has not interacted with before, i.e. yuT vC = 0 in Y.

For solving above problem, we apply knowledge graph , assume that every item
vj ∈ V (j = 1, 2, …, N) in interaction matrix Y can be linked to a corresponding entity

by the entity linking technique [2]. Moreover, based on U, V, Y, and , we learn
a prediction function , where y

∧

uv represents the probability of our
prediction, and � represents the parameters of the function.

4 Methodology

Our proposed KEP-Rec framework is shown as Fig. 1, the model contains three main
layers, we introduce them in detail in Sect. 4.1, 4.2, and 4.3 respectively.

Fig. 1. The framework of KEP-Rec, where the light blue dot denotes user, the orange dot denotes
item, the red dot denotes the entity in KG, and the layered color dots are the different embedding
representations respectively. In the pink background, it is emphasized that the two initial entity sets
are based on the relation-aware propagation process in KG, where Li (i = 1, 2, …, k) represents
the entity set after each layer of propagation.

4.1 Initial Collaborative Layer

The layer is shown as the left side in Fig. 1 and consists of three parts. The first part is to
construct the initial entity set of target user uT , the second part is to construct the initial
entity set of candidate item vC , and the third part is to consider the influence of vC on
the preference of uT . Next, we will explain these three parts in detail.

The Target User’s Initial Entity Set. Intuitively, the user’s preferences can be reflected
through the itemswhich have interactedwith, sowe can consider these items as the user’s
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initial entity set to express user preferences. From the user’s point of view, starting
from the entities in this initial entity set and propagating along the connections in the
knowledge graph can reasonably expand the user’s preference range and enrich the
user’s representation. For target user uT , his interacted history with items is VuT , where
VuT ⊂ V , ∀v ∈ VuT satisfies yurv = 1 in Y and the set size of VuT denoted as m = ∣

∣VuT

∣
∣.

We define VuT as the initial entity set of target user uT .

The Candidate-Item Initial Entity Set. User-based collaborative filtering [14]
assumes that users who like the same items are similar. According to this assumption,
we can consider that users who ever interacted with candidate items vC have similar
preferences. So, it is a great extension to use these items that the users have interacted
with the initial entity set of vC . As shown in the upper left of Fig. 1, we denote the user
set interacted with vC as UVC where UVC ⊂ U , ∀u ∈ UVc satisfies yuvC = 1 in Y. Then,
for every u ∈ UVC , we denote the item set interacted with u as Vu, where Vu ⊂ V, ∀v
∈ Vu satisfies yuv = 1 in Y. And then ∀u ∈ UVC , we take the union of all entity sets Vu

constructed by u denoted as VvC and the set size of VvC denoted as n = ∣
∣Vvc

∣
∣. Equally,

for every v = VvC , the v interacted with at least a u ∈ VVc . Finally, we define VvC as
initial entity set of candidate item vC . In this case, vE is the origin embedding of v ∈ V,
and the candidate item vC initial entity embedding is directly represented as:

vEC =
∑n

j=1v
E
j

n
, vj ∈ Vvc (1)

The Item-Aware Attention Mechanism [13]. In fact, for all vi ∈ VvC (i = 1, 2, …, n)
the items can only reflect the historical preferences of u ∈ UVC . Asmentioned in [27], the
existing recommendation methods mainly consider the representation of users as static
feature sets. But user preferences are diverse and changeable, and the newly candidate
items vC may affect user preferences. For example, userAhaswatchedAvengers and Iron
Man, both of which belong to action movies. Then the user watching the romance movie
will affect his preference for action movies. To characterize user’s diverse interests, we
use an item-aware attention network, i.e. Attention 1 in Fig. 1, to model the different
impacts of the user’s historical interaction items on the candidate item. Specifically,
we apply a multi-layer perceptron to calculate the score between candidate item and
historical items and SoftMax [10] function to calculate the normalized impact weight:

π(vC‖vi) = W2(ReLu(W1(vC‖vi) + b1)) + b2 (2)

π(vC‖vi) = softmax

(
π(vC‖vi)

∑m
i=1π(vC‖vi)

)

(3)

where vi ∈ VuT and m = ∣
∣VuT

∣
∣. Finally, we get the weighted initials user embedding:

uET =
∑m

i=1
π(vC‖vi) ∗ vi (4)

Through this item-aware attentionmechanism to aggregate user historical interactive
items, it is possible to realize the diverse user preferences, which better represents real-
life scenarios in the selection process of items by users.
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4.2 User-Item Representation and Relation Propagation Layer

The layer is shown as the middle side in Fig. 1. In this layer, we mainly accomplish two
tasks: one is knowledge graph propagation, that is, start from the initial entity set VuT
and VvC we defined above, and use relation links to obtain extended entities and triples;
the other is constructing a user-specific relation attention mechanism.

For introducing knowledge graph , we define L0u = VuT and L0v = VvC as 0th layer
entity set in . Based on the graph structure of , the entities L0u and L

0
v can be iteratively

propagated along relations to reach more connected entities and we define the ith (i =
1, 2, …, k, where k is the layer number propagated finally) set of entities as follows:

Li = {ti|(hi−1, ri, ti) ∈ G, hi−1 ∈ Li−1,with i = 1, 2, . . . , k (5)

After k hops propagation, we have k + 1 sets of entity sets Li (i = 1, 2, …, k).
The traditional graph convolutional network only propagates the information embed-

ded by the entity itself and ignores the semantic information encoded in the relationship.
In KG, an entity can be connected to multiple neighbors through various relationships,
indicating different semantics. In our KEP-Rec model, the user-oriented personalized
recommendation is embodied in that for different users, the KG entity should have dif-
ferent representations to characterize its embedding. For example, for the movie entity,
some users may watch the movie Iron Man because the actor Robert is famous. Others
watch the movie The Fantasy Drifting of the Youth Pie because the director is famous by
Ang Lee, so the rich semantics encoded in the relationship is crucial to understanding
different user intentions.

In G, we need to consider the entity feature representation when facing different
users, that is, setting different weights for tail entities to reveal the different semantic
information of different head entities and relations. Specifically, for a given entity, neigh-
bors under each relation surrounding the entity are scored in a user-specific function that
measures the influence of each entity’s neighbors. After kth layers propagations, we can
get kth set of tail entities. And we set a tail entity’s embedding tli with user-specific
attentive weight as such:

tli = A(hl, rl, uEorigin)t
l
i (6)

wherehl is the head entity’s embedding, rl is the relation’s embedding, tl is the tail entity’s
embedding of the lth triple, and uEorigin is the user’s origin embedding. A(hl, rl, uEorigin)

is the attentive weight impacted by the head entity, the relation between head hl and
tail rl and specific user uEorigin which implemented by the two-layer neural network (see
Attention 2 in Fig. 1):

a0 = ReLu
(
W0

(
hl‖rl‖uEorigin

)
+ b0

)
(7)

A(hl, rl, uEorigin) = softmax(σ (ReLu(W1a0 + b1)) (8)

Here we chose ReLU [6] and Sigmoid [7] as the activation functions. W and b are
trainable weight matrices and characteristic parameters, and their respective subscripts
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indicate different layers. This user-specific relation attention mechanism uses the infor-
mation from a given user, item, and relation to determine which neighbor has more
information about the item while increasing personalized choices.

Based on the above, we use the initial entity set VuT and VVC for target user uT
and candidate item vC respectively as the first head entity to be propagated in , then,
the kth layer entities set embedding can be represented as: tk = ∑

tki , t
k
i ∈ Lk. After

integrating all entities k layers propagation, we can generate the final entity embedding
of t = {t1, t2, . . . , tk}.

Finally, we combine initial entity set representations of target user uT and candidate
item vC initial entity set representations and the entity sets representations that have been
propagated in to obtain user and item final representations as follow:

u
∧E
T =

{
uET , t1u , t

2
u , . . . , t

L
u

}
(9)

v
∧E
C = {vEC , t1v , t

2
v , . . . , t

L
v } (10)

4.3 Entity Aggregation and Prediction Layer

The final step in this model is the prediction shown in the right side in Fig. 1,
which aggregates entity itself representation and its multi-hop neighbors after k lay-
ers knowledge propagation. There are three common aggregators that we can aggregate
multi-embeddings and we have implemented them in our model.

Sum Aggregator. The Sum aggregator sums multiple representations, followed by a
nonlinear transformation:

aggsum = σ(W · (e1 + e2 + · · · + en) + b) (11)

Concat Aggregator. TheConcat aggregator concatenatesmultiple representations, and
then applies a nonlinear transformation:

aggconcat = σ(W · (e1‖e2‖ . . . ‖en) + b) (12)

Pooling Aggregator. The Pooling aggregator takes the maximum value of multiple
vectors as the same dimension, followed by a non-linear transformation:

aggpool = σ(W · maxpool(e1, e2, . . . , en) + b) (13)

According to our experimental results, we apply Concat Aggregator in KEP-Rec
model. Based on the aggregators, we can further predict the interaction probability for
target user uT and candidate item vC .

Model Prediction. Based on the target user’ representation u
∧E
T and candidate item’s

representation v
∧E
C , the predicted probability is calculated by y

∧

uv = σ(u
∧E
T
T
v
∧E
C), where

σ() is the sigmoid function.
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Loss Function. For each user, we randomly select the same number of negative samples
with positive samples to make sure the effectivity of model training. We define the loss
function of the model KEP-Rec as follows:

L =
∑

u∈∪

(∑

v∈{v|(u,v)∈P+} J
(
yuv, y

∧

uv

) −
∑

v∈{v|(u,v)∈P−} J
(
yuv, y

∧

uv

)
)

+ λ||�||22
(14)

where J is the cross-entropy loss, P+ is the positive sample while P− means the neg-
ative sample. � is the model parameter set, and ||�||22 is the L2-regularizer that is
parameterized by λ.

5 Experiments

In this section, we evaluate the KEP-Rec model in three real-world scenario datasets.
Inspired by mostly related work and the paper [24] which discussed the value of
experimentation and measurement, the experiments will answer the following research
questions:

Q1: How does KEP-Rec perform compared with the state-of-the-art KG-based
recommendation methods?

Q2: How do different parameters affect KEP-Rec?

5.1 Datasets

In order to verify the effectiveness of KEP-Rec in different application scenarios, we
apply three general used datasets from different fields (movies, books, and music) in our
experiments.

• MovieLens-20M1 (ML for short): This dataset is collected by GroupLens Research
which obtained nearly 20 million rating (from 1 to 5) from 27,000 movies by 138
thousand users on the MovieLens website.

• Book-crossing2 (BC for short):This dataset is collected by Cai-Nicolas Ziegler from
the Book-Crossing community (August to September 2004). It contains 278,858 users
1,149,780 ratings (from 1 to 10) for approximately 271,379 books.

• Last.FM3 (FM for short): This dataset contains the social networks and music artist
information of two thousand userswho listened to the onlinemusic systemofLast.FM.

Since KEP-Rec aims to predict the interacted probability between target user and
candidate item and make recommendation based on implicit feedback, we set a scoring
threshold to convert the explicit feedback into implicit feedback. For MovieLens-20M,
we set the positive score threshold to 4, and scores greater than 4 are positive samples

1 Https://grouplens.org/datasets/movielens/.
2 http://www2.informatik.uni-freiburg.de/.cziegler/BX/.
3 https://grouplens.org/datasets/hetrec-2011/.

https://grouplens.org/datasets/movielens/
http://www2.informatik.uni-freiburg.de/.cziegler/BX/
https://grouplens.org/datasets/hetrec-2011/
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(yuv = 1 in Y ), and vice versa (yuv = 0 in Y ). However, the Book-Crossing and Last.FM
data are too sparse, and the above threshold settings are not suitable. So, for those two
datasets, we set the items that the user interacts with as the positive samples. For negative
samples, we randomly select items of the same size as the positive samples from items
that the user has not interacted with.

In addition to the aforementioned user and item interaction datasets, we also need
to choose sub-KGs of each dataset. For MovieLens-20M, Book-Crossing, and Last.FM,
we choose sub-KGs from KG called Satori4 from Microsoft. Each sub-KG is a subset
of the entire KG, the confidence level is greater than 0.9. For the sake of simplicity, we
exclude the items matched with multiple entities and those unmatched to any of entities.
Table 1 summarizes the statistics of these experimental datasets.

Table 1. Statistics of Movie-Lens20M, Last.FM, and Book-Crossing, where avgI means the
average interactions per user, and avgL means the average link per entity

#users #items #interaction #avgI #entities #relations #triples #avgL

ML 138,159 16,954 13,501,622 23 102,569 32 499,474 29

FM 1,872 3,846 42,346 98 9,366 60 15,518 4

BC 17,860 14,967 139,746 8 77,903 25 13,150 10

5.2 Baselines

In the experiments, we will compare our KEP-Rec model with the following baselines.

• BPRMF [11] uses matrix factorization based on Bayesian personalized ranking,
which is based on the user’s paired preferences as a single collaborative filtering
method.

• CKE [22] combines a CF module with knowledge embedding, text embedding,
and image embedding of items in a unified framework and jointly learn to make
recommendations.

• RippleNet [15] is a state-of-the-art propagation-based model that uses a large number
of entities related to the user’s historical clicks to enrich the user’s representation, so
that the user’s potential preferences can be propagated in KG. Then the click-through
rate of the user-item pair is predicted.

• KGAT [17] uses embedded propagation to directly model high-connectivity between
users and items. It applies TransR model to obtain the initial representation of the
entity. Then it runs entity propagation from the entity itself along the relationship link
in the knowledge graph. In the process of outward propagation, the information from
the entity will iteratively interact with the multi-hop neighbor.

• CKAN [18] uses a heterogeneous propagation strategy to explicitly encode collabo-
rative signals and knowledge associations, and applies a knowledge-aware attention
mechanism to distinguish the contributions of different knowledge-based neighbors.

4 https://searchengineland.com/library/bing/bing-satori.

https://searchengineland.com/library/bing/bing-satori
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5.3 Experimental Setup

In our experiment, for each dataset, 60% are randomly selected for training, 20% are for
evaluation, and the rest 20%are for prediction.Weevaluate ourmethod inCTRprediction
and top-K recommendation. CTR prediction generally refers to the click-through rate
estimation task which is with an item, predicting the probability that the user clicks
on this item. We adopt AUC to evaluate this performance. For top-K recommendation,
we adopt F1@K to evaluate the performance. For optimization, we use ADAM [8] to
optimize all models in training. We set the batch size to 1024 during training and use
the default Xavier initialize [4] to initialize the parameters of the model.

We implement our model in PyTorch. The best hyper-parameters are obtained by
grid search. We set the learning rate to be searched in {10–3, 5 * 10–3, 10–2, 5 * 10–2}.
The embedding size is tuned among {16, 32, 64, 128, 256}. The coefficient of L2
normalization is searched in {10–6, 10–5, 10–4, 10–3, 10–2}. We search the set of size in
{4, 8, 16, 32, 64} for user and item embedding.

5.4 Experimental Results and Analysis

The experimental results and analysis are shown as follows.

Performance Comparison with Baselines (Q1). In this section, we present the results
of performance comparisons among KEP-Rec and baselines. The results of all methods
in CTR prediction and top-K recommendation are presented in Table 2 respectively.

Table 2. The result of AUC and F1 in CTR prediction comparing of different models

Dataset ML FM BC

Model AUC F1 AUC F1 AUC F1

BPRFM 0.958
(−2.6%)

0.914
(−2.7%)

0.756
(−9.7%)

0.701
(−8.6%)

0.658
(−9.5%)

0.611
(−6.6%)

CKE 0.927
(−5.7%)

0.874
(−6.7%)

0.747
(−10.6%)

0.674
(−11.3%)

0.676
(−7.7%)

0.623
(−5.4%)

RippleNet 0.976
(−0.8%)

0.927
(−1.4%)

0.776
(−7.7%)

0.702
(−8.5%)

0.721
(−3.2%)

0.647
(−3.0%)

KGAT 0.976
(−0.8%)

0.928
(−1.3%)

0.829
(−2.4%)

0.742
(−4.5%)

0.731
(−2.2%)

0.654
(−2.3%)

CKAN 0.976
(−0.8%)

0.929
(−1.2%)

0.842
(−1.1%)

0.769
(−1.8%)

0.753
(−0%)

0.673
(−0.5%)

KEP-Rec 0.984 0.941 0.853 0.787 0.753 0.677

From Table 2, we can be observed that:

(1) KEP-Rec consistently outperforms all baselines across mostly datasets in terms
of all measures. More specifically, it achieves significant improvements over the
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strongest baseline CKAN w.r.t. F1 by 1.2%, 1.8%, and 0.5% in MovieLens-20M,
Last.FMandBook-Crossing respectively. Thatmaybecause the twoattentionmech-
anisms played a big role in KEP-Rec. It is worthmentioning that on theMovieLens-
20M dataset, the results of all baselines are at a higher value. It shows that more
user interaction is conducive to make a better recommendation.

(2) The two path-based baselines, RippleNet and KGAT, are better than the CF-based
method BRPFM and the embedding-based CKE, indicating that KG’s graph struc-
ture information is helpful for recommendation. In addition, although RippleNet
andKGAT achieved excellent performance, they still did not exceedKEP-Rec. This
is because RippleNet neither incorporates user click history items into the user rep-
resentation, nor does it introduce high-level connections, and KGAT does not mix
GCN layer information, nor does it consider user preferences when collecting KG
information.

(3) From the experimental results, the method based on KG propagation is higher
than the pure CF-based BPRMF model on the three data sets of all evaluation
indicators. This experimental result shows that the use of KG is very helpful for
recommendation. However, it is worth noting that BPRMF outperforms CKE in
some indicators, which means that modeling direct relationship in KG may not
be able to make full use of the rich information encoded in KG and proved the
effectiveness of high-level connectivity information. The second reason may be
that CKE is aimed at multi-modal information, and only one of the graph structure
information is used here, which leads to its poor performance.

(4) In addition, by comparing CKAN, KEP-Rec and KGAT, although both utilize high-
level connectivity, CKAN and KEP-Rec outperforms KGAT. The possible reason
for the analysis is that while modeling the item presentation, CKAN and KEP-Rec
both further considers the collaborative signals in the interaction between the user
and the product, thereby realizing the enrichment of the item. They explore the
connections between users, item and entities through collaborative interaction and
knowledge graphs.

Performance Comparison with Different Parameters (Q2). To get deep insights on
different parameters of KEP-Rec, we investigate their impact in three datasets respec-
tively. We first study the influence of layer numbers, and then examine the influence
of knowledge graph embedding dimension. Finally, we analyze the influence of item
attention and user-specific relationship propagation layer.

Impact of Number of Layers: The impact of different number of layers is shown in
Table 3. We conducted experiments with the same other parameter settings. The results
show that when layer number is 2,ML, and BC perform best; when layer number reaches
4, FM achieves better performance.

According to the analysis of different datasets, one possible reason for this phe-
nomenon is that when there are more links in the knowledge graph of the dataset,
long-distance propagation provides more supplementary knowledge information, but
also brings more noise. However, in the case of a small amount of data in the knowledge
graph of the dataset, deeper propagation can make use of knowledge information to a
greater extent.
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Table 3. F1 result of KEP-Rec with the different number of layer number.

Layer number 2 3 4

ML 0.937 0.934 0.934

FM 0.783 0.781 0.787

BC 0.677 0.673 0.671

Impact of Dimension of Embedding. We use the same dimensional parameters to embed
the entities and relations in the KG, and compare the performance of KEP-Rec on all
three data sets for different dimensions. The result is shown as Table 4.

Table 4. F1 result of KEP-Rec with dimension of embedding.

Embedding dimension 32 64 128 256

ML 0.941 0.941 0.941 0.941

FM 0.775 0.784 0.785 0.783

BC 0.668 0.669 0.671 0.672

From Table 4, it can be seen that the dimensional changes of KEP-Rec on the three
datasets did not cause excessive fluctuations in the final evaluation index. This means
that it has a strong tolerance for size selection, which reduces the dependence of the
experiment on parameters and makes it easier to reproduce the experimental results.

Impact of Different Personalized Components. In order to verify the influence of item
attention anduser-specific relation propagation layer,we conducted ablation experiments
of two sub-models. One is KEP-Rec that only removes item attention and we mark it as
KEP-Rec(-A), and the other is to remove two parts at the same time, and we mark it as
KEP-Rec (-U-A). The results are shown in Table 5.

Table 5. F1 result of KEP-Rec without different components. KEP-Rec (-U-A) means KEP-Rec
without item-aware attention mechanism and user-specific relation layer. KEP-Rec (-A) means
without user-specific relation propagation layer.

KEP-Rec (-U-A) KEP-Rec(-A) KEP-Rec

ML 0.929 0.934 0.941

FM 0.773 0.778 0.787

BC 0.674 0.675 0.677
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The result supports that item attention and user-specific relation propagation layer
are both powerful determinants, and the combination of the two can be more completely
encoded into the potential user/item vector representation.

Impact of Aggregators. In order to verify the influence of the aggregator on the results
of our model, we chose Sum, Pool and Concat three aggregators, while keeping other
conditions consistent. The experimental results are shown in Table 6.

Table 6. F1 result of KEP-Rec with different aggregators.

Sum Pool Concat

ML 0.934 0.924 0.941

FM 0.736 0.733 0.787

BC 0.666 0.654 0.677

By analyzing the experimental results, we have the following observations that Con-
cat is always better than Sum and Pool. This may be because, compared with the other
two aggregators, theConcat aggregator can retain the information content of the embed-
ded representation as much as possible without filtering and mixing. Based on the result,
Concat aggregator is applied in our KEP-Rec model.

6 Conclusion

In this work, we propose KEP-Rec, a knowledge enhanced user-item relation prediction
for users’ diverse preferences representation, which is an end-to-end, user-oriented, and
collaborative knowledge propagation prediction model of user-item relation for person-
alized recommendation. We construct a diverse representation of user preferences and
set a user-specific relation attention mechanism to describe those relations between dif-
ferent users and the same item.Meanwhile, the high-order connectivity of the knowledge
graph is used to finally obtain an enhanced representation of users and items. A large
number of experiments have proved the superiority of KEP-Rec.

Since the proposed personalized component is aimed at entities existing in knowl-
edge graph, the method can also be applied to fields related to graph structure, such as
social networks. We believe that KEP-Rec can be widely used in related applications.
In addition, the user’s preference is actually also changed by time, and a real-going idea
is to use CNN to join the time series in the model which is a viable direction.

Acknowledgement. The work was supported by National Natural Science Foundation of China
(62172086, 61872074, 62106039).
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Abstract. Multimodal entity alignment (MMEA) aims to identify
equivalent entities across different multimodal knowledge graphs (KGs),
and this topic has drawn increasing attention in recent years. Although
the benefits of multimodal information have been observed, its nega-
tive impacts are non-negligible as injecting images without constraints
brings much noise. It also remains unknown to what extent or under
what circumstances visual context is truly helpful to the task. In this
work, we employ graph structures and visual context to align entities
in different multimodal KGs and propose to selectively combine feature
similarities between cross-KG entities of these two aspects when mak-
ing alignment decision. Specifically, we exploit image classification tech-
niques and entity types to remove potentially un-useful images (visual
noises) via generating entity mask vectors in the learning and inference
processes. The extensive experiments have validated that the incorpo-
ration of selected visual context can substantially improve the MMEA.
We also provide a thorough analysis about the impacts of the visual
modality and discuss a few cases where injecting entity images induces
misalignment.

Keywords: Multimodal entity alignment · Visual context ·
Knowledge graph

1 Introduction

Entity alignment (EA) is a task aiming to find entities from different knowledge
graphs (KGs) that refer to the same real-world object. It plays an important
role in KG construction and knowledge fusion as KGs are often independently
created and suffer from incompleteness. Most existing models for EA leverage
graph structures and/or side information of entities such as name and attributes
along with KG embedding techniques to achieve alignment [17,26]. Several recent
methods enrich entity representations by incorporating images, a natural com-
ponent of entity profiles in many KGs such as DBpedia [10] and Wikidata [19],
to address EA in a multimodal view [3,7,11].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Li et al. (Eds.): APWeb-WAIM 2022, LNCS 13422, pp. 255–270, 2023.
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Fig. 1. Thumbnail examples of the DBpedia entities where the images on top depict
the equivalent entities, Oakland, California, and the images below depict the equivalent
entities, Little Mix.

While experimental results have demonstrated that incorporating visual con-
text benefits the EA task [3,11], it is worth noting that the use of entity images
may introduce noises. An error analysis in EVA [11] points out that hundreds
of source entities are correctly matched to their counterparts before injecting
images but are mismatched with images present. Different visual representa-
tions of equivalent entities could be potential noises that induce mismatches,
and there are various reasons for the visual inconsistency between two equiv-
alent entities. One major reason is that entities naturally have multiple visual
representations. As shown in Fig. 1, images (visual context) at left are dissimilar
from their counterparts at right, yet they refer to same real-world entities. In
addition, the incompleteness of visual data is also a challenging issue for multi-
modal EA, as reported in [11] that ca. 15–50% entities in the most commonly
used benchmark DBP15K [14] are not provided with images.

The aforementioned observations raise a doubt: to what extent or under what
circumstances is visual context truly helpful to the EA task? Is there a way to
filter potential noises and better use entity images? To investigate the above
issues, in this work, we propose Masked-MMEA, a novel framework capable of
identifying and filtering potential visual noises for multimodal EA. Specifically,
we utilize classification techniques and entity types (classes), common prop-
erties defined by the ontology of many KGs, to locate potential visual noises
and meanwhile generate binary mask vectors which indicate whether an entity
image should be filtered in the alignment learning or inference phase. Masked-
MMEA learns structural and visual representations of entities separately, and
then computes the corresponding similarities for each candidate pair where the
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mask vector is applied to determine the final similarity between two multimodal
representations as a weighted sum.

In summary, our main contributions are three-fold: (i) To the best of our
knowledge, we are the first to investigate the positive and negative aspects of
incorporating visual context for EA. We provide insights on actual visual noises
that tend to induce misalignment in the multimodal EA. (ii) We propose a novel
framework, Masked-MMEA, to identify and filter potential visual noises for the
multimodal EA, by utilizing classification techniques and ontologies of KGs.
Extensive experiments have validated that the selective use of visual context
benefits multimodal EA. (iii) We build a new dataset based on DBP15K which
additionally includes ontological information and a full set of entity images. With
the proposed dataset, we hope to facilitate the community in the development
of multimodal learning approaches for KGs. The source code and datasets are
publicly accessible at https://github.com/Shiyinghui/Masked-MMEA.

2 Related Work

Embedding-Based Entity Alignment. Embedding-based approaches for entity
alignment (EA) can be generally divided into two categories: that only utilized
graph structures and that used additional side information of entities [25,26].
Among the first category, MTransE [4] adopted TransE [1] to encode language-
specific KGs in separate embedding spaces and learned a transformation to align
counterpart entities across embeddings. IPTransE [28] and BootEA [15] embed-
ded two KGs in a unified space and bootstrapped the labeled alignments itera-
tively. Among the second category, GCN-Align [21], JAPE [14] and AttrE [18]
used attribute triples in the KGs to refine structural embeddings. MultiKE [24]
explored more types of features. It learned entity embeddings from three differ-
ent views including entity names, relations and attributes. HMAN [23] further
exploited literal descriptions of entities to boost performance. UEA [27] utilized
useful features from side information in an unsupervised framework to perform
EA in the open world. Although some of the above approaches can achieve high
accuracy on EA, the visual context has not been explored yet.

Multimodal KG Embeddings. In recent years, a few attempts have been made
to incorporate entity images into KGs and build multimodal embeddings for
EA. MMEA [3] applied TransE to learn structural embeddings for entities, and
utilized image features to learn visual representations. It integrated multiple
representations of entities via common space learning. HMEA [7] adopted the
hyperbolic graph convolutional networks (HGCNs) to learn structural and visual
embeddings of entities separately, then merged them in the hyperbolic space by
a weighted Mobius addition. EVA [11] employed GCNs [20] to learn structural
representations for entities, and used feed-forward networks to learn embeddings
from image, relation and attribute features, respectively. Then it fused embed-
dings of different modalities by a trainable weighted concatenation. Although
existing multimodal entity alignment approaches have shown promising perfor-
mance, all of them ignored the negative impact of noisy data in entity images.

https://github.com/Shiyinghui/Masked-MMEA
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Fig. 2. The framework of Masked-MMEA, where the block on the left represents the
1st part, detailed in Sect. 3.1 and the block on the right represents the 2nd part, detailed
in Sects. 3.2 and 3.3.

3 Method

We start with the task definition and notations. A KG is denoted as G =
(E,R, T, I), where E, R, T , I are the sets of entities, relations, triples and
images, respectively. Given a source KG G1 = (E1, R1, T1, I1) and a target KG
G2 = (E2, R2, T2, I2), multimodal entity alignment (MMEA) aims to find every
pair (e1, e2) where e1 ∈ E1, e2 ∈ E2 and e1 and e2 refer to the same real-world
object. Our approach, Masked-MMEA, can be divided into two parts, as illus-
trated in Fig. 2. The 1st part identifies entity images that are potential noises for
MMEA and outputs a binary mask vector M to filter noises. In the 2nd part, M
is applied in learning entity representations and calculating the similarity met-
rics between entities. These two parts will be detailed in Sect. 3.1 and Sects. 3.2
and 3.3, respectively.

3.1 Visual Noises Identification

We observe that in most cases visual representations of entities vary largely from
a type to another, while they are less different within a type. Based on the find-
ings, we take entity types as classes of images to train a classifier, and use it to
identify images whose predicted class is semantically distant from their actual
class, i.e., visual noises. To this end we obtain entity types and inter-class con-
flicts from the ontology of KGs, and design mask vectors to store identification
results.

Entity Types. The ontology of KGs usually contains properties and hierarchical
classes, and defines subsumption relationships between classes and class dis-
jointness optionally [8]. Types (classes) are often organized in a hierarchical tree
structure in the ontology of a KG, and an entity is often associated to a set
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Fig. 3. An example of hierarchical classes.

of types. For example, as shown in Fig. 3, the entity Barack Obama in French
DBpedia has four types declared: Agent, Person, Politician and President, with
Agent as the most generic type and President as the most specific and a leaf node.
As we observe that entities of fine-grained types like President and Senator are
more semantically different than visually different, and therefore, we take the
type of each entity at most at the fourth level (Politician in this example) as the
label of its image. We also empirically find the choice of the fourth level, rather
than the third or the fifth, yields better classification performance.

Inter-class Conflicts. To measure the semantic discrepancy between the pre-
dicted and real classes of an entity image, and inspired by OntoEA [22], we use
a class conflict dictionary (CCD) to store the inter-class conflicts. Given two
classes a and b, we set (a, b) as the key and C[a, b] as the value, which represents
the conflict degree between class a and class b. For better illustration, we let V
denote the hierarchical class tree in which each node refers to a unique class and o
the root (typically owl:Thing), and define Sc

x as the set of children (subclasses) of
node x and Sd

x as the set of all the descendants of x in V , respectively. We assume
that all subclasses of the root in V are mutually disjoint, which is in accordance
with the design intent for the class hierarchy, and we regard any two descendants
of two disjoint classes as disjoint. Let D denote the set of all disjoint class pairs,
thus D = {(a, b)|a, b ∈ Sc

o, a �= b} ∪ {(a, b)|∀c1, c2 ∈ Sc
o, a ∈ Sd

c1 , b ∈ Sd
c2 , c1 �= c2}.

Given two classes a and b, we firstly determine if a ≡ b or a ∈ Sd
b or b ∈ Sd

a ,
and set C[a, b] = 0 if they satisfy the condition, which ensures that a class does
not conflict with itself or its descendant class, otherwise we look up D and set
C[a, b] = 1 if (a, b) ∈ D, i.e., two disjoint classes are treated as conflicted. If nei-
ther of the above two conditions is met, we follow OntoEA and calculate C[a, b]
as:
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C[a, b] = 1 − |S(a) ∩ S(b)|
|S(a) ∪ S(b)| , (1)

where S(a) and S(b) denote the sets of classes passed by routing from a and b
to the root class, respectively, and | · | denotes the set cardinality.

Entity Mask. We use M ∈ R
|E| as an entity mask and denote Mei as the mask

value of the i-th entity ei in E. If the image of ei is determined as potential noise,
we set Mei = 0, which means ei is masked and its image should be filtered in
the training or test phase; otherwise we set Mei = 1. We initialize M with
all zeros and update it iteratively. Specifically, given a conflict degree threshold
λ, for e ∈ E, we feed its corresponding image to a classifier to obtain top k
predictions (denoted as p1,. . . ,pk), and if the minimum conflict degree between
the predictions and the actual class (denoted as g) of e is no greater than λ, i.e.,
min1≤i≤k {C [pi, g]} ≤ λ, we reset the mask value of e to be 1.

3.2 Entity Embedding

To better analyze the impacts of visual context on MMEA, we only model two
modalities in the entity embeddings, i.e., graph structures and visual context.

Structural Embedding. Graph convolutional networks (GCNs) have proven to
be effective in capturing information from graph structures and have been used
for embedding-based EA recently [17]. Formally, given as input the adjacency
matrix A of a KG and randomly initialized feature matrix H(0) of its entities,
a multi-layer GCN iteratively updates entity representations from the i-th layer
to the (i + 1)-th layer with the following propagation rule:

H(i+1) = φ
(
D̂− 1

2 ÂD̂− 1
2H(i)W(i+1)

)
, (2)

where Â = A + I and I is an identity matrix, D̂ is the diagonal degree matrix
of Â, W(i+1) denotes learnable parameters in the (i + 1)-th layer and φ is the
activation function ReLU. Following previous works [21,23], we adopt GCNs to
encode the neighborhood information of entities and take the output of the last
GCN layer as the structural embeddings.

Visual Embedding. We choose ResNet-152 [9] pre-trained on the ImageNet [6]
recognition task as the initial image classifier and fine-tune it with our datasets
for EA. The fine-tuning details are given in Sect. 4.1. The fine-tuned model is
used to extract image features. We feed each image i ∈ I, through a forward
pass and take the output of last layer before logits as its feature vector. Then
we project the feature into a low-dimensional space by a linear transformation
to obtain visual embedding ev:

ev = Wv · ResNet(i) + bv, (3)

where Wv is the projection matrix and bv is the bias vector.
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3.3 Alignment Learning and Inference

This section presents details about alignment learning and inference with an
entity mask. We integrate G1 and G2 as one KG and learn both structural
embeddings and visual embeddings of entities in E1 and E2 in a unified space.
For notations, we let Es and Et denote the sets of source entities and the corre-
sponding target entities, respectively, where Es ⊆ E1, Et ⊆ E2 and |Es| = |Et|.
We rearrange the elements in both sets in order that the i-th entity in Es cor-
responds to the i-th in Et. We denote P as the set of all aligned pairs, i.e.,
P = {(e1, e2) | e1 ≡ e2, e1 ∈ Es, e2 ∈ Et}, and M ∈ R

|Es|+|Et| as the entity mask
used to filter potential noisy images. The training and test sets are obtained by
splitting P with a ratio r.

Alignment Learning. Let Ês and Êt denote the source entities and target enti-
ties in the training set, respectively. For the structural modality, we compute
a similarity matrix Sim(r) = 〈Ê(r)

s , Ê(r)
t 〉 ∈ R

|Ês|×|Êt|, where Ê(r)
s (Ê(r)

t ) repre-
sents the structural embeddings of entities in Ês (Êt), and each entry Sim(r)

ij

corresponds to the cosine similarity between the i-th entity in Ês and j-th in
Êt. To better punish hard negatives and mitigate the hubness problem [5], we
choose HAL loss [12] as the objective function and apply it to obtain the loss of
structural modality L(r) and train the structural embeddings:

L(r) =
1

N

N∑

i=1

(
1

α
log(1 +

∑

m�=i

eαSim
(r)
mi )

+
1

α
log(1 +

∑

n�=i

eαSim
(r)
in ) − log(1 + βSim

(r)
ii )), (4)

where α, β are temperature scales and N is the batch size. As for the visual
modality, we keep aligned pairs in which both the mask values of the source
entity and the target entity are ones, i.e., neither of the two entity images is
considered as potential noise. Thus we firstly obtain a new set of alignment pairs
P ′ = {(e1, e2) | e1 ≡ e2, e1 ∈ Ês, e2 ∈ Êt,Me1 = 1,Me2 = 1} with P and M,
then we determine from P ′ the new sets of source entities and target entities,
denoted by Ẽs and Ẽt, respectively. Likewise, we compute a cosine similarity
matrix Sim(v) = 〈Ẽ(v)

s , Ẽ(v)
t 〉 ∈ R

|Ẽs|×|Ẽt| for the visual modality and obtain the
loss L(v) by replacing Sim(r) with Sim(v) in Eq. (4).

Inference. Given source entity set Ēs and target entity set Ēt used for infer-
ence, we compute Sim(r) = 〈Ē(r)

s , Ē(r)
t 〉 and Sim(v) = 〈Ē(v)

s , Ē(v)
t 〉, where

Sim(r), Sim(v) ∈ R
|Ēs|×|Ēt| are cosine similarity matrices for the structural

and visual modalities, respectively. Then we combine them by a weighted addi-
tion and a position mask pos ∈ R

|Ēs|×|Ēt| to obtain the fused similarity matrix
Sim. Specifically, the similarity score between the i-th entity ei in Ēs and the
j-th ej in Ēt, i.e., the (i, j) entry of Sim, is computed as:

Simij =

{
w · Sim(r)

ij + (1 − w) · Sim(v)
ij if posij = 1

Sim
(r)
ij otherwise

, (5)
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where w ∈ (0, 1) is a hyper-parameter to balance the two modalities, and posij is used
to determine if their visual similarity should be considered which is defined as:

posij =

{
1 if Mei = 1 and Mej = 1

0 otherwise
. (6)

Equation (5) and (6) illustrate the principal idea of fusing the two modalities:
for source entity ei and candidate target entity ej , the in-between similarity is
predicted from both aspects of knowledge only when their images are regarded as
potentially useful; otherwise it is solely based on the structural similarity. After
obtaining Sim, we further use cross-domain similarity local scaling (CSLS) [5]
to post-process it. Then for ei ∈ Ēs, we retrieve the similarity scores of the i-th
row in Sim, rank them in a descending order, and take the top ranked entity as
the match.

4 Experiments

4.1 Experimental Settings

Dataset. We build our dataset based on DBP15K [14], which contains three bilin-
gual subsets: Chinese-English (ZH-EN), Japanese-English (JA-EN), and French-
English (FR-EN). Each subset has 15K aligned entity pairs. DBpedia has pro-
vided links of thumbnails for many entities, however, it does not cover all of
them. Statistics show that ca. 50–85% entities in DBP15K have images [11]. To
solve the problem of data incompleteness, for (almost) every entity without an
image in DBP15K, we crawl web images from Bing Images search by using its
name as the query and take the most relevant as its final image. The statistics
of image coverage are presented in Table 1. To retrieve entity types, we query
the classes of each entity with rdf:type via a public SPARQL endpoint.1 We
also obtain the subsumption relationships between classes which are explicitly
defined by the rdfs:subClassOf property in the DBpedia ontology. The original
DBP15K, images of entities, and the ontology altogether constitute the dataset
used in this paper.

Table 1. Statistics of image coverage.

FR-EN JA-EN ZH-EN

FR EN JA EN ZH EN

Image covered (by DBpedia) 13,858 14,174 12,739 13,741 15,910 14,125

Image covered (by web source) 5,794 5,816 7,011 6,035 3,421 5,441

All entities 19,661 19,993 19,814 19,780 19,388 19,572

1 http://dbpedia.org/sparql.

http://dbpedia.org/sparql


Probing the Impacts of Visual Context in Multimodal Entity Alignment 263

Classification. We collect unique entities from all three subsets of DBP15K, filter
those either without a type or an image, and use the remaining entities E′ as
indices to retrieve their images and labels. For each split of DBP15K, we fine-
tune a classifier based on the pre-trained ResNet152 [9], and build the test and
training data from Es ∪ Et and E′\(Es ∪ Et), respectively. We adopt stochastic
gradient descent (SGD) to update parameters of classifiers with a learning rate
of 0.001 and a momentum of 0.9. We set the batch size to 32 and the number
of epochs for training to 25. During test, we obtain top 5 predictions for each
entity image, and set the conflict degrees λ = 0 and λ = 1 to calculate its mask
value, respectively. Note that when λ = 1, no image will be filtered. Numbers of
images in training and test sets for each split and the classification accuracies
are reported in Table 2.

Table 2. Entity image classification results on the DBP15K dataset.

Training images Test images Classes Hits@1 Hits@5

FR-EN 54,117 29,479 76 0.513 0.828

JA-EN 54,799 29,498 82 0.509 0.821

ZH-EN 55,146 28,979 82 0.480 0.805

Alignment Settings. We employ a three-layer GCN (including the input layer)
and set the dimensions of the input, hidden and output layers to 400, 400 and
200, respectively. The dimension of the visual embeddings is set to 200. We
train our model for 1,000 epochs and adopt AdamW to update parameters. The
learning rate is set to 5 × 10−4, and the weight decay is 10−2. When calculating
losses, we set α = 5, β = 10 for L(r), and α = 15, β = 10 for L(v). We set
w = 0.5 during inference. Following conventions, we use 30% of the aligned
pairs for training and the remaining for evaluation, and choose H@1 (Hits@1),
H@10 (Hits@10) and mean reciprocal rank (MRR) as the evaluation metrics.
For the most relevant baseline, EVA, and our methods, SimpleEA and Masked-
MMEAs, we conduct five experiments with different random seeds and present
the averaged results along with their standard deviations Means

±Stds.
.

4.2 Classification Performance and Analysis

We collect classification results of all three datasets in DBP15K and merge them
for general analysis. For better understanding, we take nodes at the second level
of the hierarchical class tree as base classes, and then use them to group fine-
grained types, i.e., image labels used in the classification experiments. Note that
we additionally treat Person and Organization, which are subclasses of Agent,
as two base classes, as they are drastically different in both semantics and visual
representations. A total of 17 base classes are identified and including their
descendants, the total number of classes is 76 for FR-EN and 82 for JA-EN
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Fig. 4. The distribution of classification accuracy and the number of test images w.r.t.
all classes. Each base class is denoted with a unique marker, and fine-grained types
that share a common base class, such as Royalty and Athlete, are labeled with the same
marker. The top-10 classes ranked by classification accuracy are explicitly annotated.

and ZH-EN (cf. Table 2). Among them, four base classes (together with their
descendants) Person, Organization, Work and Place cover 92% of all test entities
over three datasets. Figure 4 illustrates the distribution of accuracy and number
of test (entity) images with respect to all classes.

We summarize the classification errors into two kinds: (i) the predicted class
of an (entity) image and its true class are in the same group, i.e., one is the
super class of the other or they are siblings or cousins, and (ii) the predicted
class and the true class are disjoint. We find that without the first kind of errors,
the accuracies of four base classes Person, Place, Organization, and Work rise
from 0.53, 0.65, 0.36 and 0.31 to 0.91, 0.83, 0.51 and 0.52, respectively, which
indicates that entities of Person or Place are more visually distinguishable, while
entities of Organization and Work have less stable visual characteristics. By
investigating the mispredictions, we identify several reasons that may explain
the poor classification performance on many classes, which also provides insights
into the quality of visual data used for MMEA. First, an image provided for an
entity can be irrelevant to the entity itself. Second, the visual representations of
entities of some classes are unstable. For example, entities of type Single or Album
often have covers as their thumbnails, and these covers often vary widely from
one to another depending on the design styles which are also easily misclassified
into other classes like Artist and Settlement. Third, it is difficult to find accurate
visual representations for conceptual entities, namely the entities referring to
cognitive objects instead of physical objects. A typical type is MusicGenre, and
its accuracy is as low as 0.03.

4.3 Alignment Results and Impacts of Entity Masks

To investigate the effectiveness of visual context, we develop a variant of our
model denoted as SimpleEA by removing the visual components, and compare
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Table 3. Entity alignment results on DBP15K. For fair comparison, the results of
HMAN are from its variant that only uses training data in DBP15K as alignment
signals, and the results of EVA are reproduced by only utilizing structural and visual
context, as the setting of Masked-MMEA. λ0 and λ1 denote the corresponding results
being obtained under λ = 0 and λ = 1, respectively. For EVA, SimpleEA, Masked-
MMEA (λ0) and Masked-MMEA (λ1), Means

±Stds.

are shown.

Methods
FR-EN JA-EN ZH-EN

H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

MTransE [4] 0.224 0.556 0.335 0.279 0.575 0.349 0.308 0.614 0.364

IPTransE [28] 0.333 0.685 0.451 0.367 0.693 0.474 0.406 0.735 0.516

JAPE [14] 0.324 0.667 0.430 0.363 0.685 0.476 0.412 0.745 0.490

GCN-Align [21] 0.373 0.745 0.532 0.399 0.745 0.546 0.413 0.744 0.549

SEA [13] 0.400 0.797 0.533 0.385 0.783 0.518 0.424 0.796 0.548

MuGNN [2] 0.495 0.870 0.621 0.501 0.857 0.621 0.494 0.844 0.611

HMAN [23] 0.543 0.867 – 0.565 0.866 – 0.537 0.834 –

AliNet [16] 0.552 0.852 0.657 0.549 0.831 0.645 0.539 0.826 0.628

MultiKE [24] 0.639 0.712 0.665 0.393 0.489 0.426 0.509 0.576 0.532

0.700 0.891 0.768 0.622 0.846 0.701 0.596 0.816 0.674
EVA [11]

±.005 ±.005 ±.004 ±.004 ±.008 ±.005 ±.007 ±.008 ±.007

0.504 0.826 0.616 0.505 0.797 0.608 0.479 0.772 0.582
SimpleEA

±.005 ±.004 ±.005 ±.005 ±.006 ±.005 ±.005 ±.007 ±.006

0.661 0.889 0.742 0.602 0.852 0.692 0.582 0.827 0.670
Masked-MMEA (λ0) ±.007 ±.004 ±.006 ±.004 ±.006 ±.004 ±.006 ±.008 ±.007

0.712 0.901 0.779 0.627 0.858 0.711 0.612 0.837 0.693
Masked-MMEA (λ1) ±.005 ±.003 ±.004 ±.005 ±.005 ±.004 ±.006 ±.006 ±.005

our full model Masked-MMEA with the variant and other baseline methods in
Table 3.

From the results we can see that SimpleEA is comparable to other structure-
based approaches, including MTransE, IPTransE, MuGNN, SEA and AliNet,
and even surpasses two models using additional side information, JAPE and
GCN-Align. Masked-MMEA (λ1) slightly outperforms EVA, validating the effec-
tiveness of our proposed approach for the EA part. More importantly, the results
show that even under the strictest setting, our model Masked-MMEA (λ0) gains
9.7–15.7% absolute improvement in Hits@1 over SimpleEA, and Masked-MMEA
also outperforms MultiKE and HMAN, both of which leverage three kinds of side
information. This demonstrates that the incorporation of the visual context can
substantially improve the EA system.

To examine the effects of different entity masks, we choose different class
conflict ratios: λ ∈ {0, 0.4, 0.67, 1}, in which λ = 0 corresponds to the strictest
setting and λ = 1 is the no-masking setting where no entity images are filtered.
Bigger λ indicates that more image pairs are involved and the visual context has
more influence on alignment prediction during inference. Additionally, we design
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Fig. 5. Number of new errors caused (left) and number of errors eliminated (right)
with the use of images on DBP15K. Different colors indicate the results from different
settings.

Table 4. Alignment results under different settings. “No.” denotes the number of
entities with images.

Settings FR-EN JA-EN ZH-EN

No. Hits@1 No. Hits@1 No. Hits@1

Struct. – 0.504 – 0.505 – 0.479

λ = 0 26,125 0.661 25,550 0.602 25,111 0.582

λ = 0.4 27,320 0.681 26,820 0.606 26,569 0.600

λ = 0.67 28,221 0.693 27,722 0.614 27,800 0.612

λ = 1 29,479 0.712 29,498 0.627 28,979 0.612

Spec. 28,681 0.771 28,387 0.701 28,079 0.683

a special mask based on the alignment result obtained when λ = 1. Specifically,
we reset the mask value of an entity to be 0 if it is correctly matched by only
structural similarity but is missed by a joint decision of the two modalities.

We conduct experiments under the above different settings and present the
results in Table 4. As shown in Table 4, Hits@1 increases as λ is set larger and
the no-masking setting outperforms the strictest setting by 2.5–5.1%. We con-
sider that it is mainly attributed to the relatively low quality of visual data. As
previously discussed, for some classes, the images of aligned entities which are
visually similar, tend to be classified into irrelevant classes, thus being filtered
as noises. However, this does not mean that filtering visual noises is useless,
as we observe an average performance gain of 6.8% in Hits@1 with the spe-
cial mask over the no-masking setting. We further analyze the change of errors
after visual context is injected under three settings, i.e., the strictest (mask),
the no-masking and the special (Spec.). As shown in Fig. 5, on all three datasets
the use of special masks greatly reduces errors while retaining as much benefits
as no-masking settings bring. The observations suggest such complexity of the
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problem that the model will not necessarily output better results with visual
context considered. They also prove that the visual noise filtering is beneficial to
the multimodal entity alignment. The key challenge lies in locating real visual
noises. In the next part, we analyze and identity a few cases where entity images
tend to induce misalignment based on experimental results.

4.4 How Visual Context Impacts Multimodal Entity Alignment

The incorporation of entity images can reduce thousands of errors; but on the
other hand, it also brings in much noise leading to many new mismatches, as
illustrated in Fig. 5. Overall, it improves the alignment performance. For the pos-
itive impact, we find that visual context is particularly helpful when structural
information is insufficient to make correct alignment predictions. This finding is
supported by the observation that among 3,011 newly aligned entity pairs under
the no-masking setting on FR-EN, 78% of them have a summed degree below the
mean value of the summed degrees of all aligned entity pairs (i.e., long-tailed
entities), and a lower degree of an entity indicates less structural information
available to learn reliable structural embeddings.

To gain some insights into the negative impact of injecting visual context,
we take results of FR-EN as an example and collect new errors occurred under
the no-masking setting. These new errors shed light on true visual noises that
should be filtered. Among the 818 errors on FR-EN, 139 source entities have
mask values of 0s, meaning that the top 1 predicted class of their image by the
classifier is disjoint with their actual (entity) type, and that 139 errors could be
reduced if these images are filtered. The remaining 679 errors are mostly about
source entities with mask values of 1s, which we divide into three categories for
detailed analysis: (i) The first category contains 436 source entities where both
the mask values of their aligned counterparts and their predicted matches are
1s, and 80% of the mismatches are between entities of same or very close types,
such as siblings, with Person and Place as two largest base classes. These mis-
matches are quite difficult to address because these entity types show relatively
stable visual characteristics and the corresponding entity images are less visually
distinguishable from those of the same types. (ii) The second category includes
154 source entities where one of the mask values of their aligned counterparts
and their predicted matches is 0, indicating that inappropriate or inconsistent
images induced mismatches and these errors could be avoided when the noises
are excluded. (iii) Errors of the last category, making up about 9% of the total
errors, are about source entities mismatched to entities without images, which
means these images are not as useful as structural information in multimodal
entity alignment.

5 Conclusions

This paper investigated impacts of incorporating visual context (entity images)
for multimodal entity alignment. We proposed to selectively use entity images
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both in alignment learning and inference phase by filtering potential noises,
which were identified using image classification techniques and the ontology of
KGs, and conducted extensive experiments to examine our approach. We found
that visual context overall is beneficial and that while challenging, filtering noises
can further boost performance. At last we identified a few cases where images
were noises to EA. We experimentally prove that selectively masking potential
visual noises brings the most benefits to EA even though the results largely
depend on the quality of visual data. It is also worth noting that by probing the
impacts of visual context in MMEA, our work examines the quality of entity
images in some multimodal KGs, which has not been inspected by existing stud-
ies. For future work, we will consider adapting the proposed masking technique
to apply to other multimodal scenarios (e.g., multimodal entity linking). Besides,
we will seek to devise methods for the visual noise detection based on automatic
learning.
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Abstract. Few-shot knowledge graph completion aims to infer unknown
triple facts with only a small number of reference triples. Existing meth-
ods have shown a strong capability on this problem by combining knowl-
edge representation learning and meta learning. They ignore prior knowl-
edge in the few-shot scenario, while prior knowledge can boost use-
ful information to handle the challenges brought by limited referenced
instances. To address the above issue, we propose a few-shot knowledge
graph completion model PiTI-Fs, with entity type information as prior
knowledge in a two-module learning framework. In the prior knowledge
learning module, we propose to extract a metagraph for capturing prior
type information by entity clustering where entities in the same cluster
are considered to have the same attribute. We pre-train the metagraph
to learn the prior knowledge features and fuse them into the embeddings
of entities. In the meta learning module, we introduce a transformer-
based relation learner to model the interactions within reference entity
pairs and implement an optimization-based meta learning paradigm to
train our model. Our method outperforms most of baseline models for
the few-shot knowledge graph completion task. The experimental results
demonstrate the effectiveness of the proposed modules.

Keywords: Few-shot · Knowledge graph completion · Meta learning

1 Introduction

A knowledge graph (KG) structured as a directed multi-relational graph is com-
posed of a large number of factual triples in the form (h, r, t). Real-world KGs,
such as Freebase [1], Wikidata [24] and NELL [3] contain huge amounts of triples
widely implemented for question answering [10,28], recommendation system [31],
information retrieval [7]. However, most KGs still suffer the incompleteness issue.
It arouses the interest of research in automatically predicting missing triples with
the reference of existing ones, which is usually formulated as knowledge graph
completion (KGC) [9,14,17].
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B. Li et al. (Eds.): APWeb-WAIM 2022, LNCS 13422, pp. 271–285, 2023.
https://doi.org/10.1007/978-3-031-25198-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25198-6_21&domain=pdf
https://doi.org/10.1007/978-3-031-25198-6_21


272 S. Yao et al.

Fig. 1. An example of 3-shot knowledge graph completion.

Extensive research efforts have proven that knowledge graph embedding
(KGE) is promising. KGE aims to represent entities and relations in a latent and
low-dimensional embedding space. For example, TransE [2] introduces Euclidean
distance to measure similarities between tail entities and head entities with a
relation translation operation. Nevertheless, existing KGE models require suffi-
cient training examples, while few-shot problems are quite common in current
KGs. For example, about 10% of relations in Wikidata have no more than 10
triples [4]. Besides, in the real world, KGs are dynamically evolving. When new
relations are added to a KG for the first time, few-shot scenarios usually occur
that the number of triples associated with the added relation is quite small.
Under such a circumstance, KGE methods are not effective due to the lack of
training examples.

To cope with this problem, recent researches attempt to fit the KGE methods
into the few-shot scenario. These methods apply KGE in the meta learning
training paradigm. GMatching [27], FSRL [30] and FAAN [20] conduct few-
shot KGC by incorporating the structural neighbor information into the metric
matching. MetaR [4] follows MAML [8] to transfer relation by a gradient descent
update. Despite the great success, they only attend to entity embeddings derived
from the background graph and fail to explore the abundant prior knowledge
(e.g., entity type attributes).

According to the observation from KGs, we capture a phenomenon that
head and tail entities with the same relation tend to be grouped into two type
attributes respectively.

As shown in Fig. 1, three supported factual triples with the rela-
tion Company-Founder form a 3-shot KGC example. Head entities, i.e.
Bill Gate, Elon Musk and Steven Jobs, share the same attribute of
Person/Entrepreneur. Similarly, tail entities in the example can be categorized
as Organization/Company. Intuitively, type attributes play an important role
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in predicting the true tail entity Facebook for the missing fact (Mark Zuckberg,
Company-Founder, ?).

Inspired by the above phenomenon, we propose to incorporate Prior Type
Information for Few-shot KGC (PiTI-Fs), which is a two-module learning
framework. In the prior knowledge learning module, motivated by Chung and
Whang [5], we first cluster entities in the background graph (BG) based on the
same affinity metric to form a metagraph (MG). Entities in the same cluster share
the same type attributes. PiTI-Fs pre-trains the given BG and its correspond-
ing MG to learn the entity embeddings and type embedding respectively, and
then applies an aggregation function to represent entities. In the meta learning
module, we introduce an optimization-based meta learning paradigm inspired by
MetaR [4] to query missing facts in the few-shot scenario. Unlike MetaR which
treats different observed entity pairs equally, we introduce a transformer-based
relation encoder to model interactions between referenced triples for better few-
shot relation representations.

The main contributions of the paper can be listed as follows:

(1) A unified method PiTI-Fs is proposed to capture prior type attributes
to enrich entity representations. It introduces a transformer-based relation
learner to adapt reference representations to different queries.

(2) The experimental results validate that our proposed model outperforms the
existing baseline models in most cases. Furthermore, comparison experi-
ments and variants analysis prove the effectiveness of each module in our
method.

2 Related Work

2.1 Traditional Knowledge Graph Completion

The main methods of traditional KGC task are knowledge graph embedding-
based models (KGE-based models), which represent entities and relations in
low-dimension vector space. These methods can be divided into two categories:

Translation-Based Models. In translation-based models, relations are usually
considered as transition or mapping operations from head entities to tail entities.
TransE [2] is a typical work that interprets relations as translation operations
between entity pairs in the embedding space. TransH [26] and TransR [16] are
two extensions of TransE. TransH projects an entity embedding to relation-
specific hyper-planes for dealing with 1-to-N, N-to-1, and N-to-N situations. Our
of the same motivation, TransR projects entity embeddings by relation-specific
matrices. RotatE [21] defines relations as rotations in complex vector spaces.

Semantic-Based Models. Semantic-based models derive the plausibility of
triples via matching functions based on the latent semantics of the entire triple.
DistMult [29], ComplEx [22], ConvE [6], and ConvKB [18] are excellent works of
them. DistMult implements a bi-linear transformation to each components in the
triple and applies the latent semantic similarity to score plausibility. ComplEx
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extends DistMult and uses vectors with complex values to represent entities
and relations trying to exploit semantics in different ways. ConvE and ConvKB
attempt to capture more expressive semantics with convolution operations.

These KGE-models heavily rely on the sufficient training triples, thus their
performances are limited in the few-shot setting. Some recent advances of the
knowledge graph embedding make full use of the strong representation ability of
pre-trained language models [25,32]. As one of the representatives, StAR [25] has
mentioned its applicability to the few-shot scenario, but its performance highly
depends on the pre-trained language model whose training is very expensive.

In short, existing methods either lack the generalization capability to the
few-shot settings, or cost intensive resources. Thus, we propose to tackle both
issues in a unified framework for few-shot KGC.

2.2 Few-Shot Knowledge Graph Completion

Compared to the traditional KGC task, the few-shot KGC task faces the chal-
lenge that only quite a few triples can be referred to. Existing few-shot KGC
methods can be grouped into two categories:

Metric-Based Models. GMatching [27] represents entities by leveraging neigh-
bor node embeddings, and it introduces a matching processor with a memory
mechanism to evaluate the similarity between query triples and reference triples.
FSRL [30] and FAAN [20] share a similar idea of GMatching using the memory-
based metric-match processor, but they respectively introduce a relation-aware
attention mechanism and an adaptive attention mechanism to obtain better rep-
resentations of entities in BG. Unlike the above three models relying on the BG,
MetaP [11] directly implements convolution operations to capture the pattern
of each triple and uses learned pattern representations as a matching metric.

Optimization-Based Models. Inspired by MAML [8], which is a typical few-
shot learning framework, MetaR [4] transfers the relation meta information from
few reference triples to incomplete ones through a fast gradient descent update
procedure. Sharing a similar idea of MetaR and TransH, Niu [19] proposed
MTransH to deal with the complex relations in the few-shot KGC task.

However, the above methods fail to exploit the huge potential of the type
information existing in the entities. In this work, we stress much importance on
the prior type information to benefit the few-shot KGC model.

3 Preliminary

In this section, we give formal definitions of the knowledge graph, the metagraph,
the few-shot knowledge graph completion task, and the corresponding few-shot
learning setting.

Definition 1. Knowledge Graph. A knowledge graph G is a multi-relational
graph represented as a set of factual triples G = {E ,R,F}, where E , R, and F
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denote the entity set, relation set and fact set of G, respectively. F = {(h, r, t) ∈
E × R × E} is a set of factual triples. In each triple, h, t denote the head entity
and tail entity, and r denotes the relation.

Definition 2. Metagraph. Given a knowledge graph G = {E ,R,F}, the
extracted corresponding metagraph MG is also a knowledge graph as MG =
{C, R̃, F̃}, where C ⊆ 2E , R̃ ⊆ R, F̃ = {(ci, r̃, cj) ∈ C × R̃ × C}. C is derived
from E by a clustering algorithm. Entities grouped to the same cluster share the
same type attributes.

Definition 3. Few-shot Knowledge Graph Completion. Few-shot knowl-
edge graph completion is a specialized knowledge graph completion task in the
few-shot scenario. Given a relation r ∈ R and a handle of corresponding factual
triples Sr = {(hi, r, ti)|hi, ti ∈ E}, a few-shot knowledge graph completion T is
to predict missing tail entities of incomplete triples Qr = {(hj , r, ?)}. We denote
the support set and query set as Sr,Qr, respectively. And |Sr| = K suggests a
K-shot knowledge graph completion task.

We follow the same few-shot settings proposed by Xiong et al. [27] and Chen
et al. [4]. The training phase is based on a set of sampled tasks Ttrain = {Ti}Mi=1,
where each task formulated as Ti = {Si,Qi} is associated to an individual few-
shot KGC task with its own support and query set. The testing phase is cor-
respondingly composed of new tasks Ttest = {Tj}Ni=1. Relations in testing tasks
are not seen during training. For relations with few triples to form training or
testing tasks, we denote them as few-shot relations. We also assume that the
background graph is a set of triples with high-frequency relations.

4 Method

In this section, we introduce our proposed model PiTI-Fs as shown in Fig. 2.
The framework consists of two modules: (1) Prior knowledge learning module
(Sect. 4.1). In this module, PiTI-Fs clusters entities in the given BG based on the
same affinity metric to form a MG. PiTI-Fs pre-trains BG and its correspond-
ing MG to learn the entity embeddings and type embeddings respectively, then
applies an aggregation function to represent entities, as entities in the same clus-
ter share the same type attributes. (2) Meta learning module (Sect. 4.2). In this
module, PiTI-Fs introduces a transformer-based relation encoder to model inter-
actions between referenced triples for better few-shot relation representations,
and further queries the incomplete triples for few-shot KGC tasks.

4.1 Prior Knowledge Learning Module

In this module, we firstly propose to extract MG to capture prior type informa-
tion via clustering the entities, and those in the same cluster are considered to
have the same attribute.
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Fig. 2. The framework of PiTI-Fs.

Following the key idea from Chung and Whang [5], we extract a MG from
the given BG. Hyperedges are introduced to connect entities which share the
same head entity with the same relation or share the same tail entity with the
same relation. Thus, BG can be converted into a hypergraph so that structurally
similar entities are connected via hyperedges. The affinity of the two entities, i.e.,
ei and ej , is expected to be high when the set N of the hyperedges which contain
them both is larger or the entity numbers dn within these hyperedges are small.
The affinity of ei and ej is defined as follows:

aij =
∑

n∈N

1
d2n

, (1)

and with the entity-level hypergraph normalized cut, the affinity is further
refined as:

âij =
aij

∑|E|
k=0 aik

+
aij

∑|E|
k=0 akj

. (2)

Based on the refined affinity, an agglomeration hierarchical clustering with
the average linkage strategy is applied to group similar entities into �mp� clus-
ters, where m is the number of entities, and 0 < p < 1. Each cluster stands
for a latent type attribute, and entities in the same cluster share the same type
representations.

Each cluster is treated as an individual entity in MG. A triple (ci, r̃, cj) will
be added into MG based on the statistic connections between entities in ci and
cj .

With MG extracted from the given BG, we pre-train BG and MG respectively
using a well-known distance-based model TransE [2]. We follow the same setting
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based on the score function of TransE, i.e., E(h, r, t) = ||h + r − t||. Therefore,
each entity embedding consists of two parts: eo and etype, where eo denotes the
entity embeddings from BG and etype from MG.

Furthermore, we add two pre-trained vectors to be the initial representation
of entities:

e = eo + etype. (3)

Specifically, for a triple (h, r, t), representations of h and t are formulated as:

h = ho + htype, (4)
t = to + ttype. (5)

We also try several other aggregation strategies to fuse the two embeddings, and
we will discuss the performance of them in the next section.

4.2 Meta Learning Module

In this module, we aim to derive few-shot relation representations and infer the
missing triples in an optimization-based meta learning paradigm motivated by
MetaR [4]. Initially, unlike MetaR that equally treats all the referenced entity
pairs in the support set for embedding relations, we introduce a transformer-
based encoder to generalize the representation for few-shot relations considering
the different importance of different entity pairs.

In specific, we first concatenate embeddings of the head entity and tail entity
to form representations for each entity pair:

pi = [hi : ti], (6)

where hi ∈ R
d, ti ∈ R

d are obtained from the prior knowledge learning mod-
ule denoting the embeddings of head entity and tail entity respectively. [x : y]
denotes the concatenation of vector x and y.

Then we use a transformer-block [23] to integrate the interactions between
entity pairs and implement a multi-layer perception to get the general relation
representation rs after an average-pooling operation followed by the transformer
encoder:

pl
i = Transformer(pl−1

i ), l = 1, 2, · · · , L, (7)

rs = MLP(Pool[p1
L,p2

L · · · ,pK
L]), (8)

where pl
i denotes the hidden state of after the l-th layer transformer, Pool is to

average all entity pair representations encoded by the whole transformer. MLP is
composed with several fully connected neural networks.

At the next step, similar to MetaR, we implement a fast update on the
relation representation rS and transfer it to the corresponding query set. We
measure the scores of the referenced triples in the support set by the key idea of
TransE:

E(hi, r, ti) = ||hi + rs − ti||, (9)
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Table 1. Statistics of the benchmark dataset. #Entity denotes the number of unique
entities and #Relation denotes the number of all relations. #Task-Train/#Task-
Valid/#Task-Test respectively denote the numbers of training, validation, and test
relations.

Dataset #Entity #Relation #Triple #Task-Train #Task-Valid #Task-Test

NELL-One 68,545 358 181,109 51 5 11

where || · || represents the L2 norm of a vector, and we follow the similar margin
loss in the support set which is defined as:

L(Sr) =
∑

(hi,r,ti)∈Sr

[γ + E(hi, r, ti) − E(hi, r, t
′
i)]+, (10)

where [x]+ = max(0, x), and γ is a margin hyperparameter. E(hi, r, t
′
i) is the

score of the negative triples by negative sampling the tail entities of (hi, r, ti) ∈
Sr.

The transferred relation representation is next updated by the gradient
descent adaptation:

rq = rs − β
d(L(Sr))

d(rs)
, (11)

where β indicates the step size for gradient descent.
With the acquisition of the updated relation representation rq, we score the

triples in the query set in the same way:

E(hj , r, tj) = ||hj + rq − tj ||, (12)

L(Qr) =
∑

(hj ,r,tj)∈Qr

[γ + E(hj , r, tj) − E(hj , r, t
′
j)]+. (13)

And our training objective is to minimize the loss summed of query loss for all
samples testing tasks:

L =
∑

(Sr,Qr)∈Ttrain

L(Qr). (14)

5 Experiments

In this section, extensive experiments were conducted to compare our model with
baseline methods in the few-shot KGC task. Comparison study and analysis are
followed to demonstrate the effectiveness of the proposed method.

5.1 Dataset and Evaluation Metrics

NELL-One [27] is a benchmark dataset derived from NELL [3]. Its statistics are
shown in Table 1.

Two traditional metrics are used to evaluate different models on the bench-
mark, i.e., MRR and Hits@N, where MRR is the mean reciprocal rank, and
Hits@N is the proportion of correct entities ranked within top-N in KGC.
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Table 2. Results of the few-shot KGC tasks on NELL-One. † Resulting numbers are
reported from our re-implementation, and others are taken from the original papers.
The Bold numbers are state-of-the-art performances while the underline numbers are
the second best results of all.

NELL-One MRR Hits@10 Hits@5 Hits@1

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

GMatching [27] .185 .176 .313 .294 .260 .233 .119 .113

FSRL [30] .211 .153 .317 .319 .247 .212 .156 .073

MetaP [11] .232 – .330 – .281 – .174 –

FAAN [20] † .174 .279 .332 .419 .249 .362 .099 .200

MetaR [4] † .213 .231 .335 .358 .283 .313 .149 .164

PiTI-Fs .245 .262 .388 .427 .322 .351 .179 .179

5.2 Baseline Models

We compare our model with several recent few-shot KGC models. GMatch-
ing [27] integrates neighbor information to represent entities and queries incom-
plete triples by a matching network. FSRL [30] introduces a relation-aware
attention to encode neighbors and implements a LSTM-based aggregation net-
work to model references. FAAN [20], which is the state-of-the-art method,
applies a dynamic attention module to strengthen the representations of entities.
MetaP [11] explores the pattern of triples as query metric which are encoded by
convolution operations. MetaR [4] transfers the shared relation information and
adapts a gradient-based fast training strategy.

5.3 Implementation Details

In the prior knowledge learning module, we set p to 0.7 for the MG construction.
Sizes of pre-trained embeddings of both the BG and MG are set to 100. In the
meta learning module, we set the number of transformer layers to one and the
number of transformer heads to eight. We set γ = 1, β = 5. The number of
positive and negative triples in a query set is three. During training, we apply
mini-batch gradient descent with the batch size of 512. We use Adam [12] with
the initial learning rate as 0.0005.

5.4 Main Results in Few-Shot Knowledge Graph Completion

Table 2 shows the results of two few-shot KGC tasks, i.e. 1-shot and 5-shot, on
NELL-One.

It is observed that our method is able to achieve state-of-the-art perfor-
mances on some tasks while competitive performances on all the rest. Specially,
the results of our method outperform MetaR which proves the effectiveness of
incorporating prior type information. The improvement is especially significant
in terms of Hits@10. And in 1-shot situation, our method outperforms all other
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(a) The results on metric MRR (b) The results on metric Hits@10

Fig. 3. Impact of different few numbers.

methods. Furthermore, compared with FAAN, our model is still competitive for
5-shot with much less training time and even better for 1-shot.

5.5 Impact of Different Few-Shot Size

We conduct experiments to analyze the impact of the few-shot size K. Figure 3
reports the performance of our model and the main baseline model MetaR on
NELL in different settings of K. According to the figure:

(1) Our model consistently outperforms MetaR under different few-shot size K,
demonstrating the effectiveness of the proposed model for few-shot KGC.

(2) We observe that referring more existing triples will not always achieve
improvements in the few-shot scenario. It shows the performance under the
few-shot scenario depends heavily on the quality of sampled instances. How-
ever, PiTI-Fs shows the great potential to bridge such gaps and brings more
robustness compared with MetaR.

5.6 Comparison over Different Relations

We conduct experiments to evaluate the performance of our model on different
relations in NELL-one under the 5-shot scenario. Table 3 shows the comparison
results between our model and the advanced optimization-based baseline MetaR.
We observe the overall trend that it is more difficult to make precise predictions
when the number of candidate entities increases. Our model has better per-
formances in most cases especially for those relations with lots of candidates
such as geopliticalLocationOfPerson, while our model achieves 57.6% and 60.0%
improvements over MetaR by the metric MRR and Hit@10 respectively.

5.7 Analysis for Impact of Components in PiTI-Fs

Impact of the Initial Embeddings for Meta Learning Module. To further
analyze the impact of different representations learned from the prior knowl-
edge learning module, we design three comparison situations, including a) a
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Table 3. Results of MetaR and PiTI-Fs for each relation in NELL-One testing data.
#Candidates denotes the size of candidate entity set. The Bold numbers are the better
results regarding each relation.

Relations # Candidates MRR Hit@10

MetaR PiTI-Fs MetaR PiTI-Fs

sportsGameSport 123 .971 .972 .971 .971

athleteInjuredBodypart 299 .275 .324 .312 .391

animalSuchAsInvertebrate 786 .268 .264 .546 .554

automobilemakerDealersInCountry 1,084 .533 .580 .813 .923

SportSchoolIncountry 2,100 .526 .517 .663 .622

politicianEndorsesPolitican 2,160 .212 .233 .262 .357

agriculturalProductFromCountry 2,222 .159 .170 .385 .363

producedBy 3,174 .303 .292 .543 .577

automobilemakerDealersInCity 5,716 .053 .075 .156 .133

teamCoach 10,569 .075 .121 .176 .223

geopoliticalLocationOfPerson 11,618 .118 .186 .145 .232

Fig. 4. Impact of the initial embeddings for meta learning module. (Color figure online)

strong optimization-based baseline MetaR, b) applying the pre-trained embed-
dings from BG, and c) applying the pre-trained embeddings from MG. The
results are shown in Fig. 4:

(1) Our method incorporating type attributes (marked as the red bar) performs
significantly better than initializing with only one pre-trained representa-
tions (marked as the orange bar and the green bar). This demonstrates that
type attribute information is of great benefit in the few-shot scenario.

(2) Compared to the situation with only the pre-trained embeddings from BG
(marked as the orange bar), straightly applying the MG pre-trained embed-
dings (marked as the green bar) has better performance by all metrics. This
matches the conclusion derived from Chung and Whang [5].
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Fig. 5. Impact of aggregation strategy for fusing type attribute representations. (Color
figure online)

(3) Compared to MetaR, our PiTI-Fs has better performance under the fair
situation that they all pre-trained on the BG only (marked as the blue bar
and the orange bar respectively). It shows that our proposed transformer-
based relation learner has a stable capacity to generalize the few-shot relation
representations from the given instances.

Impact of Aggregation Strategy for Fusing Type Attribute Represen-
tations. We employ experiments to explore the influence of different strategies
fusing type attribute representations in the prior knowledge learning module. As
shown in Fig. 5:

(1) Three selected aggregation ways can bring improvements by all evalua-
tion metrics compared to our method without fusing type representations
(marked as orange crossed bar). This further illustrates that type attributes
can well alleviate the few-shot issue.

(2) The concatenation operation of two pre-trained representations (marked as
green lined bar) demonstrates strong competitiveness by the metric MRR,
Hits@5 and Hits@1 compared to the addition strategy (marked as red slashed
bar). However, these two strategies both have great potential to restore the
type semantics. Considering the implementation of concatenation operation
will double the embedding dimension and enlarge the computational space,
we determine to adapt the addition strategy (introduced in Sect. 4.1) to fuse
the type embeddings.

Discussion of Transformer Settings. We conduct experiment to explore the
effects of transformer layers and heads numbers. We visualize this effects by
marking with blue boxes shown in Fig. 6. Obviously, we can observe that one
layer with eight heads contributes most to both MRR and Hits@10. We also
notice that there is no need to apply much more transformer layers. It illustrates
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(a) The results on metric MRR (b) The results on metric Hits@10

Fig. 6. Comparison of different numbers of transformer layers and heads.

that our PiTI-Fs does not rely heavily on the stacking of the transformer layers,
which helps reduce parameters.

6 Conclusion

In this paper, we present a method PiTI-Fs for few-shot KGC with the assistance
of incorporating prior type information. PiTI-Fs proposes to enhance entity rep-
resentations with derived type attributes and to represent few-shot relations
by a transformer-based encoder. Comprehensive experiments show the compet-
itiveness of our method in the few-shot scenario and the effectiveness of the
components in PiTI-Fs.

In the future, we will explore more representative prior knowledge to tackle
the few-shot issues. In addition, we also consider to extend logic rules and con-
trastive learning for few-shot KGC, which have been widely used in many other
knowledge graph researches [13,15].
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Abstract. Nowadays geo-spatial knowledge graph is expanding gradu-
ally in Location Bases Services (LBS) to improve the search relevancy
as well as to present background information about points of interests.
They allow answering complex GeoSPARQL queries efficiently by return-
ing a subset of records that match the query. Now consider if a query
does not return a record that you believe should be returned, a nat-
ural question is to ask for an explanation “why not?”. In this study,
we firstly formalize the why-not question on GeoSPARQL queries, then
propose a novel framework called AWQG (Answering Why-Not Ques-
tions on GeoSPARQL), which is capable of answering why-not questions
based on a penalty function. AWQG generates logical explanations to
help users refine their initial queries at the levels of topological functions
and spatial constraints. The experimental results show that the model
provides high-quality explanations of why-not questions for GeoSPARQL
queries efficiently.

Keywords: GeoSPARQL · Missing answers · Why-not · Spatial query

1 Introduction

With the rapid development of Semantic Web, Location Based Services (LBS)
organize the rich geographic information into knowledge graphs to enhance the
quality of the geo-spatial search [9] and points of interests (POIs) recommen-
dation [3,19]. A geo-spatial knowledge graph is a graph which consists of over
millions of geo-entities and their relationships. Moreover, this kind of graphs
arrange data pieces as a set of triples, each of which follows the form of “subject
- predicate - object” (e.g., Cinema - locatedIn - Wanda Plaza) where subjects
and objects denote the nodes in the graph, and predicates (relations) denote the
edges. Knowledge graph triples are traditionally accessed by using structured
query languages, such as SPARQL [8]. The recent GeoSPARQL [15], defined by
the Open Geospatial Consortium (OGC), extends SPARQL to represent geo-
graphic information and support spatial queries over knowledge graphs.

However, using GeoSPARQL queries requires users or dataset experts to
be exactly aware of the query functions as well as to precisely perceive the
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Distance：30m

Distance：60m

Entity Relation

Nearby

Fig. 1. Example geo-spatial knowledge graph

(a) GeoSPARQL query (b) Query Result

SELECT  ?restaurant
WHERE {  

?mall name “Wanda Mall”.
?mall hasGeometry    ?mallG.
?cinema    name    “IMAX Cinema”.
?cinema    hasGeometry    ?cinemaG.
?restaurant    geo:hasGeometry    ?restaurantG.

            FILTER  geof:contains  (?mallG, ?restaurantG)
FILTER geof:distance  
(?cinemaG,  ?restaurantG)  < 50:metre

}

Yon ho Jinhange

Ramen Restaurant

McDonald’s

Fig. 2. Example GeoSPARQL query and the query result

geo-spatial RDF data schema. Therefore, it is a common scenario where an
inappropriate query returns the results that are at odds with the prior expec-
tations of users. When a user finds that the query result does not contain the
expected objects, a natural Why-not question would be asked subsequently.
Figure 1 depicts a geo-spatial knowledge graph about a Wanda Plaza and the
POIs around it. Consider the following motivating example.

EXAMPLE 1. After watching a movie in an IMAX Cinema, a user plans to
find a restaurant nearby the cinema to take a dinner. Consequently, he may have
a request, i.e., Give me all restaurants that are in the Wanda Plaza and within
50 m of the IMAX Cinema. However, after posing a GeoSPARQL query over
the geo-spatial knowledge graph, as shown in Fig. 2, the user finds out that the
McDonald’s which he just passed by is failed to be shown in the result. Hence,
the user may raise a why-not question, i.e., why is the McDonald’s absent from
the query result?
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The answer to this why-not question could be: i) this McDonald’s is missed in the
knowledge graph, ii) this McDonald’s is more than 50 m away from the IMAX
Cinema or iii) this McDonald’s is not in the Wanda Plaza. If the user asks a
similar question, e.g., why the Starbucks Coffee does not appear in the query
result, the reason may be different from the former1. Faced with such why-not
questions, users have no idea which parts of the query should be responsible for
the missing items. Existing explanation models that answer why-not questions
fall into three categories, namely, instance-based [12,13], operator-based [1,4],
and query-refinement-based [5,6]. However, none of them is applicable to solve
the why-not questions on GeoSPARQL queries. In this paper, we aim to explain
which parts of the original GeoSPARQL query are responsible for the contradic-
tions between the query result and the expectation of the user. This helps users
to refine their initial queries.

In this paper, we present a unified explanation model, called AWQG, for why-
not questions on GeoSPARQL queries. AWQG answers why-not questions in the
following procedures: (i) AWQG adopts query refinement algorithm to generate
refined queries with approximate minimal changes based on a penalty function
which balances the weights of topological functions and spatial constraints. (ii)
For the modification of the topological functions, we define the penalty of replac-
ing a topological function with another one based on the GeoSPARQL topolog-
ical relation semantics. For the modification of the spatial constraints, we use
the penalty function to relax the constraints through a progressive process.

In summary, our proposed framework AWQG makes the following contribu-
tions:

(i) To the best of our knowledge, we are the first to define and formalize
the why-not questions on GeoSPARQL queries and analyze the underly-
ing causes of them.

(ii) A unified explanation model is proposed to answer why-not questions on
GeoSPARQL queries based on a penalty function. The explanation model
generates explanations by modifying topological functions and spatial con-
straints.

(iii) An efficient query refinement algorithm is proposed to quickly select the
optimal explanation from a set of candidate explanations using a bound-
and-prune strategy.

(iv) Extensive experiments on real-world datasets are conducted to evaluate the
performance of the proposed framework AWQG. The results illustrate that
AWQG is capable of performing well in both effectiveness and efficiency.

2 Related Work

We briefly review the research studies related to our work in the following three
aspects: explanation models for why-not questions, Geo-spatial POI Recommen-
dations, and provenance for SPARQL queries.
1 The McDonald’s is more than 50 m away from the Wanda Plaza. The Starbucks

Coffee is not in the Wanda Plaza.
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Three types of models can be used to answer why-not questions: instance-
based [12,13], operator-based [1,4], and query-refinement-based [5,6]. Answering
why-not questions have also received attention recently in other research fields.
Cate et al. [16] introduce an ontology-based model for explaining why-not ques-
tions on conjunctive queries. Calvanese et al. [2] leverages abductive reasoning
to answer why-not questions on data represented by a DL-Lite ontology. As for
graph databases, Saiful et al. [14] proposes a query refinement model to address
the problem of why-not questions in similar graph matching.

Geo-spatial POI recommender systems take into account local information
and users’ context for recommending nearby available POIs such as restaurants,
cinemas, hospital, and pharmacies. Yin et al. [18] implemented location content
aware recommender systems to provide user with particular set of POIs. These
systems were evaluated using large scale data set and results showed that the
models had minimum error margin in successfully recommending POIs to users.
However, these recommender systems concern social network data and recom-
mend POIs based on both personal interests and local preferences. In this paper,
we focus on topological relations and spatial constraints between different POIs
which are organized into geo-spatial knowledge graphs.

Data provenance has been studied to understand why a particular item exists
in query results [10]. For SPARQL queries, existing works [11,17] focus on
explaining the provenance of data to evaluate the data quality and trustwor-
thiness. Data provenance only can be used to answer why questions rather than
why-not questions, on the contrary, answering why-not question concerns the
items that do not appear in the query result.

3 Problem Analysis

3.1 Problem Formulation

Before defining the why-not question on the GeoSPARQL query, we follow the
official GeoSPARQL standard [7] and briefly introduce the important notations
employed in the remainder of this paper.

Definition 1 (POI). The GeoSPARQL standard defines the main class
geo:Feature. A point of interests (POI) p is defined as an instance of the class
geo:Feature, and it represents a specific site that can have spatial locations (e.g.,
a restaurant or a cinema).

Definition 2 (Geometry). The class geo:Geometry is a single root geometry
class defined by the GeoSPARQL standard. Its instance geometry g is a rep-
resentation of the spatial locations of a POI p. In addition, the geometry g is
linked with the POI p by the standard property geo:hasGeometry.

Definition 3 (WktLiteral). A wktLiteral w is an instance of the standard
class geo:wktLiteral. A wktLiteral w represents the detail geometrical information
of a geometry g, which are linked by the standard property geo:asWKT.
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geo:hasGeometry geo:asWKT

geo:Geometrygeo:Feature geo:wktLiteral

geometry wktLiteralfeature

type type type

Fig. 3. The relationship of some essential terms in the GeoSPARQL standard

To be more specific, Fig. 3 illustrates the relationships among POI, geometry,
and wktLiteral.

Definition 4 (Topological Function). A topological function can be denoted
as tf(g1, g2) where g1 and g2 are two geometries. The function tf(g1, g2) returns
TRUE if g1 and g2 satisfy the topological relationship of the function, otherwise
returns FALSE.

Definition 5 (Spatial Constraint Function). A spatial constraint function
can be denoted as sp(g1, g2, u) where g1 and g2 are two geometries, and u is the
distance. And the function sp(g1, g2, u) can perform spatial constraint operations
on the geo-spatial data.

Table 1 illustrates the definitions of the GeoSPARQL query functions
exploited in this paper.

Definition 6 (Geo-spatial RDF Term). Let P be a set of POIs, G be a
set of geometries, W be a set of wktLiterals, and R be a set of properties. A
geo-spatial RDF term is a member of the set T = P ∪ G ∪ W ∪ R.

Definition 7 (Geo-spatial knowledge graph). A geo-spatial RDF triple
(subject, predicate, object) is a member of the set (P ∪ G) × R × (P ∪ G ∪ W ).
A geo-spatial knowledge graph DS is a finite set of geo-spatial RDF triples.

Definition 8 (Triple Pattern). A triple pattern t is a member of the set
(P ∪ G ∪ V ) × (R ∪ V ) × (P ∪ G ∪ W ∪ V ). V is a set of query variables, and
it is disjoint from T . A triple pattern is similar to a geo-spatial RDF triple but
allows the usage of variables for the subject, the predicate, and the object.

Definition 9 (Basic Graph Pattern). A BGP (Basic Graph Pattern) B is a
finite set of triple patterns, and B = {t1, ...tn}.

Definition 10 (GeoSPARQL Query). A GeoSPARQL query Q is a tuple
(E,DS,QF ), where E is a GeoSPARQL algebra expression, DS is a geo-spatial
knowledge graph and QF is a query form. A GeoSPARQL algebra expression E
consists of a BGP B and a query function set GQF .
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Table 1. Definitions of the standard GeoSPARQL query functions

tf/sp Query functions Definitions

tf1 equals(g1, g2) To return TRUE if g1, g2 have identical coordinate
values

tf2 disjoint(g1, g2) To return TRUE if the intersection of g1, g2 is an
empty set

tf3 intersects(g1, g2) To return TRUE if the intersection of g1, g2 is not an
empty set

tf4 touches(g1, g2) To return TRUE if the points common to g1, g2 do
not intersect the interiors of them

tf5 crosses(g1, g2) To return TRUE if the intersection of g1, g2 is an
interior geometry whose dimension is one less than the
maximum dimension of g1, g2

tf6 within(g1, g2) To return TRUE if g1 is within g2

tf7 contains(g1, g2) To return TRUE if g1 contains g2

tf8 overlaps(g1, g2) To return TRUE if the intersection of g1, g2 is a
geometry different from them but of the same
dimension

sp distance(g1, g2, u) To return the shortest distance u between any two
points in g1, g2

The BGP B is evaluated to match geo-spatial knowledge graphs in DS.
The query form QF (SELECT, CONSTRUCT, ASK, DESCRIBE) exploits the
matched graphs to provide the query result. GQF is the core of the GeoSPARQL
query. In GQF , topological functions establish the topological relationship of the
geo-spatial RDF terms in B, while spatial constraint functions claim the spatial
constraints.

Definition 11 (Why-Not Question). Given a GeoSPARQL query Q on the
geo-spatial knowledge graph DS, Q(DS) presents the query result. Let v be
a variable that appears in the GeoSPARQL query form QF of the query Q,
and a POI p be a solution of v. We define a why-not question as a map-
ping v → p that indicates why the geo-spatial POI p does not appear in
Q(DS). Considering EXAMPLE 1, the query result does not contain the McDon-
ald’s. Consequently, the why-not question raised by the user can be denoted as
?restaurant → McDonald′s.

Definition 12 (Explanation). An explanation GQF ′ presents the reason for
a why-not question v → p on the GeoSPARQL query Q. The explanation GQF ′

is a modified query function set. The query result of the refined GeoSPARQL
query Q′ whose query function set is GQF ′ should contain the expected answer
p. And the set of explanations of the why-not question v → p can be denoted as
SGQF ′.
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Fig. 4. Three why-not scenarios of EXAMPLE 1
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Fig. 5. A particular scenario of EXAMPLE 1

3.2 Analysis of Why-Not Questions

The result of our investigation shows that there are multidimensional causes that
can lead to the occurrence of why-not questions on GeoSPARQL queries, such as
inappropriate geo-spatial features, the incompleteness of the geo-spatial knowl-
edge graph, and spelling errors of users. In this study, we focus on inappropriate
geo-spatial features in the GeoSPARQL queries.

By analyzing the evaluation of GeoSPARQL queries over geo-spatial knowl-
edge graphs, we find out that questionable restrictive topological functions
and restrictive spatial constraints are two main reasons for why-not ques-
tions on GeoSPARQL queries. And the absence of expected answers in the query
result may be caused by one of them or both of them.

Consider the why-not question ?restaurant → McDonald′s for the
query in EXAMPLE 1. There is a topological function contains(?mallWKT,
?restaurantWKT ) in the GeoSPARQL algebra expression. Only if the
geometrical relationship between the geometries denoted as ?mallWKT
and ?restaurantWKT is contains, will the function return TRUE. How-
ever, the geometrical relationship between the IMAX Cinema and the
McDonald’s maybe not contains. In this case, the reason for the why-
not question is the questionable restrictive topological function. A pos-
sible scenario of this case is illustrated in Fig. 4(a). In this scenario,
the geometrical relationship between the IMAX Cinema and the McDon-
ald’s is overlaps instead of contains. The corresponding explanation of
the why-not question shall be overlaps(?mallWKT, ?restaurantWKT ),
distance(?cinemaWKT, ?restaurantWKT ) < 50}. In EXAMPLE 1, restrictive
spatial constraints can also be to blame for the absence of the McDonald’s in
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the query result. Fig. 4(b) illustrates a scenario of this case where the distance
between the IMAX Cinema and the McDonald’s is more than 50 m. Hence,
the spatial constraint function distance(?cinemaWKT, ?restaurantWKT )
returns a number larger than 50, and it will remove the McDon-
ald’s from the query result. In this scenario, the explanation of
the why-not question shall be {contains(?mallWKT, ?restaurantWKT ),
distance(?cinemaWKT, ?restaurantWKT ) <
100}. Figure 4(c) illustrates another scenario where questionable restrictive
topological functions and restrictive spatial constraints are both the reasons
for the why-not question in EXAMPLE 1. In this scenario, the explanation
of the why-not question shall be {overlaps(?mallWKT, ?restaurantWKT ),
distance(?cinemaWKT, ?restaurantWKT ) < 100}.

Figure 5 illustrates a particular scenario of the why-not question in EXAM-
PLE 1. In this scenario, there are three McDonald’s around the IMAX Cinema,
and we can get three different explanations. How to efficiently and accurately
select the optimal one from the candidate explanations becomes a key issue of
this problem.

4 Model Explanation

4.1 Penalty Function

Considering the two reasons for why-not questions on GeoSPARQL queries,
AWQG generates an explanation by modifying topological functions and spa-
tial constraints. As we analyzed in Sect. 3.2, there may be a set of candidate
explanations of a why-not question. Hence, AWQG needs to evaluate the qual-
ity of the generated explanations. In doing so, AWQG employs a penalty function
as follows:

Penalty(GQF,GQF ′) = λ

m∑

j=1

Δuj

uj
+ (1 − λ)

n∑

i=1

Δtfi (1)

The penalty function is based on a hypothesis, the less modification of the
query functions, the better the explanation. Here, λ is a user preference for the
modification of spatial constraints versus topological functions. The first term in
the penalty function represents the penalty of modifying spatial constraints. uj is
the distance of the j-th spatial constraint function in the original query function
set GQF . Δuj is the modification of uj in the generated explanation GQF ′.
The second term in the penalty function represents the penalty of modifying
topological functions. Δtfi is the penalty of replacing the i-th topological func-
tion in GQF with another topological function in GQF ′ while the parameters of
the topological function are reserved. And the penalty of replacing a topological
function with another one is defined considering the topological semantic dif-
ference of their corresponding relationships. Table 2 illustrates the detail of the
modification penalties of topological functions.
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Table 2. Penalties of modifying topological functions

tf1 tf2 tf3 tf4 tf5 tf6 tf7 tf8

tf1 0 1 0.5 0.9 0.8 0.5 0.5 0.5

tf2 1 0 1 0.5 1 1 1 1

tf3 0.5 1 0 0.5 0.5 0.4 0.4 0.4

tf4 0.9 0.5 0.5 0 0.8 0.8 0.8 0.6

tf5 0.8 1 0.5 0.8 0 0.7 0.7 0.4

tf6 0.5 1 0.4 0.8 0.7 0 1 0.4

tf7 0.5 1 0.4 0.8 0.7 1 0 0.4

tf8 0.5 1 0.4 0.6 0.4 0.4 0.4 0

4.2 Basic Algorithm

Given an RDF dataset DS, a GeoSPARQL query Q = (E,DS,QF ) and a
why-not question v → p. The GeoSPARQL algebra expression E consists of a
BGP B and a query function set GQF . GQF consists of n topological func-
tions denoted as tfi(), i = 1, ..., n and m spatial constraint functions denoted as
spj(), j = 1, ...,m. AWQG modifies the query functions to generate a modified
query function set GQF ′ and the corresponding modified GeoSPARQL query
Q′ = (E′,DS,QF ). If Q′(DS) contains the expected answer p, GQF ′ is a candi-
date explanation, and GQF ′ ∈ SGQF ′. Among all the candidate explanations
in the set SGQF ′, the optimal explanation is the one with minimum penalty.

Algorithm 1 illustrates the basic algorithm for the generation of the optimal
explanation. In the input, SGQF contains all the possible query function sets
whose topological functions are modified, and spatial constraints are reserved. In
line 3 and line 11, Qi and Q′

i are the GeoSPARQL queries which contain GQFi

and GQF ′
i as query function sets, respectively.

4.3 Bound-and-Prune Algorithm

There are mainly two obstacles that make the basic algorithm impracticable.
Firstly, for a GeoSPARQL query Q contains n topological functions, there are
9n modified GeoSPARQL query function sets in SGQF . The time consumption
of the basic algorithm is proportional to 9n. If n is too large, the basic algorithm
will be time-consuming even infeasible. Secondly, if the GeoSPARQL query Qi

that contains the modified query function set GQFi cannot retrieve the expected
answer p, the basic algorithm will modify the distance of the spatial constraint
functions in GQFi until there is no probability to get p by further modification
of the distance. The issue is that estimating the possibility of retrieving p by
further modification of spatial constraint distance is too hard to manipulate
under existing conditions.

To address the above bottlenecks, we propose Algorithm 2 that employs the
current minimum penalty mpc as an upper bound. In the input, SGQF is com-
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Algorithm 1. Basic algorithm
Input: the original GeoSPARQL query Q, the why-not question v → p, the original

query function set GQF = {tf1(), ..., tfn(), sp1(), ..., spm()}, a set of modified query
function sets SGQF = {GQF1, ..., GQF9n}, the preset step size s

Output: the optimal explanation GQF ′ = {tf ′
1(), ..., tf

′
n(), sp′

1(), ..., sp
′
m()}

1: Initialization: GQF ′ = ∅, SGQF ′ = ∅, s = 1000;
2: for all GQFi ∈ SGQF do
3: if p ∈ Qi(DS) then
4: SGQF ′.add(GQFi);
5: else
6: if it’s possible to get p then
7: modify parameters of spj() ∈ GQFi by s to get GQF ′

i ;
8: else
9: continue;

10: end if
11: if p ∈ Q′

i(DS) then
12: SGQF ′.add(GQF ′

i );
13: else
14: go to 6;
15: end if
16: end if
17: end for
18: for all GQF ′′

i ∈ SGQF ′ do
19: if s > Penalty(GQF,GQF ′′

i ) then
20: GQF ′ = GQF ′′

i ;
21: s = Penalty(GQF,GQF ′′

i );
22: end if
23: end for
24: return GQF ′

posed of all the possible query function sets whose topological functions are
modified, and spatial constraints are reserved. In line 4, Qi is the GeoSPARQL
query consisting of query function set GQFi in OP . In line 8, GQF ′

i is gener-
ated by modifying parameters of spatial constraint functions in GQFi. And in
line 10, Q′

i is the GeoSPARQL query containing query function set GQF ′
i . In

Algorithm 2, mpc is the upper bound. The algorithm employs mpc to prune mod-
ification cases of topological functions at the beginning of the loop, which makes
the algorithm capable of generating explanations for cumbersome GeoSPARQL
queries. And for each possible modification case of topological functions, we try
to generate the explanation whose penalty is local minimum in the shortest
time by interrupting the modification process when the current penalty is bigger
than the current upper bound, which can significantly improve the efficiency of
AWQG. Compared to the basic algorithm, the bound-and-prune algorithm is
more effective and more efficient.
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Algorithm 2. Bound-and-prune algorithm
Input: the original GeoSPARQL query Q, the why-not question v → s, the original

query function set GQF = {tf1(), ..., tfn(), sp1(), ..., spm()}, a set of modified query
function sets SGQF = {GQF1, ..., GQF9n}, the preset step size p

Output: the optimal explanation GQF ′ = {tf ′
1(), ..., tf

′
n(), sp′

1(), ..., sp
′
m()}

1: Initialization: GQF ′ = ∅, pc = 1000;
2: for all GQFi ∈ SGQF do
3: if Penalty(GQF,GQFi) < pc then
4: if s ∈ Qi(DS) then
5: pc = Penalty(GQF,GQFi);
6: GQF ′ = GQFi;
7: else
8: modify parameters of spj() ∈ GQFi by p to get GQF ′

i ;
9: if Penalty(GQF,GQF ′

i ) < pc then
10: if s ∈ Q′

i(DS) then
11: pc = Penalty(GQF,GQF ′

i );
12: GQF ′ = GQF ′

i ;
13: else
14: go to 8;
15: end if
16: else
17: continue;
18: end if
19: end if
20: else
21: continue;
22: end if
23: end for
24: return GQF ′

5 Experiments

In this section, we evaluate our proposed explanation model, AWQG, in terms
of effectiveness and efficiency.

Datasets: Three real-world datasets are used in the experiments: GeoNames
(geographic objects around the world), EURO (points of interests in Europe),
and GN (geographic names in the United States). GeoNames contains over 10
million geographic objects, among which 48,139 objects are cities with more
than 5,000 people; EURO is a set of 162,033 objects of locations in Europe, such
as hotels and interests; and GN is a dataset of 1,868,821 geographic objects in
the United States. Objects in the three datasets are all described with location
coordinates and rich geographic descriptions.

Query Set: There is no benchmark available for the evaluation. Therefore, we
construct sixty GeoSPARQL queries (divided into three groups, each group con-
tains twenty queries) for volunteers to search information on the datasets. The
first group of queries is related to cities around the world; the second group of
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Table 3. Statistics of the why-not questions

Dataset #why-not

GeoSPARQL

queries

#why-not

questions

#why-not caused by

reason1

#why-not caused

by reason2

#why-not caused

by both reasons

GeoNames 20 37 8 25 4

EURO 20 34 14 18 2

GN 20 33 9 19 5

queries is about interests in Europe; the third group of queries is about geo-
graphic names in the United States. In the analysis of Sect. 3.2, the absence of
expected answers in the query result could blame reason1 (questionable restric-
tive topological functions), reason2 (restrictive spatial constraints) or both of
them. The query set should include diverse queries to cover all kinds of why-
not scenarios. Hence, the queries are designed to include topological functions
and spatial constraint functions, as well as different combinations of them. The
statistics of the why-not questions obtained from volunteers are shown in Table 3.

Evaluations: In the experiments, the effectiveness of AWQG was evaluated
by (i) measuring the precision of the modified GeoSPARQL queries generated
by AWQG; (ii) measuring the user satisfaction on the explanations of why-not
questions. The efficiency was evaluated by (i) measuring the average time of gen-
erating an explanation; (ii) performing the same queries and why-not questions
on different scale datasets. The experiments were conducted on a PC with an
Intel Core i7 3.40 GHz CPU and 14 GB memory running Windows 10.

5.1 Effectiveness Evaluation

In this section, we measure the effectiveness of AWQG by using the precision
metric. The primary requirement of an explanation model of why-not questions
is that the query result of the modified GeoSPARQL query should contain the
expected missing answers. Meanwhile, the modified GeoSPARQL query should
be as precise as possible in terms of its query result. Any additional irrelevant
results should be minimized. We propose the precision metric as follows to mea-
sure the precision of the modified GeoSPARQL queries generated by AWQG.

Pre(Q,Q′) = 1 − |Q′(D) − S − Q′(D) ∩ Q(D)|
|Q′(D)| . (2)

In Eq. 2, Q is the original GeoSPARQL query, and Q′ is the modified
GenSPARQL query generated by AWQG. Q(D) and Q′(D) are the query results
of Q and Q′, respectively, and S is the missing answer set.

Table 4 reports the average precision values of modified GeoSPARQL queries
in three groups, where ave Prea is the average precision value of all the modified
GeoSPARQL queries in a group. ave Pret, ave Pren and ave Preb are average
precision values of the modified GeoSPARQL queries generated by considering
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Table 4. The average precision values of modified GeoSPARQL queries

Group ave Prea ave Pret ave Pren ave Preb

1 0.78 0.73 0.81 0.69

2 0.77 0.74 0.81 0.62

3 0.82 0.86 0.83 0.71

reason1, reason2 and both reasons, respectively. For total 104 why-not questions
in three groups, the average precision value of the modified GeoSPARQL queries
generated by AWQG is 0.79, which means that AWQG has good quality in
terms of precision metrics. Furthermore, the average precision value of modified
GeoSPARQL queries generated by modifying spatial constraints is 0.82. And
it is bigger than the average precision value of modified GeoSPARQL queries
generated by modifying topological functions, which is 0.77. Hence, modifying
topological functions may introduce more additional irrelevant items in the query
result than modifying spatial constraints.

5.2 Efficiency Evaluation

In this section, we first measure the execution time required by AWQG to gen-
erate explanations on GeoNames, EURO, and GN. Then the performances were
compared in terms of answering the same why-not questions in different scale
datasets.

Efficiency Evaluation Performance of Modifying Topological Func-
tions We measure the modification time for 31 why-not questions caused by
reason1 in each dataset, as shown in Fig. 6. The experimental result shows that
the modified topological functions for explaining why-not questions can be gener-
ated within 2 s on each dataset. The average running time is 0.615 s (GeoNames),
0.84 s (EURO) and 1.16 s (GN), and the maximum time spent is 0.89 s (GeoN-
ames), 1.10 s (EURO) and 1.68 s (GN). The time consumption is acceptable for
users to obtain explanations.

Performance of Modifying Spatial Constraints. We measure the modifi-
cation time required by AWQG for 62 why-not questions caused by reason2 in
each dataset, as shown in Fig. 7. The experimental result shows that the modified
spatial constraints for explaining why-not questions can be generated within 10 s
on each dataset. The average running time is 4.74 s (GeoNames), 5.66 s (EURO)
and 7.37 s (GN), and the maximum is 9.31 s (GeoNames), 9.43 s (EURO) and
9.30 s (GN). The time consumption is quite tolerable considering that users are
eventually provided an explanation.

Performance of Modifying Both Two Kinds of Query Functions. We
measure the modification time required by AWQG for 11 why-not questions
caused by both two reasons in each dataset, as shown in Fig. 8. The experimental
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Fig. 6. Execution time on why-not questions caused by topological functions

Fig. 7. Execution time on why-not questions caused by spatial constraints

result shows that the modified GeoSPARQL queries for a why-not question can
be generated in less than 10 s on each dataset, the average running time is 5.51 s
(GeoNames), 7.79 s (EURO) and 9.28 s (GN), and the maximum time spent is
6.25 s (GeoNames), 7.92 s (EURO), 9.75 s (GN). The time consumption is still
acceptable.

Fig. 8. Execution time on why-not questions caused by both topological functions and
spatial constraints

6 Conclusion

In this paper, we formalized the problem of answering why-not questions on
GeoSPARQL queries and proposed a model called AWQG to generate expla-
nations for such why-not questions. AWQG generates explanations considering
both topological functions and spatial constraints. An efficient bound-and-prune
algorithm is designed to address the bottlenecks of the basic algorithm. The
results on both effectiveness and efficiency prove that AWQG could generate
high-quality explanations within a reasonable time.
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Abstract. Knowledge Graph Representation Learning(KGRL) aims to
map entities and relationships into a low-dimensional dense vector space.
Most of the existing models focus only on the information of the triple
when doing representation learning, ignoring the rich external seman-
tic information. At the same time, these models consider entities and
relations as static and single representations, so the knowledge repre-
sent ability is poor. Accordingly, we propose a novel knowledge graph
representation model which enhanced knowledge graph embedding with
multi-information. Firstly, our model carries out text enhancement and
hyperbolic space embedding of triples in the knowledge graph respec-
tively; Secondly, we concatenate the enhanced vector. Then, the con-
catenated vector through two transformation layer to fuse the semantic
information and spacial information. Finally, we use the fused informa-
tion to learn the context information through the Transformer coding
layer, which will dynamically produce the final representation of the
entity based on its context. Experimental results show that our model
has a great improvement over other models. In the link prediction task,
the evaluation protocol Hits@10 and MRR in the public dataset FB15k
improve by 28.4% and 29.5% compared with the translation model. Com-
pared with state-of-the-art model, the improvement is 2.5%, 6.3%.

Keywords: Knowledge Graph · Representation learning · Transformer

1 Introduction

Knowledge Graph is an important technique for structuring knowledge. To store
and utilize structured knowledge efficiently, Knowledge Graph such as: WordNet
(Miller 1995) [13], DBpedia (Auer et al. 2007) [1], Freebase (Bollacker et al.
2008) [2] and other classical Knowledge Graph are constructed by combining
expert annotation and computer automatic annotation. Knowledge Graph store
huge numbers of structured data in the form of triples. These triples are usually
represented as (h, r, t), where h represents the head entity, t represents the tail
entity, and r represents the relation.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Large-scale knowledge graph has problems of low computational efficiency
and sparse data. In addition, knowledge graph completion still far away from
complete due to the constantly emerging new knowledge. At present, more and
more scholars aim to project knowledge graph into low-dimensional and contin-
uous vector space, so as to improve the computational efficiency of knowledge
graph and alleviate the problem of data sparsity. These representation models
could be divided into three types, Translation Models [3,9,11,21], Neural Net-
work Models [4,10] and Tensor Decomposition Models [6,19,25]. Among them,
translation model is the most classical method, which has received a large number
of attention and application because it only needs fewer parameters in training
and achieves better knowledge expression effect. Though these methods have
achieved excellent performance, they ignore the rich external semantic informa-
tion as well as the contextual information of the knowledge graph structure.
In this way, some methods using these external semantic information become
an active research for knowledge graph completion. Ruobing Xie [24] proposed
a knowledge representation learning method TKRL based on entity hierarchy
type embedding, and Wang [22] proposed TEKE for knowledge enhancement
by using text description information of entities. In addition to considering the
description information of entities, some scholars consider the information of the
entity’s neighbour nodes. The survey of Provenance-Aware Knowledge Repre-
sentation [16] also mentioned the improvement of context to knowledge graph
representation learning.

All the above models are modeled in Euclidean space. However, due to geo-
metric constraints, these models often require high dimensions for knowledge
representation. Some scholars begin to explore different Spaces for modeling.
ManifoldE [23] maps entities and relations to manifold space. Kolyvakis et al. [7]
proposed HyperKG, which embed entities and relations into hyperbolic space,
and use the structural features of hyperbolic space to capture the hidden informa-
tion of data to improve knowledge representation ability. In the latest research,
Sun et al. [18]. Proposed the RotatE model, which represents entities into com-
plex space and relations into rotation translation. However, the RotatE model
does not take into account the context information of graphs when encoding,
making them ineffective in dealing with complex relations.

According to the issue mentioned above, we propose a novel model to embed
knowledge graph with multi-information. Inspired by multi-modal information
fusion, we propose an effective method to fuse external semantic information
and spatial structure information into the same space. At the same time, we
take the context entity information into the account and consider the training
process of the fact triplet as a Seq2Seq process, so that entities and relations are
not a single static model.

We summarize the main contributions of our work as follows:

– We propose a novel method for information fusion of external semantic infor-
mation and hyperbolic space information, which strengthens the constraint
of context information learning.
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– Instead of the previous methods that allow a single static representation for
each entity or relations, we treat triple, entity and relation as a sequence and
a context respectively, which is good for handling complex relationships.

– Extensive experiments have done to show our superiority in dealing with
complex relationships. Compared with the state-of-art models, our model
has significant advantages.

2 Related Work

Representation Learning of Knowledge Graph is to represent entities and rela-
tions in knowledge base as dense low-dimensional vectors. The classic model is
the translation model, Bordes et al. [3] regard the process in which the head
entity relates to the tail entity through relations as the translation process, and
then measure the rationality of each triplet with a score function. After that, a
series of translation models are proposed [11,21]. Another is the tensor factor-
ization methods such as DisMult [25] and SimplE [6]. While these methods have
few parameters and easy to model, they ignore the structural information of
the knowledge graph itself and the abundant external corpus information which
fail to improve the ability of dealing with complex relationships. In addition
to some of the models mentioned above, many scholars have proposed models
integrating external information. The first category is the research of embedding
space. Many scholars believe that Euclidean space is not suitable for knowledge
representation modeling due to geometric limitations. They try to transform the
representation space into manifold space [23], hyperbolic space [7], complex space
[18], and the latest research maps entities and relations in the knowledge graph
to Quaternion space. The second category is the research on external semantic
information, which integrates the information of entity type and entity descrip-
tion information into the representation of entity to improve the representation
ability of entity. The third category is the study of knowledge graph structure.
Quan Wang et al. proposed a contextualized knowledge graph embedding model
(COKE) [20], arguing that the representation of entities and relations should
change with context. They utilize the transformer to exploit the contextualized
and dynamic representations for entities and relations. Besides Liu et al. [8,12]
also used Knowledge graph to enhance the item in recommend system,arguing
that they use attention-enhanced dynamic convolutional network to enhance the
item. Based on Coke’s and attention-enhanced idea, our paper further uses atten-
tion mechanism to integrate external entity description information to eliminate
semantic deviation in multi-dimensional space, improve the ability to deal with
complex relations.

3 Preliminary

In this section, we will introduce some important concepts covered in this arti-
cle, including the definition of knowledge graphs and the concept of Hyperbolic
Space. Finally we will give the definition of our work.
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3.1 Knowledge Graph

Knowledge Graph is defined as a directed graph used to store structured infor-
mation about real-world entities and facts. In this paper, given a Knowledge
Graph G = {(h, r, t)} ⊂ E × R × E, where E and R denote the entity set and
relation set respectively. A fact triplet (h, r, t) describes a head entity h ∈ E
connected to a tail entity t ∈ E through a relationship r ∈ R. After knowledge
graph representation learning, the head vector is represented by h, the relation
vector by r, and the tail entity vector by h.

3.2 Hyperbolic Geometry

Here we briefly give some concepts of Hyperbolic Space geometry, a more detailed
explanation can be found in review article [14]. Hyperbolic space has the ability
to reflect data hierarchy and has a large space capacity. In this paper, we choose
the Poincaré-ball model, which has the feasibility of gradient optimization in
this task. Here we define a Poincaré sphere by a Riemannian manifold

(
Bd, gx

)
,

where Bd =
{
x ∈ R

d, ‖x‖ < 1
}

is a d-dimensional Poincaré ball and gx is the
Riemannian metric tensor. For two points u and v in hyperbolic space, their
distance function can be expressed as:

d(u,v) = arcosh
(

1 + 2
‖u − v‖2

(1 − ‖u‖2) (1 − ‖v‖2)
)

(1)

This formula is symmetric, and as nodes move from the origin towards the
poincaré ball boundary, their distance will increase exponentially. This will pro-
vide more space for representation learning of entities.

Vector translation in poincaré ball model is also different from in Euclidean
space. It is generally defined by Mobius addition, and its formula is as follows:

u ⊕ v =

(
1 + 2〈u,v〉 + ‖v‖2)u +

(
1 − ‖u‖2)v

1 + 2〈u,v〉 + ‖v‖2‖u‖2 (2)

3.3 Task Definition

The task of knowledge graph completion is to predict unknown nodes based on
existing nodes and relations in the knowledge graph G. For example, predicting
the tail entity with the given entities and relation(h, r, ?). Specifically, the task is
to design a scoring function that assign a higher score for positive sample triple
than the negative sample triple.

4 Our Method

The goal of this work is to learn a model that can encode complex relations such
as 1-N, N-1 and N-N. As depicted in Fig. 1, our model contains four key parts:
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Fig. 1. An architecture overview of our model. The framework of the model contains
four key modules: (1)Textual Embedding; (2)Hyperbolic Translation; (3)Information
Fusion Network; (4)Contextualized Embedding

(1) Textual Embedding: Based on our approach in previous papers, we use
external descriptive text for semantic enhancement of entities through encoders.

(2)Hyperbolic Translation: We translate the fact triplet of the knowledge
graph into hyperbolic space and this will be the spatial information as the part
of information fusion.

(3) Information Fusion Network: We extract features by maximizing the
correlation between inputs from multiple information sources.

(4) Contextualized Embedding: For entities and relations after information
fusion, we use Transformer to encode and obtain contextual representations of
entities and relationships.

4.1 Textual Context Embedding

In order to associate entities in the knowledge graph with external text corpus,
we employ an entity linking tool AIDA for entity annotation. Referring to the
co-occurrence network used by TEKE [22], we obtain a unique description text
for each entity. Given a knowledge graph G and an external text corpus T =
{S1, S2, · · · , Sn}, where Si represents the text statements in the external text
corpus. We represent the input sequence as S = (w0, w2, · · · , wn), where w0

represents the [CLS] tag and the other elements represent words in the text
statement. For each word in the input, we pre-process the position information
to the representation of each word as follows:

w0
i = wele

i + wpos
i (3)



306 J. Wu et al.

The main function of position coding is to identify the position of elements in
a sequence. We stack multiple Transformer encoders into coding layers and use
the output of each layer as the input of the next layer of encoders. The encoding
formula is as follows:

wl
i = Transformer − Encoder

(
wl−1

i

)
l = 1, 2, · · · , L (4)

where wl
i denotes the output of L-th layer of encoder. We take the [CLS] tag

representation as the final representation of the entity. The representation of the
entity has learned information about the description text. We define the text
enhanced entity as VT .

VT = wL
0 (5)

4.2 Hyperbolic Translation

Given a triple of a knowledge graph, the approach of translation models usu-
ally treats the relationship as a translation from head entity to tail entity. The
biggest problem with these translation models in Euclidean space is that they
require high dimensions to achieve adequate representation of entities. The spa-
tial properties of hyperbolic space make it more accurate to express the data of
hierarchy and topological structure. Hyperbolic space is curved, and the carrying
capacity of the space increases exponentially with the distance from the center.
Hence, vectors that require higher dimensions in Euclidean space can be sim-
ply represented in lower dimensions in hyperbolic space. The related geometric
theory of hyperbolic space can be found in Sect. 3.2.

Based on previous work in this paper, we use hyperbolic relation-specific
transformations on entity representations and this will lead to high complexity
overhead. In our exploration of hyperbolic space, we refer to the translation
method used in HyperKA [17] and treat entity relations as translations like
TransE, avoiding complex overhead. Therefore, our distance function is defined
for a triple ν = (h, r, t):

S(ν) = d
(
V h
H ⊕ V t

H ,V r
H

)
(6)

where V h
H ,V r

H ,V t
H denote the embedding for h, r, t respectively. We minimize the

following constrastive learning loss:

Loss =
∑

(ν)∈G

∑

(ν′)∈G−
[γ + S(ν) − S(ν′)]+ (7)

where ν′ denotes the randomly generated negative sample training data in knowl-
edge graph. γ is the margin and we hope S(ν′) ¿ γ.

Finally, we define the vector after hyperbolic TransE as VH .

4.3 Information Fusion

Our previous work uses relations-specific hyperbolic transformation on the text-
enhanced representation of triples in the knowledge graph, which achieves better
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representation than text-enhanced and hyperbolic representation alone. However
experimental results show that this leads to high complexity overhead. Inspired
by Multi-modal Machine Learning, we obtain the enhanced triplet

(
V h

T , V r
T , V t

T

)

and the hyperbolic space mapped triplet
(
V h

H , V r
H , V t

H

)
through text enhance-

ment and hyperbolic TransE respectively. We consider these two triples from
different sources or forms of information as two modals. Due to different modals
show different ways and view things from different perspectives, there will be
some crossover in the fusion and process, which will lead to redundancy of infor-
mation. But this also brings complementary features that are more expressive
than a single feature. The text enhanced entity has the description information
of the entity itself, and the semantic information is more complete. Entities after
Hyperbolic TransE pay more attention to the hierarchical structure of the entity
itself, making it more expressive. Inspired by our previous work and the tradi-
tional feature fusion algorithm [26–28], we propose a novel method to fuse the
two different representations of fact triples in the knowledge graph. We consider
enhanced triplet

(
V h

T , V r
T , V t

T

)
and hyperbolic TransE triplet

(
V h

H , V r
H , V t

H

)
as

the input. Then we first concatenate the entity and relation separately to obtain
a triple

(
V h

f , V r
f , V t

f

)
. Then we reduce the dimension of head entity, relation

entity and tail entity respectively through a FNN layer to
(
V h

E , V r
E , V t

E

)
. Then,

we use this to reconstruct the originally concatenated triple
(
V̂ h

f , V̂ r
f , V̂ t

f

)
. We

use two Feed-forward Neutral Network as the transformation layer to produce
the fused vector. Referring to [15], we used the mean square error as the loss
function of multi-modal feature fusion. Taking the head entity as an example,
the MSE loss function is as follows:

Lossf =
∥
∥
∥V̂ h

f − V h
f

∥
∥
∥
2

(8)

Through the Information Fusion part, we consider the middle triple
(
V h

E , V r
E , V t

E

)

as the information fusion representation. In section4.4 we convert
(
V h

E , V r
E , V t

E

)

to
(
ĥ, r̂, t̂

)
for symbolic simplicity.

4.4 Contextualized Embedding

Context information can help entities generate their representations dynamically,
making them better able to handle complex relationships. Inspired by Quan
Wang et al., we refer to the most basic form of graph context in their model
to learn about contextual information embedding. We learn context information
by masked multi-head self-attention. The idea of Transformer and Bert is well
known to most people and the specific formulas are not shown here. The more
detail of formula can check the paper [5].

Since we get the information fusion triple
(
ĥ, r̂, t̂

)
, we see this triple as the

input element of the Transformer. For each input triple we add the position
embedding and then obtain the final input:

h0
i = ĥ + ĥpos (9)
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After through the Transformer Decoder, we obtain:

ĥN
i = Transformer

(
ĥN−1

i

)
, N = 1, 2, · · · , N, (10)

During training, inspired by Coke [20], we create two training instances. For a
triple (h, r, t), one is to replace t and the other is to replace h, then we put this
triple into the Transformer encoder to generate a new sequence

(
ĥn
1 , ĥn

2 , ...ĥN
n

)
.

After a feedforward layer and a standard softmax classification layer, we get the
target predicted entity:

P1 = softmax
(
Wf

(
hN
1

))
(11)

Pn = softmax
(
Wf

(
hN

n

))
(12)

where W ∈ R
V ×D is the weight embedding matrix, D is the hidden size, V is the

entity size. As to Coke, we use cross-entropy between the one-hot label y1/yn

and the prediction P1/Pn as training loss:

Loss(X) = −
∑

t

yt log pt (13)

where yt and pt are the t-th components of y1/y2 and P1/P2. As same as the
model Coke, we use a label smoothing strategy to lessen this restriction.

5 Experiment

We measure our model’s effectiveness of representations in link prediction. The
subsequent section describe our complete experimental setup, including base-
lines, datasets, evaluation metrics and experimental analysis.

5.1 Datasets

We choose four widely used knowledge graph datasets and an external text
corpus to train and evaluate the model, which are described as follows:

Knowledge Graph Dataset. The complete knowledge graph is very large,
so its subset is generally used to evaluate the performance of knowledge graph
representation learning method. We adopt four KG datasets, namely, FB15k,
WN18, FB15K-237 and WN18RR. FB15k and WN18 are subsets of Freebase
and WordNet respectively.The detailed statistical data is shown in Table 1.

Text Corpus. The text corpus is introduced in (Zhigang Wang et al., 2016),
sampling from Wikipedia. This corpus consists mainly of unstructured natu-
ral language documents composed of natural language statements. Wang et al.
deleted the external text corpus and improved the quality of the corpus. Finally,
the pre-processed text corpus and entities on KG are linked, and the statistical
data results are shown in Table 2.
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Table 1. KG dataset statistical information in experiment.

Dataset FB15k WN18 FB15k-237 WN18RR

Entities 14951 40,493 14541 40493

Relations 1245 18 237 11

Train 483,142 141,442 272,115 86,835

Valid 50,000 5,000 17,535 3,034

Test 59,071 5,000 20,466 3,134

Table 2. Text corpus and KG entity alignment result statistics.

KG Entities Annotated entities Word stems

WN18 40,943 32,249 1,529,251

FB15K 14,951 14,405 744,983

5.2 Evaluation Protocol

Link prediction task is a commonly used knowledge graph representation learn-
ing evaluation method. Given a correct triplet (h, r, t), the task of link prediction
is to predict the missing h or t in the case of (?, r, t) or (h, r, ?). In the evaluation
part, h or t in each triplet (h, r, t) in the test data set is replaced with Mask,
and then this sequence is put into our model to obtain the distribution of all
entities, and then conduct the descending order according to the predicted value,
and finally get the rank of the predicted entity. In this paper, Mean Reciprocal
Rank(MRR) and Hist@n are used as evaluation indexes of the model. MRR is
the average of the reciprocal ranking of the correct entities in all test samples in
the test triples. Hits@n means the proportion of the valid test triples ranking in
top n predictions. Higher MRR or higher Hits@n indicate better performance.

5.3 Baslines

To verify the express ability of our model, We compare our model with sev-
eral state-of-art methods, including method that in Euclidean Space(TransE [3],
TransR [11]), method that in Complex Space(RotatE [18]), method that in
Hyperbolic Space(HyperKG [7]) and method that use context information and
external information (TEKE [22], Coke [20]).

– TransE is the first vector translation based model by assuming that the head
entity embedding should be close to the tail entity embedding after relational
embedding translation.

– TransR is a variant of TransE. TransR improves the modeling capability of
complex relationships by embedding entities and relationships into different
semantic Spaces through mapping matrices.

– TEKE uses textual description information of entities and context of rela-
tions to improve the effect of knowledge embedding.
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– RotatE extends TransE’s ideas by representing entities into complex space.
RotatE regards relations as rotations from head entity to tail entity.

– CoKE proposes that the representation of entity and relation should rep-
resent dynamically depending on the context in which they are expressed.
Triples are converted into sequential inputs through Transformer model.

Table 3. Link prediction results on FB15k and WN18 dataset.

FB15K WN18

Evaluation Protocol MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

Method that in Euclidean Space:

TransE 0.523 0.476 0.528 0.572 0.541 0.513 0.549 0.615

TransR 0.556 0.484 0.544 0.605 0.548 0.52 0.569 0.642

TEKE 0.672 0.612 0.634 0.735 0.677 0.623 0.643 0.734

Coke 0.744 0.691 0.737 0.842 0.818 0.825 0.876 0.894

Method that in Complex Space:

RotaE 0.712 0.708 0.714 0.732 0.757 0.73 0.759 0.787

Method that in Hyperbolic Space:

HyperKG 0.687 0.656 0.693 0.634 0.739 0.724 0.735 0.766

Our method 0.807 0.732 0.785 0.867 0.824 0.838 0.887 0.906

5.4 Main Results

To verify the effectiveness of our model, we compare with several representa-
tive and widely used representation learning models. The experimental results
of FB15K and WN18 are shown in Table 3. Part of the experimental results
refer to the original paper, part is the result of self-tuning. Compared with the
original paper of Baseline, there is a gap between our results and the Baseline,
which may be due to data filtering. The optimal model in Baseline is CoKE.
This illustrates the validity of considering that entities are dynamically gen-
erated depending on their context. On datasets FB15K and WN18, our model
outperforms other models in terms of evaluation indicators. On FB15K, Hist@10
and MRR increased by 2.5% and 6.3%, respectively. This shows that it is useful
to add more semantic and spatial considerations when doing dynamic contextual
representations.

5.5 Complex Relation Study

Focus on the complex relations especially for the issue of 1-1, 1-N, N-1 and
N-N, we conduct experiments on different relation categories. We choose the
FB15k-237 as our datasets due to its abundant multi-relations and denser graph
structure. We choose Rotate [18] as the baseline. From Fig. 2, we can find that
our model is superior to the Baseline model in handling complex relationships.
Compared with RotatE, our model has similar prediction performance in simple
relationships 1-1 and 1-N. But in the case of complex relationships N-1and N-N,
the predictive power of our model improved. Significantly. This indicates that
considering contextual information is beneficial to improve the ability of our
model to deal with complex relations.
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Fig. 2. Complex relation test on FB15k-237 dataset. Following the [21], the relations
are divided into four categories: one-to-one (1-1), one-to-many (1-N), many-to-one (N-
1), and many-to-many (N-N).

5.6 Ablation Study

We have given the comparisons and analysis about different models and our
model has achieved a significant improvement over all baselines. In this section,
in order to further analyze the enhancement effect of hyperbolic spatial infor-
mation and descriptive text information on dynamically generated entity repre-
sentation, we conducted an ablation experiment on the proposed model. We do
the experiment on FB15k-237 and WN18RR dataset. Our model adds external
semantic information and hyperbolic space embedded information modules on
the basis of CoKE. In this section, we mainly analyze the improvement effect of
external information embedding on the model.

Textual Embedding. In this section, we analyze the importance of external
text and how the external semantic information affect the performance of our
model. As we can see from Fig. 3. Compared with TEACH(Contextualized only),
the performance of the model with external text improved. We can observe
that, with the help of external text information, our model can improve input
constraint. A possible reason is that the fusion of external text information
can enhance the semantic information of the input. It will not lose semantic
information when doing context training later.

Hyperbolic Translation. Compared with no hyperbolic spatial information,
the effect of hyperbolic spatial information is obviously improved. We think it
is the properties of hyperbolic space that capture the hidden information in the
triplet and improve the representation ability. It can be seen that the effect of
adding external text description information is better than adding hyperbolic
spatial information only, but the two kinds of information do not completely
coincide. Adding description information and spatial information at the same
time can add constraints to the representation of dynamically generated entities
and relations in context and make it more accurate.
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Fig. 3. Performance comparisons of information fusion model. Contextualized only;
information fusion without hyperbolic space; Information fusion without external infor-
mation.

6 Conclusion

Most of the existing knowledge graph representation models often ignore the con-
text information of entities in the knowledge graph. This will lead to Knowledge
Graph Representation Learning(KGRL) difficult to resolve complex relations.
The existing Internet has a large amount of description text of entities, which
helps to improve the ability of entity representation. In this work, We propose
a new model, which considers the influence of external semantic information
and different contexts on entity representation. We also consider the ability of
hyperbolic space to capture hidden information, which makes it more suitable for
knowledge representation learning tasks of knowledge graph. To fuse the exter-
nal description information and the information captured in hyperbolic space, we
propose a novel information fusion method for information aggregation. Exper-
imental results show that adding external information constraints can improve
the dynamic context representation of entities and relations.

As future work, we will simultaneously consider the loss in the process of
knowledge fusion training and the loss in the process of context information
training, because limit the fused information may not be well suited to down-
stream mission objectives. Finally, we will focus more on the coding of knowledge
graph relational schema, including improving the coding capabilities of symmet-
ric/antisymmetric, inverse, composite and subrelation schema.
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Abstract. Considering the diversity and heterogeneity of different
knowledge graphs, it is necessary to logically establish a comprehensive,
accurate and unified knowledge repository. We design a framework by
importing active learning strategies to neural network models for entity
alignment, aiming to create informative seeds for more efficient entity
alignment models with lower annotation cost. The model measures the
benefit of an entity being selected from the two aspects of its uncer-
tainty and influence. Extensive experiments are conducted on two bench-
mark datasets, and the results show that our method achieves significant
improvement over the existing models.

Keywords: Knowledge graph · Entity alignment · Active learning ·
Neural networks

1 Introduction

Knowledge graph fusion is an important link from knowledge graph construction
to knowledge graph-based intelligence. Through knowledge graph fusion, the
relevant knowledge in various graph systems can be organically complemented
and integrated, and a comprehensive, accurate and systematic knowledge graph
entity description can be established. The main purpose of entity alignment is to
determine whether two or more objects from different sources refer to the same
object in the real world.

Fig. 1. An example of knowledge graph entity alignment in different domains
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Current mainstream machine alignment models use embedding-based meth-
ods to extract semantic information about entities in knowledge graph, whether
based on translation models that understand relationships as translations from
their head entities to their tail entities, or graph neural networks that capture
structural information about entity network neighbours to form entity represen-
tations, these methods are based on training the model with a sample set of
seed-aligned entities, and the alignment effectiveness of the model is influenced
by the quality of seed alignment data.

However, many entities can only get limited attention and have low embed-
ding expression ability. So it can be seen the importance of adding human inter-
vention to the machine alignment model. For example, Fig. 1 shows the knowl-
edge graphs of the education field and the literature field. Due to the differences
of knowledge graphs in specific fields, the machine cannot learn similarity infor-
mation from entity neighbors. If the annotations are made by experts in the field
of literature, it can be easily recognized that the two central entities actually refer
to the same person.

This paper makes the following contributions:

– By applying active learning strategies to the entity alignment task, the most
valuable and informative data are picked up for annotation;

– We design a new sample selection strategy by considering the uncertainty and
influence of the entity;

– We summarize and analyze the characteristics of the aligned neural network
suitable for active learning strategy.

2 Method

2.1 Model Framework

The task of this paper is to align entities across different knowledge graphs. A
knowledge graph KG can be represented by KG = (E,R, T ), where E denotes
a set of entities, R denotes a set of relations, and T ⊆ E ×R×E denotes a set of
triples. The entity alignment task is to find such an entity pair A = {(e1, e2) ∈
E1 × E2|e1 ∼ e2} given two knowledge graphs KG1 and KG2 whose sets of
entities are E1 and E2 respectively, with ∼ here indicating that both entities
refer to the same object in the real world.

Figure 2 shows the overall framework of entity alignment based on active
learning, where the annotation process is iterated with model training.

(1) The entity sample set is first loaded by the given dataset, and the initializa-
tion is generally done by randomly selecting entities from the entity sample
set to form the training set, and the machine alignment model is trained to
obtain the matching scores.

(2) Based on the calculated matching scores, a sample selection strategy is
designed to obtain the entity pairs with the greatest gain, which are
given to the experts for annotation, with aligned entity pairs labelled
as L+ = (e1 ∈ E1, e2 ∈ E2) and unmatched entities labelled as L− =
(e1 ∈ E1, e2 ∈ null).
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Fig. 2. A holistic framework for entity alignment based on active learning

(3) Add the resulting annotated data to the training set to train the alignment
model again, and if a termination condition is achieved, the trained align-
ment model is used to predict the unannotated entities to obtain the entity
alignment results.

(4) If the termination condition is not yet satisfied, the entity pair with the
highest return in the sample set is selected for annotation and used to train
the alignment model according to the sample selection strategy until the
termination condition is achieved.

2.2 Sample Selection

Based on Uncertainty Reduction for Entities. For each entity in KG1 the
matching scores for all unmatched entities in KG2 is obtained by the machine
entity alignment model and is denoted as EN(e1, e2). To obtain the entities that
the current machine alignment model is least confident of matching, a marginal-
based uncertainty measure is used.

U (e1) = − (EN (e1, e∗
2) − EN (e1, e∗∗

2 )) , (1)

where e∗
2 and e∗∗

2 denote the entity e1 with the largest and second largest match-
ing score in KG2 respectively. The smaller the largest matching score and the
second largest matching score, the greater the uncertainty of the e1 match.

Based on Entity’s Influence on Its Neighbours. Since entities in the knowl-
edge graph are interconnected, it is important to consider both the impact of
the entity itself and the impact of the entity on its neighbours. Based on this,
the final entity influence Inf(e1) can be defined as the amount of uncertainty
that an entity can help its neighbours to eliminate.

Inf
(
ei1

)
= α

∑

ei1→ej1,e
j
1∈N i

out

wijInf
(
ej1

)
+ (1 − α)

U
(
ei1

)
∑

e1∈en1
U (e1)

, (2)

where N i
out denotes all entities pointed to by entity ei1, i.e., outgoing neighbours

of ei1, and parameter α is used to balance the effect of entity ei1 on context
with the marginal uncertainty of ei1 after normalisation. If ei1 is connected to ej1,
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then wij > 0, otherwise wij = 0. For each entity ej1, assuming that its inbound
neighbours can help remove all uncertainty, then there is

∑
ei1→ej1,e

i
1∈N in

j
wij = 1.

Written in the form of matrix operations, it is

U = αWInf + (1 − α)
U

|U | , (3)

where W represents the influence matrix between entities, U is the measurement
uncertainty vector, and Inf is the entity influence vector. The annotation process
for active learning is an iterative process.

2.3 Model Learning

Based on the cross-language embedding model [2], TransE is used to embed each
language, and the entities and relationships of multiple languages are encoded
into independent spatial structures.

The model based on aggregating distant neighbors [7] aggregates the informa-
tion of direct neighbors and distant neighbors, adopts an attention mechanism
and a gate mechanism to compose the output description of multiple aggregation
functions.

The semi-supervised entity alignment model [4], which utilizes a small
amount of label data and a large amount of unlabeled entity information for
alignment, considers that the knowledge graph entity alignment is affected by
the entity degree. Models based on relational path learning learn through rela-
tional paths [3], and without losing local relational information of entities, paths
can provide more relational dependency information than triples.

3 Experimental Study

3.1 Experimental Setting

Dataset. There are two data sets in this experiment, each dataset contains
two knowledge graphs and aligned entity pairs, both obtained from OpenEA [8].
EN-DE-15K V1 is a cross-lingual dataset of English and German. D-W-15K V1
is a monolingual dataset of English, both datasets have 15,000 entities.

Baseline Sampling. Several of the more classical sample selection methods
were selected for comparison.

(1) Random sampling
The random sampling strategy selects a random set of entities from those
prepared for matching for annotation.

(2) PageRank
PageRank is a link analysis algorithm that determines the centrality of an
entity object by taking into account its degree and the significance of neigh-
bouring entities.

(3) Uncertainty sampling
Based on the marginal uncertainty measure to be used as the sampling
criterion, entities with high uncertainty are selected for labelling.



Knowledge Graph Entity Alignment Powered by Active Learning 319

Table 1. Alignment results of different sampling strategies on dataset D-W-15K V1

EA model Alinet SEA RSN4EA

Metrics HIT@1 HIT@5 NDCG@10 HIT@1 HIT@5 NDCG@10 HIT@1 HIT@5 NDCG@10

Rand 62.280 81.453 0.736 52.053 74.320 0.661 58.733 76.560 0.697

PageRank 54.213 82.200 0.711 44.520 75.093 0.635 52.067 79.067 0.688

Uncertainty 75.813 88.800 0.836 53.680 76.147 0.679 66.347 80.493 0.754

ALEA 73.520 90.280 0.841 54.227 77.04 0.689 70.067 87.747 0.807

Table 2. Alignment results of different sampling strategies on dataset EN-DE-15K V1

EA model MTransE Alinet SEA

Metrics HIT@1 HIT@5 NDCG@10 HIT@1 HIT@5 NDCG@10 HIT@1 HIT@5 NDCG@10

Rand 49.160 70.733 0.631 69.333 83.973 0.783 63.747 83.173 0.762

PageRank 40.493 65.000 0.566 57.853 79.040 0.714 52.600 77.427 0.686

Uncertainty 24.400 38.133 0.336 82.347 91.853 0.880 61.293 80.520 0.736

ALEA 48.907 68.440 0.642 86.800 95.413 0.920 69.253 84.680 0.791

Evaluation Indicators. The evaluation metrics used in this paper are HIT@K
and NDCG@K, which are commonly used in entity alignment tasks.

In the formula for calculating the degree of entity influence, we set the param-
eter α = 0.1, and the batch size is set to 100 when comparing the experimental
effects of different benchmark models.

3.2 Results

Comparison with Baseline Models. The entity influence sampling strategy
based on the knowledge graph structure proposed in this paper is applied to the
models MTransE, SEA, Alinet and RSN4EA respectively and compared with the
benchmark sampling strategy. The experimental results obtained on this dataset
are shown in Table 1.

(1) Overall, Alinet achieves better experimental results than the other two mod-
els. It illustrates the need to utilize entity neighborhood structures as an
important breakthrough to improve the overall effectiveness of entity align-
ment.

(2) ALEA has the most obvious improvement effect on the RSN4EA model.
RSN4EA improves the ability to capture long-term relationship dependen-
cies of entities, and the ALEA strategy effectively addresses the problem
lack of seed alignment data.

We applied the model on the machine algorithms MTransE, Alinet and SEA,
and the experimental results obtained are shown in Table 2.

(1) The uncertainty sampling effect is poor. It seems that relying only on the
uncertainty based on the margin is not feasible.
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(2) The better alignment results of Alinet and SEA models after applying the
ALEA strategy indicates that the strategy can exert its effect on cross-
language knowledge graphs.

(a) Alinet (b) SEA

Fig. 3. Experimental results of sampling strategies with different labelling ratios (D-
W-15K V1)

(a) Alinet (b) SEA

Fig. 4. Experimental results of ALEA strategy with different α (D-W-15K V1)

Experimental Results at Different Labelling Ratios. We obtained the
experimental results for different annotation ratios, as shown in Fig. 3. The
ALEA strategy achieves good results in all annotation ratios and is similar to
PageRank when the annotation ratio is less than 15%, but the advantages are
more obvious as the amount of annotation increases.

Analysis of the parameter α. We apply our strategy to the dataset D-W-15K
V1 using the Alinet model and the SEA model and obtained the results shown
in Fig. 4. It can be observed that the strategy in this paper is not particularly
sensitive to α, and the experimental results for the two models are somewhat
different.

Analysis of the Parameter Batchsize. Considering that different batch sizes
may have an impact on the training effect, we applied the ALEA strategy to the
models Alinet and SEA respectively. The results are presented in Fig. 5.
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The improvement effect of ALEA on RSN4EA is the most obvious, the ALEA
strategy effectively solves the current challenges of the model and improves the
overall performance of entity alignment.

(a) Alinet (b) SEA

Fig. 5. Experimental results of ALEA strategy with different batchsize(D-W-15K V1)

4 Related Work

Currently, the approaches to entity alignment include the traditional methods
based on the calculation of similarity features, as well as embedding-based meth-
ods. In the translation model, Bordes et al. [1] propose the TransE model, which
focuses on the relational triad and treats relations as translations from their head
entity to their tail entity. To more adequately represent entity information, some
translation models consider the inclusion of attribute information [6,10,11].

Graph neural networks use node features and graph-like structures to learn
the representation vectors of nodes. The graph neural network uses a neighbour-
hood aggregation strategy to iteratively update the representation of a node.
The heterogeneity of the knowledge graph structure is a major challenge for
entity alignment. For complex relational information commonly found in multi-
relational knowledge graphs, some graph neural network-based entity alignment
methods consider the role of relationship types in feature aggregation. AVR-
GCN [9] proposes a vector relational graph convolutional network to simultane-
ously learn embeddings of graph entities and relations in multi-relational net-
works. Yao et al. proposed a new relationship-aware neighbourhood matching
model, RNM [12], designing an iterative framework to perform positive interac-
tions between entity alignment and relationship alignment in a semi-supervised
manner.

However, there are still some challenges in applying the current methods
to large knowledge graphs. Active learning strategies have been widely used in
many machine learning fields Qian et al. [5] applied active learning to traditional
entity alignment algorithms. With the wide application of deep learning, apply-
ing the active alignment algorithm to the neural network-based entity alignment
becomes a new entry point.
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5 Conclusion

In this paper, we propose a framework for entity alignment based on active learn-
ing methods to design effective entity alignment strategies to create information-
rich seed alignments to obtain more effective entity alignment models with
lower annotation costs. Four representative machine alignment algorithms were
selected for experimental analysis, in order to further explore the adaptability
of the proposed strategy. Extensive experiments are conducted to confirm the
effectiveness of our method.

Acknowledgement. This work was supported by National Natural Science Founda-
tion of China (Grant No. 61902074) and Science and Technology Committee Shanghai
Municipality (Grant No. 19ZR1404900).
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Abstract. Link prediction in knowledge hypergraphs has been widely
recognized as crucial for various downstream tasks of knowledge-enabled
applications, from question answering to recommender systems. How-
ever, most current approaches are directly extended from binary relation
of the knowledge graph to n-ary relation, thus cannot capture entities’
role and positional information in each n-ary tuple. To accommodate
the transformation of relations from binary to n-ary in the knowledge
hypergraph, in this work, we propose POSE, which exploits the semantic
properties of tuples at both role and position levels. POSE explores an
embedding space with basis vectors and represents the role and posi-
tional information of entities through a linear combination, which pro-
motes similar representations for entities with related roles and the same
positions. Then, a relation matrix is further employed to capture the com-
patibility of both information with all associated entities, and a scoring
function is used to measure the plausibility of tuples composed of entities
with specific roles and positions. Meanwhile, POSE achieves full theoret-
ical expressiveness and predictive efficiency. Experimental results show
that POSE achieves an average improvement of 4.1% on MRR compared
to state-of-the-art knowledge hypergraph embedding methods. Our code
is available at https://github.com/zirui-chen/POSE.

Keywords: Link prediction · Knowledge hypergraph · Postional
embedding

1 Introduction

Knowledge graphs describe real-world knowledge in the form of triples, i.e.,
(h, r, t), where r is a binary relation while h and t are head and tail entities. As a
more expressive generalization of the knowledge graph, the knowledge hypergraph
attracts more attention due to its generality in modeling real-world scenarios. In
the Freebase, more than one-third of entities participate in non-binary relations
[11], and 61% of relations are non-binary [18], which raises the importance of
investigating how knowledge hypergraphs can be leveraged to enhance various
downstream tasks such as link prediction and node classification.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Li et al. (Eds.): APWeb-WAIM 2022, LNCS 13422, pp. 323–337, 2023.
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Unlike binary relations, n-ary relations describe relationships involving more
than two entities and contain more complex semantics. As in the example in
Fig. 1, an oval represents a tuple; a circle represents an entity. The entities in
a tuple are ordered, each entity has a different role at a different position, and
the semantics of the tuple is determined by all the entities involved. The signifi-
cance of roles and positions for modeling knowledge hypergraphs is evident from
this example. However, there is no existing work that uses role and positional
information on knowledge hypergraph modeling.
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Fig. 1. An example of Lebron James in the form of the knowledge hypergraph. Each
relation is composed of entities with corresponding semantic roles at different positions;
the roles can be explicit (as in this figure) or implicit, while the positions are explicit.

Several works have aimed at the link prediction task on knowledge hyper-
graphs. However, existing methods [11–13,18,29] largely ignore the importance
of roles and positions, and still follow the way of binary modeling in the knowl-
edge graph. In particular, these methods embed n-ary relations and entities into
a low-dimensional space without distinguishing the specific order of entities, and
measured the plausibility of tuples based on these embeddings. For example,
m-TransH [11] and RAE [12] both extend the knowledge graph model TransH
[8] by projecting entities onto relation-specific hyperplanes for tuple plausibility
scoring, but with weak expressivity [13,19]; while HypE [18] and GETD [13]
extend the knowledge graph model SimplE [19] and TuckER [20], respectively.
However, these models ignore the role and position semantics completely [17].
On the other hand, the role information has been adopted by NaLP [14], HINGE
[16], and NeuInfer [17], all of which utilize neural networks to measure the tuple
plausibility. However, these models only learn the role semantics of tuples and
do not consider the effect of entity position on semantics. As far as we know,
there has been no model that considers both the role semantics and positional
information of each entity in the knowledge hypergraph.

Therefore, we have identified that, to fully represent knowledge hypergraph
in an expressive manner, the following requirements should be met: firstly, the
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complex semantics of tuples in roles and positions aspects should be considered
during modeling process, including the semantic relationship among roles, posi-
tions, and entity compatibility. Secondly, it is sufficiently expressive to represent
all types of relations. To the best of our knowledge, none of the existing methods
satisfy the above two requirements.

In this paper, we focus on the features of both role and position in each tuple
of knowledge hypergraphs, and propose a POSitional Embedding model with full
expressive for the knowledge hypergraph. Different from the previous knowledge
hypergraph embedding methods, POSE introduces a latent space for roles and
positions, where entities with related roles and the same positions should have
similar representations. Furthermore, POSE learns a relation matrix for each
relation to capture its compatibility with all related entities. We further devise a
scoring function for efficient prediction. The critical insight of POSE is to model
the knowledge hypergraph in terms of roles and positions.

The contributions of this paper are as follows:

– A novel knowledge hypergraph embedding model, named POSE, aims to pre-
dict links in knowledge hypergraphs. POSE strengthens the importance of
roles and positions in n-ary relations, and learns the latent space as well as
the relation matrix of roles to capture semantic relatedness and compatibility,
respectively.

– We prove that POSE is fully expressive for knowledge hypergraphs, which
can model all patterns of relations without any limitation.

– Extensive experiments are conducted on six representative datasets, demon-
strating that POSE achieves state-of-the-art performance on knowledge
hypergraph datasets and comparable performance on knowledge graph
datasets.

The rest of this paper is organized as follows. We introduce preliminaries
in Sect. 3. Detailed description of POSE is provide in Sect. 4. The theoretical
analysis of the full expression and complexity is presented in Sect. 5. Then, we
report the experimental results in Sect. 6. Finally, we conclude this paper in
Sect. 7.

2 Related Work

Our algorithm is conceptually related to previous models in knowledge graphs
and recent models in knowledge hypergraphs, which can be classified into two
categories.

2.1 Link Prediction in Knowledge Graphs

The most typical tensor decomposition-based method is RESCAL [1], which
associates knowledge graphs with three-way tensors of head entities, relations,
and tail entities. The learned entity and relation embeddings are used to recon-
struct the tensors by minimizing the reconstruction error. Similarly, Complex [2]



326 Z. Chen et al.

associates each relation with a matrix of head and tail entities, decomposed and
learned as RESCAL. The main problem for the generalization of tensor meth-
ods is that a single model can only be trained and used for a certain arity of
relations, while POSE can predict multiple arities of relations simultaneously.

Translation-based methods can be traced back to TransE [4,24]. It treats
each valid triple as a translation from a head entity to a tail entity through
their relation. Subsequently, several improved methods based on TransE were
proposed over time [5–8,31]. Among them, TransH [8] introduces the relation-
specific hyperplane. Entities are projected onto the relational hyperplane before
translation, but such methods can only model symmetric relations, while our
method can model any pattern of relations with full expressiveness.

Neural network-based methods model the effectiveness of triples. For exam-
ple, ConvKB [9] treats each triple as a three-column matrix. This matrix is
fed into convolutional layers, followed by fully connected layers to generate an
effectiveness score. Nathani [10] further proposed a generalized graph attention
model as an encoder to capture neighborhood features and applied ConvKB as a
decoder. Such methods usually incur high time complexity, while the complexity
of our model is linear with time and space.

2.2 Link Prediciton in Knowledge Hypergraphs

Since binary relations simplify the complexity of real-world facts, some recent
studies have tried to represent and predict links in knowledge hypergraphs, pri-
marily through embedding-based methods. These studies represent n-ary facts
as tuples with predefined relations and generalize binary relation methods to
n-ary cases.

m-TransH [11] and RAE [12] generalize TransH [8], which is a translation
embedding model for binary relations, but these two models are not fully expres-
sive and cannot model asymmetric relations. The influence of role and position
on tuple semantics is not considered. NaLP [14] and HINGE [16] are different
approaches that directly represent n-ary facts as attribute-value pairs and then
model the associations between these attributes and values. However, in these
methods, properties of n-ary facts are assumed to be equally important, which
is not the case in real-world scenarios. Instead, we use the tuple form where
different entities have different importance, which is closer to reality.

RAM [15] and NeuInfer [17] consider incorporating entity role information
into embedding, which use tensor decomposition-based and neural network-based
methods to measure the tuple plausibility, respectively. However, these models
only learn the role semantics while do not particularly consider the impact of
the positional information. Currently, there is no existing work that considers
entity role and positional semantics in knowledge hypergraph modeling. Thus
we utilize both role and positional information to enhance the performance of
knowledge hypergraph link prediction.
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Table 1. Notations and explanations.

Notation Explanation

H Knowledge hypergraph
e, E Entity and entity set
r, R Relation and relation set
α Arity of relation
t, T , TT , TO, TH Tuple and four kinds of tuple sets
L Latent space size of role
d Embedding dimension
ρr Role of relation r

φ Scoring function
σ Element-wise softmax function
e, c Embedding of entity and role
b Role latent vector
w Weight vector of role latent vector
B Basis matrix of relation
R Relation matrix
〈·〉 Multi-linear product

3 Preliminaries

This section presents the preliminaries of the knowledge hypergraph and the link
prediction task. The notations used in our paper are summarized in Table 1.

Definition 1 (Knowledge Hypergraph). A knowledge hypergraph is defined
as H = (E ,R, TO), where E, R, and TO is a finite set of entities, relations, and
observed tuples, respectively. ti = r(ρr

1 : e1, ρ
r
2 : e2, ..., ρ

r
α : eα) denotes a tuple

where r ∈ R is a relation, each ei ∈ E is an entity, i is the position index, each
ρr

i is the corresponding role of relation r, and α is the non-negative integral arity
of the relation r.

After clarifying the definition of the knowledge hypergraph, we give the def-
inition for the task of link prediction in knowledge hypergraphs.

Definition 2 (Link Prediction in Knowledge Hypergraphs). Let T
denote all tuples set, TO ⊆ TT ⊆ T indicate the relationship among the set
of observed, all ground truth, and all tuples, respectively. The hidden tuples set
TH is the differences between T and TO. Given the observed tuples TO, the aim
of link prediction in knowledge hypergraphs is to predict the labels of the hidden
tuples TH .
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4 The POSE Model

Our proposed method, named POSE, models knowledge hypergraphs from the
role and position level, enabling semantic relatedness of roles and positions by
exploiting a latent space. A relation matrix captures the compatibility among
roles, positions, and all associated entities. Finally, a multi-linear product is
adopted for plausibility measure, achieving full expressiveness. An overview of
POSE is illustrated in Fig. 2.
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Fig. 2. Overview of POSE. Each entity generates an entity embedding, combines it with
the role embedding to integrate the role semantics. Then implements the incorporation
of the positional semantics through concatenation operation. The relation matrix is
produced by combining the basis matrices of a relation. Finally, entity embedding,
role embedding, and relation matrix of each entity are fed into the scoring function to
calculate the confidence score of the tuple.

4.1 Latent Space for Roles and Positions

Since one entity may correspond to multiple positions and roles in a knowl-
edge hypergraph dataset, such as the entity LeBron James in Fig. 1, the multi-
embedding mechanism [23] is designed for entities and maps each entity ei ∈ E to
multiple embeddings. Let ei ∈ R

m×d denote entity embedding, m be the layers
of multi-embedding, d be the embedding dimension.

Inspired by sharing feature information of training examples in machine
learning [30,32,33], in order to utilize semantic information about the positions
and roles of the entities, a latent space is built for roles with L role latent vec-
tors bl ∈ R

d, l = 1, 2, ..., L. First of all, the role embedding cr
i is computed by a

combination of role latent vectors:
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cr
i =

∑

l∈L

bl · σ(wr
i )[l] (1)

where wr
i ∈ R

L is the weight vector of the role latent vector, known as the role
weights. As a result, semantic relatedness is parameterized implicitly by role
weights, while the weight vector needs to be normalized by the element-wise
softmax function σ for all l and l′ ∈ L:

σ(wr
i )[l] = exp(wr

i [l])/
∑

l′∈L

exp(wr
i [l

′]) (2)

After obtaining the role embedding, it further assigning various semantics to
entities that at different positions. To be specific, the entity embedding and the
role embedding are multiplied to obtain an embedding e′

i = ei · cr
i that incorpo-

rates the role semantics. Moreover, the i-th positional semantics is combined by
the concatenation function cat:

e′
i = (e1i , cat(e

2
i ,m · d/α), ..., cat(eα

i ,m · d · (α − 1)/α)) (3)

where cat(v, x) shifts vector v to the left by x steps.

4.2 Relation Matrix

The relations in knowledge hypergraphs consist of entities at different positions
and corresponding roles. To measure the degree of compatibility among the
positions, roles, and all participated entities, the roles at each position in the
relation are learned with a relation matrix. For a relation r ∈ R, the relation
matrix for the role at the i-th position is represented by Rr

i ∈ R
α×m, where

the j-th row Rr
i [j, :] denotes the compatibility with multi-embedding of the j-th

position entity. With a designed latent space of positions and roles, the relation
matrix can be learned as follows for all i ∈ α:

Rr
i =

∑

l∈L

σ(wr
i )[l] · σ(Bl) (4)

where Bl ∈ R
α×m is the basis matrix of relation linked with latent vector of role

bl in the latent space. The entire basis matrix is also normalized by σ. The basis
relation matrix Bl is aligned with the latent role vector bl, which are used to
compute for role embeddings and relation matrices.

4.3 Scoring Function

The scoring function employs a multi-linear product approach to calculate the
confidence of the knowledge hypergraph tuple, which can effectively improve the
performance and introduce fewer parameters, making the training more efficient.
For each tuple ti = r(ρr

1 : e1, ρ
r
2 : e2, ..., ρ

r
α : eα), the score of tuple is calculated

by the following equation:



330 Z. Chen et al.

φ(t) =
∑

i∈α

〈cr
i ,R

r
i [1, :]e1, ...,R

r
i [α, :]eα〉 (5)

where Rr
i [1, :]e1 captures the compatibility between the role ρr

i and i-th entity
ei, i.e., the multi-embedding of ei is weighted by the elements of Rr

i [1, :]. Each
summation term of the multi-linear product is the compatibility of the entity
with the corresponding role at a different position.

4.4 Model Training

Generally, the knowledge hypergraph only provides positive examples, while neg-
ative examples need to be sampled by some way. Based on the scoring func-
tion designed above, the training loss and the learning target of the model are
designed in the following way. For each positive tuple t ∈ TO, the negative sam-
ples are obtained by replacing the entity linked with ρr

i . The strategy generalizes
from the ones in the binary case:

S(i)
t =

⋃

i∈α

{e1, ..., êi, ..., eα �∈ TO | êi ∈ E , êi �= ei} (6)

Furthermore, an instantaneous multi-class log-loss is adopted and an opti-
mizer of an empirical risk is formulated as follows:

min
ei∈E,bi∈B,wr

i ∈W,Bi∈B

∑

t∈TO

∑

i∈α

− log [exp(φ(t))/(exp(φ(t)) +
∑

t′∈S(i)
t

exp(φ(t′)))]

(7)
where the set E, B, W , and B contains all elements of ei, bi, wr

i , and Bi, respec-
tively, the softmax loss guarantees that exactly one correct sample is learned
among the candidates.

Algorithm 1 is the training process of POSE. For each tuple sampled from a
knowledge hypergraph, its negative sample is obtained at first. Next, the embed-
dings and the relation matrix is computed. Then the confidence score of this
sampled tuple is calculated. Finally, POSE is trained in mini-batch to minimize
the above empirical risk formulation.

5 Theoretical Analysis

The POSE model is fully expressive, indicating that the model can correctly learn
any valid n-ary relation in the knowledge hypergraph without being restricted to
a specific pattern of relations. Given any ground truth tuples in the knowledge
hypergraph, at least one embedding assignment of the model can correctly sep-
arate valid tuples from invalid ones. Furthermore, the POSE model can achieve
linear time and space complexity. Its embedding dimension constraint is pre-
sented in Theorem 1, and the complexity analysis is conducted.



POSE: A Positional Embedding Model 331

Algorithm 1: Training procedure for POSE
Input : Observed tuples TO, iteration count niter, mini-batch size mb,

latent space size L
Output: Role embedding, entity embedding, relation matrices

1 for t = 1, ..., niter do
2 Sample a mini-batch Tbatch ∈ TO of size mb;
3 for each tuple t ∈ Tbatch do
4 Construct negative samples for tuple t;
5 cri ← compute role embeddings using (1);
6 e′

i ← compute entity embeddings using (3);
7 Rr

i ← compute relation matrices using (4);

8 Update learnable parameters w.r.t. gradients based on the whole
objective in (7);

Theorem 1. For any ground truth over entities E and relations R of the knowl-
edge hypergraph containing η ≥ 1 ground truth tuples, there exists a POSE
model with the embedding dimension d = η , the multiplicity of entity embedding
m = maxr∈Rα, and the latent space size L = η, which accurately represents the
ground truth tuple.

Proof. Let TT be the set of all ground truth tuples in the knowledge hypergraph
with ρ = |TT |. Then, the statement of Theorem 1 is equivalent to assigning
parameters entity embeddings E, role basis vectors B, role weights W , and
relation basis matrices B to POSE. Under the conditions of embedding dimension
d = η , multiplicity of entity embeddings m = maxr∈Rα, and latent space size
L = η, the scoring function can be expressed as follows:

φ(t) =
{

> 0, if t ∈ Fall

= 0, if t �∈ Fall , for t := {ρr
1 : e1, ..., ρ

r
α : eα} (8)

when η ≥ 1, for each entity e ∈ E with multiple embeddings e ∈ Rm×d, e[i, j]
is set to 1 if the entity e involves with the i-th role of the j-th tuple in TT , and
to 0 otherwise. As for the latent space, an identity matrix IL is concatenated
by the role latent vectors [b1, ...,bl]. The form of the relation basis matrix is
Bi = [Iα, 0] ∈ {0, 1}α×m. Since a identity matrix is a group of latent vectors for
Rη, the role weights {Wr

i } can be assigned to satisfy that cr
i [j] = 1 if the relation

r involves with the j-th tuple in TT , and cr
i = 0 otherwise. Then the confidence

score of the j-th ground truth tuple can be calculated by POSE through the
following equation:

φ(t) =
∑

i∈α

〈cr
i ,R

r
i [1, :]e1, ...,R

r
i [α, :]eα〉 (9)

and each summation term is equal to 1, the score for t is φ(t) = α > 0
As for φ(t) = 0, assume there exists a false tuple t �∈ TT , φ(t) > 0. Based

on this assumption, there is at least one position j to ensure that cr
i [j] = 1 and
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the j-th elements of Rr
i [1, :]e1, ...,R

r
i [α, :]eα are all equal to 1. However, this can

only happen when entities e1, ..., eα and relation r appear in the j-th tuple of TT

simultaneously, then t ∈ TT , which contradicts the initial assumption. So that
when t �∈ TT , φ(t) = 0. �

For the time complexity, since our scoring function uses a multi-linear prod-
uct, the linear time complexity is O(d). For space complexity, since the arity
of relations in the knowledge hypergraph is rarely higher than 6 (as shown in
Table 3), the assignment of parameter m will not exceed 3. If let mα be the
maximum arity of relation in the knowledge hypergraph, me be the number
of entities, mr be the number of relations, the parameters spent on the role
latent vector, the basis matrix of relation, and the role weight vector is at most
O(med + Lmrmα + Ld + Lmmα) = O(med + Lmrmα). Thus the POSE model
remains linear in both time and space.

6 Experiments

The performance of POSE was tested on two kinds of benchmarks. Section 6.1
summarizes the experimental setups, such as datasets and baselines. All experi-
ments in Sect. 6.2 were conducted to predict hidden tuples or hidden triples.

Table 2. Dataset statistics. The size of train, valid, and test represent the number of
triples or tuples, respectively.

Dataset #entities #relations #train #valid #test

FB15k 14,951 1,345 483,142 50,000 59,071

WN18 40,943 18 141,442 5,000 5,000

FB15k-237 14,541 237 272,115 17,535 20,466

WN18RR 40,493 11 86,835 3,034 3,134

JF17K 29,177 327 77,733 – 24,915

FB-AUTO 3,388 8 6,778 2,255 2,180

6.1 Experiment Settings

Datasets. The experiments on link prediction were conducted on six datasets.
The knowledge hypergraph dataset JF17K was proposed by Wen et al. [11], while
FB-AUTO was proposed by Fatemi et al. [18]. As no validation set was proposed
for JF17K, we randomly selected 20% of the train set as validation. Four standard
knowledge graph benchmarks, i.e., WN18, FB15k, WN18RR, and FB15k-237
were used for link prediction in knowledge graphs. The detailed statistics of the
datasets are summarized in Table 2, and the number of tuples with different
arities are summarized in Table 3.
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Baselines. For link prediction in knowledge hypergraphs, we compare POSE
with state-of-the-art approaches, including RAE [12], NaLP [14], HINGE [16],
NeuInfer [17], HypE [18], and RAM [15]. In addition, GETD [13] can only model
single-arity knowledge hypergraphs and therefore is not included in the compar-
ison. As for link prediction in knowledge graphs, we compared POSE with sev-
eral baselines, including TransE [21], DistMult [24], ComplEx [2], SimplE [19],
RotatE [25], TuckER [20], HAKE [27], and DualE [28].

Table 3. The number of tuples with different arities in the datasets.

Dataset #arity=2 #arity=3 #arity=4 #arity=5 #arity=6

FB15k 592,213 0 0 0 0

WN18 151,422 0 0 0 0

FB15k-237 310,116 0 0 0 0

WN18RR 93,003 0 0 0 0

JF17K 56,332 34,550 9,509 2,230 37

FB-AUTO 3,786 0 215 7,212 0

Evaluation Metrics. Two evaluation metrics were employed to compare the
performance of different link prediction methods: Mean Reciprocal Rank (MRR)
and Hit@K, where H@K is in %, and all results in Sect. 6.2 are rounded. Two
metrics above are measured by ranking a test tuple t within a set of replaced
tuples. For each tuple in the test set and each position i in the tuple, |E| − 1
replaced tuples are generated by replacing the entity ei with each entity in
E\{ei}.

Table 4. Results of link prediction on knowledge hypergraph datasets.

Model JF17K FB-AUTO
MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

RAE 0.396 0.312 0.433 0.561 0.703 0.614 0.764 0.854
NaLP 0.310 0.239 0.334 0.450 0.672 0.611 0.712 0.774
HINGE 0.473 0.397 0.490 0.618 0.678 0.765 0.706 0.765
NeuInfer 0.451 0.373 0.484 0.604 0.737 0.700 0.755 0.805
HypE 0.507 0.421 0.550 0.669 0.804 0.774 0.824 0.856
RAM 0.539 0.463 0.573 0.690 0.830 0.803 0.851 0.876
POSE* (Ours) 0.521 0.442 0.551 0.664 0.823 0.794 0.840 0.862
POSE (Ours) 0.545 0.469 0.582 0.706 0.856 0.821 0.876 0.895
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6.2 Results

Link Prediction in Knowledge Hypergraphs. From Table 4, we observe
that POSE improves the MRR on the FB-AUTO dataset by at most 2.6%.

All three models, RAE, NaLP, and HINGE, ignore both positional and role
semantics when modeling the knowledge hypergraphs. RAE is based on the
generalization of the translation model TransH applied to the knowledge hyper-
graphs, which is not fully expressive and can only model the symmetric relations,
making the prediction performance a large gap compared with the current state-
of-the-art models. NaLP and HINGE split a tuple into a primary tuple and some
auxiliary key-value pair attributes. This manner of splitting tuples ignores the
semantic information of positions and roles, making more information lost from
the modeling process and leading to lower prediction performance.

HypE is a generalization of the SimplE model, which variations the position
differences but not the role. The experimental results of RAM (only considering
roles) outperform that of HypE, which further illustrates the importance of role
semantics in link prediction. While NeuInfer and RAM model the knowledge
hypergraph using neural networks and tensor decomposition-based methods,
respectively, which consider the difference in role semantics but not the posi-
tional information. The lack of utilizing positional information causes the worse
experimental results of POSE, which fully justifies the importance of positional
information for knowledge hypergraph modeling.

To further demonstrate the effectiveness of positional information in link
prediction tasks, we conducted an ablation study that does not consider the
positional information, marked as POSE* in Table 4. We can see that the exper-
imental results of POSE* are still better than HypE that only considers role
semantics, but worse than that of POSE, verifying the importance of positional
and role information in knowledge hypergraph modeling.

Table 5. Results of Link Prediction on different arities of knowledge hypergraph
datasets.

Model JF17K FB-AUTO
2 3 4 5 6 2 4 5

GETD 0.339 0.583 0.751 0.746 0.350 0.524 0.237 0.786
RAM 0.337 0.578 0.736 0.805 0.697 0.557 0.456 0.904
POSE (Ours) 0.334 0.577 0.739 0.813 0.708 0.572 0.477 0.912

Link Prediction with Different Arities. In Table 5, we directly predict
a tuple of different arities after training on the entire knowledge hypergraph
dataset. The RAM model considers the role semantics but not the positions,
and GETD is extended based on the TuckER model, which only considers the
positions while missing the role information.
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POSE achieves the best performance on all arities of relations in the FB-
AUTO dataset, while on the JF17K, POSE achieves the best performance on
high-arity relations, which is mainly due to the low-arity data noise on high-
arity predictions during the training process. In general, POSE improves by an
average of 4.1% on all arities compared with RAM, which can be seen that
considering both positional and role information is of significance for the link
prediction tasks in knowledge hypergraphs.

Table 6. Results of Link Prediction on Knowledge Graph Datasets.

Model WN18 FB15k WN18RR FB15k-237
MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

TransE 0.495 0.113 0.943 0.463 0.297 0.749 0.226 – 0.501 0.294 – 0.46
DistMult 0.822 0.728 0.936 0.654 0.546 0.824 0.430 0.390 0.490 0.241 0.155 0.419
ComplEx 0.941 0.939 0.947 0.727 0.660 0.838 0.440 0.410 0.510 0.247 0.158 0.428
SimplE 0.942 0.939 0.947 0.727 0.838 0.660 – – – – – –
RotatE 0.949 0.944 0.959 0.797 0.746 0.884 0.476 0.428 0.571 0.338 0.241 0.533
TuckER 0.953 0.949 0.958 0.795 0.741 0.892 – – - – – –
HAKE – – – – – – 0.497 0.452 0.582 0.346 0.250 0.542
DualE 0.951 0.945 0.961 0.790 0.734 0.881 – – – – – –
POSE (Ours) 0.943 0.940 0.949 0.801 0.751 0.877 0.496 0.449 0.577 0.349 0.248 0.544

Link Prediction in Knowledge Graphs. POSE achieves state-of-the-art
results on MRR and Hit@1, and achieves comparable results on FB15k. Such
results validate that POSE can have comparable performance to the binary
relation on the knowledge graph datasets and that the design that considers
both position and (implicit) role is equally applicable to the knowledge graphs.

7 Conclusion

In this paper, we propose a link prediction model POSE for knowledge hyper-
graphs, which learns the embedding representation from both role and posi-
tion levels. Leveraging the latent space for entity semantic relatedness of role
and position, and relation matrix for entity compatibility achieves precise accu-
racy for link prediction, full expressiveness, and more generalized modeling of
knowledge hypergraphs. The experimental results on both knowledge hyper-
graph datasets and four knowledge graph datasets demonstrate the superiority
and robustness of POSE.
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Abstract. Visual-Linguistic (VL) pre-training is gaining increasing
interest due to its ability to learn generic VL representations that can
be used for downstream cross-modal tasks. However, the lack of large-
scale and high-quality parallel corpora makes VL pre-training impractical
for low-resource languages. Therefore, it is desirable to leverage existing
well-trained English VL models for cross-modal tasks in other languages.
But a basic approach suffers from its inability to capture the seman-
tic correlation between different modalities and insufficient utilization of
the hierarchical representations of VL models. In this work, we propose
TraVL, a novel framework for transferring pre-trained VL models for
cross-lingual image captioning. To enforce the semantic alignment dur-
ing modality fusion, TraVL employs joint attention that constructs the
key-value pair by concatenating the visual and linguistic representations.
To fully exploit the hierarchical visual information, we develop an adja-
cent layer-fusion mechanism that allows each decoder layer to attend to
the encoder’s multilayer representations with similar semantics. Exper-
iments on a Chinese image-text dataset show that TraVL outperforms
state-of-the-art captioning models and other transfer learning methods.

Keywords: Artificial neural network · Visual-linguistic model · Image
captioning

1 Introduction

Recent years have witnessed the rapid growth of pre-training techniques for
visual-linguistic (VL) models [18,20,28,36]. By training on large-scale parallel
image-text corpora, pre-trained VL models can learn generic multimodal rep-
resentations of the input image-text pairs and be fine-tuned to adapt to cross-
modal tasks such as image-text retrieval, image captioning, etc. This approach
has benefited the vision-language community by advancing the state of the arts
in various VL tasks.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Li et al. (Eds.): APWeb-WAIM 2022, LNCS 13422, pp. 341–355, 2023.
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Fig. 1. The architecture of TraVL framework.

VL pre-training generally requires large-scale datasets containing signifi-
cant amounts of image-text pairs. For example, the commonly used Conceptual
Captions dataset [27] contains 3.3 million images annotated with English cap-
tions. Although these pre-training methods are not exclusive to English, they
can be impractical for low-resource languages where image-text corpora are rel-
atively scarce. Therefore, it is desirable to explore transferring the knowledge
of these pre-trained VL models from English to other languages. This study
can benefit researchers of different languages who lack either the data or the
computational resources to perform VL pre-training.

To achieve this goal, we first conduct some preliminary studies into trans-
ferring a VL model, namely, VLP [36], for cross-lingual image captioning. We
experiment on the COCO-CN dataset [19], which is an extension of MS-COCO
[21] with annotations in Chinese. We explore three different approaches to the
cross-lingual transfer of the VLP model, including a straightforward fine-tuning
method, a knowledge distillation method, and a feature-based method. The third
method, which employs VLP for feature extraction and relies on a pre-trained
language model (i.e., GPT-2 [25]) for caption generation, achieves the best per-
formance. But it still suffers from two limitations. First, the VLP model, like
other state-of-the-art VL models, exhibits a single-stream architecture, where the
concatenated visual and linguistic representations are jointly transformed via self
attention during pre-training. Fusing the visual representations into GPT-2 using
conventional cross attention fails to capture the semantic correlation between the
visual features and the linguistic features. Second, given that VLP’s multilayer
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representations capture a rich hierarchy of visual information, using only the
highest-level representation results in the underutilization of this information.

To address the above challenges, we propose TraVL, a novel framework to
transfer pre-trained VL models for cross-lingual image captioning. As shown in
Fig. 1, TraVL employs the VL model as an encoder to extract a hierarchy of
visual information from the image regions and uses the GPT-2 decoder to gen-
erate captions in the target language based on the extracted information. To
address the aforementioned limitations, we incorporate two novel mechanisms
into TraVL. First, joint attention is proposed in place of cross attention for
modality fusion. By using the concatenation of the visual and linguistic rep-
resentations as the key-value pair, joint attention enforces the semantic align-
ment between different modalities. Second, instead of only using the encoder’s
highest-level feature, an adjacent layer-fusion mechanism is employed to make
better utilization of hierarchical information carried by the multilayer represen-
tations. Each decoder layer attends to a few aligned encoder layers with similar
semantics and different attention outputs are dynamically aggregated based on
the visual and linguistic context. We evaluate TraVL on subsets of COCO-CN
with different sizes. Quantitative and qualitative analysis shows that TraVL pro-
duces better captions compared to state-of-the-art captioning models and other
transfer learning methods. We also perform ablation studies to justify the archi-
tectural design of TraVL.

In summary, we make the following contributions in this paper:

– We propose TraVL, a framework for transferring the knowledge acquired by
VL models from one language to another. TraVL allows researchers of dif-
ferent languages to leverage powerful English VL models to generate image
captions in their own languages using limited in-domain data.

– We propose two novel mechanisms for TraVL, including a joint-attention
mechanism that enforces the semantic alignment of different modalities and
an adjacent layer-fusion mechanism that fully exploits the hierarchical visual
representations.

– We compare TraVL with state-of-the-art captioning models and different
transfer learning methods. Experiments on subsets of COCO-CN with dif-
ferent sizes show that TraVL achieves the best performance.

2 Related Work

Visual-Linguistic Pre-training. Inspired by the success of pre-trained language
models such as BERT [5] and GPT-2 [25], much research attention has been
attracted to VL pre-training which aims at learning generic multimodal rep-
resentations of image-text pairs. Such representations are embedded with fused
information from both modalities that can inform a variety of VL tasks including
visual question answering, image captioning, etc. Based on a Transformer [30]
backbone, VL models adopt either a multi-stream architecture [23] or a single-
stream architecture [20,28,36]. Models belonging to the former encode the visual
and linguistic features separately and employ co-attention modules to fuse them.
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In the second architecture, the visual and linguistic features are concatenated
and jointly transformed using self-attention modules.

To obtain contextualized multimodal representations, BERT-like objectives
are typically used for the pre-training, such as masked language modeling,
masked region modeling, and cross-modal matching. More recently, VL pre-
training approaches based on contrastive learning [12,18] have been proposed
and show enhanced performance.

Image Captioning. Early approaches to image captioning either rely on prede-
fined templates [7,16] or formulate the problem as a retrieval task [10,14]. The
former has the disadvantage that the captions are too simple and rigid, while the
latter cannot generate novel captions. With the advancement of neural networks,
much research attention has been paid to deep-learning-based image captioning
methods. Inspired by the success of neural machine translation, these methods
typically use a CNN encoder for feature extraction and an RNN decoder for
caption generation. The encoded features can be a single vector [31], a grid of
CNN features [34], or a set of image regions extracted using object detectors
[1]. On the decoding side, in addition to the commonly used RNN and its vari-
ants, convolutional networks [2] and Transformer networks [4,11] have also been
explored for caption generation.

Cross-Lingual image captioning aims to transfer the knowledge learned in a
source language to generate captions in a target language. Although multilingual
captioning models have been proposed [6,29], they require the use of images
annotated in both languages. To address the lack of target-language training
data, some studies [24,32] propose to train with corpora from both languages by
using a shared image encoder and separate language decoders. Another study [17]
proposes to construct target-language datasets using machine-translated sen-
tences and employ a sentence fluency classifier to guide the training process. In
contrast to existing work, we focus on the transfer learning of pre-trained VL
models by using only a small amount of target-language training data.

3 Preliminary Studies

Previous studies [18,20,36] have shown that VL pre-training is highly effec-
tive in learning generic cross-modal representations that can improve the per-
formance of image captioning models. However, pre-training VL models from
scratch requires a large number of image-text pairs, which can be impractical
for low-resource languages. It is interesting to investigate whether it is possible
to reuse off-the-shelf VL models, which are pre-trained with English corpora, for
developing captioning models in other languages. To this end, we first conduct
some preliminary research.

We experiment with the VLP model which is based on a single-stream archi-
tecture and is pre-trained using both bidirectional and seq2seq objectives [36].
The following approaches are explored to transfer the VLP model for cross-
lingual image captioning.
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Table 1. Results of the preliminary studies on a subset of COCO-CN with 1000 training
examples.

Model BLEU-4 METEOR ROUGE_L CIDEr

Fine-Tuning 12.7 18.7 41.3 100.3

Fine-Tuning & K.D 12.6 18.0 40.6 97.6

Feature-Based 14.3 19.8 41.6 110.1

– Fine-Tuning. We modify the embedding layer and classification layer of VLP
to accommodate to the Chinese vocabulary and initialize the rest part with
weights pre-trained on English corpora. The model is fine-tuned on COCO-
CN using the seq2seq objective.

– Fine-Tuning & Knowledge Distillation. Inspired by [33], we introduce
Chinese BERT [5] and employ knowledge distillation to allow the VLP model
to learn about Chinese from BERT during fine-tuning. Specifically, a few posi-
tions of each caption sentence are masked, indicated by Pm, and a distillation
loss is calculated which measures the Kullback-Leibler distance between the
predictive distributions of VLP and BERT, formally given as

LKD =
∑

i∈Pm

∑

k∈V
P (xi = k|x) log P (xi = k|x)

P (yi = k|y) , (1)

where V is the vocabulary, and x and y are the predictive distributions of VLP
and BERT, respectively. The distillation loss adds to the total loss function
which is minimized during training.

– A Feature-Based Approach. Inspired by [3], we introduce a generative
pre-trained language model, i.e., Chinese GPT-2 [25], to guide the generation
of Chinese captions. VLP is used as a feature extractor that encodes image
regions into hidden representations, which are fused into GPT-2 via cross-
attention modules to provide visual information during decoding. We keep
the VLP encoder frozen and only optimize the weights of the GPT-2 decoder.

We experiment with the above approaches on COCO-CN which is a Chinese
image-text parallel dataset. Detailed descriptions of the experimental setups are
presented in Sect. 5. The results are shown in Table 1. Compared with directly
fine-tuning, the use of knowledge distillation hardly improves model perfor-
mance. We attribute this to the large discrepancy in distributions between the
target corpus and BERT’s predictions. Although BERT is assumed to provide
more contextualized information, such a discrepancy can disrupt the optimiza-
tion process. In contrast, the feature-based approach yields much better results,
which shows that such a paradigm can make better use of the pre-trained knowl-
edge. This motivates us to seek a more effective feature-based approach to the
cross-lingual transfer of VL models.
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4 TraVL

4.1 Overview

To fully exploit pre-trained VL models for cross-lingual image captioning, we pro-
pose a novel framework named TraVL consisting of a VLP encoder and a GPT-2
decoder, as shown in Fig. 1. TraVL takes as input an image-text pair denoted
by {X,Y }, where X = (x1, . . . , xM ) is a set of M image regions extracted from
raw images using bottom-up and top-down attention [1], and Y = (y1, . . . , yN )
is a set of N tokenized caption subwords.

The VLP encoder contains L identical attention layers that progressively
transform X into contextualized visual representations. We denote by Rvis

l =
(rvisl,1 , . . . , rvisl,M ) the hidden representations extracted from the l-th VLP layer.
The GPT-2 decoder, also composed of L layers, predicts the caption tokens Y in
an auto-regressive manner. The hidden representations of the l-th GPT-2 layer
are denoted as Rlan

l = (rlanl,1 , . . . , rlanl,N ).
The feature-based approach, as described in Sect. 3, employs conventional

cross-attention modules to fuse VLP’s highest-level representations into the
GPT-2 decoder and then performs fine-tuning on the target dataset. Designed on
top of this basic approach, TraVL is equipped with two innovative mechanisms,
namely, joint attention and adjacent layer fusion. Within each decoder layer,
the original self-attention and cross-attention modules are replaced by a single
joint-attention module to perform modality fusion. And the adjacent layer-fusion
mechanism allows VLP’s multilayer representations to be fused into each decoder
layer where different fusion results are dynamically aggregated. The remaining
parts of the decoder layer remain unaltered.

4.2 Joint Attention

Cross-modal learning relies on modality-fusion mechanisms to aggregate infor-
mation from different modalities. Conventionally, cross-attention modules [30]
are used to adapt the source modality to the target modality. In its simplest
form, the attention operation tasks as input a query matrix (Q), a key matrix
(K), and a value matrix (V ). And the output is calculated as

Attn(Q,K, V ) = softmax(
QKT

√
d

)V, (2)

In the case of image captioning, the visual representations Rvis, which serve as
the source modality, are projected into K and V , while the linguistic represen-
tations Rlan, which serve as the target modality, are projected into Q, given
as

Q = WQRlan, K = WKRvis, V = WV Rvis. (3)

In TraVL, we propose to employ joint attention instead of cross attention for
modality fusion. The rationale behind this design choice is based on the observa-
tion of how VLP constructs its visual representations. In the pre-training stage,
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given its single-stream architecture, VLP keeps the visual and linguistic repre-
sentations at the same semantic level by transforming the concatenation of both
modalities via self attention. The use of cross attention, however, fails to cap-
ture the semantic correlation and can lead to a mismatch in the architecture
between the pre-training stage and the fine-tuning stage. Intuitively, joint atten-
tion mimics the way of jointly attending to both modalities as in self attention
but only keeps the target modality as the query. TraVL employs joint atten-
tion to make up for the architectural discrepancy and to enforce the semantic
alignment between different modalities.

Formally, in the joint-attention module, both the key and value matrices are
constructed by concatenating the projections of Rvis and Rlan, while the query
is projected from Rlan, given as

Q = WQRlan, K = WK
1 Rvis‖WK

2 Rlan, V = WV
1 Rvis‖WV

2 Rlan, (4)

where ‖ is the concatenation operator. For simplicity, we use Attnjoint(Rlan,
Rvis) to denote the result of joint-attention operation on the source modality
Rvis and the target modality Rlan.

4.3 Adjacent Layer Fusion

Previous studies [13] indicate that different Transformer layers encode comple-
mentary features and that the features of adjacent layers are closely related.
Hence, it’s desirable to explore utilizing the hierarchical information carried by
VLP’s multiple layers instead of only focusing on its highest-level representa-
tions. Layer-wise coordination [9], which bridges encoder and decoder layers in
the same semantic level, can make use of more fine-grained source information.
On top of this idea, we propose a novel adjacent layer-fusion mechanism that
allows each decoder layer to attend to VLP’s multilayer representations with
close related semantics and aggregate different attention outputs. The workflow
of the fusion module within the decoder layer is depicted in Fig. 2, which proceeds
following four steps.

Fig. 2. Illustration of adjacent layer fusion within the l-th decoder layer. The module
is parameterized by k which is the number of encoder layers that each decoder attends
to. Unless otherwise stated, k is set to 3.
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Step1 : We extract from the encoder the visual representations to be fused into
each decoder layer. Specifically, for the l-th decoder layer, the visual represen-
tations are extracted from a fixed number of k adjacent encoder layers centered
at the l-th encoder layer. We term the extracted representations a visual group,
denoted as Gvis

l = {Rvis
l−k′ , . . . , Rvis

l , . . . , Rvis
l+k′} where k = 2k′ + 1. Note that

the visual groups of the lowest and highest decoder layers contain fewer than k
representations.

Step2 : Within each decoder layer, given the input linguistic representation as
Rlan

l−1, we iterate over its visual group and perform joint attention on Rlan
l−1 and

each visual representation. For Rvis
l′ ∈ Gvis

l , the output of the joint-attention
operation is denoted as

R̄l′ = Attnjoint(Rlan
l−1, R

vis
l′ ) = (r̄l′,1, r̄l′,2, . . . , r̄l′,N ). (5)

After this step, we obtain k different attention outputs {R̄l′}kl′=1 for each decoder
layer.

Step3 : To aggregate all the attention outputs, we compute a weight matrix F
that is dynamically dependent on the visual and linguistic context. Specifically,
the matrix F is derived by projecting the concatenation of the Rlan

l−1 and the
attention outputs,

F = WF
[
R̄l−k′ ‖ · · · ‖ R̄l+k′ ‖ Rlan

l−1

]

=

⎡

⎢⎣
fl−k′,1 fl−k′,2 . . . fl−k′,N

...
...

. . .
...

fl+k′,1 fl+k′,2 . . . fl+k′,N

⎤

⎥⎦ ∈ R
k×N ,

(6)

where the concatenation is performed along the embedding dimension , WF ∈
R

k×(k+1)d is a trainable parameter matrix, and d is the dimension number.
Each column of F contains k scalars corresponding to the weights assgined to k
different attention outputs.

Step4 : The weight matrix F is used to combine the attention ouputs. At each
position n ∈ [1, N ], we first normalize the weight matrix along the columns using
softmax function, given by

αl′,n =
exp(fl′,n)∑l+k′

p=l−k′ exp(fp,n)
. (7)

And then a weighted sum of the attention outputs is calculated as

r̂n =
l+k′∑

l′=l−k′
αl′,nr̄l′,n. (8)

The final output of the layer fusion module is represented as R̂l = (r̂1, . . . , r̂N ).



TraVL: Transferring VL Models for Cross-Lingual Image Captioning 349

5 Experiments

5.1 Datasets

We experiment on the COCO-CN dataset [19] which contains 20342 images
annotated with manually written Chinese sentences. The dataset is partitioned
into training, validation, and test sets with 18342, 1000, and 1000 images, respec-
tively. To evaluate the models on datasets with different sizes, we randomly draw
out 1000, 2000, and 5000 image-text pairs from the original training set to con-
struct training subsets, which we denote as COCO-CN-1000, COCO-CN-2000,
and COCO-CN-5000, respectively. We use only the human-written captions for
evaluation, excluding the translated sentences.

To avoid the performance difference induced by word segmentation strategies,
we simply use character-level tokenization to preprocess the captions. Instead of
building a new vocabulary based on the corpus, we adopt the same vocabulary
that has been used to pre-train the Chinese GPT-2 model with a size of 21128
tokens.

5.2 Experimental Setup

We implement TraVL on top of the VLP repository1. A variant of Faster R-CNN
[26], which is pre-trained on the Visual Genome [15] dataset, is used to encode
raw images into visual features. For each image, we extract 100 image regions and
every region is represented as three vectors: a 2048-dimensional feature vector,
a 4-dimensional positional vector of the bounding box, and a 1601-dimensional
vector of class likelihood. Both the VLP encoder and the GPT-2 decoder consist
of L = 12 transformer layers. VLP has been pre-trained on Conceptual Captions
[27] and MS COCO [21]. And the Chinese GPT-2 decoder2 has been pre-trained
on the CLUECorpusSmall [35] corpus with 14GB of Chinese text data. In the
adjacent layer-fusion module, we set k = 3, i.e., each decoder layer attends to
the visual representations from 3 different encoder layers.

Models are trained using cross-entropy loss with a batch size of 16. AdamW
[22] is used for optimization with β1 = 0.9, β2 = 0.999 and the weight decay is
set to 0.01. The learning rate is first linearly warmed up from 0 to 1e-3 for the
first 10% of the total steps and then undergoes a linear decay.

At the reference stage, we use the beam-search [8] algorithm for caption
generation with a beam size of 5. Four standard metrics are used to evaluate
the quality of the generated captions, including BLEU-4, METEOR, ROUGE-
L, and CIDEr. We train each model for 30 epochs and select the checkpoint with
the best validation performance for evaluation. We repeat the procedure 3 times
with different seeds and report the average scores.

1 https://github.com/LuoweiZhou/VLP.
2 https://github.com/Morizeyao/GPT2-Chinese.

https://github.com/LuoweiZhou/VLP
https://github.com/Morizeyao/GPT2-Chinese
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Table 2. Evaluation scores of different models trained on COCO-CN.

Model BLEU-4 METEOR ROUGE_L CIDEr

COCO-CN-1000
AoANet 12.0± 0.57 18.9± 0.21 38.8± 0.33 92.5± 3.45

M2 Transformer 12.2± 0.39 18.5± 0.33 39.2± 0.56 94.5± 1.56

Fine-Tuning 12.7± 0.42 18.7± 0.25 41.3± 0.24 100.3± 2.53

Feature-Based 14.3± 0.82 19.8± 0.71 41.6± 0.52 110.1± 5.09

TraVL 15.9 ± 0.14 20.8 ± 0.05 43.7 ± 0.40 121.6 ± 2.65
COCO-CN-2000
AoANet 13.7± 0.42 18.6± 0.25 40.8± 0.46 105.3± 2.31

M2 Transformer 13.2± 0.12 18.8± 0.19 41.1± 0.05 107.1± 0.95

Fine-Tuning 15.2± 0.21 20.0± 0.14 44.2± 0.33 120.9± 1.04

Feature-Based 16.7± 0.37 21.3± 0.29 43.6± 0.29 126.9± 1.63

TraVL 17.0 ± 0.33 21.8 ± 0.28 44.7 ± 0.42 132.3 ± 3.11
COCO-CN-5000
AoANet 15.7± 0.34 20.3± 0.25 44.1± 0.34 126.2± 2.57

M2 Transformer 15.1± 0.19 19.7± 0.05 43.4± 0.24 123.4± 0.80

Fine-Tuning 17.6± 0.25 21.4± 0.17 46.5± 0.25 148.7± 0.94

Feature-Based 18.4± 0.21 22.1± 0.22 45.6± 0.57 144.3± 1.22

TraVL 19.6 ± 0.11 22.8 ± 0.17 47.0 ± 0.16 155.6 ± 2.01

5.3 Quantitative Analysis

We establish two types of baselines to which we compare our method. The first
type is the novel captioning models that score high on MS-COCO without involv-
ing VL pre-training, including AoANet [11] and M2 Transformer [4]. And the
second type is pre-training-based approaches that transfer pre-trained VL mod-
els for cross-lingual image captioning, including the fine-tuning method and the
basic feature-based approach, which are described in Sect. 3. We experiment on
subsets of COCO-CN and report the results in Table 2.

Effect of VL Pre-Training. AoANet and M2 Transformer are inferior to
the pre-training-based approaches on all data scales. This shows that the VL
pre-training, although performed for a different language, can actually benefit
the target-language task via knowledge transfer. Pre-trained VL models can
transform image regions into representations with high-level semantics that are
not specific to a certain language.

Effect of Linguistic Pre-Training. Compared to the fine-tuning approach,
the feature-based approach and TraVL yield better results, especially when the
training set is small. But on COCO-CN-5000, the fine-tuning approach surpasses
the feature-based approach on the ROUGE_L and CIDEr metrics. We explain
this result by the use of the pre-trained GPT-2 decoder. When less training data
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is available, the linguistic knowledge carried by GPT-2 is essential for generating
fluent and coherent sentences. However, a large training set allows the model to
learn sufficient linguistic knowledge during fine-tuning, making the advantage of
leveraging a pre-trained language model less significant.

Effect of Joint Attention and Adjacent Layer Fusion. On all data scales,
TraVL outperforms the basic feature-based approach on all evaluation metrics.
The advantage of TraVL over the basic feature-based approach stems entirely
from the architectural differences. For one thing, the use of joint attention con-
tributes to better alignment of different modalities at the semantic level. For
another thing, the adjacent layer-fusion mechanism allows the decoder to lever-
age VLP’s multilayer representations in a more fine-grained manner.

5.4 Qualitative Analysis

To provide an intuitive understanding of the different methods, we present a
qualitative analysis of the captions generated for a few sample images. The
images are shown in Fig. 3 and the captions are presented in Table 3. For each
image, we list the ground truth as well as the captions generated by three differ-
ent models (i.e., TraVL, M2 Transformer, and the fine-tuning method) trained
on COCO-CN-1000.

By comparing the generated captions with the ground truths, we identify two
aspects that make TraVL better than the other two methods. First, M2 Trans-
former and the fine-tuning method sometimes suffer from a misunderstanding
of the objects in the images. In the Fig. 3a, the color kite described by M2

Transformer and the hat described by the fine-tuning method are both misinter-
pretations of the objects. Secondly, TraVL captures the details more accurately.
For instance, in Fig. 3b, only TraVL describes the cake as a colorful cake; and in
Fig. 3c, only TraVL identifies the vehicle as a double-decker bus. The other two
models either miss the attribute or completely ignore the object.

5.5 Ablation Studies

We perform analysis on ablated versions of TraVL to quantify the effect of our
proposed modules. All models are trained on COCO-CN-1000 in this experiment.
We compare the full-featured TraVL against the following variations:

– Base: Conventional cross attention is used to fuse VLP’s highest-level repre-
sentation into GPT-2.

– Base + Random Init. Enc.: The VLP encoder is randomly initialized.
– Base + Random Init. Dec.: The GPT-2 decoder is randomly initialized.
– Base + Joint Attention: Each decoder layer attends to the visual repre-

sentation of its corresponding encoder layer via joint attention.
– TraVL (k = 5): Each decoder layer attends to 5 encoder layers.
– TraVL (All): Each decoder layer attends to all encoder layers.

And the results are presented in Table 4.
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Fig. 3. Sample images from COCO-CN test set.

Table 3. Comparison of captions generated by different models trained on COCO-CN-
1000. The English translations of the captions are given in parentheses.

Image Captions

Fig. 3a

TraVL: 一个穿着彩色连衣的女人在草地上玩飞盘。
(A woman wearing a colorful suit is playing frisbee on the grass.)
M2 Transformer: 一个女孩踩着一个彩色风筝在草地上。
(A girl is treading on a colorful kite on the grass.)
Fine-Tuning: 一个带着帽子的女孩正在草地上。
(A girl wearing a hat is on the grass.)
GT: 一个正在玩飞盘的女孩。
(A girl is playing frisbee.)

Fig. 3b

TraVL: 一个女人在公园中准备切着一个彩色的蛋糕。
(A woman in the park prepares to cut a colorful cake.)
M2 Transformer: 一个女孩拿着一个彩色帽子在女人坐在蛋糕前。
(A girl is holding a colorful hat the woman sitting in front of the cake.)
Fine-Tuning: 一个女人正在厨房里。
(A woman is in the kitchen.)
GT: 户外一个穿着蓝色T恤的女人手里拿着一盘子五彩蛋糕。
(Outdoors a woman in a blue T-shirt is holding a plate of colorful cake.)

Fig. 3c

TraVL: 一辆双层公交车停在街道上。
(A double-decker bus is parking on the street.)
M2 Transformer: 一条公交车停在街道上。
(A bus is parking on the street.)
Fine-Tuning: 一辆男人正在街道上。
(A man is in the street.)
GT: 两辆双层公共汽车行驶在城市马路上，街道两边有行人和建筑物。
(Two double-decker buses are driving on the city street, with people and
buildings on both sides.)
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Table 4. Ablation studies of TraVL with different variations on COCO-CN-1000.

Model BLEU-4 METEOR ROUGE_L CIDEr

Base 14.3± 0.82 19.8± 0.71 41.6± 0.52 110.1± 5.09

Base + Random Init. Enc. 3.0± 0.57 11.3± 2.05 25.3± 1.63 15.3± 1.35

Base + Random Init. Dec. 11.6± 0.98 18.9± 0.51 41.3± 0.33 95.3± 4.22

Base + Joint Attention 15.1± 0.59 20.4± 0.29 42.7± 0.28 116.1± 2.08

TraVL (k = 5) 14.7± 0.25 20.4± 0.17 43.6± 0.24 118.2± 2.13

TraVL (All) 13.0± 1.29 19.2± 1.07 39.9± 0.96 93.4± 6.45

TraVL (k = 3) 15.9 ± 0.14 20.8 ± 0.05 43.7 ± 0.40 121.6 ± 2.65

Effect of Pre-Trained VLP. Compared to using the pre-trained VLP model,
training the encoder from scratch substantially degrades the model performance.
This demonstrates the importance of leveraging the knowledge acquired from
VL pre-training. Without this knowledge, it is hard to train a powerful feature
extractor from scratch with limited training data.

Effect of Pre-Trained GPT-2. Randomly initializing the GPT-2 decoder
also harms the performance, showing that the captioning model can benefit
from using a pre-trained language model. The linguistic pre-training on Chinese
textual data allows the GPT-2 decoder to quickly adapt to the in-domain data.

Effect of Joint Attention. Compared to the base model, allowing each
decoder layer to attend to the encoder layer at the same level via joint atten-
tion improves the performance by a large margin. On the one hand, aligning
the encoder and decoder layers helps exploit the visual information at a more
fine-grained level. On the other hand, the introduction of joint attention can com-
pensate for the architectural mismatch and is better at aligning both modalities.

Effect of Adjacent Layer Fusion. In contrast to the intuition that fusing
more encoder layers into each decoder layer can further boost the performance,
the results show the opposite. Increasing k from 3 to 5 hardly does any good, and
fusing all encoder layers further worsens the performance. It can be explained by
the vastly increased network complexity, which not only increases computation
time and memory usage but also leads to difficulties in optimization. Therefore,
our choice of k = 3 makes a good trade-off between the richness of information
and the simplicity of the network.

6 Conclusions

In this paper, we present TraVL, a framework for transferring pre-trained VL
models for cross-lingual image captioning. To enforce the semantic alignment
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between different modalities, we propose to fuse visual and linguistic represen-
tations through joint attention instead of conventional cross attention. To fully
exploit the rich hierarchy of visual information, we develop an adjacent layer-
fusion mechanism that allows each decoder layer to attend to multilayer visual
representations with similar semantics. Experiments on the COCO-CN dataset
show that TraVL outperforms the state-of-the-art captioning models and other
transfer learning methods.
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Abstract. Most recent arts in image captioning rely solely on exploring
the information contains in the image or modeling the inner-relations
among visual features, which fails to generate informative captions in
some cases. Part of what defines humans is the ability of common-sense
reasoning behind semantic association, which is different from machines.
To this end, we propose a Common-Sense Aware method (CSA) for
image captioning, which capitalizes general prior knowledge to associate
extra semantic information during generation to infer more informative
captions. Specifically, based on ConceptNet, we extract common-sense
knowledge features using pre-generated concepts to provide comprehen-
sive associated semantic information for captioning. We conduct exten-
sive experiments on the MS COCO dataset to demonstrate the effective-
ness of CSA, results show that it furthers state-of-the-arts.

Keywords: Common-sense perception · ConceptNet · Attention
mechanism · Image captioning

1 Introduction

Compared with other tasks [3,21], image captioning is more challenging. The
main challenges not only lie in generating fluent natural language sentences but
also in comprehensive visual understanding (e.g., concepts, relationships) of the
input image.

Inspired by the encoder-decoder framework in machine translation [20], early
methods apply CNNs to encode images as vectors and RNNs to generate cap-
tions. To further focus on relevant spatial aspects (e.g., regions) of images, recent
methods resort to attention mechanisms to design captioning models. Existing
methods also explore the effectiveness of semantic information which is taken as
extra input during generation to produce semantically consistent captions. How-
ever, today’s methods [1,5,23,25,27] are good at detecting and telling explicit
information, such as objects, but failing to reason. As far as we know, reasoning
is a unique ability of humans to obtain comprehensive information based on the
known limited information and prior knowledge.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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ConceptNet

hot dogsa man is holding a grill with

a man cooking a grillonhot dogs

Fig. 1. An example result of our proposed method.

Recognizing important objects or concepts in an image is much easier for a
machine than describing it with a comprehensive natural language sentence as
humans. As the example shown in Fig. 1, the base model correctly recognizes
important objects in the image and generates “a man is holding a grill with hot
dogs”. However, in general, humans rarely describe an image so stiffly. Given
the words “grill” and “hot dogs”, it’s easy to reason “a man cooking hot dogs
on a grill” based on common-sense knowledge. To tackle the problems of gen-
erating relatively brief captions and solely paying attention to explicit image
content, knowledge-driven methods [9,25,28] are proposed, which optimize the
quality of generated sentences by introducing common-sense knowledge [15,19].
These methods use detected semantic concepts(e.g., attributes) as single queries
to extract associate information in external knowledge bases, and then gener-
ate captions based on the extracted information. However, they extract relative
knowledge in a coarse way, while ignoring relationships between query concepts.
Meanwhile, the encoding methods of extracted knowledge information are sim-
ple, which needs to be further optimized.

To effectively take advantage of common-sense knowledge and achieve seman-
tic association, we propose a Common-Sense Aware method (CSA) for image
captioning. Different from existing methods [9,25,28], CSA is novel in both
knowledge extraction and caption generation. Firstly, we propose to solve the
problems of inadequate caption generation and implied semantic mining from
the perspective of common-sense association, and resort to ConceptNet [19] for
the extension of limited semantic information, so as to expand the breadth of
image semantic perception in image captioning. Specifically, in the knowledge
extraction stage, this work adopts the knowledge extraction method based on
path-searching [4,16] to extract common-sense paths between each pre-generated
concept pair. Not only the direct connections between concepts but also multi-
hops indirect connections are considered to enlarged the search scope of rele-
vant knowledge. The final semantic features are retained through pruning, merg-
ing, and other simplified operations. Furthermore, aiming at the utilization of
extracted common-sense knowledge-based semantic information, this work con-
structs an attention-based feature fusion layer from the perspective of multi-
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source information encoding. Specifically, in the caption generation stage, the
feature fusion layer fuses the visual and the semantic information, which selec-
tively pays attention to these two kinds of features when generating words.

Contributions of the proposed method are three-fold: 1) A Common-Sense
Aware method (CSA) is proposed for image captioning, which takes advantage of
both the visual and the semantic information based on common-sense knowledge
to generate captions. 2) We propose a method based on path-searching to extract
semantic information of images, which utilizes pre-generated concept pairs as
query inputs. 3) To utilize the extracted semantic information during generation,
we design an attention-based feature fusion layer to encode two kinds of features
in a cooperative way, which deepens the visual understanding of the captioning
model.

2 Related Work

Thanks to the development of deep learning related technologies and success-
ful explorations in related fields such as machine translation, image captioning
methods based on the encoder-decoder framework in early studies [8,23,26] have
achieved promising progress. In general, these methods encode the input image
as a single vector by a CNN in the encoding part and generate captions by an
RNN in the decoding part. Attention-based methods are no longer limited by
encoding the input image as a single vector but represent it as a series of vec-
tors (such as sub-region vectors). These methods selectively pay attention to the
subset related to the current word during generation and assign the importance
of vectors by weights. Thus, words can be better aligned with relevant features
of fine granularity of images.

In order to make the description generation model free from the shackles
of brief caption generation and ignoration of explicit information, knowledge-
driven methods [9,25,28] propose to introduce external knowledge to optimize
the quality of the generated captions. Among them, Wu et al. [25] firstly proposes
to take advantage of external knowledge to generate captions, and further solves
visual question answering [2] with annotated texts in DBpedia [15]. DBpedia is a
database of structured information extracted from Wikipedia. Specifically, given
the image and predicted attributes, this method extracts the top five attributes
to obtain the annotations of each attribute in DBpedia and then encodes the
generated captions and the queried annotations to generate the answer. Zhou
et al. [28] introduces common-sense knowledge based on ConceptNet [19] during
generation, which comprehensively considers the visual features and knowledge
features of the image to generate captions. However, this method extracts the
associated terms of each detected object in ConceptNet and encodes all the
associated terms as a feature representation, which lacks fine-grained selection
and encoding of common-sense knowledge.

Most recently, Huang et al. [9] proposes an external knowledge-driven method
to improve the performance of the captioning model. In this method, external
common-sense knowledge in ConceptNet is introduced in the last step of word
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generation, so as to improve the generation probabilities of some words. However,
the extracted knowledge semantics are not introduced into the captioning model,
and the generation probabilities of some words are only changed in the last
generation step, which results in inadequate use of semantic information in the
model.

Fig. 2. An illustration of the proposed framework.

3 Methodology

From the perspective of common-sense perception, we propose a Common-Sense
Aware method (CSA) for image captioning. The framework of CSA is depicted
in Fig. 2, which takes advantage of extended semantic information based on
external knowledge to enrich generated captions.

3.1 Feature Extraction

We use two kinds of features in CSA: sub-region visual features and common-
sense knowledge-based semantic features. Specifically, the semantic features are
extracted based on pre-generated concept pairs and ConceptNet, which are then
further denoised and encoded.

Visual Features. Region-based visual features are extracted by an off-the-
shelf Faster R-CNN [1], which is pre-trained with object detecting task on Visual
Genome [14]. Specifically, These object-related sub-regions whose detection prob-
ability of each category exceeds the confidence threshold are represented as a
series of vectors after an RoI pooling layer.
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Common-Sense Extended Features. Taking the semantic relevance in struc-
tured knowledge base into account, we propose to optimize semantic perception
of the captioning model based on a common-sense knowledge graph and lim-
ited semantic information. As far as we know, ConceptNet includes lexical and
world knowledge from many different sources and contains abundant common-
sense information [19]. Thus, in this paper, we obtain common-sense semantic
extended information based on ConceptNet, which is then used as extra semantic
guidance during generation to enrich the semantic perception of the captioning
model. There are three steps to get common-sense knowledge-based features:
concept pair identification, sub-graph construction, and semantic encoding.

Concept Pair Identification. Intuitively, different from semantic concepts
such as objects and attributes, captions of images contain more comprehen-
sive semantic information. Therefore, we construct concept pairs based on pre-
generated captions as queries of path-searching in ConceptNet to obtain richer
semantic information. The identification process of concept pairs is as follows:
1) Pre-generate captions. Given an image, we utilize Up-Down [1] model to pre-
generate a caption Y1:T = {y1, y2, ..., yT }, where T is the number of words in
Y ; 2) Extract concept pairs. After filtering out stopwords in the pre-generated
caption, we use the remaining words as initial concepts C1:N = {c1, c2, ..., cN},
where N is the number of concepts; 3) Construct concept pairs. For the ith con-
cept in C1:N , we pair it with the subsequent N − 1 ones separately and obtain
concept pairs as common-sense query candidates P = {p1,2, p1,3, ..., p(N−1),N},
where pi,j = [ci, cj ], P contains N×(N−1)

2 pairs.

Sub-graph Construction. ConceptNet represents the general knowledge, links
between knowledge resources, and allows relative applications to better under-
stand the meanings of words. In this work, we only take the English part into
account, represent the common-sense knowledge as abundant triples, and further
translate the common-sense knowledge-based semantic extension and sub-graph
construction problem as a path-searching problem between concepts. The pro-
cess of sub-graph construction has two steps: 1) Path searching. For (ci, cj) in P ,
we search paths with multi-hops between ci and cj in ConceptNet, and reduce
noise information and computation by keeping up to 10 paths for each concept
pair; 2) Sub-graph Construction. For each path in the path set G, we score every
triple in G by transE [24] to reduce redundant paths and the preserved triples
are constructed as the common-sense knowledge sub-graph.

Semantic Encoding. To reduce noise information and computational complex-
ity, this work ignores relations between concept terms E = {e1, e2, ..., eM} in the
common-sense sub-graph, where M is the number of extended concepts. To fur-
ther introduce common-sense knowledge-based semantic information into image
captioning, we use Numberbatch word vectors that trained based on Concept-
Net as initial representations of extended concepts. Specifically, for ei ∈ E, we
represent it as a pre-trained vector in Numberbatch.
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Fig. 3. An illustration of the proposed captioning model.

3.2 Common-Sense Aware Captioning Model

The common-sense aware captioning model is proposed to take advantage of
both visual and common-sense knowledge-based extended semantic features for
image captioning. As shown in Fig. 3, it’s an attention-based model with two-
layer LSTMs.

Attention LSTM. To dynamically pay attention to visual features and
common-sense information, and further fuse these two kinds of features dur-
ing generation, we design a visual attention layer and a fusion attention layer.
At step t, an attention LSTM calculates query qt for attention blocks based on
the previous hidden state of the language LSTM h2

t−1, the global image feature
v̄ which denotes the mean pooling of sub-region visual features, the previous
generated word w′

t−1, and the previous hidden state and context vector of the
attention LSTM (h1

t−1, c
1
t−1):

wt−1 = Wemw′
t−1 (1)

xt = [h2
t−1, v̄, wt−1] (2)

h1
t , c

1
t = fatt−lstm(xt, (h1

t−1, c
1
t−1)) (3)

qt = h1
t (4)

where Wem ∈ R
|Σ|∗D is the word vectors of vocabulary, |Σ| is the number of

words, D is the dimension.

Attention Layers. Based on certain weight calculation rules, the attention
layers selectively focus on visual and common-sense knowledge-based semantic
features that relate to the current generated word. Specifically, it contains two
parts: a visual attention layer and a fusion attention layer that focuses on multi-
source feature encoding.
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Before the attention layer, a feature encoding layer [10] based on the multi-
head self-attention mechanism is firstly used to model the inner-relationships
among visual features. Based on the current attention query vector qt and the
sub-region features V , the visual attention layer fV −att calculates as follows:

ai = Wl(σ((WvV ) ⊕ (Whq1))) (5)

αi =
eai

∑r
i=0 eai

(6)

where Wl,Wv, and Wh are learned parameters of linear transformations, ⊕ means
element-wise add, σ represents tanh activation layer, r is the number of regions.
After that, the weighted sum of V is calculated based on attention weights to
obtain the visual attention result:

v̂ =
r∑

i=0

αivi (7)

Not all of the extracted semantic features are related to the current word, thus
the fusion attention layer selectively pays attention to these features by using
visual attention result as guidance. We update attention query qt as q′

t based on
v̂ to comprehensively consider multi-source features and mine the advantages of
multi-source information. Specifically, the calculation process of fusion attention
layer fe−att is as follows:

q′
t = Wq[qt, v̂] (8)

ai = W ′
l (σ((W

′
vE) ⊕ (W ′

hq′
t))) (9)

αi =
eai

∑M
i=0 eai

(10)

where Wq, W ′
l , W ′

v and W ′
h are learned parameters of linear transformations, M

is the number of concepts in the constructed common-sense sub-graph. Then,
the fusion attention result which is conditioned on the current query:

ê =
M∑

i=0

αiei (11)

Language LSTM. qt, v̂ and ê has encoded important information about the
current word, we concatenate them as the input of language LSTM, then calcu-
late the word distribution pt on the pre-defined vocabulary by softmax function:

x̃t = [qt, v̂, ê] (12)

h2
t , c

2
t = flan−lstm(x̃t, (h2

t−1, c
2
t−1)) (13)

pt = softmax(h2
t ) (14)
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Optimization. There are two training stages for the proposed model: −XE∗

to minimize negative log-likelihood estimation loss, and −RL∗ (Reinforcement
Learning-based strategy [1]) to maximize the negative expected CIDEr [22]
reward. At the −XE∗ stage, the objective is:

loss = −1
I

I∑

i=1

log p(T i|V i, Ei, vi; θ) (15)

where I is the number of images, T is the target caption, V is visual features, v is
the global visual feature (mean-pooling of V ), E is the extracted common-sense
features, and θ is the learned parameter.

At the −RL∗ stage, we further employ reinforcement learning to boost the
proposed model with CIDEr rewards. An update is implemented by computing
the gradient of the pre-defined CIDEr reward:

∇θE ≈ (R(c) − R(ĉ))∇θlogpθ
(c) (16)

where θ is the learned parameter, R is the CIDEr reward, and c/ĉ are ran-
dom/max sampled captions by the current caption generator under the inference
algorithm.

4 Experiments

4.1 Dataset and Metrics

Dataset. MS COCO dataset1 contains 123, 287 images, in which each image has
at least five captions in English. It is a standard benchmark for image captioning.
We use Karpathy split [13] for training, validation, and testing.

Metrics. We use BLEU, METEOR, CIDEr, ROUGE-L, and SPICE which are
publicly used metrics in image captioning evaluation2 to report our results.

4.2 Evaluation

Comparison with State-of-the-Art Methods. For comprehensive compar-
isons, we show results of both the −XE∗ stage (Table 1) and the −RL∗ stage
(Table 2) on Karpathy’s test split of MS COCO. At the −XE∗ stage, the proposed
model (Ours) outperforms existing knowledge-driven methods [25,28], which
demonstrates its effectiveness. Meanwhile, when compared with recent state-
of-the-arts [1,6,7,11,12,18,25,27], Ours achieves consistency improvements,
especially on CIDEr (117.2) and SPICE (21.4). It shows that common-sense
knowledge-based semantic features are beneficial to improve the quality of gener-
ated captions. At the −RL∗ stage, Ours outperforms existing knowledge-driven
1 https://cocodataset.org/.
2 https://github.com/tylin/coco-caption.

https://cocodataset.org/
https://github.com/tylin/coco-caption
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Table 1. Scores of methods on the public MS COCO test split in the −XE∗ stage. All
of the scores are represented as percentages (%).

Methods Metrics
B1 B2 B3 B4 METEOR CIDEr ROUGE-L SPICE

CNet [28] 73.1 54.7 40.5 29.9 25.6 107.2 53.9 –
AttNet [25] 74 56 42 31 26 94 – –
Att-CNN+LSTM [25] 74.0 56.0 42.0 31.0 26.0 94.0 – –
LSTM-Att [27] 73.4 56.7 43.0 32.6 25.4 100.2 54.0 –
Adaptive-Att [18] 74.2 58.0 43.9 33.2 26.6 108.5 – –
VSDA [7] 75.3 59.1 45.1 34.4 26.5 106.3 55.2 –
Stack-Cap [6] 76.2 60.4 46.4 35.2 26.5 109.1 – –
RFNet [12] 76.4 60.4 46.6 35.8 27.4 112.5 56.5 20.5
Up-Down [1] 77.2 – – 36.2 27.0 113.5 56.4 20.3
STMA [11] 77.4 61.5 47.6 36.5 27.4 114.4 56.8 20.5
Ours 77.1 61.3 47.7 36.8 28.1 117.2 57.1 21.4

Table 2. Scores of methods on the public MS COCO test split in the −RL∗ stage.
All of the following models are optimized with the RL-based strategy, and scores are
represented as percentages (%).

Methods Metrics
B1 B2 B3 B4 METEOR CIDEr ROUGE-L SPICE

IENet [9] 79.2 64.0 48.9 37.1 26.9 118.2 57.3 –
Stack-Cap [6] 78.6 62.5 47.9 36.1 27.4 120.4 56.9 20.9
RFNet [12] 79.1 63.1 48.4 36.5 27.7 121.9 57.3 21.2
Up-Down [1] 79.8 – – 36.3 27.7 120.1 56.9 21.4
CAVP [17] - – – 38.6 28.3 126.3 58.5 21.6
DeRF [5] 79.9 – – 37.5 28.5 125.6 58.2 22.3
STMA [11] 80.2 64.4 49.7 37.7 28.2 125.9 58.1 21.9
Ours 80.3 64.9 50.5 38.5 28.5 127.4 58.5 22.0

method [9] and recent state-of-the-arts [1,5,6,11,12,17] on most metrics, e.g.,
obtain CIDEr score of 127.4, which further demonstrates the effectiveness of the
proposed method.

Results suggest that common-sense-based semantic information of external
knowledge effectively provides supplementary semantics to help the captioning
model generate high-quality captions.

Ablation Studies. To figure out the contributions of different modules in the
proposed model, we conduct extensive experiments and compare the following
methods. Base: A two-layer LSTM model based on bottom-up [1], which dynam-
ically focuses on visual features during generation. E: Utilizing common-sense
knowledge-based semantic features; R: Applying visual feature refining; C: Fea-
ture fusion by attention result concatenation; F: Utilizing one attention layer to
encode both visual and semantic information; G: The proposed feature fusion
method, which contains two kinds of attention layers: visual attention and fusion
attention. Ablated results are shown in Table 3.
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Table 3. Results of ablation studies. All values are reported as percentage (%).

Methods Metrics
B1 B2 B3 B4 METEOR CIDEr ROUGE-L SPICE

Base-XE∗ 76.7 60.7 46.9 36.1 27.8 114.1 56.7 20.8
+E 76.7 60.7 47.0 36.1 27.8 114.6 56.8 21.0
+E+R+C 77.2 61.3 47.5 36.6 27.9 116.2 56.8 21.1
+E+R+F 77.2 61.3 47.4 36.4 27.9 116.3 56.9 21.0
+E+R+G 77.1 61.3 47.7 36.8 28.1 117.2 57.1 21.4
Base-RL∗ 79.6 64.0 49.1 36.9 28.0 123.2 57.8 21.4
+E 80.0 64.3 49.7 37.8 28.1 125.3 58.0 21.6
+E+R+C 80.0 64.4 49.9 38.0 28.3 126.6 58.1 21.9
+E+R+F 79.9 64.4 50.0 38.2 28.3 126.1 58.1 21.7
+E+R+G 80.3 64.9 50.5 38.5 28.5 127.4 58.5 22.0

1) Semantic association features based on common-sense knowledge. Compared
with the base model (Base), +E achieves better results, especially after the
RL-based training, e.g., +E exceeds the base model by 2.0 in CIDEr. It shows
that +E effectively captures the relevant semantic information of the image
based on common-sense knowledge. Only based on parallel attention mech-
anisms and a multi-source information connection layer, the performance of
the model is significantly improved.

2) Fusion modeling of visual and semantic features. Compared with +E,
+E+R+C performs better, e.g., boosts CIDEr/SPICE to 126.6/21.9. Specif-
ically, +E+R+C refines visual features, encodes both the visual and the
semantic features based on attention mechanisms respectively, and then con-
catenates them into one vector. Moreover, +E+R+G(CSA/Ours) selects
knowledge-based semantic features with the guidance of visual representa-
tion and improves CIDEr/SPICE to 127.4/22.0. Results show that visual
features help the proposed model (CSA) focus on relevant information more
accurately, and further optimize the utilization of common-sense knowledge-
based semantic information.

3) Semantic-based visual feature modeling. +E+R+F first uses common-sense
knowledge-based semantic features to update visual representations based on
the attention mechanism, concatenates the original visual features with the
updated ones, and then generates descriptions with the same structure as
Base. Compared with +E+R+C, it performs slightly better on B3/B4 and
slightly worse on CIDEr/SPICE. Considering that CIDEr and SPICE focus
on semantic consistency evaluation, results show that +E+R+C has higher
semantic consistency.

To sum up, the above analysis shows that: 1) Compared with Base, the pro-
posed model (CSA) relates to relevant semantic information based on common-
sense knowledge, thus generating more semantically rich descriptions; 2) The
internal relationship modeling of visual features deepens the visual understand-
ing of the proposed model and improves the quality of generated descriptions;
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Fig. 4. Qualitative examples. We show ground truth captions (GT, annotated by
humans), generated captions of the base model (Base) and the proposed CSA model
(Ours).

3) The fusion modeling of the visual and semantic features further improves the
captioning performance.

Case Study. Figure 4 compares generated captions of the base model (Base)
and the proposed CSA model (Ours). Among them, Base accurately predicts the
main content of the image, Ours takes advantage of common-sense knowledge-
based semantic features, which expands the scope of semantic perception based
on pre-generated concepts, and then generates better captions. For example, In
Fig. 4 a), Base correctly predicts “holding *** in her hand” about the little girl
but predicts “brush” as “toothbrush”. In this case, Ours alleviates the problem
of inaccurate target recognition and produces a more natural and reasonable
description of “brushing her hair”. As shown in Fig. 4 b), Ours can correct or
supplement insufficient semantics. For example, “a row of parking meters” is
generated from “a parking meter”, and “brick wall” is generated from “wall”. The
final caption is of higher quality and semantically richer than that generated by
Base.

The above analysis shows that: aiming at the problem of incorrect captions or
insufficient semantic perception of the base model, the proposed method expands
the scope of semantic perception by introducing common-sense knowledge. By
paying attention to more accurate features or relevant semantic information, the
proposed model generates better captions.

5 Conclusion

We propose a Common-Sense Aware method (CSA) in this paper, which takes
advantage of both visual and common-sense-driven extended semantic informa-
tion to generate captions. Specifically, to extract common-sense knowledge-based
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semantic information in ConceptNet effectively, we propose a method based
on path-searching with pre-generated concept pairs as queries. Furthermore,
to utilize the extracted semantic information during generation, we design an
attention-based feature fusion layer to encode two kinds of image features in
a cooperative way, which deepens the visual understanding of the captioning
model. Experimental results demonstrate that CSA outperforms recent state-of-
the-art methods.
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Abstract. Colorectal cancer (CRC) is the third most common cancer
worldwide. Colonoscopy is an effective technique for detecting colorectal
polyps, which are closely associated with colorectal cancer. In clinical
practice, segmenting polyps from colonoscopy images is of great signif-
icance, as it provides valuable information for diagnosis and surgery.
Many networks have demonstrated better segmentation results. However,
achieving accurate polyp segmentation remains a challenge due to the
diverse in size, shape, texture and color of polyps. This paper proposes a
Multi-Attention and Context Network (MACNet), which simulates the
process of determining the segmentation region by clinical experts, incor-
porating the Balancing Attention Module (BAM), Non-local Informa-
tion Statistical Attention module (Non-local), Position Rectify Module
(PRM) and Focus Module (FM). BAM and PRM learn to adjust the dis-
tribution of attention in the feature map from six different perspectives:
polyp region, surrounding mucosa, boundaries, channel axial, horizon-
tal axial and vertical axial of the feature map. Non-local captures the
connections between any two pixels in the feature map to supplement
long-distance global dependence. FM uses context information of differ-
ent scales to reason and refine the ambiguous regions in segmentation
results and then achieves more accurate polyp segmentation. We evalu-
ate the effectiveness of our network with six evaluation metrics on five
polyp datasets, and it can be seen from results that our MACNet can
achieve more accurate segmentation in general.

Keywords: Polyp segmentation · Semantic segmentation · Attention ·
Deep learning · Coloscopy

1 Introduction

Colorectal cancer is the third most common cancer worldwide, with a global
mortality rate of 9.4 % and a global prevalence of 100 million in 2020 according
to statistics [21]. As a result, preventing colorectal cancer has become a public
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safety issue. Studies have found that 95% of colorectal cancers are caused by the
progression of adenomatous polyps in the colorectum. Therefore, early tests and
diagnosis are essential to reduce the prevalence of colorectal cancer. Colonoscopy
can provide colorectal polyp location and contour information to help experts
remove colorectal polyps before they develop into colorectal cancer, so it is an
effective colorectal cancer screening and preventive technique. Accurate polyp
segmentation is of great importance in clinical practice. However, this is a chal-
lenging task due to differences in the size, shape, color and texture of polyps.
In addition, boundaries between the polyps and the surrounding mucosa are
unclear, which can also lead to misdiagnosis and missed tests, raising the risk of
disease. Another important cause of disease is the limitations and disparities in
medical resources that make screening untimely and inaccurate in many areas.
Therefore, an automated and accurate polyp segmentation technique that can
detect all potential polyps at an early stage is important for the prevention of
colorectal cancer [13].

Early polyp segmentation used polyp appearance features such as color, tex-
ture and shape to classify them. However, these traditional methods [9,19] rely
on manual labeling, which has high cost and low accuracy. In recent years, com-
puter vision has been greatly developed. The proposal of FCNs has greatly pro-
moted the development of image segmentation. U-Net [18] proposed a U-shaped
structure network including both encoder and decoder components. U-Net has
become the basic framework for many medical segmentation networks because
of its simple structure and high accuracy. U-Net++ [28] combines a DenseNet-
like structure based on U-Net, and these dense skip connections can improve
gradient fluidity. ResUNet [27] uses residual blocks to replace the convolution
operation in U-Net, making effective control over gradient disappearance and
explosion through independent short-circuit connections. Such connections allow
the layers behind the network to continuously learn missing information from the
previous layers and reduce redundancy. After the success of the attention mech-
anism in natural language processing, an increasing number of people notice its
application in visual tasks. The visual attention modules Squeeze and Excita-
tion (SE) [8], Non-local Information Statistical Attention (Non-Local) [24] and
Axial-Attention [7] are all plug-and-play modules that help networks focus on
important regions in the feature map, construct connections between pixels and
suppress unimportant regions and connections. Therefore, they have been widely
used in various visual tasks. In the task of polyp segmentation, the difference
in polyp size is one of the difficulties, which is also a challenge in vision tasks.
Since the size of the conventional convolution kernel is fixed, the range of the
receptive field corresponding to the feature map is limited, and it is difficult for
the network to perform contextual reasoning through a single-scale feature to
capture both small and large targets at the same time. DoubleU-Net [10] and
ResUNet++ [12] use the atrous spatial pyramid pooling (ASPP) [3] to obtain
multiscale features, and CaraNet [14] obtains multiscale features with the help
of the channel-wise feature pyramid (CFP) [15]. These multiscale features play
an important role in contextual reasoning. In addition, the proposal of dilated
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convolution ensures that features of different scales can be captured by adjust-
ing the dilation rate without increasing the amount of computation and losing
information in advance, which is of great help for vision tasks. Although many
polyp segmentation networks have paid attention to the importance of multiscale
features for context reasoning and have also added related modules to networks,
the segmentation results still fall short of the target. The main reason is that
indiscriminately exploring contextual features is not very helpful [16] in a small
target task such as polyp segmentation, as polyps make up a small proportion
of images and contextual features are dominated by surrounding mucosa that
make up a large proportion of images. This is very similar to camouflage object
segmentation. PFNet [16] noticed this problem and proposed a focus module
(FM). This module takes the feature map of the current encoder layer and the
prediction result from the upper layer as input, obtains four feature maps of dif-
ferent scales, uses them to infer the context information, and finds false positive
distraction and false negative distraction in the prediction. Then, FM eliminates
the ambiguous area by elementwise subtraction and elementwise addition to
achieve more accurate segmentation. Another challenge in polyp segmentation
is the unclear boundaries between polyps and the surrounding mucosa. Previous
networks focused on segmenting the entire region and ignored boundary con-
straints, which are critical for improving segmentation performance. Pranet [6]
proposed the reverse attention module (RA) to sequentially mine complemen-
tary regions and details by erasing the existing estimated polyp regions through
the output of the upper layer of prediction and focusing on the background
regions. ACSNet [26] designed the local context attention (LCA) module. LCA
aims to combine hard sample mining when merging shallow features and pays
more attention to uncertain and complex regions to achieve hierarchical feature
complementation and prediction. CCBANet [17] uses the balancing attention
module (BAM), which applies different attention to the foreground, boundaries
and background, and provides rich local information for the feature map in the
decoding stage.

This paper aims at two main difficulties in polyp segmentation, as shown in
Fig. 1: (1) the size and shape of polyps in colonoscopy images are greatly dif-
ferent; (2) high similarity in color and texture between polyps and surrounding
mucosal results in unclear boundaries. By simulating the process of determining
polyps by clinicians, we propose the Multi-Attention Context Network (MAC-
Net). First, we locate the position of polyps for coarse prediction, and then
draw the outline of polyps with the help of local texture, color characters and
differences between contrast pixels. MACNet contains four key modules named
Position Rectify Module (PRM), Balancing Attention Module (BAM), Non-local
Information Statistical Attention Module (Non-local) and Focus Module (FM).
Among them, PRM supplements the position information lost due to multiple
downsampling during the encoding stage and rectifies the position of polyps in
the feature map. It consists of a channel axial attention module, horizontal axial
attention module and vertical axial attention module in series, which can obtain
long-distance relationships from different axial directions, so it can redistribute
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the attention of the feature map in 3D space and then reposition and make coarse
predictions. BAM pays attention to the problem of unclear boundaries between
polyps and the surrounding mucosa. It consists of foreground attention focus-
ing on polyps, background attention focusing on mucosa and boundary atten-
tion. They provide rich local information for predicting segmentation. Non-local
complements the global information required by the network in the decoding
stage. It calculates the connection between any two pixels in the feature map,
establishes long-distance dependence, and enhances the semantic representation
of deep features from a global perspective. FM performs contextual inference
through multiscale feature maps to reduce segmentation accuracy loss caused
by large polyp size gaps. The distraction discovery module in FM uses dilated
convolution of different sizes to obtain multiscale feature maps for contextual
inference to find false positive distraction and false negative distraction in the
prediction results from the upper layer. The distraction removal module in FM
uses elementwise addition and subtraction to remove ambiguous regions from
the prediction results and refines the prediction results to improve the accu-
racy of segmentation. MACNet has achieved high accuracy on the Kvasir-SEG,
CVC-ClinicDB, CVC-ColonDB, EndoScene and ETIS datasets.

Fig. 1. Examples of images and masks for three different datasets.

2 Method

Figure 2 shows our MACNet, a classic encoder-decoder structure with five lay-
ers. Specifically, the encoder takes a colonoscopy image as input, uses ResUNet
as the backbone, and obtains five feature maps {fi, i = 1, 2, 3, 4, 5} with a
size of [h/2k−1, w/2k−1]. f5 can characterize the high-level semantic features
of colonoscopy images. However, multiple downsampling operations during the
encoding stage lose the position information of the polyps. We use PRM to rec-
tify the position of polyps on three dimensions of space and then make coarse
predictions. The BAM takes the output from the same encoder layer as the
input, and obtains the polyps, surrounding mucous and boundary attention fea-
ture maps. The Non-local establishes the connection between any two pixels
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in the feature map, supplements the global information of long-distance depen-
dence. The feature maps obtained from these two modules with rich local and
global information are connected and passed in as inputs to the FM. The other
two inputs of FM are the feature map fi output from the same encoder layer
and the segmentation result predi+1 predicted by the upper decoder layer, then
use distraction discovery module to find the distraction regions in predi+1. The
connected feature map is then refined by elementwise adding and subtracting
operations to remove the distraction regions by the removal module in FM to
obtain a more accurate feature map for more accurate segmentation.

Fig. 2. Overview of the proposed MACNet.

2.1 Position Rectify Module (PRM)

We know that the feature map f5 has rich semantic information after five encod-
ing operations, but the location information of polyps in f5 is also lost due to
multiple downsampling operations, and directly using it for segmentation will
reduce the accuracy of the results. We propose PRM, which consists of three
modules: channel axial attention (SE), horizontal axial attention and vertical
axial attention [7]. PRM reallocates attention of the feature map in 3D space,
relocates polyp positions and makes coarse predictions.

Specifically, as shown in Fig. 3. First, PRM takes f5 ∈ RC×H×W from the
encoder as input, where C, H and W denote the number of channels, height and
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width of the feature map, respectively. PRM retains the channel direction of the
feature map and uses global average pooling to compress the width and height
to 1 to obtain Zc

5 ∈ RC×1×1. Then, network learns Zc
5 to obtain the attention

vector attentionc
5 and multiplies it to f5 to obtain a new feature map f

′
5, in

which the position of polyps in the channel direction is rectified. As shown in
formula (1):

Zc
5 = 1

H×W

∑H
i

∑W
j f i,j

5 ,

attentionc
5 = σ (W2ReLU (W1Z

c
5)) ,

f
′
5 = f5 ∗ Fscale(attentionc

5),
(1)

W1 and W2 are learnable parameters, σ is a sigmoid function, and Fscale extends
the attention vector attentionc

5 to the same size as feature map f5. Then, f
′
5 is

passed into the horizontal axis attention module to rectify the position of polyps
on the horizontal axis. First, PRM performs the 1 × 1 convolution operation on
f

′
5 to obtain the query vector q, key vector k and value vector v, q ∈ RH×N , k,

v ∈ RN×H , N= C ×W. Then, the q and k vectors are multiplied to obtain the
coordination matrix attentionH

5 , which represents the connection between the
horizontal pixels in the feature map. attentionH

5 and v are multiplied to obtain
a feature map of attention adjustment, and then f

′
5 is add to the result to obtain

feature map f
′′
5 , which rectified the position of polyps in the horizontal direction.

As shown in formula (2).

attentionH
5 = q × k,

f
′′
5 = γh

(
v × attentionH

5

)
+ f

′
5,

(2)

Similarly, f
′′
5 is passed into the vertical axis attention module, and the position

of polyps in the vertical direction is also rectified. As shown in formula (3).

attentionH
5

′
= q

′ × k
′
,

f
′′′
5 = γv

(
v

′ × attentionH
5

′)
+ f

′′
5 ,

(3)

γh and γv are learnable parameters, and × is a multiplication operation. Finally,
we use f

′′′
5 to make a coarse prediction.

Fig. 3. Position Rectify Module.
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2.2 Balancing Attention Module (BAM)

As show in Fig. 1, the polyps and surrounding mucosa are highly similar in color
and texture, resulting in unclear boundaries. We pay attention to the difficulty
of segmentation and integrate BAM into our MACNet. It can obtain the polyp,
mucosal and boundary attention feature maps. In this way, the network can
directly select the area it wants to pay attention to, avoid the interference of
useless areas, and reduce the segmentation loss caused by unclear boundaries.

First, we use the prediction output from the upper decoder layer to obtain
the attention scores of polyps, surrounding mucosa and boundaries, denoted as
attentionforeground, attentionbackground and attentionboundary, as formula (4),
where predi+1 represents the predicted result from the upper decoder layer, and
[]10 represents limiting the value of the feature map to 0–1. Then, the attention
score is multiplied with the feature map fi, i = 1, 2, 3, 4 to obtain attention
feature maps. After the convolution operation, we obtain a polyp feature map
fforeground, a mucosal feature map fbackground and a boundary feature map
fboundary focusing on different regions individually. We then contact these three
feature maps in the channel direction and use channelwise to redistribute channel
importance so that the network can focus on the region of interest. Finally, the
local attention feature map is added to the original feature map fi, i = 1, 2, 3, 4
to obtain the final output of the module fBAM

i . fBAM
i provides the net with

valuable local information during the decoding stage, greatly alleviating the
problems caused by unclear boundaries.

attentionboundary = 1 − |σ(predi+1)−0.5|
0.5 ,

attentionforeground = [σ (predi+1) − attentionboundary]10 ,

attentionbackground = [(1 − σ (predi + 1)) − attentionboundary]10 ,

(4)

2.3 Non-local Information Statistical Attention Module (Non-local)

To supplement the global information required by FM in the decoding stage,
we introduce a Non-local into MACNet. Non-local establishes a long-distance
dependence by calculating the connections between any two pixels in the feature
map, enriching the representation of deep semantic features in the feature map.

Specifically, we obtain the feature map from the upper decoder layer, repre-
sent each pixel in the feature map as a vector through a 1× 1 convolution, and
then calculate the connections between any two pixels in the feature map. Then,
the pixel is mapped to the new feature map. As formula (5):

yi =
1

c (x)
∑

∀j
f (xi, xj) g (xj) (5)

i and j can represent a certain spatial position of the input feature map, f is a
function that calculates the similarity between any two points, g is a mapping
function, and g is a 1 × 1 convolution. In this way, to calculate a point of the
new output feature map, each pixel of the input feature map is considered,
the connection between any two pixels is established, and an valuable global
information feature map is obtained.
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2.4 Focus Module (FM)

FM simulates the process of fine polyps outlining by clinicians. After roughly
identifying the location of polyps, clinicians make a secondary judgment about
the area of ambiguity by comparing the difference in color and texture between
polyps and surrounding mucosa. This contextual inference learning can again
refine the segmentation results. Additionally, to alleviate the segmentation prob-
lem caused by the large difference in polyp size, FM uses multiscale feature maps
for context reasoning. FM also notices the small proportion of polyp pixels in
the image, and the contextual features will be dominated by mucosal pixels that
occupy a large proportion in the image. FM is a purposeful contextual explo-
ration module, which consists of distraction discovery and distraction removal
modules. The distraction discovery module uses multiscale features for contex-
tual inference to find false positive and false negative regions in the prediction
results from the upper layer. We call these regions false positive distraction and
false negative distraction. Then, the distraction removal module uses elementwise
addition and elementwise subtraction operations to remove distraction regions
from the prediction results for more accurate segmentation.

Distraction Discovery. Humans rely on appearance characteristics such as
texture and color to perform contextual reasoning, i.e., comparing the difference
between ambiguous and confident regions to make the final decision [16]. Con-
textual reasoning can effectively improve the segmentation accuracy. Distraction
discovery takes the output feature map fi, i = 1, 2, 3, 4 from the same encoder
layer and the prediction result predi+1 from the upper decoder layer as input
and obtains false positive distraction Ffpd and false negative distraction Ffnd of
predi+1 with the help of four contextual reasoning branches. The context rea-
soning consists of three layers. The first layer is used for channel reduction, the
second layer uses convolution kernels of different sizes to extract local features
of different scales, and the third layer uses different dilation rates for context
perception. Table 1 shows the parameter settings of the four branches.

Table 1. Parameter settings of the four branches.

Branch 1 Branch 2 Branch 3 Branch 4

Layer1 Conv 3 × 3 Conv 3 × 3 Conv 3 × 3 Conv 3 × 3

BN+ReLU BN+ReLU BN+ReLU BN+ReLU

Layer2 Conv 1 × 1 Conv 3 × 3 Conv 5 × 5 Conv 7 × 7

BN+ReLU BN+ReLU BN+ReLU BN+ReLU

Layer3 DConv 3 × 3 DConv 3 × 3 DConv 3 × 3 DConv 3 × 3

dr = 1 dr = 2 dr = 4 dr = 8

BN+ReLU BN+ReLU BN+ReLU BN+ReLU
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Conv means convolution operation, BN means batch normalization opera-
tion, ReLU means activation operation, DConv means dilated convolution, and
dr means dilation rate. The outputs of all four branches are contacted in the
channel dimension and fused by convolution. The ability to perceive rich con-
text on a multiscale is obtained through the four branch networks, and the
ambiguous regions in the prediction can be found.

Distraction Removal. First, we contact the output feature maps of BAM and
Non-Local in the channel direction and then perform distraction removal on this
contacted feature map Fh to obtain a purer feature map for polyp segmentation.
An upsampling operation is performed to match the size of the distraction dis-
covery feature map, and then the false positive area is eliminated by elementwise
subtraction, and elementwise addition is used to compensate for false negative
areas.

Fup = U (CBR (Fh)) ,
Fr = BR (Fup − αFfpd) ,

F
′
r = BR (Fr + βFfnd) ,

(6)

CBR represents convolution, batch normalization and ReLU activation oper-
ations, and U represents upsampling. α and β are learnable scale parameters;
Here, we set them to 1. F

′
r is the feature map after removing distractions. Finally,

we use F
′
r to obtain more accurate predictions predi, i = 1, 2, 3, 4.

2.5 Deep Supervision

The network has a total of five predictions, one from the PRM and the other
four predictions from FM. The loss of each decoder layer adopts the sum of
DiceLoss and BceLoss, both of which are classical loss functions in segmentation.
To match the size of the decoder predictions, we process the real labels separately
[h/2k−1, w/2k−1] and add the loss values of the five layers as the network overall
loss. The formulas are as follows:

li = ldice
i + lbce

i (7)

lloss =
∑5

i=1li (8)

3 Experiments

3.1 Datasets

We evaluate our MACNet on five benchmark colonoscopy image datasets: ETIS
[19], CVC-ClinicDB/CVC-612 [2], CVC-ColonDB [22], EndoScene [1] and Kvasir
[11]. ETIS contains 196 images captured from 34 polyp video audios, and the
size of the images is 1225 × 966. CVC-ClinicDB contains 612 images captured
from 25 polyp videos, so it is also called CVC-612, and the size of the images
is 384 × 288. The CVC-ClinincDB and ETIS datasets are provided in the 2015
MICCAI automatic polyp detection subchallenge. CVC-ColonDB contains 380
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images, and the size of the images is 574 × 500. EndoScene is consists of CVC-
300 and CVC-612, so it contains 912 images. Kvasir-SEG is the largest and
most challenging dataset published recently. It contains 1000 images with large
differences in polyp size. There are 700 polyp images with a large target of more
than 160 × 160 and 48 polyp images with a small target of less than 64× 64.

3.2 Metrics

We mainly use the evaluation metrics of MICCAI 2015 Challenge as the metrics
to evaluate MACNet performance: Dice Score, Mean IoU (mIoU), Recall and
Precision. In addition, to better demonstrate the performance of MACNet, we
also use the Accuracy Rate and F2 coefficient.

Dice = 2× tp
2× tp+ fp+ fn , mIoU = tp

tp+ fp+ fn , Recall = tp
tp+ fn ,

P recision = tp
tp+ fp , Acc = tp+ tn

tp+tn+fp+fn , F2 = 5p × r
4p+ r ,

(9)

Table 2. Results under the first training strategy. The best, second results are high-
lighted.

Dataset Method Dice IoU Rec Pre Acc F2

Kvasir-SEG U-Net 79.94 69.35 81.51 82.91 82.17 81.79

ResUnet++ 81.33 79.27 70.64 87.74 88.40 86.86

PraNet 89.84 83.81 94.14 91.12 96.53 91.93

ACSNet 90.28 84.35 92.18 90.90 97.52 90.58

PFNet 93.35 87.52 91.40 95.38 97.98 92.17

CCBANet 92.59 86.21 92.21 92.98 97.43 92.36

MACNet(Ours) 94.74 90.01 93.85 95.65 98.39 94.21

CVC-ClinicDB
(CVC-612)

U-Net 87.62 79.47 87.32 89.99 87.36 87.84

ResUnet++ 79.55 79.62 70.22 87.85 88.30 88.66

PraNet 94.59 90.26 95.00 94.50 99.23 94.90

ACSNet 94.27 89.15 92.86 95.72 99.03 93.42

PFNet 95.67 91.71 97.01 94.37 99.23 96.47

CCBANet 95.43 91.26 94.79 96.08 99.22 95.05

MACNet(Ours) 95.88 92.09 95.87 95.89 99.28 95.88

CVC-
EndoSceneStill

U-Net 65.87 54.08 76.75 69.39 76.75 75.16

ResUnet++ 51.09 42.74 78.27 47.57 78.28 69.32

PraNet 83.62 76.55 88.33 87.18 96.60 88.10

ACSNet 84.78 73.58 79.37 90.97 97.37 81.45

PFNet 84.97 73.87 78.14 93.11 97.44 80.74

CCBANet 85.79 75.12 79.29 93.45 97.57 81.77

MACNet(Ours) 84.88 73.73 77.81 93.37 97.44 80.49



MACNet: Multi-Attention and Context Network for Polyp Segmentation 379

3.3 Experiment Results

We use two mainstream training strategies to train the network to verify the
performance of our network.

The first is to train and test separately according to CCBANet [17]. We divide
the three datasets of Kvasir-SEG, CVC-Clinic DB and CVC-ColonDB according
to 8:1:1. Table 2 shows the experimental results under the first training strategy.

The second strategy is to mix the Kvasir-SEG and CVC-ClinicDB datasets
according to Pranet [6]. The network takes 80% of the mixed dataset as the
training set and takes the remaining 20%, CVC-ColonDB, test set CVC-300
of EndoScene and ETIS datasets as the test sets to verify the effectiveness of
the network. Table 3 shows the experimental results under the second training
strategy.

Table 3. Results under the second training strategy. The best, second results are
highlighted.

Method Kvasir-SEG CVC-ClinicDB CVC-300 ETIS CVC-ColonDB

mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU

PraNet 89.8 84.0 89.9 84.9 87.1 79.7 62.8 56.7 70.9 64.0

SANet [25] 90.4 84.7 91.6 85.9 88.8 81.5 75.0 65.4 75.3 67.0

CaraNet 91.8 86.5 93.6 88.7 90.3 83.8 74.7 67.2 77.3 68.9

PFNet 92.2 85.5 94.6 89.8 92.1 85.4 82.2 69.8 75.9 61.2

MACNet 92.3 85.8 95.2 90.8 91.8 84.8 82.3 69.9 73.9 58.6

3.4 Experimental Parameters

The implementation of the network uses the PyTorch framework, and RTX3090
is used for training and testing. In the training phase, batch is set to 8, and input
images are cropped to 256 × 256. The other parameters are the same as those
in CCBANet. We adopt the Adam optimization algorithm with a momentum
beta1 of 0.9, a momentum beta2 of 0.999, and a weight decay of 1 × 10−5 to
optimize all parameters of the network. The initial learning rate is 0.001 and
adjusted with lr = init lr × (1 − epoch

nEpoch )power, where nEpoch is 200 and power
is 0.9.

Table 4. ISIC experimental results. The best results are highlighted.

Method Dice IoU Recall Precision

U-Net 67.40 54.90 70.80 –

Deeplabv3+(Xception) [4] 87.72 81.28 86.81 92.72

Deeplabv3+(Mobilenet) [4] 87.81 82.36 88.30 92.44

MSRF-Net [20] 88.13 83.25 89.03 92.67

MACNet(Ours) 91.42 84.19 92.29 90.50
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3.5 Learning Ability and Generalization Capability

Regarding the learning ability, CVC-ClinicDB and Kvasir-SEG, which are
involved in training, are better than the other networks in various evaluation
metrics under the two training strategies. In addition to the polyp dataset, we
also verify the learning ability of MACNet on the ISIC2018 [5,23] skin cancer
dataset, and it can be seen from Table 4 that various metrics are also better than
most networks.

We verified the generalization capability of MACNet on three datasets (CVC-
ColonDB, CVC-300 and ETIS) that are not involved in the training. Except for
CVC-ColonDB, the evaluation metrics on the other two datasets were higher
than the other networks.

3.6 Ablation Study

We adopt ablation studies to verify the effectiveness of the introduced two mod-
ules FM and PRM, and the baseline is the CCBANet with the CCM removed.
The effect of FM and PRM on network performance improvement can be seen
in Table 5 and Fig. 4.

Table 5. Ablation study for MACNet on the Kvasir-SEG dataset.

Setting Dice IoU Rec Pre Acc F2

Backbone 92.85 86.65 89.40 96.57 97.87 90.75

Backbone+PRM 93.21 87.28 90.79 95.76 97.95 91.74

Bcakbone+FM 93.84 88.40 92.78 94.93 98.12 93.20

Backbone+PRM+FM 94.74 90.01 93.85 95.65 98.39 94.21

Fig. 4. Qualitative results visualization of ablation experiments.

4 Experimental Result Analysis

As shown in Table 2 and Table 3, compared with other models, MACNet has
improved performance, which is related to the multi-perspective processing of
information and the increase of model parameters.

Specifically, the processing of information is carried out from two perspec-
tives: 1) Span range of information: feature maps with rich local and global
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information are essential. To obtain local information, we retain the BAM in
CCBANet, which implements separate attention for foreground, boundary and
background, and then learns to fuse these attention feature maps to obtain local
feature maps. To get global information, we refer the Non-local to MACNet.
Non-local mainly captures long-distance dependencies by calculating the depen-
dencies between any two pixels in the feature map. 2) Information determination
process: We simulate the process of experts to determine the polyps, first use
PRM to determine the position of the polyps, make a rough prediction, and then
use the FM to correct the false positive area and false negative area to achieve
accurate segmentation. Figure 5-1 shows that the position prediction results is
inaccurate. Figure 5-2 is more accurate in predicting the position of polyps after
adding PM, but there are still a small number of false negative areas, which is
caused by the unclear boundary. We add FM to MACNet. As shown in Fig. 5-4,
the segmentation result is indeed optimized in the difficult segmentation area at
the edge. And in Fig. 5-3, we only added FM, although the model is accurate
in the segmentation of difficult-to-segment areas, but there are a large range of
false negative areas. So the idea of determining the position of the polyp first
and then performing the fine segmentation is very necessary.

Fig. 5. Qualitative results visualization on colonoscopy image of ablation experiments
(best viewed in color).

The number of parameters of our model is 39,249,755, which is an increase of
7,674,491 parameters compared to our baseline model CCBANet. After analy-
sis, this is mainly the amount of parameters extracted from multi-scale features
in the decoding stage. The decoding module of CCBANet uses a single-scale
convolution kernel with small parameters, but this is difficult to pay attention
to polyps with large targets and small targets at the same time. We notice this
problem and use four parallel convolution kernels of different scales to extract
multi-scale features, which improves the model effect. Also the increased param-
eter quantity increases the upper limit of the model capability. It is very friendly
to big data sets. Table 2, on the kvasir-SEG dataset of 1000 images, various
indicators have been significantly improved, among which the Dice coefficient is
increased by 2.5, the Mean IoU is increased by 3.8, the Recall is increased by
1.64, the Precision is increased by 2.67, and the Accuracy is increased by 0.96, F2
increased by 1.85. But we can also observe that the CVC-EndoSceneStill doesn’t
work well, mainly because this dataset is composed of two small datasets, CVC-
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300 and CVC-612, and the domain gap between the two datasets is obvious.
Therefore, the increase of the number of model parameters are acceptable.

5 Conclusion

In this paper, our proposed MACNet network exhibits superior performance on
polyp segmentation. MACNet uses PRM to rectify the position of polyps in the
feature map for coarse segmentation prediction, BAM and Non-local provide FM
local informative feature maps and global informative feature maps, and then
MACNet uses FM to find false positive distraction and false negative distraction
that cause low accuracy and removes ambiguous regions by elementwise subtrac-
tion and elementwise addition to achieve finer segmentation. In the future, we
will continue to improve the performance of MACNet and explore applications
in polyp video segmentation.
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Abstract. Temporal heterogeneous graphs can model lots of complex
systems in the real world, such as social networks and e-commerce appli-
cations, which are naturally time-varying and heterogeneous. As most
existing graph representation learning methods cannot efficiently han-
dle both of these characteristics, we propose a Transformer-like repre-
sentation learning model, named THAN, to learn low-dimensional node
embeddings preserving the topological structure features, heterogeneous
semantics, and dynamic evolutionary patterns of temporal heterogeneous
graphs simultaneously. Specifically, THAN first samples heterogeneous
neighbors with temporal constraints and projects node features into the
same vector space, then encodes time information and aggregates the
neighborhood influence in different weights via type-aware self-attention.
Experiments on three real-world datasets demonstrate that THAN out-
performs the state-of-the-arts in terms of effectiveness with respect to
the temporal link prediction task.

Keywords: Temporal heterogeneous graphs · Graph neural networks ·
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1 Introduction

Graph representation learning, as an important task in machine learning, has sig-
nificant practical value in areas such as social networks and recommendation sys-
tems. Existing graph representation learning methods usually take static graphs
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Fig. 1. A toy example of the temporal heterogeneous graph from a user-item interac-
tions network. (a) User-item interactions network; (b) Temporal heterogeneous graph.

as input to obtain low-dimensional embeddings by encoding local non-Euclidean
structures, and have achieved extensive excellent performance in downstream
tasks such as link prediction [14,21] and node classification [15,25].

However, most graphs in the real world are naturally heterogeneous and
dynamic, which cannot be accurately represented by static homogeneous graphs.
Taking the example of a user-item interaction network in e-commerce scenar-
ios [23], illustrated in Fig. 1(a), there are two types of nodes (user and item) and
three types of interactions (browse, favorite, and buy). Additionally, each inter-
action is associated with a continuous timestamp to indicate when it occurred.
In this paper, we define such interaction sequences between different types of
nodes as temporal heterogeneous graphs (THG). It is of great significance to
learn representations of THG with dynamic and heterogeneous characteristics
for modeling real-world complex systems.

In the case of the user-item interactions network shown in Fig. 1(a), THG
representation learning has the following challenges compared to static homoge-
neous graph representation learning:

• (C1) How to model the heterogeneity? The nodes and edges in THG are of
various types and have rich semantics, making it difficult to obtain sufficient
heterogeneous information just by encoding local graph structure.

• (C2) How to model the continuous dynamics? The edges in the THG are
time-informed and time-dependent, i.e., each event occurs with a timestamp
and current event may affect the occurrence of future events. For instance,
there might be causal relationships between the interaction of searching for
headphones on 18 June and the interaction of purchasing headphones on 11
November by user A. Therefore, both reasonably efficient methods of con-
verting temporal information into dynamic features and temporal constraints
are needed to avoid violating the temporal causality between interactions.

• (C3) How to deal with new nodes? The dynamics of the THG imply that new
nodes will emerge in the future (e.g., users D and E are two new nodes that
appeared on 11 November compared to 18 June), which makes it necessary
to construct an inductive modeling approach.

As for the heterogeneity, earlier methods [2,5,31] preserve heterogeneous
information by designing semantic meta-paths to generate heterogeneous
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sequences, and recent studies [8,21,26,33] aggregate information from heteroge-
neous neighborhood by extending the message-passing process of graph neural
networks (GNNs). Concerning dynamics, it is general to split temporal graphs
into several static snapshots (i.e. discrete-time dynamic graph, DTDG [13])
and use RNNs or attention to capture the evolutionary patterns between snap-
shots [3,18,20,30]. Although these methods can learn graph dynamics of the
THG to some extent, the temporal information within the same snapshot
is usually ignored, and the scale of snapshots needs to be predetermined in
advance. Recently, researchers have proposed continuous-time dynamic graph
(CTDG [13]) approaches [9,11,16,27,29] to capture dynamics via passing infor-
mation between different interactions, or using continuous-time functions to gen-
erate temporal embedding. In regard to the new nodes, inductive graph repre-
sentation learning methods [7,25,27,29] recognize structural features of node
neighborhood by learning trainable aggregation functions, so that rapidly gen-
erate node embeddings in new subgraphs. Plenty of studies have attempted to
solve the above challenges, nevertheless, few approaches can address them at the
same time.

In this paper, we propose a novel Temporal Heterogeneous Graph Atten-
tion Network (THAN), which is a continuous-time THG representation learning
method with Transformer-like attention architecture. To handle C1, we design
a time-aware heterogeneous graph encoder to aggregate information from differ-
ent types of neighbors. To handle C2, THAN samples temporally constrained
neighbors from historical heterogeneous events, converts dynamic features into
time embeddings by a time encoder, and incorporates them into the information
propagation procedure. To handle C3, THAN is designed as a message-passing
model based on neighbor sampling to ensure that the entire learning process does
not introduce global priori information. The main contributions of our work are
summarized as follows:

• We propose an inductive continuous-time THG representation learning
method, which can capture both heterogeneous information and dynamic
features.

• We introduce the transfer matrix and self-attention mechanism to implement
the information aggregation of heterogeneous neighbors.

• We conduct experiments on three public datasets and the results demonstrate
the superior performance of THAN over state-of-the-art baselines on the task
of temporal link prediction.

2 Related Work

Our work is related to representation learning on static graphs, temporal graphs
(i.e. dynamic graphs), and self-attention mechanism on graphs.

Representation Learning on Static Graphs. Graph representation learn-
ing produces low-dimensional embeddings by modeling the topology and node
attribute information. Early methods [2,5,6,19] generate sequences of nodes by
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random walks and then learn node co-occurrences to obtain representations. Luo
et al. [17] defines ripple distance to optimize the walking procedure. In order to
integrate rich node features while learning network structure information, the
GNN-based approaches [7,8,15,21,25,26,33] update node embeddings by aggre-
gating neighborhood influence and propagating information across a multi-layer
network to capture the high-order patterns. Focus on dealing with heterogene-
ity, meta-paths and heterogeneous attention are the two most used strategies.
However, these methods cannot deal with temporal evolutionary patterns.

Representation Learning on Temporal Graphs. According to the way tem-
poral graphs are constructed, the temporal graph representation learning meth-
ods can be divided into two categories: discrete-time methods, which describes
the temporal graph as an ordered list of graph snapshots; continuous-time meth-
ods, which treats the temporal graph as an event stream with timestamps.

For the former, EvolveGCN [18] uses GCN to encode static graph structure
and evolves the parameters of GCN by RNN. DySAT [20] uses structural atten-
tion to aggregate information from different neighbors in each snapshot and uses
temporal attention to capture evolution over multiple snapshots. DHNE [31]
performs random walks in THG under the guidance of meta-paths and pro-
poses the dynamic heterogeneous skip-gram model to learn the node embeddings.
DyHATR [30] adopts hierarchical attention to learn heterogeneous information
and applies RNNs with temporal attention to capture dependencies among snap-
shots. HTGNN [3] jointly models heterogeneous spatial and temporal dependen-
cies through intra-relational, inter-relational, and cross-temporal aggregation.
Although the discrete-time methods succeed in learning the dynamic patterns of
the temporal graphs, they ignore the time information within the same snapshot
and lead to a weakened connection between graph snapshots.

Recent studies [9,11,16,22,27,29] have shown the superior performance of
continuous-time methods in dealing with temporal graphs. JODIE [16] uses
RNNs to propagate information in interactions and update node representations
smoothly at different timesteps. TGAT [29] is designed as a GAT-like neural
network, which propagates node information by sampling and aggregating his-
torical neighbors, and learns high-order patterns by stacking multiple layers.
CAW-N [27] proposes Causal Anonymous Walks (CAWs) to inductively rep-
resent a temporal graph and uses RNN to encode the walk sequences. These
methods make full use of temporal information and model the evolution of the
graph without taking into account the heterogeneity. THINE [9] and HPGE [11]
combine heterogeneous attention and Hawkes process to model graph hetero-
geneity and dynamics but do not consider the edge attributes.

Self-attention Mechanism. Transformer [24] proposed by Vaswani et al. for
machine translation has achieved great success in NLP and CV tasks, which
has recently been attempted for graph representation learning. For example,
Graphormer [32] generalizes positional encoding to the graph domain and uses
scaled dot-product attention for message passing. Transformer relies on the self-
attention mechanism to learn contextual information for sequences. A scaled
dot-product attention layer can be defined as:



Transformer-Based Representation Learning on THGs 389

Attn(Q,K,V) = softmax(
QK�
√

d
)V (1)

where Q denotes the ‘queries’, K the ‘keys’ and V the ‘values’. They are the
projections of the input Z on the matrices WQ, WK and WV , where Z contains
the node embeddings and their positional embeddings.

3 Preliminaries

In this section, we introduce the definition of temporal heterogeneous graphs
and the problem of temporal heterogeneous graph representation learning.

Definition 1. Temporal Heterogeneous Graph. A temporal heterogeneous
graph is G = (V,E, T, φ, ϕ), where V denotes the set of nodes corresponding
to a node type mapping function φ : V → A, E denotes the temporal events
(i.e. edges) corresponding to an event type mapping function ϕ : E → R, and
T denotes the set of timestamps. A and R are node type and event type sets,
respectively, and |A| + |R| > 2. Notice that, event e = (u, v, t, r, χ) means that
there is an edge from u to v at time t, where r = ϕ(e) denotes the event type and
χ denotes the edge feature.

For instance, a temporal heterogeneous graph about user-item interactions in
Fig. 1(b) consists of 13 nodes, 17 events (a smaller subscript of t indicates an ear-
lier event), 2 types of nodes, and 3 types of events. Specifically, V = {u1, ..., i8},
E = {(u1, i1, t1, r2), ..., (u5, i5, t8, r3)}, A = {user, item}, R = {r1, r2, r3},
φ(u) = user and φ(i) = item.

For any node pair (u, v), a temporal causal path is a set of events consisting of
u as the source node of the start event and v as the target node of the terminal
event. Therefore, the temporal shortest path distance dt(u, v) is defined as the
minimum length of the temporal causal path from u to v with all events on the
path occurring no later than t. Denote Vt as the set of nodes that appear up to
time t, and for each node v ∈ Vt, define its k-hop temporal neighbors as:

N k
t (v) = {u : dt(u, v) ≤ k, u ∈ Vt} (2)

For node v, we define its k-hop temporal neighborhood as Gk
t (v), which is a

subset of the temporal heterogeneous graph G and can be induced by N k
t (v).

Gk
t (v) contains the source node v and its neighbors N k

t (v), events between the
nodes, and timestamps of these temporal events. The final representation of node
v will generate relying on Gk

t (v). Notice that, we use Nt(v) and Gt(v) to simplify
the representation of N 1

t (v) and G1
t (v) in this paper, respectively.

Definition 2. Temporal Heterogeneous Graph Representation Learn-
ing. Given a temporal heterogeneous graph G and the node features X, it aims
to learn a mapping function F : F(G,X) → R

|V |×d, where |V | is the node size
and d is the dimension of embeddings, d � |V |. This function maps nodes to
low-dimensional vector space while preserving temporal, structural, and semantic
information.
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Fig. 2. The architecture of the l-th THAN layer for node u0 at time t.

4 The Proposed Model

In this section, we present a Transformer-like attention architecture named
THAN. It uses mapping matrices to project node embeddings into the same vec-
tor space, then passes neighborhood information by dot-product attention cor-
responding to different event types. Similar to GAT [25], THAN can be thought
of as a local aggregation operator that captures higher-order information by
stacking multiple THAN layers. Fig. 2 shows the architecture of the l-th THAN
layer, which has three components: temporal heterogeneous neighbor sampling,
dynamic embedding mapping and temporal heterogeneous graph attention layer.
After encoding, we design a heterogeneous graph decoder for the temporal link
prediction task, which receives the node representations from THAN as inputs.

4.1 Temporal Heterogeneous Neighbor Sampling

For the purpose of improving the induction and generalization performance of
the model, THAN does not select all but a certain number of neighbors from the
temporal neighbors as input. Given a node v0 and time t, sample N neighbors
from its 1-hop temporal neighbors Nt(v0), denoted as {v1, ..., vN}.

We discuss two neighbor sampling strategies: uniform random sampling,
where all temporal neighbors are randomly selected with equal probability; top-
N recent sampling, where the time difference with the source node is calculated
and sorted in ascending order, then select the top N neighbors. Intuitively, recent
interactions reflect the node’s current state better than distant interactions and
have a greater influence on future events. On the contrary, the distant interac-
tions may introduce noise. Therefore, we use the top-N recent sampling strategy
to sample neighbors.

In the temporal heterogeneous graph, the number of different-typed events
varies greatly, which can easily lead to an unbalanced distribution of the types
of sampled neighbors. To avoid sampling bias as far as possible, THAN limits
the number of samples of each event type to no more than M . Assuming that
the total number of event types related to the source node is γ (γ ≤ |R|), the
total number of sampled neighbors N satisfies N ≤ γ ∗ M .
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4.2 Dynamic Embedding Mapping

For different nodes, TGAT [29] assumes that they are in the same feature dis-
tribution and share parameter matrices, which does not hold in heterogeneous
graphs. Furthermore, in the real world, there might exist multiple types of edges
between two nodes, so we must consider both node and edge types when prop-
agating node information.

Inspired by TransD [10], THAN uses mapping matrices to project node fea-
tures from the node-type space to the event-type space, which uses projection
vectors to reduce model parameters and avoid matrix multiplication calculations
than directly parameterizing the matrices. Given an event e = (u, v, t) with its
meta relation 〈φ(u), ϕ(e), φ(v)〉 [8], define the mapping matrices as:

Meu = eϕ(e)n�
φ(u) + Id×d (3)

Mev = eϕ(e)n�
φ(v) + Id×d (4)

where e and n denote the projection vectors of event types and node types, both
of which are trainable. The projected node embedding are:

hu(t) = Meuxu(t) = n�
φ(u)xu(t)eϕ(e) + xu(t) (5)

hv(t) = Mevxv(t) = n�
φ(v)xv(t)eϕ(e) + xv(t) (6)

where xu(t) and xv(t) are the input embeddings of node u and v, respectively.

4.3 Temporal Heterogeneous Graph Attention Layer

Different events in a temporal heterogeneous graph may have different features,
for example, in a question answering network, an answer interaction can be
regarded as an event, and its features can be determined by the content. To
enable event features to be propagated when aggregating information, THAN
adds them to the node embeddings followed by a normalization layer (e.g., Lay-
erNorm [1]). The event features will be resized to the same dimension as the
node embeddings, and the output is:

zi(ti) = LayerNorm(hl
i(ti) + χ0,i(ti)) (7)

where i indicates the i-th neighbor, χ0,i(ti) denotes the feature of event between
node v0 and vi at time ti, and set χ0,0(t) as zero vector for the source node.

Transformer [24] uses positional encoding to model relative position relation-
ships, thus solving the problem that the attention mechanism cannot capture the
sequential relationships between entities. In temporal graphs, a functional time
encoder [12,28] is usually used to map the time interval between nodes into a dT -
dimensional vector in place of positional encoding. THAN uses a Bochner-type
functional time encoding [28,29] as:

TE(t) =
√

1
dT

[cos(ω1t), sin(ω1t), ..., cos(ωdT
t), sin(ωdT

t)] (8)
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where {ωi}s are learnable parameters. We merge the time embeddings with the
node representations to obtain the node-temporal feature matrices as:

Zs(t) = [ze1
0 (t)‖TE(0), ..., zeN

0 (t)‖TE(0)]� (9)

Zn(t) = [z1(t1)‖TE(t − t1), ..., zN (tN )‖TE(t − tN )]� (10)

where zei
0 and zi denote the mapped embeddings of the source node v0 and its

neighbor vi corresponding to event ei, respectively, and ‖ denotes the ‘concate-
nate’ operation. Zs and Zn are forwarded to three different linear projections
to obtain the ‘query’, ‘key’, and ‘value’:

Q = Zs(t)Wϕ(ei)
Q (11)

K = Zn(t)Wϕ(ei)
K (12)

V = Zn(t)Wϕ(ei)
V (13)

where ei denotes the event between v0 and vi, W
ϕ(ei)
Q , W

ϕ(ei)
K , and W

ϕ(ei)
V ∈

R
(d+dT )×d denote the projection matrices. Due to the edge heterogeneity, the

projection matrices cannot be shared directly, thus we use matrices of different
types to distinguish different events while capturing the semantics of events. The
attention weight αi is given by:

αi =
QiK

�
i∑N

j=1 QjK
�
j

· μφ(v0),ϕ(ei)√
d

(14)

and it reveals how vi attends to the feature of v0 through event ei. In addition,
not all types of events have the same contribution to the source node, so we set
a learnable tensor μ ∈ R

|A|×|R| to adaptively adjust the scale of attention to
different-typed events.

The self-attention aggregates the features of temporal neighbors and obtains
the hidden representation for node vi as αiVi, which can capture both node
features and topological information. The next step is to map the representations
back to the type-specific distribution of node v0 so that they can be fused with
the features of node v0. We use a linear projection named Q-Linear to do this
and the updated neighborhood representation is:

s(t) =
N∑

i=1

Q-Linearφ(v0)(αiVi) (15)

To combine neighborhood representation with the source node feature, we con-
catenate and pass them to a feed-forward neural network just as in TGAT [29]:

h̃
l

0(t) = FFN(s(t)‖xl
0(t)) ≡ ReLU([s(t)‖xl

0(t)]W
l
0 + bl

0)W
l
1 + bl

1 (16)

Multi-head attention can effectively improve the model performance and sta-
bility, and THAN can be easily extended to support a multi-head setup. Assum-
ing the self-attention outputs from P different heads, i.e. si ≡ Attni(Q,K,V),
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i = 1, ..., P . We first concatenate the P neighborhood representations with the
source node feature and then carry out the same procedure in Eq. 16 as:

h̃
l

0(t) = FFN(s1(t)‖...‖sP (t)‖xl
0(t)) (17)

where h̃
l

0(t) ∈ R
d is the final output representation for node v0 at time t, and it

can be used for link prediction task with an encoder-decoder framework.

4.4 Heterogeneous Graph Decoder

Heterogeneous graph decoder aims to reconstruct heterogeneous edges of the
graph relying on the node representations, in other words, it scores edge triples
through a function H : Rd × R

dr × R
d → R, where dr denotes the dimension

of edge type embeddings. We compute node representations through a l-layer
THAN encoder and use a feed-forward neural network as the scoring function,
thus an event (u, v, t, r) is scored as:

H(u, v, t, r) = FFN(h̃
l

u(t)‖rr‖h̃l

v(t)) (18)

where u, v denotes the source and target node, r denotes the edge type and
r ∈ R

dr is edge type embedding.
As in previous work [21,29], we train the model with negative sampling. For

each observed example, we change the target node to construct a new event that
does not actually exist as a negative sample, so we have the same number of
positive and negative samples. We optimize the cross-entropy loss as:

L =
1
|ε|

∑
(u,v,t,r,y)∈ε

−y log σ(H(u, v, t, r))− (1−y) log(1−σ(H(u, v, t, r)))+λ‖θ‖22
(19)

where ε denotes the total set of positive and negative triples, σ denotes the
logistic sigmoid function, y denotes the sample label and takes the value of 1
for positive samples and 0 for negative samples, θ denotes the model parameters
and λ controls the L2 regularization.

5 Experiments

In this section, we present the details of experiments including experimental
settings and results. Firstly, we introduce the dataset, baselines, and parameter
settings. The performance comparisons are then demonstrated in detail. Finally,
we test the inductive capability of our proposed model.

5.1 Experimental Settings

Datasets. We evaluate our model on three public datasets: Movielens, Twitter,
and MathOverflow. The statistics of these datasets are listed in Table 1.
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Table 1. Statistics of the three public datasets.

Dataset Node types #Nodes Event types #Events Time span

Movielens User 943 5 100,000 7 months

Movie 1,682

Twitter User 304,691 3 563,069 188 days

MathOverflow User 24,818 3 506,550 2,350 days

– Movielens1 is a dataset of user ratings of movies at different times collected
from the MovieLens website. We select two types of nodes: user and movie.
Regarding different ratings of movies as different types of events, a total of 5
types of events are obtained.

– Twitter2 collects public data on three types of relationships (retweet, reply,
and mention) between users from the US social network Twitter.

– MathOverflow3 is from MathOverflow, a question and answer site for pro-
fessional mathematicians. There are three relationships between users in this
dataset: a user answered or commented on another user’s question, and a user
commented on an answer.

Baselines. To demonstrate the effectiveness, we compare THAN with ten pop-
ular graph representation learning methods, which can be divided into three
groups: static graph embedding (DeepWalk [19], metapath2vec [2], Graph-
SAGE [7], RGCN [21], HGT [8]), discrete-time dynamic graph embedding
(DySAT [20], DHNE [31], DyHATR [30]), and continuous-time dynamic graph
embedding (TGAT [29], HPGE [11]). We use the implementations of static graph
embedding methods provided in the PyTorch Geometric (PyG) package [4], and
for other baselines, use the code submitted by the authors on GitHub. Besides,
We ignore the heterogeneity for homogeneous methods and ignore the tempo-
ral information for static methods. For fairness, the same decoder declared in
Sect. 4.4 is used for the downstream temporal link prediction task.

– DeepWalk and metapath2vec: They are random walk-based network
embedding methods designed for static graphs.

– GraphSAGE: A GNN model for homogeneous graphs that updates the node
representation by sampling from neighborhood.

– RGCN and HGT: They are two static heterogeneous GNN methods, where
the former maintains a unique linear projection weight for each edge type
while the latter uses mutual attention based on meta relations to perform
message passing on heterogeneous graphs.

– DySAT: A discrete-time temporal graph embedding method and we split
graph snapshots with the guidance in the paper.

1 https://grouplens.org/datasets/movielens/100k.
2 http://snap.stanford.edu/data/higgs-twitter.html.
3 http://snap.stanford.edu/data/sx-mathoverflow.html.

https://grouplens.org/datasets/movielens/100k
http://snap.stanford.edu/data/higgs-twitter.html
http://snap.stanford.edu/data/sx-mathoverflow.html
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Table 2. Overall performance comparison on link prediction task. All results are con-
verted to a percentage by multiplying by 100, and the best result is bolded.

Dataset Movielens Twitter MathOverflow

Model AUC AP AUC AP AUC AP

DeepWalk 67.35(0.3) 71.26(0.3) 57.73(0.7) 63.63(0.9) 63.73(0.2) 73.47(0.4)

metapath2vec 68.43(0.2) 71.82(0.2) 66.29(0.3) 74.67(0.2) 72.59(0.9) 81.13(1.1)

GraphSAGE 72.34(0.4) 75.94(0.4) 76.88(3.2) 85.1(2.1) 83.48(2.4) 89.20(3.4)

RGCN 69.49(0.4) 76.51(0.5) 84.18(0.6) 91.41(0.8) 84.02(0.2) 92.91(0.2)

HGT 73.44(1.1) 80.01(0.7) 88.54(0.5) 93.06(0.3) 86.53(1.5) 93.88(1.4)

DySAT 73.13(0.4) 72.1(0.3) 83.03(0.3) 86.89(0.2) 83.12(0.3) 85.84(0.1)

DHNE 59.78(0.1) 59.00(0.2) 55.37(0.2) 57.66(0.2) 58.06(0.4) 59.31(0.3)

DyHATR 80.21(0.7) 77.54(1.3) 79.73(0.1) 81.78(0.4) 75.22(0.1) 78.21(0.2)

TGAT 82.00(0.4) 79.46(0.4) 89.55(0.3) 90.43(0.2) 82.23(0.6) 83.25(0.6)

HPGE 85.25(0.1) 82.16(0.2) 73.55(0.1) 73.91(0.1) 81.12(0.2) 82.61(0.2)

THAN 88.63(0.1) 86.77(0.2) 91.84(0.2) 93.43(0.2) 90.33(0.1) 90.62(0.2)

– DHNE and DyHATR: They are two discrete-time THG embedding meth-
ods. DHNE performs meta path-based random walk between historical snap-
shots and the current snapshot. DyHATR uses hierarchical attention to learn
heterogeneous information and incorporates RNNs with temporal attention
to capture evolutionary patterns.

– TGAT: A continuous-time temporal graph embedding method that aggre-
gates historical neighbors by self-attention to obtain node representations.

– HPGE: A continuous-time THG embedding method that integrates the
Hawkes process into graph embedding to capture the excitation of histori-
cal heterogeneous events to current events.

Parameter Settings. THAN was implemented in PyTorch. We split the train-
ing and test set as 8:2 according to time order. For a fair comparison, we use
the default parameter settings of the baselines and set the embedding (i.e. node
output embeddings, time embeddings, and event type embeddings) dimension
d as 32, regularization weight λ as 0.01, and dropout rate as 0.1. We employ
Adam as the optimizer with a learning rate of 0.001. We randomly initialize the
node vector if the dataset does not provide node features, and similarly, initialize
the event features as zero vectors. For DeepWalk, metapath2vec, GraphSAGE,
RGCN, and HGT, we set the max training epochs as 500 and use an early stop-
ping strategy with the patience of 50. For DySAT, DHNE, and DyHATR, we
split datasets into 10 snapshots. For our THAN, we set the event embedding
dimension as 16, the number of layers as 2, attention heads as 4, epochs as 20
(30 for Movielens), learning rate as 0.001 (0.0001 for Twitter), batch size as 800
(500 for Movielens), and the number of samples for each type of neighbors as 10
(8 for Movielens). The implementation of THAN is publicly available4.
4 https://github.com/moli-L/THAN.

https://github.com/moli-L/THAN
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Fig. 3. Ablation study of THAN.

5.2 Effectiveness Analysis

We conduct the temporal link prediction task to verify the effectiveness, which
asks if a type-r edge exists between two nodes at time t. We run all methods five
times on three datasets and evaluate the average AUC (Area under the receiver
operating characteristic curve) and AP (Average precision score) scores. The
overall results are shown in Table 2.

Obviously, THAN achieves the state-of-the-art performance in AUC metric
on all three datasets. Although THAN does not outperform all other methods
in AP metric, it also has a considerable performance (i.e. AP score achieves the
SOTA result on Movielens and Twitter datasets and over 0.9 on MathOver-
flow dataset). Besides, the GNN-based approaches achieve better performance
than the random walk-based approaches since they capture much more useful
information about the graph structure. HGT and GCN perform better than
GraphSAGE which indicates that integrating semantics can benefit graph rep-
resentation learning. DySAT and DyHATR obtain performance improvements
due to considering the changes of graph structure over time. In addition, TGAT,
HPGE, and our THAN perform better than DySAT and DyHATR, this phe-
nomenon shows that it is important to make full use of temporal information
compared with simply preserving evolving structures between snapshots.

5.3 Ablation Study

To demonstrate the effectiveness of each component in THAN, we conduct abla-
tion experiments by removing/replacing a specific component at a time. We
rename them as: (1) THAN w/o time: remove time embeddings; (2) THAN w/o
μ: remove event type attention weight; (3) THAN w/o Qlin: remove linear pro-
jection Q-Linear; (4) THAN r-uniform: use uniform random sampling strategy.
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Fig. 4. Sensitivity analysis on the number of neighbor samples and attention heads.

Table 3. Results of inductive learning task.

Dataset Movielens Twitter MathOverflow

Model AUC AP AUC AP AUC AP

TGAT 78.35(0.4) 76.97(0.3) 85.87(0.3) 88.61(0.3) 74.14(0.5) 75.96(0.4)

THAN 82.71(0.2) 80.67(0.2) 88.41(0.2) 90.69(0.3) 80.93(0.3) 80.52(0.3)

We report the results of the ablation study in Fig. 3, from which we have
the following observations: (1) THAN outperforms the others with components
removed in all metrics; (2) Time embedding plays an important role in temporal
graph representation learning; (3) Setting different attention weights for different
edge types helps to learn heterogeneous semantic information; (4) More recent
neighbors are more useful for extracting temporal evolutionary patterns and
better reflect the current state of the source node; (5) It makes sense to keep the
same feature space to fuse features from different nodes. Besides, it is noteworthy
that removing the Q-Linear component did not have a significant impact on
model performance on the Twitter and MathOverflow datasets, that is because
both these datasets have only one type of node, and there is no need to consider
the consistency of feature distribution across different types of nodes.

5.4 Parameter Sensitivity

To investigate the robustness of THAN and find the most suitable hyperpa-
rameters, we analyzed the effect of the number of neighbor samples and atten-
tion heads on three datasets shown in Fig. 4. For fairness, we select the num-
ber of neighbor samples from {4, 6, 8, 10}, the number of attention heads from
{1, 2, 4, 6}, and the rest of the parameters remain the same as the experimental
settings in Sect. 5.1.

On the one hand, Fig. 4(a) and (b) can lead to the following conclusion: the
scores of AUC and AP improve as the number of neighbor samples increases,
but on the Movielens dataset there is a decreasing trend instead, which may be
caused by the dense connections between nodes. Sampling more neighbors may
introduce more noise, resulting in smooth node representations. On the other
hand, Fig. 4(c) and (d) show that the number of attention heads affects the
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performance of the model. Multi-head attention helps to obtain different aspect
representations from different subspaces, thus enhancing the expressiveness.

5.5 Inductive Capability Analysis

We further discuss the inductive performance of THAN with the same settings
as TGAT, i.e., mask 10% of the nodes from the training set and predict the exis-
tence of future events containing these masked nodes. In this paper, we choose
TGAT as the comparison model, which is proposed as an inductive representa-
tion learning method on temporal graphs, and its inductive capability is demon-
strated experimentally. Experiments were conducted on three datasets and the
results are shown in Table 3. Intuitively, THAN outperformed the TGAT in two
metrics on all datasets, which demonstrates the inductive capability of THAN.

6 Conclusion

Existing graph representation learning methods cannot well capture the infor-
mation of temporal heterogeneous graphs. This paper proposes the THAN,
which is a continuous-time temporal heterogeneous graph representation learning
method. THAN uses transfer matrices to map different-typed nodes to the same
feature space and aggregates neighborhood information based on the type-aware
self-attention mechanism. To efficiently utilize temporal information, THAN uses
a functional time encoder to generate time embeddings which are naturally inte-
grated into the neighbor aggregation process. THAN is an inductive message-
passing model based on historical neighbor sampling that not only captures
temporal evolutionary patterns but also efficiently extracts topological features.
Experimental results on three public datasets demonstrate that THAN outper-
forms the baselines on the temporal link prediction task. In the future, we plan
to improve the computational efficiency of the model to deal with large-scale
temporal heterogeneous graphs.

References

1. Ba, L.J., Kiros, J.R., Hinton, G.E.: Layer normalization. CoRR abs/1607.06450
(2016)

2. Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: scalable representation learning
for heterogeneous networks. In: SIGKDD, pp. 135–144 (2017)

3. Fan, Y., Ju, M., Zhang, C., Zhao, L., Ye, Y.: Heterogeneous temporal graph neural
network. CoRR abs/2110.13889 (2021)

4. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch geometric.
CoRR abs/1903.02428 (2019)

5. Fu, T., Lee, W., Lei, Z.: HIN2Vec: explore meta-paths in heterogeneous information
networks for representation learning. In: CIKM, pp. 1797–1806 (2017)

6. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In:
SIGKDD, pp. 855–864 (2016)



Transformer-Based Representation Learning on THGs 399

7. Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: NIPS, pp. 1024–1034 (2017)

8. Hu, Z., Dong, Y., Wang, K., Sun, Y.: Heterogeneous graph transformer. In: WWW,
pp. 2704–2710 (2020)

9. Huang, H., Shi, R., Zhou, W., Wang, X., Jin, H., Fu, X.: Temporal heterogeneous
information network embedding. In: IJCAI, pp. 1470–1476 (2021)

10. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic
mapping matrix. In: ACL, pp. 687–696 (2015)

11. Ji, Y., Jia, T., Fang, Y., Shi, C.: Dynamic heterogeneous graph embedding via
heterogeneous Hawkes process. In: Oliver, N., Pérez-Cruz, F., Kramer, S., Read,
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Abstract. Chinese spelling correction (CSC) andBERTpre-training task canboth
be regarded as text denoising. In this work, to further narrow the gap between the
pre-training and CSC tasks, we present a SingleChannelBERT (SCBERT)which
incorporates semantics, pinyin and glyph of typos to provide effective spelling
correction. In model pre-training, we introduce fuzzy pinyin and glyph of Chinese
characters and adjust mask strategies to restore the pinyin or glyph information
of the “[MASK]” token under certain probabilities. Therefore, we can mask out
the char channel of the typo and only provide its pinyin or glyph information in
order to reduce the input noise when using our models, as the char information of
typos in CSC is a kind of noise. Moreover, we apply synonym replacement and
sentence reordering for paraphrasing to improve the accuracy of the correction
step. We conduct experiments using widely accepted benchmarks. Our method
outperforms state-of-the-art approaches under zero-shot learning condition and
achieves competitive results when fine-tuning.

Keywords: Chinese spelling correction ·Model pre-training · Zero-shot learning

1 Introduction

Chinese spelling correction (CSC), which aims to detect and correct spelling errors in
texts, is highly similar to pre-training tasks of Pre-trained Language Models (PLMs).
Thus, it is feasible and rewarding to train aPLMforCSC task.Chinese spelling correction
is an important task in NLP. It is essential for many natural language applications,
including optical character recognition [1] (OCR), automatic speech recognition [2]
(ASR) and search engine [3]. For the correction of spelling errors, a general background
knowledge of language is required. Usually, PLMs help achieve the point. In this paper,
we consider Chinese spelling error correction at character-level.

In recent years, large-scale pre-trained language models have been extensively stud-
ied and become the fundamental backbone for various Natural Language Processing
(NLP) tasks. An established paradigm in the NLP field is to pre-train a model on a large
amount of texts and then fine-tune it afterward. The similarity between the pre-training
task and the downstream task affects the performance of fine-tuning.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Li et al. (Eds.): APWeb-WAIM 2022, LNCS 13422, pp. 401–414, 2023.
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In Chinese, spelling errors are mainly caused by misusing phonetically or visually
similar characters [4]. Correcting errors using semantics is a common practice. However,
it can be challenging to determine the right word without the information from pinyin
and glyph. When attempting to correct spelling errors, it is usual to consider the glyph
and phonetic aspects of the typo. Evidently, the meaning of the typo is the noise for CSC
and the pinyin and glyph of the character offer clues for error correction.

Human-level language comprehension is a necessity for correcting the misspelled
words. Therefore, PLMs are nowadays used to obtain State-of-the-Art (SOTA) results.
Notably, the pre-training tasks of PLMs are very similar to the text error correction
task. For instance, among the three mask strategies of BERT [5], 80% of the selected
tokens are masked out via “[MASK]” tokens, 10% of the selected tokens are replaced
with a random tokens and 10% of the selected tokens are stay unchanged. The first two
pre-training tasks can be regarded as spelling correction tasks. Therefore, BERT is an
out-of-the-box solution for CSC.

To implement existing PLMs in CSC task, such as BERT, either the original char text
is provided for prediction, or the candidate typos are replaced with “[MASK]” tokens.
Both methods have disadvantages. It is inevitable that the first approach will introduce
noise about wrong characters. Though the second approach alleviates the weakness,
important pinyin and glyph information are lost. Solution to this problem is to make the
model accept single channel inputs, that is, the model has ability to function well when
only pinyin or glyph information of character are provided. According to our knowledge,
there is currently no prior works that comply with the requirement.

To address the above issues, we propose SCBERT, a Single Channel BERT for
Chinese spelling correction, which not only has the capability of providing dynamic
word vectors as other PLMs, but also brings a new pattern of spelling errors correction
via single channel input mechanism. We further improve accuracy of CSC by using
synonym replacement and sentence reordering for paraphrasing before the correction
step.

In summary, the paper contributes the followings:

• We propose a BERT based SCBERT and present the datasets, model hyperparameters
and training strategies for effective pre-training task. The essential components of
SCBERT include single channel input mechanism and fuzzy information modeling.

• We propose a novel single channel input mechanism which jointly learns the seman-
tics, pinyin and glyph of Chinese characters while reducing the noise caused by typos
in the CSC task.

• We utilize fuzzy pinyin and glyph of Chinese characters to enables SCBERT to model
the similarities in pinyin and glyph.

• Finally, We introduce paraphrasing methods before the correction step to improve
accuracy even further.

2 Related Work

2.1 PLMs in NLP

Thepre-training/fine-tuningparadigmreigns inNLPtasks.GPT[6],BERT,XLNet[7]and
BART [8] have brought significant performance gains and several downstream tasks have
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benefited from their utilization. In general, the primary technical innovation of PLMs is
the application of Transformer, a popular and scalable attentionmodel. GPT is an autoen-
coding model, which guesses the next token after reading all the previous ones. BERT is
pre-trained by corrupting the input tokens in someway and then attempting to reconstruct
the original sentence.BARTkeeps both the encoder and the decoder of the original Trans-
former and is a typical Seq2Seq model. Although all those models can be fine-tuned and
used to accomplish a variety of specificdownstream tasks, their areas of expertise also dif-
fer due to the differences in their pre-training tasks.Due to this, it can be beneficial to use a
pre-trainedmodel that aligns with the downstream task in order to enhance performance.
Most of the pre-training tasks can be adapted to the CSC task with a little modification.
It is still possible to improve the performance of PLM applied to CSC by adjusting the
pre-training task, such as SpellBERT [9] and Soft-MaskedBERT [10].

2.2 Pinyin and Glyph Information Modeling

Incorporating pinyin and glyph information for Chinese NLP tasks [10] has gained
increased attention in recent times. For character feature extraction,UMRC [11] employs
a specific CNN structure and uses image classification as an auxiliary objective to mit-
igate the influence of images in a very small number of instances. ChineseBert [12]
uses the glyph and pinyin information of Chinese characters to enhance its capability
of capturing context semantics from surface character forms as well as disambiguating
polyphonic Chinese characters. PLOME [13] jointly learns semantics and misspelled
knowledge thanks to the confusion set based masking strategy. These methods show
that adding more training information, such as pinyin and glyph, will improve model
performance.

2.3 Chinese Spelling Correction

Spelling error correction can be challenging since it essentially requires human-level
language understanding skills to achieve a satisfactory result. In some cases, researchers
took advantage of unsupervised approaches, usually using a confusion set to identify
correct candidates and employing language models to determine which of them should
be selected. In addition, Hybrid [14] is based on a BiLSTMmodel trained on a generated
dataset. FASPell [15] adopts a Seq2Seq model for CSC employing BERT as a denoising
autoencoder and a decoder. Confusionset [16] is a Seq2Seq model consisting of both a
pointer network and a copy mechanism. Overall, after the pre-training models appear,
all SOTAmodels in the CSC task will be required to use them. Therefore, it is extremely
important to apply an appropriate pre-training model to correct spelling errors.

3 Our Approach

In this section, we demonstrate details regarding dataset processing, pinyin-glyph feature
construction, and SCBERT pre-training tasks. We modify the pre-training task to make
it more appropriate to cope with fuzzy pinyin and glyph data. The character char, pinyin,
and glyph of Chinese token will be embedded separately within the input layer of the
model, as shown in Fig. 1. The mask strategy will be adapted to allow the pre-trained
model to accept single channel inputs.
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Fig. 1. A forward propagation example of SCBERT. Left: This component illustrates the overall
architecture of the proposed embedding layer. Input characters are represented by concatenated
char, pinyin and glyph vectors. Right: This component makes prediction for input sentence and
calculates loss. We propose the single channel input mechanism in this component to narrow gap
between pre-training task and CSC task.

3.1 Fuzzy Pinyin and Glyph

Spelling errors in Chinese can be mainly categorized into two types: phonological errors
and visual errors, caused by the misuse of both phonologically similar and visually
similar characters. Hence, phonetic (pinyin) and glyph information play crucial roles in
CSC.

Table 1. Fuzzy pinyin and fuzzy glyph examples

Char Precise Pinyin Fuzzy Pinyin Fuzzy Glyph

房 Fang Huang 方

陈 Chen Cheng 东

盛 Sheng Sheng 成

了 Le Ne 了

思 Si Shi 田

Chinese pinyin, a standard system of romanized spelling using the Latin alphabet
and diacritic, represents the pronunciation of characters. In this paper, we use pypinyin1

to obtain the character-pinyin mapping, which is capable of handling polyphonic words.
Similar pinyin representations are pronounced similarly. Considering that we use pinyin
information more often than char information when communicating orally, modeling of
pinyin is important for CSC of speech-related tasks, such as ASR text error correction.
Unlike word vectors, similar pinyin does not have semantically similar representations.
In this way, existing pre-training tasks have difficulty capturing pinyin similarity. To
circumvent this problem, On the one hand, wemodel pinyin at the character level instead
of considering pinyin as a whole, and on the other hand, we propose to replace accurate
pinyin with fuzzy pinyin.

Table 1 illustrates some fuzzy pinyin examples. Specifically, there are two steps. (1)
To eliminate the diacritic of each pinyin. (2)According to the rules ofmispronunciation in

1 https://github.com/mozillazg/python-pinyin.

https://github.com/mozillazg/python-pinyin
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everyday spoken language, we convert pinyin in advance to make similar pronunciation
have same pinyin representation.

Chinese characters are pictograms, as they developed from the graphical regularity
of the transactions. Therefore, visually similar words tend to have common parts. In
analyzing glyph information, some existing pre-training models use different strokes
by disassembling Chinese characters to represent glyph. Some researchers converted
characters into pixels according to specific fonts. Nevertheless, text error correction
does not require precise glyph, for exact glyph of typos would bring noise during the
correction process. In this paper, we use ChaiZi Database2 to split the character into parts
and select the main part (non-radical part) as the fuzzy glyph. No splitting is conducted
for characters with less than five strokes. See Table 1 for specific examples of fuzzy
glyph.

In practice, we first tokenize each sentence, and calculate the fuzzy pinyin and
fuzzy glyph information of each token. Then use a separate network layer for three
type embeddings. Inspired by Chinesebert [12], we map fuzzy glyph to font images for
modeling.

3.2 SCBERT Pre-training Task

BERT is a model with the strong expressiveness that based on the Transformer’s struc-
ture. The purpose of the BERT pre-training tasks is to construct a self-supervised task
using a plain text corpus, so that the machine learning model can learn the semantic rep-
resentation of the text. The similarity between pre-training task and downstream tasks
will influence the effect of fine-tuning. When pre-training SCBERT, we mask out 15%
of the words in the input following BERT pre-training routine and then only the masked
words are to predicted. In this work, wemake the following improvements to the original
BERT pre-training task.

Combination of WWM and CM. Chinese Whole Word Mask (WWM) is different
from English WWM. Chinese WWM first segments the sentences, and then masks the
characters within these segments simultaneously. In this paper, Chinese word segmen-
tation is based on jieba3. On the contrary, Char Mask (CM) treats Chinese characters as
independent segments. WWM needs higher-level semantic understanding and is more
challenging than CM. However, in CSC tasks, it is not recommended to use only WWM
[17], because the CM mask is indispensable for correcting errors of a single character,
which is also the most frequent type of spelling errors. Likewise, WWM has a great
influence on the error correction of two or more consecutive typos. Therefore, We apply
WWM 20% of the time and CM 80% of the time. We use the dynamic masking strategy,
which means different input masks are fed to the model on every single epoch.

MLM Loss. We pre-train the model using Masked Language Model (MLM) loss with-
out Next Sentence Prediction (NSP) loss, since it has been proved to offer no benefits for
improving downstream performances [18] and we also consider the fact that the CSC

2 https://github.com/howl-anderson/hanzi_chaizi.
3 Https://github.com/fxsjy/jieba.

https://github.com/howl-anderson/hanzi_chaizi
https://github.com/fxsjy/jieba
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task will not be conducted on sentences from different documents. Additionally, other
pre-training tasks such as Sentence Order Prediction (SOP) [19] tasks are not obviously
related to text error correction tasks. Their effectiveness will be assessed in future work.

Table 2. Single channel masking strategy

Single Channel Input. The single channel input mechanism is to reduce the noise of
the input. Table 2 illustrates this with a specific example. When tokens are selected to
be replaced by “[MASK]”, one or two channels are reserved without masking for pinyin
or/and glyph channels. In other words, unlike other PLMs models that modeling and
glyph, our model does not always mask out the input char, pinyin and glyph channels
simultaneously. The single-channel mask is a key feature of our PLMs, as un-masked
char channels will lead to errors and the model will also tend to predict the original
wrong characters. Nevertheless, if all channels are been masked out, the semantically
appropriate answer given by PLMsmay not be accurate. We have included the modeling
channels of pinyin and glyph for Chinese characters in SCBERT, which allows for a
single channel “[MASK]” token to be kept of the single channel input ensures that as
much information as possible is provided for text error correction with-out introducing
noise. Additionally, there is a possibility that the pinyin and glyph channels will be
reserved at the same time, which means the pinyin and glyph channels of typos can
be used in correction step. SCBERT can be used as an ordinary BERT in downstream
applications. On top of that, if we use the same single channel input of pre-training task
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in the CSC tasks, we can better utilize the knowledge in SCBERT. The specific mask
ratio for single channel input is provided in Table 2.

3.3 Model Setup

Generally speaking, training hyperparameters have a great influence on the performance
for deep models. In this paper, we pre-train models of two structure, SCBERTtiny and
SCBERTbase, which is composed of 4/12 transformer layers respectively, with input
dimensionality of 312/768. The model structure refers to the RoBERTa model. The
embedding layer is modified to accept three-channel input, as shown in Fig. 1. Both
of SCBERTtiny and SCBERTbase model is initialized with random parameters. We alse
train a SCBERTbase, whose Transformer layers are initialized with Roberta-zh4.

Table 3. Hyperparameters for pre-training SCBERTbase and SCBERTtiny.

Hyperparameter SCBERTbase SCBERTtiny

Number of Layers 12 4

Hidden size 768 312

Optimizer LAMB LAMB

Lr Scheduler OneCycleLR OneCycleLR

Warmup Percentage 0.025 0.01

Batch Size 3072 3072

Anneal Strategy Linear Linear

Weight Decay 0.01 0.01

Max Steps 800kphase1 + 200kphase2 400kphase1 + 100kphase2

To further reduce the size of the tiny model, we replaced the 23236 large dictionary
with the 8035 small dictionary published in ChineseCLUE [20]. Since text error cor-
rection does not require long-term attention dependency, we set the max_len of position
embedding to 128, and correspondingly increase the training batch size to ensure the
total number of tokens in each batch. To speed up pre-training task in our experiments,
similar to BERT, we first train 800k steps on 64 sequence length with batch size 4k.
We then train 200k on 128 sequence length with batch size 3k to make the model more
suitable for tasks with longer sequence lengths. Each sample is packed with full sentence
sampled contiguously from one or more documents.

We chose LAMB [21] instead of Adam as the optimizer, which can guarantee the
convergence in case of large batch sizes. We have trained the random initialized models
with maximum learning rate 5e−4, OneCycleLR [22] scheduler and warmup of 20k
steps.We setmaximum learning rate 1e−4 for Roberta-zh initializedmodel. The specific
parameter list is shown in Table 3. Our training strategy included DDP, mixed precision
[23], and gradient accumulation. Training was done on 8× 32 GB Nvidia V100 GPUs.

4 Https://github.com/brightmart/roberta_zh.

https://github.com/brightmart/roberta_zh
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3.4 SCBERT for Chinese Spelling Correction

In this section, we demonstrate the application of SCBERT to the CSC task. The model
can be directly applied to downstream tasks after pre-training, in the same manner as
BERT. Moreover, if integrated with the single channel input mechanism and paraphras-
ing technique, our models can significantly enhance the accuracy of text error correc-
tion on both fine-tuning condition and zero-shot learning condition. The results of the
experiments and ablation study are described in the next section.

Paraphrasing. We develop a way of paraphrasing to better retrieve the information
from our PLMs. As illustrated in Fig. 2, for the sentence “我这个里拜有很多事” (I
have a lot to do this week.), we first figure out “里拜” may be typos in detection step.
Then we paraphrase the remaining correct part of sentence, for example, replacing the
“这个” (this) with “那个” (that) to obtain another sentence “我那个里拜有很多事” (I
have a lot to do that week.). Obviously, the correction result “礼拜” should make the
paraphrasing sentence fluent and plausible as well. We also change the sequence of text
when it encompasses sub-sentences.

Fig. 2. Paraphrasing for correction. Large chunks of text will split into small segment to make
sure each text sample has no more than 3 sub-sentences.

Prediction Inference. We recommend using SCBERT in conjunction with the single
channel inputs and paraphrasing techniques for both fine-tuning and zero-shot learning
conditions.As illustrated in Fig. 3, theCSCprocess should be split into detection and cor-
rection steps firstly and thenwe utilize paraphrasing and single channel inputmechanism
before the correction step. In the detection step, for sentence “遇到逆晶” (Encounter
retrograde), tokens that are inconsistent with the original text or tokens whose softmax
probability falls below the threshold (0.6) are considered as candidate typos, which is “
晶” in this case. Next, based on the results of the detection step, by synonym replace-
ment, we generate additional equivalent sample “遭遇逆晶” and for each sample, we
apply single channel input to the candidate typo (“晶”) to reduce the noise brought by its
char channel. Accordingly, one sample is augmented to 4 samples before the correction
step. Finally, all samples will be predicted by SCBERT, and then the softmax values of
candidate typo will be calculated and averaged to obtain the final error correction result.
Following the above steps, the error sample “遇到逆晶” will be corrected to “遇到逆
境” (Encounter adversity).

The core idea of our methodology is to adjust the BERT pre-training task and the
downstream CSC task in order to make them more similar so as to enhance the effec-
tiveness of error correction in fine-tuning and zero-shot learning conditions. To this end,
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Fig. 3. An application of SCBERT in CSC. There are two steps to the scheme: typo detection step
and error correction step. At the detection step, tokens with a prediction probability lower than
threshold or tokens that are inconsistent with the original text are placed into the typo candidate
set. At the correction step, the single-channel input and paraphrasing pipeline are applied to correct
the detected typos.

we propose single channel input mechanism and apply them in both pre-training task
and CSC task.

For the improvement of the pre-training task, in addition to the single channel input
method, fuzzy pinyin and fuzzy glyph are used for modeling the similarity of pinyin and
glyph. For CSC tasks, as depicted in Fig. 3, the strategy of utilizing single channel input
before the correction step is combinedwith paraphrasing technique. Single channel input
method is to reduce the input noise of the model when correcting the already positioned
typos, and paraphrasing is used to better stimulating PLM capability.

4 Experiments

4.1 Dataset

Pre-trainingData.Weuse zhwiki-202201015 as the pre-training corpus, which consists
of 1.25 million Chinese pages. We also collect THUCNews and SinaNews as extended
data. Total dataset contains 6.5GB uncompressed text. We split those pages and articles
into sentences and obtain 56 million sentences.

Fine-tuning Data. Following previous work, we evaluate our pre-trained models on on
the most widely used benchmark dataset SIGHAN136, SIGHAN14 and SIGHAN15.
The fine-tuning dataset contains 10K annotated samples. OpenCC7 is used to convert
traditional characters into simplified characters.

5 Https://dumps.wikimedia.org/zhwiki/.
6 Http://nlp.ee.ncu.edu.tw/resource/ncu_nlplab_csc.zip.
7 https://pypi.org/project/OpenCC/.

https://dumps.wikimedia.org/zhwiki/
http://nlp.ee.ncu.edu.tw/resource/ncu_nlplab_csc.zip
https://pypi.org/project/OpenCC/
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Evaluation Data. We evaluate the proposed model using the latest SIGHAN test
dataset, which includes 1100 texts and 461 types of errors.

4.2 Baselines

For comparison,We use the following three pretrained languagemodels as the baselines,
which are all capable of zero-shot inference. We report the results of these PLMs based
on the same fine-tuning and few-shot learning condition. BERT is an original but highly
competitive PLM. ChineseBert and PLOME are variants of BERT, both capable of
modeling pinyin and glyph. PLOME is a PLM trained for CSC and jointly considering
the target pronunciation and character distributions, whereas ChineseBert is a more
universal PLM. For a fair comparison, base structure is chosen for each baseline model.

4.3 Results

Table 4 illustrates the experimental results under fine-tuning and zero-shot learning
conditions and our models have produced outstanding results.

The fine-tuning procedure is implemented to adjust the PLM’s output according
to the data distribution of downstream tasks. In case of fine-tuning, the detection F1
scores of BERT-Finetune and ChineseBert-Finetune are lower because their pre-training
tasks are not adapted for CSC. The F1 values of the other two models are at the same
level. Given that the amount of SCBERT pre-training data is only one third of that of
PLOME, our model has already achieved SOTA results. For correction, SCBERTbase-
Finetune achieved 1.7% and 1.3% absolute improvements over ChineseBert-Finetune
and PLOME-Finetune respectively. Therefore, Our model can provide a robust word
vector, which is a prerequisite for downstream work. Additionally, the single channel
input and paraphrasing pipeline used between the detection step and the correction step
achieved the expected effect as well.

We further explore the results of model fine-tuning using part of training data. Upon
beginning with zero-shot learning condition, comparison experiments are performed for
every 10% increase in training data. The correction F1 scores in results are presented
in Fig. 4. We find that our model outperforms other models at different scales of the
training set. In the case of few-shot learning (10% or 20% of the total), our model has
obvious advantages, which achieves 1% improvements over the other three counterpart
models. This implies that SCBERT obtains better representations of pinyin and glyph
during the pre-training stage.

Without fine tuning, that is, under zero-shot learning condition, our model surpasses
the other models with remarkable gains in the correction step. As shown in second group
in Table 4, SCBERTbase-pretrain has a higher error correction F1 score than others by
1.5%. Especially, SCBERTbase-pretrain has achieved SOTA results in both detection and
correction step. Our model is, therefore, an exceptional out-of-the-box CSC model. We
believe the performance ofCSCmodels in zero-shot learning condition is very important.
Because a robust labeled dataset for CSC should be updated and extended timely and
regularly to adapt to the current expressions, emerging words and new entities. The
maintenance costs may be hard to bear. However, PLMs can utilize the content of the
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Table 4. The performances of our approach and baseline models. Rows 1 to 4 list the results for
the models fine-tuned on SIGHAN train data (10k). Rows 5 to 8 list results on zero-shot learning
condition. Each experiment is run four times and the average metrics are reported.

Category Method Detection (%) Correction (%)

P R F P R F

SIGHAN BERT-Finetune 88.4 86.2 87.3 89.9 78.6 83.9

ChineseBert-Finetune 91.6 84.2 87.7 93.2 79.9 86.0

PLOME-Finetune 92.3 85.5 88.7 93.5 80.4 86.4

SCBERTbase-Finetune 90.3 86.7 88.5 94.2 81.8 87.7

Zero-Shot BERT-pretrain 64.2 63.3 63.7 83.6 60.2 70.0

ChineseBert-pretrain 68.7 64.5 66.5 83.7 70.5 76.5

PLOME-pretrain 66.4 71.3 68.8 83.2 72.5 77.5

SCBERTbase-pretrain 67.2 72.0 69.5 85.4 73.5 79.0

Fig. 4. Performances of PLMs when varying the training data size.

latest textual information without labeling, which makes zero-shot learning with PLMs
a promising solution for CSC in the big data era.

4.4 Ablation Study

Model Capacity. As can be seen from the results in the first and last rows of the Table 5,
SCBERTtiny obtains only 10% less in the correction step F1 score than SCBERTbase,
however the size of the model is much smaller. Thus, Our tiny model has a great deal of
potential in resource-limited deployment scenarios.

Single Channel Input. When compared with normal input scenarios, single channel
input is far better than normal input. For SCBERTbase-no-sc, we do not restore the
pinyin or glyph channel of inputs but keep the paraphrasing procedure. SCBERTbase
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Table 5. The performances of our PLMs.

Category Method Detection (%) Correction (%)

P R F P R F

Zero-Shot SCBERTbase 67.2 72.0 69.5 85.4 73.5 79.0

SCBERTbase-no-sc 67.2 72.0 69.5 83.6 71.5 77.1

SCBERTbase-no-pa 67.2 72.0 69.5 84.8 72.7 78.3

SCBERTbase-rand 65.5 69.7 67.5 84.1 70.8 76.9

SCBERTtiny 60.6 64.5 62.5 72 65.8 68.8

scores 2 points higher than SCBERTbase-no-sc, in terms of correction F1 score. The
result in Table 5 illustrates that the single channel input can effectively reduce the noise
of the input for the model and providing the pinyin and glyph information for CSC.

Paraphrasing. The proposed synonym replacement and sentence reordering can
improve the accuracy of the correction step. Results of SCBERTbase-no-pa is obtained
without paraphrasing before the correction step, which leads to a drop by 0.7 point in
F1 score. While our paraphrasing methods are still relatively primitive, it nonetheless
demonstrates the effectiveness of exploration in this direction. In future research, we
will explore the effects of paraphrasing using the latest prompt techniques [24].

Initialization Strategy. The initialization strategy impacts the final convergence of the
model, affecting performance in both detection step and correction step, compared to
SCBERTbase-rand, SCBERTbase presents an overwhelming boost, demonstrating that
Roberta-zh’s rich semantic information can enhance the model generalizability. We
believe more training steps and more training data are required to close the gap when
pre-training language models from scratch.

5 Conclusion

In this paper, we present a novel pre-trained language model for Chinese spelling correc-
tion task. To the best of our knowledge, SCBERT is the first task-specific languagemodel
considering the input noise introduced by typos. We propose the concept of the single
channel input mechanism and evaluate its implementation in both PLM pre-training task
and CSC task. Combined with the proposed paraphrasing technique, we further improve
the accuracy of correction step. Besides, our work is a successful practice of model
pre-training and potentially useful for similar projects. Experimental results in fine-
tuning condition and zero-shot learning condition illustrate that SCBERT outperforms
the state-of-the-art methods utilizing BERT. In the future, we plan to extend SCBERT to
other related tasks such as grammar error correction and explore potential applications
combining with prompt techniques.
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Abstract. Medical image diagnosis systemby using deep neural networks (DNN)
can improve the sensitivity and speed of interpretation of chest CT for COVID-
19 screening. However, DNN based medical image diagnosis is known to be
influenced by the adversarial perturbations. In order to improve the robustness of
medical image diagnosis system, this paper proposes an adversarial attack training
method by using multi-loss hybrid adversarial function with heuristic projection.
Firstly, the effective adversarial attacks which contain the noise style that can puz-
zle the network are createdwith amulti-loss hybrid adversarial function (MLAdv).
Then, instead of adding these adversarial attacks to the training data directly, we
consider the similarity between the original samples and adversarial attacks by
using an adjacent loss during the training process, which can improve the robust-
ness and the generalization of the network for unanticipated noise perturbations.
Experiments are finished on COVID-19 dataset. The average attack success rate of
this method for three DNN basedmedical image diagnosis systems is 63.9%, indi-
cating that the created adversarial attack has strong attack transferability and can
puzzle the network effectively. In addition, with the adversarial attack training, the
augmented networks by using adversarial attacks can improve the diagnosis accu-
racy by 4.75%. Therefore, the augmented network based on MLAdv adversarial
attacks can improve the robustness of medical image diagnosis system.

Keywords: Medical image diagnosis system · Adversarial attack ·
Multi-loss hybrid function · Heuristic projection · Attack transferability

1 Introduction

Machine learning methods, particularly deep neural networks (DNN), have been consid-
ered to be among the most effective methods for medical image analysis. For example,
deep convolutional neural networks (CNN) are used to classify chest X-ray images and
diagnose pneumonia and COVID-19. However, clean images can be altered with imper-
ceptible perturbations (called adversarial noise) to generate adversarial examples, and
such adversarial samples can puzzle CNN classifiers and make incorrect predictions
with high confidence. Adversarial attacks have also disturbed the CNN based medical
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image diagnosis system [1], confirming the high sensitivity of CNN diagnostic systems
to adversarial noise. Therefore, there is a high demand for improving the robustness of
intelligent diagnostic systems.

Here, taken theCOVID-19diagnosis systemas an example, the robustness of this sys-
tem can be improved by effective adversarial training. Specifically, as shown in Fig. 1(a),
the COVID-19 dataset usually has a long-tailed distribution of classification results,
under-represented early data for COVID-19 samples and very rapid strain variation
making the ReLU network tend to form unbounded decision boundaries, which leaves
the network at risk of activation by arbitrary noise [2]. We propose multi-loss function
to efficiently generate adversarial samples (as shown in Fig. 1(b)), and with adjacent
loss based adversarial training, the activated boundaries can converge to the original
boundaries of the samples, thus the robustness is improved.

Fig. 1. A conceptual illustration of the proposed training scheme.

2 Related Works

By providing the systemwith the ability to defend against adversarial attacks, the robust-
ness of the system can be improved. Several defense methods have been proposed. In
this section, we briefly review two lines of previous work on defense methods, including
adversarial training and denoising methods.

Adversarial Training. An intuitive idea of adversarial training is to ensure that the
convolutional layer in the classifier converts all neighboring adversarial samples around
each clean original sample to the same points in the semantic feature space as the clean
image sample. The popular adversarial training which adds adversarial examples to the
training set, can be considered a simplified implementation of this idea. Some researchers
have proven that adversarial training and its variants can improve the defense of a system
by adding one or more adversarial examples to the training data during classifier training
[3–5].

Denoising Method. Denoising based robustness improvement method is to remove the
adversarial samples from the dataset by using denoising methods. In general, denoising
approaches typically performpreprocessing autoencoders on imageswith a specific type,
aiming to eliminate potential adversarial noise before feeding the image into a classifier



Improving Robustness of Medical Image Diagnosis System 417

[6, 7]. However, denoising approaches usually reduce the accuracy when classifying the
clean original images [6, 7]. For solving this problem, the improved denoising method
is proposed, which is to train a distillation network that can improve the defense by
effectively expanding the gap between class distributions in the high-level semantic
feature space [8].

In this work, we propose a new plug-and-playmechanism to defend against adversar-
ial attacks, thus improving the robustness of the system. Firstly, we introduce a realistic
adversarial data generation approach (MLAdv) by using multi-loss hybrid adversarial
artifacts. Compared with existing methods, our adversarial samples have stronger attack
mobility and appear legitimate to a human observer. Instead of directly putting the adver-
sarial samples into the model for learning, we use an adjacent loss approach to consider
the relationship between the adversarial samples and the original samples during the
adversarial training. Experimental results validated that our approach can effectively
improve the robustness of the model without relying on large amounts of data to train
the network.

3 Methods

3.1 Overview

In this paper, we propose a multi-loss hybrid adversarial camouflage (MLAdv) to gen-
erate effective adversarial attacks which contain the noise style that can puzzle the net-
work. And we use an adjacent loss approach to retrain the model with the relationship
of adversarial samples and the original samples.

Fig. 2. Overview of the proposed approach.

Problem Formulation
Given an original medical image x with output label y, our MLAdv method finds the
effective adversarial sample xa by solving the following optimization problems:

minimize||x − xa||p + Lhybrid(x, xa)

s.t. xa ∈ [0, 255],D(x, xa) ≤ ε,
(1)
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where Lhybrid is the multi-loss function, ε means the threshold. With these adversarial
samples, the model is retrained to improve the robustness by considering the relationship
of adversarial samples and the original samples.

Solutions
Figure 2 shows an overview of our proposed model robustness improvement approach.
User defines the clean source image, expected target style. Our proposed MLAdv then
generates the adversarial sample with the desired style in the desired region. Firstly,
we extract to high-dimensional features by feature extractor and optimize Lhybrid with
multi-lossmethod to generate the adversarial sample xa. Then, we introduce the heuristic
projection-based perturbations iteration to improve the transferability of adversarial sam-
ple. We compute the target models’ gradient ∇J (xa, y) and make gradient map, where
J (xa, y) is the cross-entropy loss. We further add a small perturbation ε ·sign(∇J (xa, y))
to the image of each iteration to achieve perturbations iteration. Finally, with these
adversarial samples, the model is retrained to improve the robustness by considering the
relationship of adversarial samples and the original samples.

Firstly, we develop a multi-loss hybrid function Lhybrid about the style, origin, and
detail to craft medical adversarial samples into realistic looking styles. The final multi-
loss function is a combination of the adversarial loss Ladv, the style loss Ls for the
style generation, the origin loss Lo to preserve the original features of the source image,
and the detail loss Ld to ensure that the adversarial example is smooth in detail. The
definition is as follows:

Lhybrid = (Ls + Lo + Ld) + τ · Ladv

s.t. xa ∈ [0, 255],D(x, xa) ≤ ε (2)

Secondly, we further use a heuristic projection-based perturbations iteration to
project the added noise in the adversarial example into the surrounding area, to ensure
the strong aggregation and interference. We should maximize the cross-entropy loss
J (xat , y) of target model and use f (x) to denote the prediction label of DNNs to ensure
f (xat ) �= y. The operation is as follows:

x′
a = Clip(xa + ε · sign(∇J (xa, y)) + γ · sign(Wo∗P))

s.t. xa, x′
a ∈ [0, 255]

, (3)

where Wo is defined as the projection kernel and P is defined as the generated pertur-
bation. We use a heuristic projection algorithm to project those noises that exceed the
threshold ε into the surrounding area. This is based on the assumption that pixels that
are more likely to exceed the ε threshold will have a higher probability of being in the
highlighted areas of the class activation map (CAM) visualization area [11], and that we
naturally expand the aggregation of perturbations in these areas by using this projection
method.

Finally, instead of adding these adversarial attacks to the training data directly, we
consider the similarity between the original samples and adversarial attacks by using
an adjacent loss during the training process, which can improve the robustness and the
generalization of the network for unanticipated noise perturbations.
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3.2 Multi-loss Function for Generating Adversarial Samples

The final multi-loss function is a combination of an adversarial loss Ladv for adversarial
strength, a style loss Ls for style generation, an origin loss Lo to preserve the content of
the original image and a detail loss Ld to ensure that the adversarial example is smooth
in detail.

Style Loss
Image concealment is defined as ||x − xa||p, where || · ||p usually uses Lp norm,where L2
and L∞ are typically used. For our proposed image generation, style similarity is defined
by the style metric between the adversarial example and the style reference image xs.
The style distance between two images can be defined by their differences in the style
representation, as follows:

Ls = ∑

l∈Pl
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where D̃ is a feature extractor of deep neural network (DNN), and G is a Grammatrix [9]
of deep features extracted at a set of style layers of D̃. As different style can be learned
at different layers, we use all the convolution layers of the network as the style layer.

Origin Loss
The above pattern loss can be used to generate an adversarial image in the reference
style, but the content of the adversarial image may be very different from that of the
original image. The content of the original image can be saved by the loss of content
preservation, as follows:

Lo = ∑

l∈Ol
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where Dl is the set of content layers used to extract the content representation. This is
to ensure that the adversarial image has very similar content to the original image in the
depth representation space. We use the deeper layer of the feature extractor network as
the content layers.

Detail Loss
By reducing the change between adjacent pixels and ensure that the picture is smooth
in detail. For adversarial image xa, the detail loss is defined as:

Ld = ∑
√(

xai,j − xi+1,j
)2 + (

xai,j − xi,j+1
)2

, (6)

where xai,j are pixels at coordinates (i, j) of image xa. Intuitively, this will encourage
the image to have local patches with low variance. Because Sharif et al. [10] pointed
out in the paper that the smooth term is useful to improve the robustness of adversarial
examples in physical environment.
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Adversarial Loss
For adversarial loss Ladv, we use the following cross-entropy loss:

Ladv =
{
log

(
py(xa)

)
, untargeted category,

−log
(
pyadv(xa)

) + log
(
py(xa)

)
, targeted category

, (7)

where pyadv() is the probability output (SoftMax on Logits) of target model F.

3.3 Heuristic Projection Based Perturbations Iteration

Smooth patches are the basic components of natural and medical images [12], and
distinguishable areas are usually concentrated in some of these patches. However, as
can be seen in Fig. 3, DNN generally focus on discriminative regions (has been circled
in the CAM in Fig. 3), which usually contain clustered pixels instead of scattered ones.
Besides, Li et al. [13] have demonstrated that regionally homogeneous perturbations
are strong in attacking defense models, which is especially helpful to learn transferable

Fig. 3. We show the adversarial examples generated by FGSM, GAMA and our method (Projec-
tion basedmethod) for ResNet50model respectively. Themaximumperturbation ε is limited to 10,
and the maximum number of iterations is limited to 20. Top row: the adversarial image. Second
row: the adversarial noise. Third row: the image after denoising with BM3D. Botton row: the
Gradient-weighted Class ActivationMapping (Grad-CAM) image. OurMLadv projectionmethod
can generate adversarial noise which has the same clustering property as the activation map and
also well covers the different discriminative regions.
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adversarial examples in the black-box setting. For this reason, we believe that noises
perturbations with the characteristic of aggregation in these discriminative regions are
more likely to attack successfully because they perturb more significant information.
For example, as shown in Fig. 3, we find that the more migratory FGSM (Fast Gradient
Sign Method) algorithm has some aggregation characteristics in the noise visualization
results by comparing GAMA (Guided Adversarial Margin Attack) and FGSM.

Although FGSM reflects some aggregation, it still has sparse characteristics. From
the CAM image, we can see that the discriminative regions tend to be clustered in a few
specific parts (the third row in Fig. 3). To solve this problem, after the multi-loss func-
tion based adversarial samples generation, we introduce the heuristic projection-based
perturbations iteration to enhance the aggregation characteristics of noise perturbations.
From the CAM image in Fig. 3, we can see that our noise also has strong aggregation
compared to FGSM and GAMA, which is more easily to puzzle the network.

We propose a heuristic projection-based perturbations iteration and the inspiration
comes from Rosen Project Gradient Method [14], which method project the gradient
direction when the iteration point is on the edge of the feasible region in order to ensure
the iteration point remainswithin the feasible region after updating.However, performing
thismethod is a little complex andneeds additional computational cost.Hence,weproject
those noises that exceed the threshold due to the amplification step to the surrounding
area, which results in noises with stronger aggregation. We argue that the part of the
noise vector which is easier to break ε-ball limitation has a higher probability of being
in the highlighted area of discriminative regions. Our strategy can simply reuse the
noise to increase the degree of aggregation in these regions without additional huge
computational costs.

We need to get the noise after the iteration, and if L∞ − norm of xa exceeds the
threshold ε, we cut out the perturbation by:

P = clip (|xa| − ε, 0,∞) · sign(xa) (8)

The final adversarial image with perturbations iteration is then defined as:

x′
a = Clip(xa + ε · sign(∇J (xa, y)) + γ · sign(Wo ∗ P)), (9)

where Wo is a special uniform project kernel of size w × w; and sign(Wo ∗ P) is the
feasible direction of the cutting perturbation. In this paper, we simply define Wo, as
follows:

Wo
[
i, j

] =
{
0, i = w/2, j = w/2.
1/

(
w2 − 1

)
, else.

(10)

We also test other types of kernels, such as Gaussian kernels. However, the exper-
imental results show that there is no significant difference (only ∼1%). Moreover, the
uniform kernel does not require additional parameters. Therefore, we finally chose it.
As shown in the third row of Fig. 3, compared with the FGSM and GAMA methods,
the noise perturbations iteration using the heuristic projection method is difficult to be
removed by the BM3D denoising approach. Therefore, heuristic projection-based per-
turbations iteration can ensure the noises with stronger aggregation, that is not easily
removed by the denoising algorithm.
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In summary, we provide a multi-loss function to generate adversarial samples close
to the decision boundary and ensure that the difference between the adversarial and
original samples is not detectable to the naked eye. Then a heuristic projection-based
perturbations iteration is used tomake the generated noise aggregated and cover multiple
discriminative regions to acquire the effective adversarial attack samples. The following
figure gives the pseudo-code flow of this method.

3.4 Retrain Model with Adjacent Loss

The adversarial samples all fall in a small neighborhood of the corresponding clean image
in the image space, so a classifier additionally trained with the generated adversarial
samples in the neighborhood of each training image should be more robust to adversarial
attacks, in the sense that all the adversarial samples around the clean image will be
projected to the same point in the semantic feature space. In practice, however, it is
not feasible to collect all the adversarial samples. By trying to project samples with
transferable attacks as a small subset of general adversarial images in the neighborhood to
the same point in the semantic feature space as the clean images, because we believe that
samples with transferability aremore representative samples. In this case, the adversarial
samples aremore likely to be identified as the same class of clean images, thus improving
the robustness of the classifier.
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Formally, for the i-th clean image xi in the original training set, the adversarial

samples of the clean image are denoted by xia
′
, and f (xi) and f (xia

′
) are the corresponding

feature vectors generated by the output of the final convolution layer in the classifier. The
objective of transforming the neighboring adversarial samples to the same point in the
semantic feature space can then be formulated as an optimization problem, i.e., training
the classifier (see Fig. 2) such that the following loss function La (called adjacent loss)
is minimized.

La = 1

N

N∑

i=0
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′
a
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A more robust classifier can be obtained by training the classifier simultaneously
with the constraint that the clean and adversarial samples are similar to each other in the
semantic feature space, i.e., by minimizing the loss function L,

L = Lc + λaLa (12)

Here Lc denotes the cross-entropy loss of the classifier itself to improve its classification
performance on both clean and adversarial images, and λa is the hyperparameter to
control the relative weight of the loss term La. Next, we retrain the model with this
method to enhance the generalization of the model.

4 Experiments and Results

In this study, the efficiency of the proposed adversarial image generationmethodMLAdv
was evaluated through an image classification task on COVID-19.

Medical Image Classification Task On COVID-19 Dataset. The public COVID-19
dataset was used to classify covid-19, normal and pneumothorax patient cases. In our
experiment, there were 1200 COVID-19 positive images, 1341 normal images and 1345
viral pneuomonia images. The data with COVID-19 cases was collected from differ-
ent publicly accessible dataset, online sources and published papers [15–17]. Normal
and Viral Pneumonia data were collected from the Chest X-Ray Images (pneumonia)
database [18].

During the experiment, we first give the implementation details of the experimental
setup (Sect. 4.1). Then, we verify the high aggressiveness of our adversarial samples in
white-box mode and the attack transferability in black-box mode in comparison with
several state-of-the-art attackmethods (Sect. 4.2).After that,weuse ablation experiments
to verify the effectiveness of the multi-loss function for generating adversarial samples
(Sect. 4.3). Finally, we verify that retraining the model with adjacent loss by using our
adversarial samples can improve the robustness (Sect. 4.4).
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4.1 Implementation Details

In order to evaluate how the adversarial attack training method can improve the medical
image diagnosis system, the standard medical diagnosis model ResNet50 was trained
and tested on two types of datasets: 1) original COVID-19 dataset; 2) the adversarial
samples (Several state-of-the-art adversarial sample generation methods are compared,
including FGSM, GAMA, RayS (Ray Searching attack) and our method).

The ResNet50 image classification model was implemented based on TensorFlow in
GPU. We set the base learning rate to 0.001. The Batch size was set to 8, and the epoch
was 30 during training. We adopted the Stochastic Gradient Descent (SGD) optimizer
where momentum and weight decay rate were set to 0.9 and 0.0001 respectively. In this
experiment, the original data set x was divided into two parts xtrain and xval with the ratio
of 0.85/0.15. In addition, the adversarial image dataset x′ were also divided into x′

train
and x′

val with the same ratio of 0.85/0.15. The used original image dataset was xtrain, and
the adversarial image dataset was the combination of xtrain and x′

train. The models were
retrained with adjacent loss by using the adversarial samples (Table 1).

4.2 Verify the Attack Transferability of Adversarial Samples

We compare our method (multi-Loss with heuristic projection) with FGSM, GAMA,
and Rays to verify the attack transferability of ourmethod. In Table 2, the top rowmodels
were substitute models. We use ResNet50 to generate adversarial examples by FGSM,
GAMA, Rays and our method. Then we attack ResNet101, Vgg16 and ResNet152 with
generated adversarial examples to verify the attack transferability of different attack
methods. As shown in Table 2, our Multi-Loss can improve the attack success rate by
28.9% on average compared to other attack methods, and 35.1% when we attacked the
ResNet 101. This was because our perturbation has the property of aggregation, and the
attack was more transferable.

Table 1. The success rate (%) of non-targeted attacks.

Use ResNet50 to generate adversarial examples

Attacks White-box Black-box

ResNet 50 ResNet 101 Vgg16 ResNet 152 Average

FGSM 80.9 38 33.1 33.9 35

GAMA 100 29.6 19.4 20.3 23.1

RayS 99.8 54.1 43.5 50.9 49.5

Our 100 73.1 51.2 67.4 63.9

4.3 Influence of Multi-loss Function

In this section, wewill verify that themulti-loss function can achieve adversarial samples
with strong imperceptibility and can improve the classification performance by using
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these adversarial samples. We set up ablation experiments, subtracting a portion of the
loss for comparison. Figure 2 illustrated three sets of adversarial exampleswith orwithout
two optional loss terms (origin loss Lo and detail loss Ld ). When incorporating one loss
term, it is directly added to the final object by following Eq. (2). It can be observed that
the content loss term can help preserve the original content, while smoothness term loss
can help produce smooth object surfaces. Therefore, as shown in Fig. 2(d), the multi-loss
function was effective to generate adversarial examples that appear legitimate to human
observers. In addition, by adding the heuristic projection-based perturbations iteration,
the generated noise was highly aggregated and difficult to be removed (as shown in
Fig. 2(e)). Table 2 shows image classification performance comparison by using the
adversarial samples which were generated by using different loss function, indicating
that the multi-loss function produces more effective adversarial samples (Fig. 4).

Fig. 4. Visual comparison. The results of generated adversarial examples by using different loss
terms.

Table 2. Quantitative comparison. Image classification performance comparison. Evaluation
using accuracy, specificity, sensitivity, and precision. The comparison of classification accuracy
using partial and full loss and after adding the noise projection algorithm into the source image
dataset.

Method Accuracy Recall Precision F1_score

Source 0.9166 0.9166 0.9267 0.9157

Only Ls 0.9440 0.9440 0.9455 0.9332

Ls + Lo 0.9465 0.9465 0.9477 0.9464

Multi-loss 0.9615 0.9615 0.9620 0.9615



426 C. Cheng and F. Chen

4.4 Verify the Robustness Enhancement

In this section, we verify that retraining the model using our generated adversarial sam-
ples can improve the robustness. On the one hand, we evaluate the robustness enhance-
ment from the classification accuracy after model retraining. Figure 5 and Table 3 rep-
resented the comparison of classification performance with different adversarial data
generation methods. For the medical classification task on COVID-19, the model which
used an adversarial image dataset for training achieved better performance than themodel
using original data for training. Compared with other methods, our method achieves the
best results in the improvement of classification accuracy. The classification accuracy
was increased from 93.56% to 97.43% by using adversarial examples. Our experimental
results confirmed the proposed method to be effective, and capable of improving the
generalization and accuracy of the classification model.

Fig. 5. Image classification accuracy comparison. Several state-of-the-art adversarial sample
generation methods are compared, including FGSM, GAMA, RayS, and our methods.

Table 3. Evaluation Image classification performance with different methods, using accuracy,
specificity, sensitivity, and precision.

Method Accuracy Recall Precision F1_score

Source 0.9166 0.9166 0.9267 0.9157

FGSM 0.9589 0.9589 0.9597 0.9590

GAMA 0.9294 0.9294 0.9309 0.9288

RayS 0.9474 0.9474 0.9486 0.9473

Multi-loss 0.9615 0.9615 0.9620 0.9615

Projection 0.9641 0.9641 0.9643 0.9641
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On the other hand, we compare the data distribution after model retraining by using
our generated adversarial samplesmethod, in order to verify that ourmethod can improve
the robustness. In this experiment, the Receiver operating characteristic (ROC) curve
comparison and feature layer presentation under t-Stochastic Neighbor Embedding rep-
resentation were used. ROC curves and their AUCs (Area Under the Curve) is also used
to evaluate the performance of classification performance. We use trained models to
predict test inputs and generate ROC data, and the ResNet50 trained on the combined
image set significantly outperforms the model trained on the original image set.

We use micro and macro averaging to evaluate the overall performance across all
classes.

precision = PRE = TP
TP+FP (13)

In “micro averaging”, we’d calculate the performance from the individual true pos-
itives, true negatives, false positives, and false negatives of the k-class model (k = 3 in
this case):

PREmicro = TP1+···+TPk
TP1+···+TPk+FP1+···+FPk

(14)

And in macro-averaging, we average the performances of each individual class by
follow:

PREmacro = PRE1+···+PREk
k (15)

Figure 6 shows the ROC curves of ResNet50 trained on the original and com-
bined sets. Our combined set improving the generalization and accuracy of classification
model because adversarial images make the area under the curve significantly larger for
class 2(COVID class). The performance of model trained on combined set outperforms
original set with an AUC of 1 for PREmicro and 1 for PREmacro.

Fig. 6. The performance of ResNet50 trained on the original (left) and combined sets (source and
adversarial dataset with MLAdv method) (right) in terms of ROC curves and AUC values. Clas-
sification accuracy of the ResNet50 is improved by combing the original dataset with adversarial
images with MLAdv method.
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Weplot the t-StochasticNeighborEmbedding representation (t-SNE) fromResNet50
for the clean and adversarial examples (MLAdv) in Fig. 7 for the classification task to
further illustrate this difference. Contrasting Fig. 7 (Above) with Fig. 7 (Below), we
clearly observe that the adversarial examples were embedded closer to the clean data,
and adversarial data allows the dataset to produce clearer boundaries. Ultimately, adver-
sarial examples enable the COVID-19 category to be clearly separated out, completely
excluding normal and pneumothorax samples. The result of the experiment supports our
hypothesis that adversarial examples can improve the robustness of the network and the
activated boundaries can converge to the original boundaries of the samples.

Fig. 7. The t-SNE represents the embedding of 3 classes (purple, pink and black) from covid,
normal and pneumothorax. The adversarial examples are embedded closer to the clean data, and
adversarial data allows the dataset to produce clearer boundaries.

5 Conclusion

This paper proposes an adversarial attack training method by using multi-loss hybrid
adversarial function with heuristic projection. Then we consider the similarity between
the original samples and adversarial attacks by using an adjacent loss during the training
process, which can improve the robustness of the network for unanticipated noise pertur-
bations. The experiments on COVID-19 classification tasks validated that the adversarial
image examples generated by MLAdv can improve the accuracy of disease diagnosis
by 4.75%. Therefore, the augmented network based on MLAdv adversarial attacks can
improve the robustness and generalization ability of medical image diagnosis system.
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Abstract. Existing clustering methods rely on prior knowledge of the
data set to cluster it, so the quality of the clustering effect is entirely
dependent on the user’s familiarity with the data set. Furthermore, when
extracting the information from a data set, existing clustering algorithms
frequently ignore the geometric distribution of data, making it difficult to
identify data objects in their entirety and detect local spatial structures.
To address these issues, this paper proposes a spatial subcluster cluster-
ing method by grid-connection, which automatically obtains subclusters
by iterative local labeling without requiring a priori knowledge of the
data set and efficiently extracts correlations between data by establish-
ing relationships between subclusters by grid-connecting. Experiments
are conducted to validate the proposed algorithm against existing state-
of-the-art algorithms on 9 synthetic and 4 real data sets. The results show
SSCG can efficiently utilize the information on the grid space without
relying on a priori knowledge, and the overall performance is better than
the existing advanced algorithms.

Keywords: Spatial clustering · Clustering quality · Relabeling ·
Grid-connection

1 Introduction

Clustering is a typical unsupervised learning method, which can discover intrin-
sic connections between data on unlabeled data sets [19]. The primary goal of
clustering is to divide the data points into clusters according to the similarity so
that the similarity of points in the same cluster is as high as possible, and the
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similarity of points in different clusters is as low as possible [14]. Although there
have been many studies on clustering methods, there is still no general solution.
Two key problems need to be solved:

(1) Over-reliance on a priori knowledge of the data set;
Most existing clustering methods use the priori knowledge of the data set as
a parameter [1,11,16], and the well-known k-means clustering method [10]
uses the number of clusters as a priori parameter of the algorithm. However,
this kind of priori knowledge conflicts with the definition of unsupervised
learning [6] to a certain extent, and the requirement for a priori knowledge
makes these algorithms perform poorly in practical clustering tasks.

(2) Less attention is paid to the geometric distribution information of data
objects, which resulting in the spatial information of data sets is insuffi-
cient utilization.

Clustering essentially constructs the concept of similarity [5,20,21], and most
clustering methods strive to capture the similarity by calculating the distance
between data objects [13] in the local area. However, this measurement method
only focuses on the local spatial information of data objects and ignores their
global spatial information in the data set. As a result, these algorithms are
ineffective in clustering complex shapes.

The above problems limit the further development of clustering algorithms.
For the problems of existing methods, this paper proposes a grid-connected spa-
tial subcluster clustering method (SSCG). Different from other methods, SSCG
automatically obtains subclusters through iterative local labeling, which can
efficiently generate subclusters without a priori knowledge of the data set. The
method also establishes the relationship between subclusters by grid connec-
tion, and efficiently extracts the correlation between the data to form the final
result. Experiments show that this method can well balance high-density and
low-density clusters, and the complex-shaped data sets perform extremely well
with lower time complexity.

Our contributions are as follows:

– A density-guided local iterative labeled subcluster generation method is
designed to perform iterative local labeling according to the grid density.
The method does not require a priori knowledge of the data set and takes
well into account regions of different densities and works well for clustering
complex shapes. This subcluster generation method has not been done by
others within our knowledge.

– A subcluster merging method via grid connectivity is proposed, where the
similarity between subclusters is calculated based on the grid path connectiv-
ity between subclusters, and the subclusters are merged based on that sim-
ilarity. This method focuses more on the geometric distribution of the data
and can efficiently use the clustering space information for similarity statistics
and identification. This merging method has not been done by others within
our knowledge.
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2 Related Work

2.1 Identify the Main Part of Clusters

Clustering algorithms’ first task is to identify the subject area of each cluster.
A popular method for grid clustering is to separate dense grids according to a
global density threshold, with neighboring dense grids considered as belonging to
the same cluster and non-adjacent dense grids considered as not belonging to the
same cluster [1,20]. This identification method ignores the imbalance of the den-
sity distribution of the data set. To solve this problem, Bo Wu et al. [18] proposed
DGB algorithm, which sets a global percentage parameter and enhances the per-
formance of the algorithm on unbalanced data sets by computing density thresh-
olds for each cluster individually to separate the subjects of each cluster, but the
method requires setting parameters such as the number of clusters, edge thresh-
olds, and grid size simultaneously, increasing the need for a priori knowledge and
significantly increases the running time due to its topological neighborhood diffu-
sion. Brown et al. [4] proposed the Fast Density-Grid Based Clustering Method,
which finds the grids with locally maximum density by density histogram and con-
nects these grids with their nearby low-density grids. In this way, the cluster cen-
ters and the labels of each grid are obtained. This method has low time complexity
and can also obtain the center region of each cluster accurately, but it requires the
number of clusters in the data set and often misclassifies the cluster edge regions.
New shifting grid clustering algorithm [9] was proposed by Eden et al. to solve the
single grid by moving the grid limitations and reducing the algorithm’s need for
prior knowledge but also increases the time complexity. The existing methods for
identifying the class of cluster subjects mainly focus on using density thresholds
to identify dense grids, this method fully considers the nature of density on the
grid structure. But the method requires some priori knowledge of the data set and
works poorly for imbalanced data sets, and has the problem of unreasonable edge
assignment. Different from existing algorithms, we design a density-guided local
iterative labeled subcluster generation method, which avoids the problem of prior
knowledge parameters in the form of nonparametric iterative initialization, and
not only enhances the algorithm’s ability to recognize each density region but also
reduces the number of parameters.

2.2 Merge Subclusters

An important step in merging subclusters is to determine the similarity between
each subcluster. Many inter-cluster similarity measures have been proposed.
MKCE algorithm [3] connected the centers of subclusters and counts the points
on the path as a density-based inter-subcluster similarity measure. The metric is
more reliable, but because it uses full connectivity and borrows the normalized
spectral clustering algorithm, its time complexity is high, and it ignores the merg-
ing problem of complex manifolds, underutilizes the clustering space, and is not
reliable for imbalanced data sets. RSEC algorithm [15] redesigned the inter-cluster
similarity association matrix, which enhances the reliability of the co-association
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matrix, but it requires multiple executions of the clustering algorithm on a data
set, has low utilization of the location information of subclusters, and has high time
complexity. To address the problem that there is no subcluster similarity measure
designed for grid structure, in this paper, we propose a subcluster merging method
through grid linkage with full consideration of the features of the grid structure.
The method fully takes into account the structural information of the grid space,
can efficiently use the grid space and is more accurate in measuring the similarity
between subclusters.

3 Methodology

Before presenting the algorithm further, we must first consider the basic def-
inition of SSCG. We define the set of data objects in the L-dimensional data
set as Π = {πi}N

i=1, which contains N sample points π. The clustering space
is mapped to a grid structure G = {gi}M

i=1 consisting of M standard grids g.
The dimensionality of the clustering space D = {di}L

i=1. The set of labels on
the lattice structure is L = {label(gi)}M

i=1. For the relevant base definitions that
appear later, we state here uniformly.

3.1 Preliminaries

Before presenting the algorithm further, we must first consider the basic defini-
tion of SSCG. We define the set of data objects in the data set as Π = {πi}N

i=1,
which contains N sample points π. The clustering space is mapped to a grid
structure G = {gi}M

i=1 consisting of M standard grids g. The dimensionality of
the clustering space D = {di}D

i=1. For the relevant base definitions that appear
later, we state uniformly here.

Definition 1. (Density of grids) The density of grid gi is defined as the number
of data objects within it, as shown in Eq. (1)

ρgi
= num

π∈gi

(π) (1)

In Eq. (1), ρ = {ρgi
}M

i=1 is the density set of M grids, num is a function that
counts the number of p.

Definition 2. (Grid distance) The distance between grid gi and gj in the n-th
dimension is defined as Eq. (2)

Disdn
(gi, gj) =

Dcdn
(gi, gj)
l

(2)

where Dcdn
(gi, gj) is the distance between the centers of grid gi and gj in the

n-th dimension. l is the width of the standard grid on the n-th dimension.
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Fig. 1. Graphical illustration of principle demonstration of SSCG.

Definition 3. (Set of grids with density ρi) The set Gρ of all standard grids in
the grid structure whose density is ρ is defined as Eq.

Gρi
= {g|num(g) = ρ} (3)

Definition 4. (Set of gi’s neighbors)A point’s nearest neighbor is the point
whose distance from the point is less than or equal to 1 in all dimensions, defined
as Eq.

Nen(gi) = {gj |Disd(gi, gj) <= 1 ∩ gj �= gi, d = 1, 2, ...,D} (4)

3.2 Initializing Subclusters

First, the SSCG algorithm maps the clustering space onto a standard grid struc-
ture. This part is specified by dividing each dimension on the clustering space
with equal length l, which in turn obtains a grid structure G on the clustering
space, as shown in Grid Structure in Fig. 1. Each dimensional edge length of
each grid within this structure is equal, and this grid is called standard grid.
The standard grid avoids the adverse effect of different scales in each dimension
on accuracy. Each data object point within the clustering space is attributed to
the standard grid within this structure. Based on the distribution of the grid
density value ρg in the space, the algorithm can distinguish the core part of a
cluster from its edges, and the intersection region between two clusters.

Unlike other methods, the dimensions of the cluster space are not normalized
in SSCG, which is to make the spatial information of each dimension within the
cluster space as complete as possible. The density value of each grid is obtained
by performing Eq. (1) for each grid. It is important to note that the computation
of this step is highly parallel.

It should be noted that after this step all empty meshes are discarded and
only meshes with density greater than or equal to zero are kept in memory. The
meshes operated on below are non-empty, which allows us to avoid the memory
overflow problem that occurs with mesh clustering in high-dimensional spaces.
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After obtaining the standard grid structure and the density of each grid, we
can cluster on the grid structure to obtain subclusters. We designed density-
guided local iterative labeled subcluster generation method(DGL)
based on the features of the standard grid structure.

DGL: First, find the grid with the highest density in grid structure and label
them as the first cluster and pre-label their neighborhood grid; Second, find
grids with lower density in grid structure, label them with their pre-label if it
already has pre-label, and pre-label their neighborhood as their pre-lable, and
if not pre-labeled, then treat them as the center of a new subcluster and label
them with their new label; Third, repeat the second step until all the lattices
are labeled. For a detailed description of this method see Algorithm 1.

Algorithm 1. Density-guided local iterative labeled subcluster generation
method (DGL) and Edge grid reassignment (EGR)
Input: ρ(density set for individual grids);
Output: L(lebels of base clusters) and C(centers of base clusters).
1: Initialization: l=0, C = ∅;
2: MGB:
3: for ρi in ρ: do
4: for gj in Gρi , and Label(gj) does not exists do

5: if preLabel(gj) dose not exists then
6: Label gj with l and pre-label its neighborhood as l;
7: Regard gj is the center grid of a new subcluster, C.append(gj) and l + +;
8: else
9: Label gj with its pre-label and pre-label its neighborhood as the pre-lable

of gj ;
10: end for
11: end if
12: end for
13: EGR:
14: for Edge grid gk in Egi do
15: get the maximal number of data points with the same cluster label labelm in gk

and Nen(gk);
16: label(gk) = labelm;
17: end for
18: return L and C.

After DGL, we get the labels of the initial subcluster. To make the edge
delineation of the subclusters more reasonable and improve the confidence of
the subclusters, edge grid reassignment(EGR) is proposed to reassign the
edges of the subclusters. Edge grid is defined as a grid adjacent to other marked
grids as follows.

Eg = {gj |label(gj) �= label(Nen(gj))} (5)
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EGR: First, the labels and densities in both the edge grid and its neighbors are
counted, and the labels are reassignment based on the statistical information;
Then, the above operation is performed for all edge grids. The edge grid reas-
signment makes the edge assignment of each subcluster more reasonable and is
beneficial to improve the reliability of the initialized generated subclusters. For
a detailed description of the method, see Alg. 1.

3.3 Construction of Cluster Relations and Generation of Final
Clustering

After obtaining the final subcluster partition, we need to merge the subclus-
ters to obtain the final result. Subcluster merging method by path-
finding(SMM) is proposed to merge the subclusters to obtain the final result.
Before detailing its method, we need to make some definitions.

Let the clustering centers of the adjacent clusters Bci and Bcj be Ci and
Cj , respectively, then the parameter of the Beam Path Search Algorithm, Beam
width is the number of neighborhood points of a point, it is related to the
dimensionality of the data set. The objective function for optimization within
each time step is shown in Eq. (6)

PathWeight(GC , GT ) = Dis(GC , Cj) + Dis(GC , GT ) (6)

In Eq. (6), GC is the current grid, GT is the target grid, and Dis refers to the
grid-based Manhattan distance. At each time step, Beam Path Search Algorithm
tries to find the target grid in the neighborhood of the current grid that makes
the objective function value, i.e., PathWeight in Eq. (6), the smallest, and
takes this optimal target grid as the new current grid. The algorithm records all
current grids passed as connected paths until the current grid coincides with the
end grid.

After getting the connected paths, we can calculate the merge weights of Bci

and Bcj based on the information on the paths, which is defined as shown in
Eq. (7)

Mew(Bci, Bcj) = len(Pathij) ∗ std(Pathij) (7)

where len(Pathij) is the length of the path Pathij , and std(Pathij) is the stan-
dard deviation of the grid density on the path Pathij .

SMM: First, find all base clusters that are neighbors of each other, connect their
clustering centers using the beam path search algorithm, and record the paths;
second, the merge weights are computed from the statistical information on the
paths using Eq. (7); third, compute the merging threshold using the merging
parameter γ and perform merging; fourth, the labels of the grid are mapped to
the data objects within the grid to obtain the final clustering results. The SMM
is detailed in Algorithm 2.
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Algorithm 2. Subcluster merging method by path-finding(SMM)
Input: L(lebels of base clusters), C(centers of base clusters) and γ(merge parameter);
Output: LF (final labels for individual data points).
1: for Bci and Bcj in set of pairwise neighbors do
2: Connect the centers Ci and Cj of base clusters Bci and Bcj using the Beam

Path Search Algorithm, and record the path Pathij ;
3: Calculate the length len(Pathij) of Pathij and variance std(Pathij) of all grid

densities on Pathij ;
4: The merge weight between Bci and Bcj is calculated by Eq. (7);
5: end for
6: Merge all pairwise clusters with weights below γ% of the set of combined weights;
7: Map the labels on the grid to the data objects in the grid to get the final label set

LF of the data objects;
8: return LF .

4 Experience Results and Analysis

4.1 Data Sets and Compared Methods

In this paper, we selected 9 well-known synthetic data sets containing several
clusters of complex shapes with different densities and non-spherical surfaces,
separating these clusters would be a challenging clustering task. Furthermore,
we also selected 5 well-known UCI real data sets to verify the algorithm’s ability
to handle real data, including clustering tasks for two large-scale data sets: (1)
Wireless sensor network information clustering for predicting the pattern of user
movements in real-world office environments from time-series, the applied data
set is Indoor User Movement Prediction from RSS Data Set (RSS) [2]; (2) Urban
road accidents data clustering, which is used to delineate different geographic
areas based on traffic accident data, the applied data set is urbanGB, a huge
real data set including more than 300,000 data objects. Table 1 shows the details
of the test data sets.

On these data sets, we compare SSCG with the k-means-based clustering
ensemble algorithm RSEC [15], the grid clustering algorithm MSGC [7], the DGB
[18] algorithm, and the CLIQUE [1] algorithms by quantitatively evaluating and
contrasting effectiveness and time costs. We introduce three widely used external
criteria ARI [8], NMI [17] and FMI [12] to measure the similarity between cluster-
ing results and true labels on the data set, and compute the ARI, NMI, and FMI of
the clustering results using Python’s Sklearn module. The larger the ARI, NMI,
and FMI, the better the clustering performance. All the experiments are imple-
mented based on the same hardware: Windows 10 64 bit operating system with
Intel Core i5 (I5-9300) @2.4 GHz 8.00 GB memory. SSCG and CLIQUE are run
under a Python3.60 programming environment, the rest of the algorithm is run
in MATLAB (2019b). For each algorithm compared, we adjusted according to the
parameter settings suggested by the author, and recorded the best performance
of the algorithm under each parameter, and the parts that did not converge and
could not be run were represented by the ‘-’ flag.
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Fig. 2. Comparison of clustering results of SSCG, MSGC, and RSEC on two synthetic
data sets.

Table 1. Description of data sets: Number of data objects (Num), Number of dimen-
sions (Dim), Number of clusters (Clu).

Data set Num Dim Clu

Path-based 300 2 3

Flame 240 2 3

Aggreation 788 2 7

Jain 373 2 2

Sym 350 2 3

Spiral 994 2 3

VaryDensity 135 2 3

R15 600 2 15

D31 3100 2 31

Seed 210 4 3

Iris 150 4 3

RSS 13197 4 2

UrbanGB 360177 2 470
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4.2 Experimental Results

The clustering results of SSCG, MSGC, and RSEC in Path-based data set and
Flame data set are shown in Fig. 2. And the ARI, NMI, and FMI of the cluster-
ing results of each algorithm are shown in Table 2, Table 3 and Table 4. SSCG
obtained the best results in second-best on all data sets except some data sets
such as VaryDensity and Jain. After comparison, it can be seen that SSCG is
superior to existing algorithms in both accuracy and adaptability. Regarding
the run time, as displayed in Table 4, SSCG is slower than CLIQUE and RSEC
in some synthetic data sets, but SSCG is the fastest or second fastest on low-
dimensional real data sets and most synthetic data sets, especially on the large
data set UrbanGB, the running time is extremely short.

4.3 Complexity Analysis

In this section, we will analyze the time complexity of SSCG and assume the num-
ber of grids is G. The time complexity of SSCG mainly depends on the following
parts: (1) Mapping the original data to the grid structure, due to the highly paral-
lel algorithm, the time complexity of this part is O(1); (2) Initialization Base clus-
ter, the time complexity of this part is O(G

∑G
gi∈G num(Nen(gi))), because of the

proposed mechanism of skipping labeled grids and num(Nen(gi)) < G, the time
complexity of this part of the algorithm is less than O(G2); (3) Connect the cluster
centers and merge the clusters, the time complexity of this part is O(len(Path)),
len(Path) is the grid number of all connection paths, O(len(Path)) < G. To sum
up, the total time complexity of SSCG is O(G

∑G
gi∈G num(Nen(gi))).

Table 2. Comparison of the performance of SSCG with other four algorithms, based
on ARI, on 13 data sets, the best results are boldfaced.

Data set SSCG MSGC DGB CLIQUE RSEC

Path-based 0.9600 0.6062 0.9162 0.6746 0.7020

Flame 0.9833 0.7515 0.9170 0.4390 0.9441

Aggreation 1.0000 0.8085 0.8085 0.8689 0.9725

Jain 0.9887 0.9193 0.9971 0.9024 1.0000

Sym 0.8510 0.7802 0.7606 0.7764 0.7429

Spiral 1.0000 1.0000 0.5127 0.9149 0.7502

VaryDensity 0.8946 0.5096 0.9066 0.7435 0.8137

R15 0.9857 0.9039 0.9302 0.9429 0.7744

D31 0.9352 0.6321 0.7364 0.7369 –

Seed 0.6791 – – 0.5727 0.6279

Iris 0.8842 – – 0.5681 0.5486

RSS 0.0104 – – 0.0020 –

UrbanGB 0.8732 – – 0.0515 –
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Table 3. Comparison of the performance of SSCG with other four algorithms, based
on NMI, on 13 data sets, the best results are boldfaced.

Data set SSCG MSGC DGB CLIQUE RSEC

Path-based 0.9482 0.6171 0.8752 0.6729 0.7408

Flame 0.9348 0.6280 0.8299 0.4355 0.9100

Aggreation 1.0000 0.8881 0.9333 0.8799 0.9743

Jain 0.9713 0.7227 0.9871 0.7393 1.0000

Sym 0.8374 0.6919 0.7689 0.7969 0.7765

Spiral 1.0000 1.0000 0.6705 0.8837 0.7990

VaryDensity 0.8761 0.5118 0.8474 0.7101 0.7999

R15 0.9885 0.9291 0.9383 0.9550 0.9306

D31 0.9540 0.8453 0.8577 0.8433 –

Seed 0.6735 – – 0.5478 0.6556

Iris 0.8500 – – 0.7316 0.6696

RSS 0.0281 – – 0.0011 –

UrbanGB 0.8967 – – 0.3313 –

Table 4. Comparison of the performance of SSCG with other four algorithms, based
on FMI, on 13 data sets, the best results are boldfaced.

Data set SSCG MSGC DGB CLIQUE RSEC

Path-based 0.9733 0.7255 0.9437 0.7785 0.8019

Flame 0.9867 0.8750 0.9610 0.7215 0.9817

Aggreation 1.0000 0.8650 0.9856 0.8799 0.9802

Jain 0.9956 0.9626 0.9989 0.9607 1.0000

Sym 0.9010 0.7585 0.8453 0.8567 0.8376

Spiral 1.0000 1.0000 0.7159 0.9564 0.8763

VaryDensity 0.9295 0.6578 0.8810 0.8283 0.8660

R15 0.9866 0.9133 0.9351 0.9471 0.8001

D31 0.9373 0.8453 0.7451 0.7464 –

Seed 0.7912 – – 0.7009 0.7583

Iris 0.9216 – – 0.7715 0.7451

RSS 0.5047 – – 0.7104 –

UrbanGB 0.8829 – – 0.3019 –
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Table 5. The running time of SSCG and the other four algorithms on 13 data sets, in
seconds, the fastest results are boldfaced.

Data set SSCG MSGC DGB CLIQUE RSEC

Path-based 0.0408 0.8876 0.1289 0.0351 3.3802

Flame 0.0360 0.8099 0.1221 0.0393 2.9640

Aggreation 0.0988 1.8806 0.0839 0.0423 13.2845

Jain 0.0420 1.0287 0.1346 0.0440 5.4360

Sym 0.1738 0.9290 0.0840 0.0447 4.2603

Spiral 0.2156 0.9676 0.1852 0.0485 22.7274

VaryDensity 0.0214 0.6715 0.1072 0.0239 2.0152

R15 0.0051 1.3837 0.2800 0.0797 7.0452

D31 0.0358 5.3094 1.2738 0.3610 –

Seed 6.9074 – – 5.2672 6.8541

Iris 0.8902 – – 0.4115 11.6130

RSS 9.7260 – – 8.9627 –

UrbanGB 5.9348 – – 14.22442 –

5 Conclusion and Outlook

In this paper, we propose a spatial subcluster clustering method by grid-
connection (SSCG), which automatically obtains subclusters by iterative local
labeling without pre-set density thresholds, reduces the number of parameters to
be adjusted during clustering, and takes good care of regions with different den-
sities within the data set. In addition, SSCG establishes the relationship between
subclusters by connecting the neighboring subclusters and derives a similar rela-
tionship between each cluster according to the linkage path, which extracts the
correlation between data efficiently and makes better use of spatial information.

We compare the SSCG algorithm with several similar advanced algorithms
on synthetic and real data sets to verify the generalizability and effectiveness of
the SSCG method. The experimental results show that SSCG has high accuracy
and robustness for data of different shapes and densities, performs well on data
sets of different shapes, and outperforms other advanced algorithms in general.

Due to the nature of the grid structure, SSCG still has some limitations, such
as: (1) depends on the choice of parameters; (2) poor performance for ultra-high
dimensional data. In future research, we will investigate clustering algorithms
that are more insensitive to parameters. In addition, we plan to propose a clus-
tering integration algorithm for high-dimensional data.
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Abstract. Confront the problems of the semantic representation, classi-
fication accuracy and efficiency of text sentiment analysis methods need
to be optimized, this paper proposes an optimized text sentiment classifi-
cation model (Shap-PreBiNT) based on Transformer. In the text embed-
ding stage, a Shap-Word model is devised to improve the ability of text
semantic representation. The Shapley-value method is introduced to cal-
culate the contribution weight of words in sentences, which fused with
Word2Vec word vector. In the feature extraction stage, a bidirectional
normalization layer is designed to regulate the feature distribution from
multi-dimension. In the stage of network structure optimization, a pre-
normalization structure is adopted to stabilize the gradient norm and
accelerate the convergence rate. The experimental results demonstrate
that the proposed model has a better performance by comparing with
other related models. On the IMDB English dataset, the classification
accuracy and F1-score reach 94.87% and 94.83%, which are 1.48% and
1.47% higher than Transformer. On the ChnSentiCorp Chinese dataset,
our model achieves the highest accuracy and F1-Score, which are 91.82%
and 91.66%, respectively, and increased by 2.43% and 2.51%.

Keywords: Text sentiment classification · Shapley-value · Word
vector optimization · Gradient normalization

1 Introduction

Text sentiment analysis is a research hotspot in natural language processing in
recent years. Its task is to analyze, process and induce texts with personal sub-
jectivity, and it is the division of authors’ tendencies, opinions and attitudes [12].
Sentiment analysis is widely used in topics inference, public opinion monitoring,
information prediction and other aspects [1]. It provides important decision-
making basis for governments, enterprises and other institutions by identifying
sentiment trends and change rules. In fact, the application of text sentiment
analysis has spread from computer science to management science and social
science. Research on sentiment analysis will not only improve natural language
processing, but also help in information-related fields such as marketing, finance,
political science, and history.
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With the support of large-scale corpus, feed forward neural network struc-
ture based on deep learning technology has become an effective research method
in the field of sentiment analysis. In 2017, Transformer was born, which relies
on multi-head self-attention to realize the encoder. It has become a new mile-
stone in the research field of NLP and entered a new stage in various application
fields including sentiment analysis. Although Transformer is outstanding in text
sentiment analysis tasks, it still has some problems. Firstly, the network struc-
ture using self-attention is not sequential and the word order relative position
information is lost. Secondly, the multi-attention with residual connections and
the structure of the feed forward neural network may also lead to instability
in the initial training stage of the model. Thirdly, it has the problem of insuf-
ficient semantic representation, and optimization of classification accuracy and
efficiency is also a challenge.

To solve the above problems, we proposes an optimized text sentiment clas-
sification model Shap-PreBiNT, which has made improvements in word embed-
ding, gradient normalization and network structure. The main contributions of
this paper can be summarized as follows:

– Shap-Word model. We design a word vector model combining Shapley-value
method with Word2Vec, which use Shapley algorithm in game theory to cal-
culate the contribution weight of words in the whole text. This model can not
only represent the local relationships between words, but also pay attention
to the whole information of the text.

– Bidirectional normalization. We design a normalization layer consists of a
batch normalization sub-layer and a layer normalization sub-layer. The former
normalizes data distribution for a single statement from the vertical dimen-
sion, and the later normalizes data distribution for different features from
the horizontal dimension. This method can avoid the problems of gradient
disappearing or gradient explosion and accelerate the training convergence
speed.

– Pre-normalization network structure. The gradient normalization is placed
before the multi-head attention with residual connection and the feed forward
neural network. So that the gradient value do not increase with the deepening
of the network layers, which can reduce the parameter sensitivity in the pre-
training stage and make the gradient norm of each layer remain stable.

The rest of this paper is organized as follows: Section 2 briefly introduces the
relevant work of the text sentiment classification; Secition 3 describes the model
structure of Shap-PreBiNT and its algorithm principle in details; Sect. 4 is the
comparison of the experimental model and results from analysis; At last, we
draw a conclusion in Sect. 5.

2 Related Work

Deep learning-based methods can actively learn the underlying semantic features
of texts. It shows unique advantages in large-scale corpus and has good flexi-
bility and robustness. In early deep learning classification models, convolutional
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neural network (CNN) or recurrent neural network (RNN) structures are used
for feature extraction. The multi-layer perceptron has good learning ability for
complex, high and nonlinear syntactic information. Kim [11] proposed TextCNN
model to complete text feature extraction through convolution window sliding.
Wang et al. [23] proposed a capsule network model combining CNN and Bidirec-
tional Gated Recurrent unit (Bi-GRU), and added dynamic routing strategy to
improve the semantic understanding of the model. The Google Mind team [15]
first used the attention mechanism on RNN to classify image. Shen [17] proposed
a neural network model combining RNN and ONLSTM. The introduction of long
short term memory network [8] (LSTM) and gate recurrent unit [4] (GRU) can
alleviate the gradient instability in training to a certain extent. However, it still
cannot solve the problem of low efficiency in large-scale computation of RNN
structure. As for CNN, it is unable to capture long-distance features due to the
limitation of the convolution window size. So it can only optimize the model by
superimposing convolution layer depth and adding auxiliary networks [9].

Attention mechanism introduced from the field of image processing has been
widely used in deep learning models in recent years [2]. It is worth noting that
Transformer [21], which does not rely on traditional neural network structure and
only adopts multi-head attention to build the whole encoder, has excellent perfor-
mance in various sequence modeling. The model generates the semantic represen-
tation by calculating different positions in the correlation sequence, and has the
advantages of capturing long distance dependency of text and paralleling com-
putation [22]. Google Brain combined the advantages of RNN sequence modeling
and multi-attention, and proposed the Transformer-XL model [5], which adopted
fragment level cyclic recursion mechanism and relative positional embedding
method to improve the long-distance dependence information capability of the
model.

3 Shap-PreBiNT Model

In order to improve the shortcomings of the original Transformer, the Shap-
PreBiNT model proposed in this paper aims to provide Transformer with high
quality word embedding as input, improve its gradient normalization and opti-
mize the network structure to achieve better performance in sentiment classifi-
cation tasks. The architecture of the model is displayed in Fig. 1. It consists of
three parts: Shap-Word word vector model, positional embedding and encoder
based on bidirectional normalization with the pre-normalization structure.

The Shap-Word model completes the text embedding and the idea is to fuse
the vector matrix generated by Shapley and Word2vec. The positional embed-
ding module utilizes the sinusoidal absolute positional embedding to record
the position information [24]. The encoder based on bidirectional normaliza-
tion mainly includes four modules: 1) The multi-head attention module divides
data into multiple heads that pay attention to information in different spaces,
which can enhance the ability of capturing feature information. 2) The feed for-
ward neural network module consists of two fully connected layers, using the
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Fig. 1. The architecture of Shap-PreBiNT

ReLU activation function. 3) The Add module adds the output of the positional
embedding module and the output of the multi-head attention module, which
can reduce the loss of information transmission between the network layers and
prevent the problem of gradient disappearing. 4) The bidirectional normalization
module is composed of a batch normalization sub-layer and a layer normaliza-
tion sub-layer, which normalizes the data distribution from the horizontal and
vertical aspects of the feature matrix respectively, so as to optimize the feature
extraction process and improve the convergence efficiency.

3.1 Shap-Word Model

As a basic task of sentiment analysis, the essence of word vector technology is to
transform natural language text into dense vector representations and facilitate
the mining of features between words and sentences.

Word2Vec [14] is a word vector model to measure the similarity between
words. Although it can complete the semantic embedding of words, it contains
limited information and can only perform limited tasks such as semantic simi-
larity calculation, while ignoring the global statistical information of words.

Shapley-value method [10] is a mathematical method to solve the problem of
n individuals cooperative game in game theory. Each person in the cooperation
can reasonably distribute the benefits according to his or her contribution. In the
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field of machine learning, this method is generally used to interpret the output
of the model.

Fig. 2. The architecture of Shap-Word model

In order to improve the expression effect of word vector, this paper proposes
a fused word vector model Shap-Word, as shown in Fig. 2. It uses Shapley value
algorithm to calculate the contribution weight matrix of words in the whole
text, and integrates it with Word2Vec word vector matrix to fully capture global
statistics and local context relevance while keeping a small training cost.

Firstly, the Word2Vec model in CBOW mode is used to generate the initial
vector matrix of the text. In the first step, the context of a word in the text is
expressed as a sequence X = [x1, x2, . . . , xc]T , where c represents the number
of words and xi represents the i-th word; The second step is to multiply the
sequence X by the input weight matrix W , add and average the obtained vectors
as the hidden layer vector hi, and then multiply by the output weight matrix
W ′. The third step is to adjust the probability distribution using the activation
function.

Secondly, use the Shapley-value method to capture the contribution value
of words and generate the vector matrix of text. The text is represented as a
sequence T = [t1, t2, . . . , tc]T . If there is a real-valued function v(S) means the
sum of the contribution values of each word corresponding to any subset S and
if the following two conditions are met:

The real-valued function of the empty set is 0:v(∅) = 0;
The real-valued function of the union of two disjoint subsets is greater than

or equal to the sum of the real-valued functions of the two subsets:

v(Si ∪ Sj) = v(Si) + v(Sj), Si ∩ Sj = ∅ (1)
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Then, [T, v] is the multi-player cooperative game and v is the characteristic
function of the game. The marginal contribution of word i to the classification
accuracy in the word subset S is:

ΔiS = v(S ∪ i) − v(S) (2)

And the Shapley value of feature i is:

γi(v) =
1
n!

∑

π∈Π

Δi(Si(π)) (3)

where Π is the set of feature subsets, Si(π) is all of the feature subsets in Π
that contain feature i.

Finally, the vector matrix generated by Word2vec is fused with the Shapley-
value vector matrix to generate a new vector matrix. The fusion mode is
described by the following formula:

Zi = (Xi + Ti) ∈ Rm (4)

3.2 Multi-head Attention

Multi-head attention mechanism is the key link of feature extraction in Trans-
former [20]. Taking the fusion vector matrix output by Shap-Word model as
input, it is divided into query vector Q, key vector K and value vector V . The
query vector Q and key vector K are calculated through the dot product simi-
larity function to get the weight of the corresponding value vector V . Then the
weighted sum of the value vectors is obtained, as shown in Fig. 3.

The single self-attention cannot obtain the feature information of multiple
sub-spaces, while the multi-head self-attention calculates the semantic represen-
tation of sequence by associating different positions in the sequence in different
sub-spaces. The text sequence is divided into h subspace, and a linear mapping
is performed in the unit of the subspace, that is, the attention function is per-
formed for h times in parallel. Then, the h outputs obtained are spliced together
and the attention function is executed again to obtain the final attention matrix,
as shown in Formula (5–6).

MultiHead(Q,K, V ) = Concat(headi)W (5)

headi = Attention(QWi
Q,KWi

K , V Wi
V ) (6)

where W , QWi
W , KWi

K , V Wi
V is the parameter matrix.
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Fig. 3. The architecture of multi-head attention

3.3 Bidirectional Normalization

In the field of machine learning, normalization plays a key role in the perfor-
mance of neural network model. In order to ensure good convergence of model,
normalization makes the characteristics of each dimension of input have similar
distribution before the relative importance of each dimension is clear.

Fig. 4. The conceptual structure batch normalization and layer normalization

The original Transformer has some problems such as hyperparameter sen-
sitivity and slow convergence in the optimization process. The improvement of
Shap-PreBiNT is to design a bidirectional normalization module with sub-layers
of batch normalization and layer normalization. Batch normalization normalizes
different features in the same batch from longitudinal dimension, which reduces
the dependence of gradient on parameters, improves network generalization abil-
ity and speeds up training convergence speed. Layer normalization normalizes
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different time steps from the transverse dimension, so that the gradient norm of
each hidden layer keeps stable distribution to avoids the problems of gradient
disappearance and gradient explosion. Figure 4 depicts the conceptual structure
of batch and layer normalization.

Batch normalization takes a batch as the basic unit, calculates its mean and
standard deviation, appends additional normalization operations on the hidden
layer of the neural network. It distributes the activation function within the
linear interval, so as to increase the step length of search and speed up the
convergence.

Algorithm1: Algorithm of batch normalization

Input: Values of x over a mini-batch: B = [x1, x2, ..., xm]
Parameters to be learned: γ, β
Output: yi = BNγ,β(xi)
μB ← 1

m

∑m
i=1 xi

σ2
B ← 1

m

∑m
i=1(xi − μB)2

x̂i ← xi−μB√
σ2
B
+ε

yi ← γx̂i + β = BNγ,β(xi)

Layer normalization comprehensively considers the input of all feature dimen-
sions of a layer, calculates the average mean and variance of the layer, and then
normalizes the input with the same normalized operation according to the data
distribution of different feature specifications.

Algorithm2: Algorithm of layer normalization

Input: Values of x over a feature: L = [x1, x2, ..., xm]
Parameters to be learned: g, b
Output: yi = LNg,b(xi)
μL ← 1

m

∑m
i=1 xi

σ2
L ← 1

m

∑m
i=1(xi − μL)2

x̂i ← xi−μL√
σ2
L
+ε

yi ← gx̂i + b = LNg,b(xi)

3.4 Pre-normalization Structure

The original Transformer uses layer normalization and is designed behind two
modules: the multi-attention with residual connections and the feed forward
neural network (FFN) [7]. This structure is often called post-normalization and
achieves state-of-the-art performance in many machine learning tasks, including
language modeling and machine translation. However, it requires more complex
parameter optimization than other sequential sequence models in training. The
core reason is that the input scale of each module is independent of the number
of network layers if the layer normalization is set after each module. This kind of



452 K. Zhang et al.

constantly changing distribution among different layers will inevitably affect the
convergence effect of the model, leading to the instability of the training process
in the initial stage.

Fig. 5. The comparison of normalization structure

To address this problem, the Shap-PreBiNT model proposed in this paper
adopts the pre-normalization structure, which designs the bidirectional normal-
ization layer before the multi-head attention layer and feed forward neural net-
work layer, as shown in Fig. 5. The vector matrix output by Shap-Word model
first goes through bidirectional normalization layer, so that the vector matrix
has a more normalized distribution, and the gradient value does not expand with
the deepening of network layer. Then the optimized vector matrix is transferred
to the multi-head attention layer or the feed forward neural network layer, so
as to avoid the over-fitting phenomenon in the initial stage and maintain the
stability of the model.

4 Experiments

4.1 Experimental Settings and Datasets

The experimental environment and configuration of this paper: Windows 10
operating system, Intel Core I7 processor, 16G memory, Python 3.7 program-
ming language, PyCharm 64 integrated development environment, Keras model
framework.

An English dataset and a Chinese dataset are used in the experiments. (1)
The IMDB Internet English movie review dataset contains 50000 labeled review
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data, which are divided into positive and negative sentiment categories. The
training set contains 25000 reviews, the validation set contains 2000 reviews,
and the test set contains 2000 reviews. (2) ChnSentiCorp [19] is a dataset of
Chinese hotel reviews organized by Dr. Tan, including 6000 tagged comment
data, the training set contains 4000 comments, the validation set contains 1000
comments, and the test set contains 1000 comments. The division of the two
datasets is shown in Table 1.

Table 1. Datasets

Datasets Training set Test set Validation set Vocabulary

IMDB 25000 2000 2000 56273

ChnSentiCorp 4000 1000 1000 22052

4.2 Performance of Shap-Word Model

In order to verify the effectiveness of Shap-Word model, we set the word vec-
tor model of represented statically, such as Word2vec (CBOW) and Glove, as
contrast models respectively. And we alse set the word vector model of repre-
sented dynamically ELMo as a contrast model. The experiments carry out the
sentiment classification task in four ChnSentiCorp datasets: htl-2000, htl-4000,
htl-6000 and htl-10000.

In the experiment, the dimension of word vector is set to 100, the size of input
window is 5, and the number of iterations is 10. The training sample size of the
classifier is set as 64, and the learning rate is 0.01. According to tag attributes,
the loss function is binary Crossentropy.

Table 2. Accuracy under different word vector models on ChnSentiCorp

Model Dataset

htl-2000 htl-4000 htl-6000 htl-10000

Word2Vec 90.77 90.5 89.39 89.57

Glove 89.79 90.44 90.32 90.56

ELMo 92.77 91.82 91.05 91.23

Shap-Word 91.38 91.87 91.8 90.84

As can be seen from Table 2, on htl-6000 dataset, when using Shap-Word
vector as input, the classification accuracy is improved by 2.41% compared with
Word2vec, 1.48% compared with Glove, 0.75% compared with ELMo. In other
dataset experiments, the performance of the Shap-Word model is also signifi-
cantly better than that of the statically represented word vector, which proves
the effectiveness of the proposed Shap-Word model.
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4.3 Performance of the Improved Normalization Structure

In order to investigate the influence of bidirectional normalization on model per-
formance, this paper adopts layer normalization and bidirectional normalization
proposed in this paper to conduct experimental comparison on ChnSentiCorp
Chinese dataset(htl-6000) and IMDB English dataset.

Figure 6 shows the variation trend of model classification accuracy with the
number of iterations on ChnSentiCorp Chinese dataset. It can be seen from Fig. 6
that when a single layer normalization is adopted and the number of iterations is
28, the classification accuracy of the model tends to be stable, with the highest
accuracy of 0.904. When the bidirectional normalization is adopted and the
number of iterations is 25, the classification accuracy of the model tends to be
stable, and the highest accuracy is 0.909. The experimental results show that the
bidirectional normalization normalizes the feature distribution from longitudinal
and transverse dimensions, thus speeding up the convergence of the model.

Figure 7 shows the variation trend of model classification accuracy with the
number of iterations on IMDB English dataset. It can be seen from Fig. 7 that
when a single layer normalization is adopted and the number of iterations is
28, the classification accuracy of the model tends to be stable, with the highest
accuracy of 0.934. When the bidirectional normalization is adopted and the
number of iterations is 26, the classification accuracy of the model tends to be
stable, and the highest accuracy is 0.943.

Fig. 6. The influence of different nor-
malization on model performance (on
ChnSentiCorp)

Fig. 7. The influence of different nor-
malization on model performance(on
IMDB)

Table 3. Accuracy under different normalization structure on ChnSentiCorp

Model Dataset

htl-2000 htl-4000 htl-6000 htl-10000

Post-LN Transformer 90.77 90.5 89.39 89.57

Post-BiN Transformer 91.05 90.82 89.6 90.04

Pre-BiN Transformer 91.29 90.91 89.55 90.16
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In order to further explore the impact of the bidirectional normalization
and the pre-structure on the model performance, ablation experiments are con-
ducted on IMDB datasets. Compared with the Post-LN Transformer and Post-
BiN Transformer, the classification accuracy of the model is improved, which
shows that the construction of bidirectional normalization in the encoder effec-
tively improves the classification performance of the model normalizes the data
distribution from different dimensions. Compared with Post-BiN Transformer
and Pre-BiN Transformer, the classification accuracy of the model is is basically
unchanged, indicating that the pre-structure has no obvious impact on the clas-
sification performance of the model, and its role is to maintain the stability of
the model.

4.4 Model Comparisons

In order to verify the classification performance of the model, this section com-
pares the model we proposed with other related shallow learning models and
deep learning models on the IMDB English dataset and ChnSentiCorp Chinese
dataset. The comparison models are as follows:

SVM [16]: A traditional machine learning algorithm named support vector
machine.

CNN [11]: A single convolutional neural network.
CNN+Attention [6]: A hybrid network model which combines convolu-

tional neural network with attention mechanism.
BiLSTM+Attention [3]: A hybrid network model combines BiLSTM with

attention mechanisms to capture emotional features over long distances.
Transformer [21]: A network model based on multi-head attention, which

is composed of positional embedding, feed forward neural network and normal-
ization layer, can realize efficient parallel computation.

Transformer-XL [5]: On the basis of Transformer, fragment level cyclic
recursion mechanism and relative position embedding mechanism are added.

Table 4. Comparison of model classification results on ChnSentiCorp

Model Acc F1 Recall Precision

SVM 81.63 82.17 82.4 83.1

CNN 88.17 89.22 89.16 89.47

CNN+Attention 88.32 87.19 87.13 87.27

BiLSTM+Attention 88.66 88.06 87.98 88.14

Transformer-base 89.39 89.15 91.42 87.81

Transformer-XL 90.78 90.48 93.55 89.71

Shap-PostBiNT 91.3 91.25 93.38 89.3

Shap-PreBiNT 91.82 91.66 93.54 90.42
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In the ChnSentiCorp dataset experiment, Word2Vec is used to initialize the
text as a vector, and the dimension is set as 100. In Transformer architecture,
multiple head number is set to 4, dropout rate is set to 0.5, and activation
function is set to ReLU function. Table 4 shows the comparison of accuracy, F1-
score, recall and precision with other learning models. As can be seen from the
table, the accuracy rate of Shap-PreBiNT is 91.82% and the F1-score is 91.66%.
The best accuracy and F1-score are achieved.

In the IMDB dataset experiment, the data is imported through Keras frame-
work, and the initialization vector is generated by sequence filling and word
embedding. The dimension is set as 100. In Transformer architecture, multiple
head number is set to 4, dropout rate is set to 0.5, and the activation func-
tion is set to ReLU. According to the Table 5, the accuracy of Shap-PreBiNT is
94.87%, which is 1.48% higher than Transformer. And the F1-score is 94.83%,
1.47% higher than Transformer.

Table 5. Comparison of model classification results on IMDB

Model Acc F1 Recall Precision

SVM 88.64 88.24 91.68 85.95

CNN 90.94 90.57 93.68 88.78

CNN+Attention 91.29 90.33 93.61 89.22

BiLSTM+Attention 91.61 91.67 94.91 89.19

Transformer-base 93.49 93.46 93.37 93.58

Transformer-XL 93.6 93.78 93.42 93.75

Shap-PostBiNT 94.02 94.01 93.93 93.89

Shap-PreBiNT 94.87 94.83 94.62 95.14

4.5 Effects of Different Activation Functions on Model Performance

To explore the effect of activation function on model performance of Shap-
PreBiNT, Sigmoid [18], ReLU [13], TanH [18] activation functions are used to
test the classification accuracy on IMDB and ChnSentiCorp datasets separately
and compare them with different models. As can be seen from Table 6, the clas-
sification effect of Shap-PreBiNT is superior to other models in ReLU function.

Table 6. Accuracy under different activation functions on ChnSentiCorp

Model ChnSentiCorp IMDB

Sigmoid ReLU TanH Sigmoid ReLU TanH

CNN+Attention 88.73 88.32 87.73 91.66 91.29 91.03

Transformer-base 89.85 89.39 90.07 92.87 93.49 –

Shap-PreBiNT 90.9 91.82 91.1 91.87 94.87 94.58
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5 Conclusion

This paper proposed a sentiment classification model Shap-PreBiNT on Chinese
and English comment datasets, and improved the problems of original Trans-
former in text vectorized representation, semantic information extraction and
network structure. In the stage of word embedding, a Shap-Word model was
proposed. The Word2Vec generates the initial vector matrix of the text to indi-
cate the importance of the words, and the Shapley-value method generates the
contribution weight matrix to indicate the importance of the words. This model
can not only fully express the local connections between words, but also pay
attention to the global information of text. In the stage of semantic information
extraction, a bidirectional normalization layer combining batch normalization
and layer normalization was proposed to regulate data distribution from multi-
dimensional dimensions, which overcome the problem of gradient disappearance
or gradient explosion in the training process. In the stage of network structure
optimization, the pre-normalization structure was promotes the model conver-
gence efficiency. Experimental results show that our model keeps the efficiency
and stability of the training process on both Chinese and English datasets, and
achieves higher classification accuracy.
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Abstract. Mixup is an efficient data augmentation method which gen-
erates additional samples through respective convex combinations of
original data points and labels. Although being theoretically dependent
on data properties, Mixup is reported to perform well as a regularizer and
calibrator contributing reliable robustness and generalization to neural
network training. In this paper, inspired by Universum Learning which
uses out-of-class samples to assist the target tasks, we investigate Mixup
from a largely under-explored perspective - the potential to generate
in-domain samples that belong to none of the target classes, that is, uni-
versum. We find that in the framework of supervised contrastive learning,
universum-style Mixup produces surprisingly high-quality hard nega-
tives, greatly relieving the need for a large batch size in contrastive learn-
ing. With these findings, we propose Universum-inspired Contrastive
learning (UniCon), which incorporates Mixup strategy to generate uni-
versum data as g-negatives and pushes them apart from anchor samples
of the target classes. Our approach not only improves Mixup with hard
labels, but also innovates a novel measure to generate universum data.
With a linear classifier on the learned representations, on Resnet-50, our
method achieves 81.68% top-1 accuracy on CIFAR-100, surpassing the
state of art by a significant margin of 5% with a much smaller batch size.

Keywords: Mixup · Contrastive learning · Supervised learning ·
Universum

1 Introduction

As a strong augmentation technique in supervised learning, Mixup has empir-
ically and theoretically been proved to boost the performance of neural net-
works with its regularization power [2,23,35]. Despite its reliable performance,
Mixup is also reported to strengthen deep models with better calibration [30],
robustness [11,36] and generalization [36], thus being widely used in adversarial
training [23], domain adaptation [10], imbalance problems [8] and so on. How-
ever, as Mixup-style training depends heavily on data properties [7], on certain
cases, chances are that traditional Mixup labels cannot correctly describe the
augmented data. These labels, when taken as the ground truth, may provide
unreliable supervision for learners.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Li et al. (Eds.): APWeb-WAIM 2022, LNCS 13422, pp. 459–473, 2023.
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Fig. 1. The intuition behind our model. (a): When processing Mixup labels, traditional
method uses the mixture of original labels, but universum-style method regards Mixup
data points as belonging to neither of the original classes, thus assigning the new points
to a generalized negative class which is compulsorily limited to some desired region.
(b): In the framework of supervised contrastive learning, universum-style Mixup images
can serve as negative samples for all anchor samples of the target classes. By pushing
these g-negatives (universum data) apart from other data points, the model can better
separate images from different classes.

Universum learning allows us to see Mixup in a new light. Introduced by
[3,31], universum is referred to as in-domain samples that belong to none of
the target classes in classification. In universum learning, usually a new dataset
of universum is introduced to assist classification of the target dataset (e.g.
hand-written letters are introduced to help classify hand-written digits) [5,6,26].
Although universum data cannot be assigned to the classes in question, they still
can be constructed into a regularization term so as to improve the model per-
formance with their domain knowledge and negativity [3]. From the perspective
of universum learning, here comes a natural question: instead of using the linear
interpolations of original labels, why don’t we assign Mixup samples to a gener-
alized negative class? Just as humans may perceive, if an animal is half dog and
half cat, it is actually of neither species. As is shown in Fig. 1(a), universum-style
Mixup regards the Mixup image as neither dog nor cat, but rather a universum
data point. With this approach, models can be free from the concern of unreli-
able ground truth labels in Mixup. What’s more, the combination of universum
learning and Mixup also introduces a new way to acquire universum data, which
extends universum learning to fully-supervised setting. Compared with foreign
samples such as hand-written letters in the classification of hand-written digits,
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universum data produced by Mixup are semantically closer to target data, which
may provide better regularization effects in training.

Recently, contrastive learning has greatly boosted deep learning via pulling
together positive sample pairs and separating negative pairs in the embedding
space [1,4,14,20,34]. Early contrastive models only take augmentations of the
same image as positive pairs, while treating all other sample pairs as negative
pairs [4,14]. Specially, SupCon model extended contrastive learning to the fully-
supervised setting by including samples from the same class into positives for
each anchor sample [20].

Although contrastive learning and Mixup both improve the performance of
supervised learning, the combination of the two can be especially difficult due to
their opposite ways of organizing data. While Mixup softly assigns augmented
data to multiple classes [32], contrastive learning requires hard labels to compute
the contrastive loss. A few attempts have been made to conjoin contrastive learn-
ing and Mixup either by designing a Mixup version of InfoNCE loss [21] or by
using the näıve addition of the InfoNCE loss and the Mixup-style cross entropy
loss [17]. A better exploration might be MoCHi [19], which applies Mixup only
to the hard negatives in the memory bank so as to acquire more and harder neg-
atives. However, these methods pay more attention to softening the contrastive
learning rather than innovating Mixup strategy, ignoring the innate potential of
Mixup to produce negative samples.

In this paper, inspired by universum learning, we introduce a novel measure
to combine contrastive learning and Mixup with the simple idea that Mixup sam-
ples could be hard negatives. Following the framework of supervised contrastive
learning, we go a step further to include Mixup images into the contrastive loss
by viewing them as g-negatives - universum data which are negative to the global
dataset - in contrast with traditional negatives that are negative for a limited
group of anchor samples. As is shown in Fig. 1(b), we incorporates Mixup to
generate g-negatives and pushes them apart from anchor samples of the target
classes. For each anchor sample, a contrast sample is chosen from other classes to
synthesize a universum data point, which helps establish clearer margins among
different instances as well as different classes. Since traditional Mixup strategy
that samples the Mixup parameter from Beta distribution [35] may generate
samples semantically close to a target class, we fix the Mixup parameter to a
constant, thereby driving the synthesized universum data out of the regions of
target classes in the data space. Although the idea is simple, there is no prior
knowledge on how to contrast these universum negatives with anchor samples.
We design a small-scale contrast loss and a large-scale contrast loss, and empir-
ically show that the large-scale contrast loss achieves better performance on
datasets. Please note that here “large-scale” and “small-scale” refer to the scale
of contrast rather than the training batch size. Indeed, our training batch size is
much smaller than that of other contrastive models [4,20]. Our use of universum
data spares us the efforts for hard negative mining, as Mixup samples naturally
become hard negatives with their visual ambiguity.
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Our work provides an effective method for fully-supervised learning and can
be applied to other contrastive learning methods in need of large amounts of
negatives. We validate the performance of UniCon on a range of datasets. On
ResNet-50 [15], UniCon achieves 81.68% top-1 accuracy on CIFAR-100 and
97.23% on CIFAR-10 [22], which surpasses the state of art [20] by 1.23% and
5.18% respectively. Our main contributions are as follows:

• We investigate Mixup from the perspective of universum learning, thus
unearthing Mixup’s potential of generating samples that lie in the same
domain as the target data yet belong to none of the target classes. We dig out
Mixup as a novel measure to acquire universum data from a fully supervised
dataset.

• We introduce Universum-inspired Contrastive learning (UniCon), which
incorporates Mixup to generate universum data as g-negatives and pushes
them apart from anchor samples of the target classes. Different from other
contrastive models where the negativity of samples varies with anchors, g-
negatives in our model are negative to the global dataset. To our best knowl-
edge, this is the first time that Mixup is used to produce a generalized negative
class.

• We find that in the framework of supervised contrastive learning, Mixup
samples can work surprisingly good as hard negatives.

• We show that our model can achieve outstanding performance on a range
of datasets with a relatively small-scale neural network as well as a smaller
batch size.

2 Related Works

In this section, we will give a brief introduction of Mixup, universum learning
and contrastive learning, as well as their relation to our method.

2.1 Mixup

Since Mixup was proposed by [35], it has been widely accepted as an effective
and efficient measure for deep training [2,23]. Despite Mixup’s outstanding per-
formance, recently the foundations of Mixup have also been scrutinized in theory.
[2] theoretically proves that Mixup is a strong regularizer and equals to a stan-
dard empirical risk minimization estimator in the face of noises. [30] focuses on
Mixup’s effects of improving calibration and predictive uncertainty. [36] gives
a theoretical explanation on how Mixup contributes to robustness and general-
ization of deep models. While Mixup is empirically and theoretically proved a
reliable method, [7] demonstrates its data dependency by computing a closed
form for the Mixup-optimal classification, and thereby providing a failure case
of Mixup. This failure case indicates that Mixup could also be misleading as the
synthesized data points are still softly connected with the original labels. Our
method intends to disconnect the Mixup data from all known classes so that the
additional domain knowledge could be learned without misleading information.
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2.2 Universum Learning

Universum was introduced by Vapnik as “an alternative capacity concept to
the large margin approach”, which indicates a group of samples that cannot be
assigned to any target class in classification [31]. Universum learning is mostly
explored as a new research scenario where a relevant dataset is introduced to
assist the tasks on the target dataset. [3] has theoretically proved that the use
of universum data could benefit Support Vector Machines (SVM) with regular-
ization effects. Inspired by universum learning, our model, instead of importing
a dataset, generates a group of universum samples from the target dataset to
assist classification.

2.3 Contrastive Learning

Contrastive learning learns deep representations through contrasting positive
sample pairs against negative ones. The definition of positive and negative pairs
varies with different contrastive models. SimCLR [4] and MoCo [14] only admit
augmentations of the same image as positive pairs, while cluster-based methods
like SupCon [20] and SwAV [1] also give in-class positives a pass. While classical
contrastive models use the InfoNCE loss [25], more contrastive losses have flour-
ished. For example, Barlow Twins [34] aims to reduce data redundancy with a
cross-correlation matrix, while BYOL [13] strengthens the consistency among
views by predicting the second view from the first one.

Several attempts have been made to construct Mixup-style contrastive mod-
els [17,19,21,29]. Mixco [21] pulls Mixup data towards their original images in a
Mixup way, while MoCHi [19] uses Mixup only on the hard negatives to capture
the hardest negatives. In the unsupervised setting, Un-Mix [29] only mixes the
images, closing the distance among the Mixup image and an augmented ver-
sion of Mixup data. Different from them, UniCon does not combine Mixup and
contrastive learning in a näıve way. Instead, we delve into the nature of hard
negatives, adopting Mixup as a way of hard negative generation. In this way, we
not only train a more effective model, but also relieve the need for a large batch
size in contrastive learning as is shown in the latter experimental results.

3 Method

This section begins with a brief introduction of self-supervised and supervised
contrastive losses, after which we present universum-style Mixup method. Then,
with the g-negatives produced by Mixup, small-scale and large-scale UniCon
losses are proposed, while the latter is empirically proved to be a better one.

Following the framework of [20], our approach is in nature a representation
learning method. A deep encoder f is adopted to learn the representations of
target samples through minimizing a proposed loss. With N being the batch
size, each data point and its label are denoted by xk and yk (k = 1, 2, .., N),
while the corresponding augmented sample and its label is denoted by x̃k and ỹk
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Fig. 2. An overview of UniCon.

(k = 1, 2, .., 2N). Note that x̃2k−1 and x̃2k are two transformed augmentations
derived from xk, thus ỹ2k−1 = ỹ2k = yk. Since most of our operations are
performed on the augmented set, we will refer to this set of 2N samples as “a
training batch” in the following part. The framework of UniCon is depicted in
Fig. 2.

3.1 Contrastive Loss

Our proposed method is based on contrastive learning. As the most used con-
trastive loss, InfoNCE loss [25] draws positive pairs close to each other while
separating the negative ones. InfoNCE loss is defined in this form:

Lcontrast = − 1
2N

2N
∑

i=1

log
exp(zi · zp(i)/τ)

∑

k �=i exp(zi · zk/τ)
, (1)

where zi = f(x̃i) represents the normalized deep embedding for each data point,
τ is a temperature parameter, and p(i) indicates a positive for anchor i while
the rest indices are negatives.

Considering that Eq. 1 does not encode the label information, SupCon loss
[20] involves in-class samples into the positives:

Lsup =
2N
∑

i=1

−1
|Di|

∑

d∈Di

log
exp(zi · zd/τ)

∑

k �=i exp(zi · zk/τ)
, (2)

where Di ≡ {k|k ∈ {1, 2, .., 2N}, k �= i, ỹk = ỹi} is a set of indices that refer
to samples in the same class with i, and |Di| denotes the capacity of the set.
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Both two losses pay limited attention to negative pairs, simply recycling the
non-positive sample pairs.

3.2 Universum-Style Mixup

Motivated by universum learning, universum-style Mixup intends to provide a
set of additional negatives to boost the performance of contrastive learning. It
is assumed that by rejecting visual ambiguity, classes can be better separated
with margins among them. Just like traditional Mixup method, Universum-style
Mixup convexly combine each anchor sample x̃i in a training batch, and its
out-of-class negative x̃q(i) to generate a universum negative ui. Different from
traditional Mixup strategy, in our approach the Mixup parameter λ is set to a
certain number rather than randomly sampled from Beta distribution. Moreover,
for each anchor sample in the training batch, an image is randomly chosen from
the samples that do not belong to the same class with the anchor, after which
the random image and the anchor are mixed to generate a universum data point.
By doing so, we minimize the possibility of the universum data falling into the
regions of target classes in the data space, thereby ensuring the negativity of
g-negatives. The universum is acquired through the following process:

ui = λ · x̃i + (1 − λ) · x̃q(i), i = 1, 2, .., 2N, (3)

where q(i) is randomly chosen from ∪k �=iDk and λ is the Mixup parameter. In
the remainder of this paper, ui will be referred to as a “g-negative” and x̃i will
be referred to as its “anchor”. Please note that universum-style Mixup does not
mix the labels, and therefore the synthesized samples should belong to, if any, a
generalized negative class. By doing so, our method completely drops the effect
of label smoothing in Mixup [2], in return earning a group of samples with hard
labels.

3.3 Universum-Inspired Supervised Contrastive Learning

In this paper, our approach introduces a set of universum data uk
2N
k=1 (which

has been elaborated in Eq. 3) into the contrastive loss. The normalized encoded
representation of ul is denoted as zuk = f(uk). As Fig. 2 shows, our proposed
method intends to draw anchor samples close to the center of their class while
pushing them from negatives. Here two solutions (Ladd and LUniCon) are pre-
sented in the following parts.

Universum Data as Additional Negatives. A straightforward way of com-
bining supervised contrastive learning and Mixup-induced universum is to use
universum data as additional negatives.

Ladd =
2N
∑

i=1

−1
|Di|

∑

d∈Di

log
exp(zi · zd/τ)

∑

k �=i exp(zi · zk/τ) +
∑2N

k=1 exp(zi · zuk/τ)
(4)
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Ladd generally adopts the original form of Eq. 2, yet further contrasting
anchor samples with universum negatives. This loss function aims to use large
amounts of universum negatives to alleviate the need for large amounts of neg-
ative samples in contrastive learning [4,20]. However, experiments show that
this loss function is not very effective on CIFAR-100 dataset. To justify such a
result, here are two possible causes. On the one hand, it is deduced that the
problem of “manifold intrusion” in Mixup (e.g. an image of number “1” and
image of number “4” are mixed into a image that somewhat looks like number
“4”) may also appear in our universum-style Mixup, leading to poor results. On
the other hand, Ladd may overemphasize negatives, which produces undesirable
disequilibrium.

An Entirely Universum-Based Method. Here is the main loss function we
use in this paper. This strategy is entirely based on universum data, both for
contrast with negatives and derivation of class centers in the embedding space.

LUniCon =
2N
∑

i=1

−1
|Di|

∑

d∈Di

log
exp(zi · zud/τ)

∑

k �=i exp(zi · zuk/τ)
(5)

To differentiate Eq. 5 from a näıve combination of Mixup-induced universum
and Eq. 2, LUniCon is further derived into the following form.

LUniCon =
2N
∑

i=1

−1
|Di|

⎡

⎣

zi
τ

·
∑

d∈Di

zud −
∑

d∈Di

log
∑

k �=i

exp(zi · zuk/τ)

⎤

⎦ (6)

=
2N
∑

i=1

⎡

⎣−zi
τ

· mi + log
∑

k �=i

exp(zi · zuk/τ)

⎤

⎦ (7)

where mi = (
∑

d∈Di
zud)/|Di| is the mean of the representations of universum

data points around the cluster of zi. According to Eq. 7, LUniCon does not simply
push together universum data derived from samples of the same class, but rather
drives in-class data points close to mi. As Fig. 3 illustrates, chances are that the
mean of universum data points could better represent the center of a class while
these data points themselves loosely surround the in-class space as out-of-class
negatives. In this way, universum data are also utilized for derivation of class
prototypes, thereby relieving manifold intrusion mentioned above. Meanwhile,
LUniCon only adopts universum data as negatives, dropping out negatives in the
conventional sense, which further improves model robustness. Still, it should be
admitted that this strategy is coarse and primary, yet the experimental results
show that it is especially effective.

Table 4 empirically demonstrates that LUniCon works better than Ladd. The
performance of Ladd is even worse than the loss without the extra universum
negatives, which implies that an entirely universum-based framework is crucial
for utilizing the universum data. Based on these findings, our method generalizes
better to the test set for the following reasons:
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Fig. 3. The illustration of using the mean
of universum negatives to represent a class.
Here the universum negatives are synthe-
sized from the positives of the class in
question. Since these universum data are
expected to be distributed in the margin
space around the in-class space, their mean
may better describe the class especially
when the positive samples are not evenly
distributed in a minibatch.

Noise Injection. In the aforemen-
tioned situation, our method injects
noises to the training data (e.g.
anchors in class “4” regard number“4”
synthesized by “1” and “4” as a neg-
ative sample). On the one hand, such
technique is widely used in adversarial
training as well as contrastive learning
to learn a more robust model [12,27,
28]. On the other hand, since Mixup-
induced universum are used in both
contrast with negatives and class cen-
ters, these two kinds of contrast are in
a restrictive relation with each other.
Noises in universum negatives can help
derive a more accurate class center,
and vice versa.

A Different Approach of Con-
trast. Our method does not directly
contrast anchors with conventional
out-of-class negatives in [20]. However,
UniCon still uses universum data as negatives, which differentiates itself from
absolutely contrast-free methods like [13]. By contrasting with universum nega-
tives and benefiting from their data diversity, UniCon not only avoids contrastive
models’ dependency on large batch sizes, but also allows a balanced network
design easier to optimize.

4 Experiments

4.1 Setup

We evaluate our model on several widely used benchmarks including CIFAR-10,
CIFAR-100 [22] and TinyImageNet [24]. Detailed information of dataset settings
can be viewed in Table. 2. Here input size refers to the transformed size of neural
network input. Without special statement, the encoder network is trained for
1000 epochs with a batch size of 256. As for hyperparameters, temperature τ
and Mixup parameter λ are respectively fixed to 0.1 and 0.5. We set the learning
rate to 0.05 with 10 epochs of warm-up. As the purpose of this paper is to show
how universum improves contrastive learning rather than to explore the effects
of different augmentation techniques on our model, we empirically use a set
of augmentations that was chosen by [20] through AutoAugment [9]. In the
evaluation period, a classifier of batch size 512 is trained for 100 epochs with
the deep representations extracted by the encoder while the encoder itself is
frozen. On both stages, we use SGD optimizer with cosine annealing for weight
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decay. All datasets are split into the training set and test set according to their
official division. We do not use a validation set because the performance of our
model is promising without the need of hyperparameter adjustment. Indeed, we
empirically chose the hyperparameters which, as Sect. 4.3 shows, may not be the
optimal ones. Our experiments are implemented in PyTorch framework on at
most four Nvidia Tesla V100 GPUs in an online computing center.

Table 1. Top-1 classification accuracy (in percentage %) on various datasets. We
compare our model (UniCon) with a deep classifier using cross-entropy loss, SimCLR
[4], and SupCon [20]. For fairness, we use the baseline numbers published by [20]
on CIFAR-10 and CIFAR-100 since we did not achieve higher results in our own re-
implementation. For TinyImageNet, we implement experiments to acquire the baseline
results. We use bold to indicate the best results, and underline the second best ones.
Also please note that the batch size of our model is only 256, which is much smaller
than that of the baseline models.

Method Architecture Batch size CIFAR-10 CIFAR-100 TinyImageNet

Cross-Entropy ResNet-50 1024 95.0 75.3 58.3

SimCLR [4] ResNet-50 1024 93.6 70.7 34.6

SupCon [20] ResNet-50 1024 96.0 76.5 50.4

UniCon(ours) ResNet-18 256 96.2 78.9 58.4

ResNet-50 256 97.2 81.7 65.6

4.2 Classification Accuracy

Table 2. Dataset settings.

Dataset Images Classes Input size
CIFAR-10 60,000 10 32 × 32
CIFAR-100 60,000 100 32 × 32
TinyImageNet 100,000 200 32 × 32

We compare UniCon with a
cross-entropy classifier, Sim-
CLR [4], and SupCon [20] on
their top-1 accuracy on CIFAR-
10, CIFAR-100 and TinyIma-
geNet. Although these meth-
ods have all be proposed for a
few years, so far they are the
mainstream methods for fully-
supervised learning. Follow-up methods either focus on a specific application
scenario or adapt the aforementioned models to other settings, failing to pro-
pose a better model on fully-supervised learning. Therefore, we still adopt these
three old but effective models as our baselines. As is shown in Table. 1, UniCon
outperforms other models on all datasets, while adopting smaller batch sizes
and encoder backbones. Our model achieves 97.2%, and 81.7% on CIFAR-10
and CIFAR-100, respectively, which surpasses the state of art by a significant
margin of 1.2% and 5.2% with only one fourth the batch size. Even with a back-
bone of ResNet-18 and batch size 256, UniCon outperforms its counterparts with
ResNet-50 and batch size 1024. UniCon also achieves 65.6% top-1 accuracy on
TinyImageNet. Please note that we input images as 32 × 32 patches, which is
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way smaller than the input sizes (e.g. 224×224) of other models [21] that report
better performance of cross-entropy classifiers. In this sense, our performance
gain over the cross-entropy classifier is also significant on TinyImageNet.

Fig. 4. Top-1 accuracy of UniCon with varying backbones, batch sizes, learning rates
and pretraining epochs. The experiments are conducted on CIFAR-100, and except for
the backbone analysis, Resnet-18 is adopted for model encoders.

4.3 Hyper-parameter Analysis

Figure 4 illustrates UniCon’s stability to different hyper-parameters on CIFAR-
100. We modify the backbone networks, batch sizes, learning rates and training
epochs one at a time to observe whether our model is sensitive to the punctuation
of hyper-parameters. Generally speaking, UniCon shows promising performance
even in the worst situation.

We evaluate our model with a backbone of Resnet-18, Resnet-34, Resnet-
50, and Resnet-101, respectively. In the aspect of model sizes, a deeper net-
work would always improve the performance. Specially, UniCon achieves 83.08%
on CIFAR-101. We deduce that stronger networks like PreAct ResNet [16],
WideResNet [33] and DenseNet [18] can further boost the performance of our
model, which is beyond the scope of this paper.

It is worth noting that our model may not always perform better with a larger
batch size, as its top-1 accuracy on batch size 512 and 1024 is lower than that
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on batch size 256. Since a lot of papers have shown that large batch sizes benefit
the training of contrastive models [4,14,20], such results can be intriguing. We
conjecture that our model, with additional hard negatives generated by Mixup, is
a beneficiary of frequent gradient descents. For training epochs of a fixed number,
large batches inevitably lead to a decline in optimization times, thereby resulting
into worse performance. It is necessary to make a trade-off between large batch
sizes and optimization frequencies. As is shown in Fig. 4(b), we find that 256 is
the optimal batch size for most cases.

Figure 4(d) shows the convergence of UniCon for 2000 epochs. Since cosine
annealing we use for learning rate decay is sensitive with different training
epochs, for reproductivity we divide the training period into first 1000 epochs
and second 1000 epochs, each with a complete process of cosine annealing.

Table 3. CIFAR-100 classification accuracy for different Mixup Settings. We either set
λ to a constant or sampled λ from Beta distribution.

λ Top-1 accuracy

0.3 74.50

0.4 76.32

0.5 78.88

0.6 77.39

0.7 75.22

λ ∼ Beta(0.5, 0.5) 77.05

4.4 Mixup Strategies

We test different strategies of choosing λ in Mixup. We either fix λ to 0.3, 0.4,
0.5, 0.6 and 0.7, respectively, or assume that λ is a random number subject to
Beta distribution, following [35]. As Table. 3 demonstrates, the model achieves
best performance when two images are equally mixed to produce a universum
negative. This result is in line with our intuition that the Mixup image is farthest
from its original images in semantics when two images make equal contributions
to their mixture.

4.5 Ablation Study

To further understand the effectiveness of each designed component of our model,
an ablation study is conducted. We examine what data are regarded as nega-
tives for contrast and whether universum data are used for class center deriva-
tion for each loss. As Table 4 demonstrates, it is crucial that universum data are
utilized to derive the class centers. The use of additional universum negatives
does harm to the model performance, while the mere use of universum for class
center derivation will result into deteriorated performance. However, when uni-
versum negatives are used in combination with universum-derived class centers,
the model acquires the best performance.
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Table 4. Ablation study. The loss functions are examined on what data are regarded as
negatives for contrast and whether universum data are used for class center derivation.

Loss function Negatives for contrast Class center derivation Top-1 Accuracy

Universum Out-of-class from universum data

LUniCon � � � 78.88

� � � 78.58

� � � 2.4

Lsup � � � 70.46

Ladd � � � 66.69

5 Conclusion

This paper explores Mixup from the perspective of Universum Learning, thus
proposing to assign synthesized samples into a generalized negative class in the
framework of supervised contrastive learning. Our model achieves state-of-the-
art performance on CIFAR-10, CIFAR-100 and TinyImageNet. The results of our
experiments reveal the potential of Mixup to generate hard negative samples,
which may open a new window for further studies.
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Abstract. Based on massive data, deep neural networks have been
proven to have a powerful learning capability of non-linear relationships.
However, training deep neural networks on limited samples is still chal-
lenging, which may lead to the over-fitting problem. To alleviate this
problem, meta-learning was proposed to train a model that can rapidly
adapt to a new task with only a few related examples. However, existing
meta-learning approaches tend to ignore the domain gap between differ-
ent tasks. For a specific task, some of the features are unrelated or even
disruptive, which may cause damage to the effectiveness of meta-learning.
To address this issue, in this paper, we propose a novel attention-based
method that can skip the useless features and highlight the task-specific
information. We design two simple but effective attention modules, which
take task representation as input and produce attention weights for fea-
tures from two different perspectives. Experiments conducted on four
benchmarks validate that our method outperforms state-of-the-art meth-
ods, and the main idea can be applied to various existing meta-learning
models.

Keywords: Meta-learning · Attention mechanism · Few-shot
classification · Cold-start recommendation

1 Introduction

The data sparsity problem may seriously damage the effect of deep learning mod-
els. Meta-learning is proposed to tackle this issue [3,8,19,20,23,24], which aims
to prevent over-fitting and improve generalization by learning from a collection
of tasks. Specifically, meta-learning trains the model with several learning tasks
sampled from the original dataset, so as to learn the general knowledge across
different tasks. With the learned general knowledge, the model can rapidly adapt
to new tasks with a limited number of labeled data.

It is realized that not all of the features in different tasks play equally impor-
tant roles. However, most existing meta-learning models ignore this kind of fea-
ture difference. Take the few-shot image classification as an example, suppose
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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we have such two tasks: 1) discerning “apple” versus “pear”, 2) discerning “pear”
versus “lemon”. Intuitively, each few-shot classification task requires a different
weight allocation of the feature dimensions. For the first task, we only need to
focus on the color, which is the significant difference between apple and pear.
While for the second task, the shape is the crucial difference between pear and
lemon. Thus the model should pay more attention to this feature dimension and
reduce interference from other dimensions such as color. In particular, there is
another issue of exiting methods for few-shot image classification. Not all of the
spatial parts of an intermediate feature map contribute equally to a specific task.
Suppose we have two meta-learning tasks: 1) comparing “dog” and “cat”, 2) com-
paring “cat” and “tiger”. We would intuitively focus on the positions of the ears,
nose, and other organs when discerning between cats and dogs. When comparing
cat and tiger, we may pay more attention to the position of fur, whose pattern is
the key difference between cat and tiger. Recently, some works [2,7,10,14] have
tried to solve part of these problems by designing a task-aware model architec-
ture. TADAM [14] proposes a solution from the perspective of metric, which
uses an adaptive metric to learn a task-dependent metric space. CTM [10] uses
a concentrator and a projector to find the relevant feature by traversing across
and within classes. Most recently, [12] provides an idea to randomly prune the
learned features from the pre-trained stage. Nevertheless, none of these methods
have simultaneously overcome the two issues mentioned above.

To address the two challenges of existing meta-learning, in this work, we
propose a task-aware attention-based method to help the model avoid interfer-
ence from irrelevant information given specific tasks. To summarize, our main
contributions are three folds:

• We propose a novel task-aware method for meta-learning, which strengthens
the ability of the model to extract and utilize task-specific information by
reducing interference from irrelevant features.

• We design two types of embedding attention module, Dimension Attention
Module (DAM) and Region Attention Module (RAM), to pinpoint the task-
specific information from two different perspectives.

• We apply the proposed modules to both metric-based and optimization-based
meta-learning methods, and evaluate their performance on four meta-learning
benchmarks. Compared with competitive baseline approaches, our method
achieves great improvement.

2 Related Work

Meta-Learning. The main idea of meta-learning is to learn a model that can
quickly generalize to new tasks with limited labeled examples (learning to learn).
[23] introduced an essential concept called episode training to mimic the test
scenario based on meta-learning. In episode training, a support set and a query
set are sampled from the training data to build a learning task as an input data
item. The support set is used for producing the task-oriented model, and the
query set is used to test whether the model has learned the essential information
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of the learning task. Most existing meta-learning approaches can be classified
into two main types: metric-based and optimization-based meta-learning. The
metric-based approach aims to learn a comparison model which can classify an
unseen test sample with a small number of labeled instances by determining
their similarity. In previous studies [19,20,23], it is usually used to perform the
few-shot classification tasks. The optimized-based method targets learning to
fine-tune the initial model to adapt to the new tasks. One effective idea aims to
learn good parameter initialization so that the predictor suitable for a new task
can be produced with limited labeled samples and a few gradient update steps.
Examples include MAML [24] and its derivative works [3,8,13].

Attention Mechanism. The attention mechanism is firstly introduced in [1],
which is designed to provide more precise alignment for each position in machine
translation. Recently, the attention mechanism is widely used in various fields
[4,18,21] to highlight important local features to extract more discriminative
information. Our approach utilizes the strength of the attention mechanism to
emphasize the task-related information and exclude the irritated information by
designing two task-aware soft attention modules.

3 Proposed Method

3.1 Overall Procedure

Our overall framework is illustrated in Fig. 1. All the samples in the support and
query set are first embedded into feature representations by φx = fθ(x). f(·) is
an embedding function. A task-level embedding presentation τ is then calculated
from the support samples. The proposed Task-Aware Attention Module (TAAM)
takes τ as input and produces an attention assignation function Ω(·), making
the learned feature representations task-related. In this way, the proposed model
can adaptively reduce the weights of irrelated feature information and improve
the weights of crucial information for the specific meta-learning task, like the
process of human recognition. After that, with the modified feature represen-
tations ψx = Ωτ (φx), the label of query instance xquery can be predicted by
prediction function P(·, ·).

ŷquery = P
(
ψxquery , {ψx,∀(x,y) ∈ Dsupport}

)
(1)

Our model is applicable to various types of feature embedding model f(·) and
prediction function P(·, ·). The feature embedding model f(·) and the attention
assignation function Ωτ (·) are optimized with different learning rates over tasks
sampled from training set D.

3.2 Task-Aware Attention Module (TAAM)

Dimension Attention Module (DAM). As each dimension of a feature rep-
resentation is considered as a feature detector [25], our Dimension Attention
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Fig. 1. An overview of the proposed TAAM applied to existing meta-learning model
and the details of Dimension Attention Module and Region Attention Module.

Module focuses on which feature dimensions are helpful given an random given
task. As illustrated in Fig. 1 (A), for this module, given an N-way K-shot learn-
ing task, a task embedding τc is computed as the mean of every centroids of N
categories: τc = 1

N

∑
i ci, where c is the mean of all K feature representations

in a class: c = 1
K

∑
k φk. Next, given an feature representation φx ∈ R

d×1 and
a task embedding τc ∈ Rd×1, we compute a task-related dimension attention
map Md ∈ Rd×1 by forwarding the task embedding to a multi-layer perceptron
(MLP) with one hidden layer. The hidden activation is set to R

d/16×1 in order
to balance performance and efficiency. Then a softmax function is employed to
compute the attention values given the output of the MLP network. After that,
we randomly prune some of the attention dimensions using a dropout layer with
the pruning rate r. In brief, the task-related dimension attention is computed as:
Md(τc) = Dropout(Softmax(MLP (τc))). Then we apply the dimension atten-
tion map to the feature representation in a residual way. We multiply the dimen-
sion attention map by a learnable scale parameter λ and perform an element-wise
multiplication operation with the feature representation. The overall attention
process can be summarized as:

φ′
x = Ωd(φx) = φx + λMd(τc) ⊗ φx (2)
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where ⊗ denotes element-wise multiplication, and learnable scale parameter λ
gradually learns a weight from 0.

Region Attention Module (RAM). As illustrated in Fig. 1 (B), by utilizing
the information from the task embedding, RAM computes a region attention
map Mr ∈ R1×H×W which focuses on ‘where’ is a task-related part. Different
from the dimension attention, the region attention plays a part in the inter-
mediate feature map η ∈ Rd×H×W produced by the backbone network before
the pooling operation. The task embedding τη for this module is computed as:
τη = MaxPool( 1

N

∑
n η̄n). We compress the task embedding τη to the shape of

1 × H × W using a channel max-pooling operation, and η̄ is the mean of all K
intermediate feature maps η in one class: η̄ = 1

K

∑
k ηk. We apply a standard

convolution layer to the task representation to produce a two-dimensional region
attention map Mr ∈ R1×H×W . Similar to the dimension attention, we compute
the attention value using a softmax function, followed by a random dropout
layer for avoiding over-fitting. In a word, the region attention is computed as:
Mr(τη) = Dropout(Softmax(Conv(τη))). Then the region attention is applied
back to the intermediate feature map η, in a residual way. A learnable scale
parameter μ is multiplied by the region attention to adjust its influence on the
original model. Finally, we perform a element-wise multiplication between the
region attention and the intermediate feature map:

η′
x = Ωr(ηx) = ηx + μMr(τη) ⊗ ηx (3)

where ⊗ denotes element-wise multiplication and μ is initialized as 0 and grad-
ually learns to assign more weight during training.

4 Experiments

4.1 Experimental Datasets

We evaluate the proposed model in two typical meta-learning problems: few-
shot classification and cold-start recommendation. We use four real-world bench-
mark datasets: miniImageNet [23], tieredImageNet [16], MovieLens 1M [6], and
Taobao Display Ad Click1. The first two datasets are used for the few-shot clas-
sification, and the other two are for the cold-start recommendation.

4.2 Performance Comparison and Analysis

Result 1: Comparison with State-of-the-Art. The results of our method
and recent SOTA methods on miniImageNet and tieredImageNet benchmarks
are summarized in Table 1. It can be seen that our method significantly outper-
forms other methods, not limited to the metric-based methods but also compared

1 https://tianchi.aliyun.com/dataset/dataDetail?dataId=56.

https://tianchi.aliyun.com/dataset/dataDetail?dataId=56
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with the optimization-based methods. In particular, compared with other rele-
vant task-aware methods like TADAM [14], CAN [7], CTM [10], and ATL-Net
[2], our method achieves a better performance. The performance improvement
proves that the proposed method can extract and utilize task-specific informa-
tion in a better way.

Table 1. Comparison with the state-of-the-art methods on miniImageNet and
tieredImageNet. The first block of methods are optimization-based, and the second
block are metric-based.

Method miniImageNet tieredImageNet
1-shot 5-shot 1-shot 5-shot

MAML [24] 48.7 63.11 51.67 70.30
Meta-SGD [11] 54.24 70.86 62.95 79.34
PFA∗ [15] 59.60 73.74 - -
LEO∗† [17] 61.76 77.59 66.33 81.44
MetaOptNet-SVM† [9] 64.09 80.00 65.81 81.75

TADAM [14] 58.50 76.70 - -
SimpleShot∗ [22] 62.85 80.02 69.09 84.58
CAN [7] 63.85 79.44 69.89 84.23
wDAE-GNN∗† [5] 62.96 78.85 - -
CTM∗ [10] 64.12 80.51 68.41 84.28
ATL-Net [2] 54.30 73.22 - -

TAAMs (ours) 65.66 81.66 70.01 84.81
Methods with ∗ utilize a deeper backbone network.
Methods with † are trained on training set and validation
set.
– means not reported in original paper.

Result 2: TAAMs with Existing Meta-Learning Methods. To validate
the effectiveness of TAAMs, we applied them to three existing metric-based
methods [19,20,23] and compared their performance with that of the origi-
nal models. Table 2 reports the performance improvement after incorporating
TAAMs into these three methods on miniImageNet and tieredImageNet. After
applying the proposed modules, the improvement in performance is significant.
We also apply the proposed module to an optimization-based meta-learning
model and compare it with another MAML-based method named MeLU [8] on
two datasets. As reported in Table 3, both of the meta-learning methods achieve
significant improvement over the traditional methods. Our approach showed bet-
ter performance than the other MAML-based method with a relative improve-
ment of 9.19% on MovieLens 1M and 7.25% Taobao Display Ad Click dataset.
The experiment results validate that our approach can improve the learning-to-
learn performance of both metric-based and optimization-based meta-learning
models.
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Result 3: Ablation Study. We test the two proposed modules’ performance
in few-shot image classification with the miniImageNet dataset. As reported
in the second row and third row of Table 4, both of the two modules achieve
significant improvement over the baseline method, and the DAM performs much
better than RAM. The result reported in the last row shows that when the two
modules are combined, the model achieves the best performance.

Table 2. Performance improvement after incorporating TAAMs into existing metric-
based methods on two benchmarks. The evaluation metric is accuracy.

Method miniImageNet tieredImageNet
1-shot 5-shot 1-shot 5-shot

Matching Net 64.45 71.45 56.29 70.30
w/ TAAM(ours) 65.24(+1.21%) 72.23(+1.09%) 57.33(+1.85%) 70.35(+0.07%)
Prototypical Net 62.29 80.53 68.23 84.03
w/ TAAM(ours) 65.66(+5.41%) 81.66(+1.40%) 70.01(+2.61%) 84.81(+0.93%)
Relation Net 57.03 69.71 60.66 76.73
w/ TAAM(ours) 58.09(+1.86%) 70.87(+1.66%) 61.21(+0.91%) 77.45(+0.94%)

Table 3. Performance improvement after incorporating TAAMs into existing
optimization-based methods on two benchmarks. The evaluation metric is AUC.

Method Movielens 1M Taobao Display Ad Click

DeepFM 0.5896 0.4998
WDL 0.5884 0.5082
MeLU 0.6607 0.5323
w/ TAAM(ours) 0.7214(+9.19%) 0.5709(+7.25%)

Table 4. Ablation study results on miniImageNet in 5-way 1-shot settings.

Method Accuracy Improvement Relative improvement

Baseline 62.29 0.00 0.00%
DAM only 65.12 +2.83 +4.54%
RAM only 63.05 +0.76 +1.22%
Full model (ours) 65.66 +3.37 +5.41%

5 Conclusion

In this work, we proposed a novel task-aware attention model for meta-learning,
which adjusts feature representation to be more task-related and discriminative.
Specifically, we introduce Dimension Attention Module and Region Attention
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Module to capture the task information and compute weights for feature dimen-
sions and feature map regions, respectively. Our approach achieves outstanding
performance consistently on four benchmarks. It has a highly competitive per-
formance compared with the state-of-the-art. Moreover, the proposed method is
a general module that can be applied to various existing meta-learning models.
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Abstract. Although existing remote sensing image object detection
methods have made significant evolution in deep learning, they did not
fully consider the problem of features loss caused by the correspondingly
different importance of different channels of feature maps in the convo-
lution pooling. Therefore, a one-stage deep channels attention network
for remote sensing images object detection was proposed. First, through
a multi-scale feature representation of the Single Shot MultiBox Detec-
tor (SSD) Network, the model can combine semantic information with
detailed features to better integrate feature layers with different resolu-
tions. Second, for each additional feature extraction layer, the squeeze
and excitation (SE) module is introduced, which adaptively re-calibrates
the interdependencies between deep channels, then they achieve the
response of channel properties in order to learn more efficient feature
information. According to experimental results on the RSOD dataset
and NWPU VHR-10 dataset, the models proposed in this paper all real-
ize advanced results and achieve state-of-the-art technical performance.

Keywords: Remote sensing images · Muti-scale feature · Semantic
information · Deep channels attention

1 Introduction

Remote sensing images object detection is considered one of the most critical
research areas that play a massive role in both military and civil fields. Remote
sensing images are bird-eye-view usually. One of the disadvantages of such images
is the uneven distribution of the target. Other the size of the object is gener-
ally tiny and occupies fewer pixels in the whole image, so it is challenging to
distinguish between the background and objects. How to improve precision is a
problem that has been studied.

To the best of our knowledge, deep convolutional neural networks
(CNNs)have been great succeeded in images processing domains [9]. More peo-
ple are using one-stage algorithms to reduce time complexity for object detec-
tion while achieving high accuracy. The SSD algorithm has the characteristics
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Li et al. (Eds.): APWeb-WAIM 2022, LNCS 13422, pp. 483–491, 2023.
https://doi.org/10.1007/978-3-031-25198-6_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25198-6_36&domain=pdf
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Fig. 1. The overall architecture of our framework. The whole network structure consists
of improved ResNet and additional convolutional feature extraction layers which is
propossed DeepCA-Net layers.

of multi-scale feature fusion, end-to-end training improves the feature expres-
sion power and dramatically reduces the computational complexity. To obtain
adaptively re-calibration and realize the response of the interdependence of deep
channel features. The SE module is introduced to each of the additional con-
volutional feature extraction layers. We model the feature correlation between
the deep channels while obtaining the global receptive fields and highlight high-
level semantic features between deep channels. This paper proposed a one-stage
DeepCA-Net for remote sensing images object detection. Our contribution is
mainly in three aspects:

– This article proposes a new object detection network for remote sensing
images, named DeepCA-Net. We introduce the SE module at each additional
convolutional feature extraction layer of the model, strengthening the abil-
ity to extract sufficient feature information to highlight high-level semantic
features between deep channels.

– Aiming at the defect of small objects semantic feature extraction, we improve
the backbone network by adding an additional feature layer of a scale to the
feature extraction layer, which increases the diversity of small object semantic
feature and enhances the overall detection performance.

– Extensive comparison and ablation experiments were performed on the RSOD
dataset and NWPU VHR-10 dataset. The results show that compared with
other advanced algorithms, the DeepCA-Net achieves maximum results on
both data sets.

2 Methods

Due to the low precision for remote sensing images, this paper proposed model
uses the SSD as the base framework with improved ResNet-50 as the backbone.



DeepCA-Net for Remote Sensing Images Object Detection 485

In addition, we utilize the SE module to enable the model to capture useful fea-
ture information better, while a generalized IoU is utilized as a distance assess-
ment indicator.

2.1 Deep Channels Attention Network

This paper uses SSD [7] as the base framework, and the popular benchmark
model ResNet-50 [3] are utilized as the backbone and improves it.

SSD has multi-scale characteristics, which can conduct targeted detection
of different object sizes. In this work, the scaling sizes of 75 × 75, 38 × 38 is
set as the first two feature extraction layers, then removed all layers after the
original backbone Conv4_x layer, adding five additional convolutional feature
layers, setting five different scale sizes of 19 × 19, 10 × 10, 5 × 5, 3 × 3, 1 × 1
for high-level semantic information extraction, as shown in Fig. 1.

Aiming at the deficiency of small objects semantic feature extraction, the
first residual structure of Conv3_x is modified by us to change the stride of
the convolutional kernel on shortcut connection from 2 to 1 and the output of
Conv3_x to 75 × 75 × 512. The improved Conv3_x layer, which is the first
feature extraction layer, increases the diversity of small object semantic features
(shown by Fig. 2). The second feature extraction layer is the Conv4_x layer,
which output is 38 × 38 × 1024.

Fig. 2. We modify the convolution kernel step size of the shortcut connection in the
first residual structure of Conv3_x from 2 to 1, and the output of Conv3_x becomes
75 × 75 × 512.

To highlight the feature correlation between deep channels, the SE module
is introduced into the additional convolutional feature extraction layer, which
framework, as shown in Fig. 3. First, we reduce the dimension using a convolu-
tional kernel for 1 × 1. The stride is set to 1 to ensure no dimensions change to the
feature layer. Then, we add BN (Batch Normalization) to normalize the output
characteristic layer to accelerate the convergence of the network. The activation
function is LeakyReLU, which prevents problems that fail to learn practical fea-
tures because partial weights cannot be continuously updated. Finally, a 3 ×
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3 convolutional kernel is used to regulate the number of channels in ascending
dimensions. The stride is set to 2 to reduce the output feature size. In the above
operation cycles five times, this model achieves the results of the multi-scale out-
put feature layer, obtains rich feature information, and improves the detection
performance.

Fig. 3. The first deep channels attention layer structure. This structure add the Batch
Normalization layer, the LeakyReLU activation function and the SE module to each
additional convolutional feature extraction layer.

2.2 Squeeze and Excitation

In the field of humans visual, due to the visual attention response to the target,
the first to notice is the target with bright colour, large size, etc. We can get more
effective feature information if the attention mechanism [10] is applied to com-
puter vision. This paper introduces the SE [5] module at the end of the additional
convolutional feature extraction layer to implement the deep channels attention
mechanism, enabling more precise and rapid attention to adequate information
when extracting high-level semantic features. First, squeeze operations were per-
formed global average pooling of compressed global spatial information to obtain
channel features. Then, excitation operations obtain the weights for each channel
in the feature map through the bottleneck structure of the two fully connected
layers. Finally, the information of the learned activation was scaled to the basic
features by using scale operations to obtain the output of the SE block and the
weighted feature map as input to the following layer network.

2.3 Generalized Intersection over Union

Because of the current CNN detection method, there is a mismatch between
classification and location reliability, and we use the GIoU [11] metric proposed
in 2019. The specific calculation process of GIoU is as follows: For any A box,
B box, find a minimum box C box that can wrap them. Step 1: calculate the
C box area minus the area of the intersection of the A box and the B box;
Step 2: The ratio of the final area to the C box area in the previous step was
calculated; Step 3: Calculate the IoU values for the A and B boxes; Step 4: The



DeepCA-Net for Remote Sensing Images Object Detection 487

IoU value obtained in step 3 minus the ratio obtained in step 2 finally in GIoU.
The formula for the GIoU is shown in (1).

GIoU =
area(BG ∩ BP )
area(BG ∪ BP )

− |C\(A ∪ B)|
|C| (1)

where BG represents the ground truth bounding box, and BP represents the
prediction box.

3 Experiments Results and Analysis

This article performs extensive experiments on the RSOD dataset and the
NWPU VHR-10 dataset to evaluate the performance of the DeepCA-Net. And
compared with other advanced technologies, ablation experiments are imple-
mented on the DeepCA-Net.

3.1 Experimental Setting

Data Sets. The RSOD dataset [8] is a public object detection dataset, which
was downloaded, collected, and annotated by Wuhan University for remote sens-
ing image object detection. The dataset contains four categories: aircraft, oiltank,
playground, and overpass, which have 976 pictures in total and labeled in the for-
mat of the Pascal VOC dataset. To reasonably allocate the dataset, we assigned
90% as the training/validation set and 10% as the test set.

The NWPU VHR-10 is a public object detection dataset for the study, col-
lected and annotated by the Northwestern University of Technology. The NWPU
VHR-10 contains ten classes: airplane, ship, storage tank, baseball diamond, ten-
nis court, basketball court, ground track field, harbour, bridge, and vehicle. It
consists of 715 high spatial resolution colour images and 85 ultra-high spatial
resolution generalized sharpening Color Infrared (CIR) images [2]. To obtain
experimental results of the same properties, we assigned the same assignment
benchmark as the RSOD.

In the RSOD, due to too few data samples in each category, the trained mod-
els have problems such as poor generalization ability. Therefore, We performed
the flip scale of the RSOD appropriately and adjusted for colour and saturation.

Implementation Details. We set the experimental parameters uniformly in
the experiments on the two datasets. The weight decay set is 0.0005, the momen-
tum set 0.9, and the optimizer adopts the stochastic gradient descent (SGD).

All experiments were performed on an NVIDIA RTX 2080Ti GPU Ubuntu
server, implementing the DeepCA-Net using PyTorch, Cuda10.2.

Evaluation Metrics. We used mean Average Precision [4] as performance eval-
uation criteria. In practice, AP values are the area under the curve plotted using
combinations of different precision and recall points.

The average AP of all target types in the dataset can be denoted as mAP,
which represents the average accuracy of object detection for an object.
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3.2 Comparison with Other Advances Models

To verify that the DeepCA-Net is significantly improved in remote sensing
images, compared it on the RSOD and the NWPU VHR-10 with other algo-
rithms.

We refer all the contrast data on the RSOD in [6,16], as shown in Table 1,
which includes algorithms such as CF2PN, BDFFDN, SSD, YOLOv3. According
to Table 1, the DeepCA-Net achieves 95.59% mAP on the RSOD, and improves
4.18%, 1.98%, and 4.32% compared to BDFFDN, CF2PN, and YOLOv3 respec-
tively. The CF2PN is better than this paper in aircraft, which is adopted focal
loss to balance positive and negative samples from background. In Table 2,
we cite the advanced methods in [1,12–16] for experimental comparison of the
NWPU VHR-10, they were increased by 9.26%, 4.5%, and 2.55%, when com-
pared to BDFFDN, R2CNN, and RFN, respectively.

Table 1. Comparing the results of proposed model with other algorithms on the RSOD
dataset.

Method Aircraft Oil tank Overpass Playground MAP

RetinaNet 75.01 99.23 54.68 94.66 80.90
YOLOV4-tiny 66.47 99.42 80.68 99.31 86.47
SSD 57.05 98.89 93.51 100.00 87.36
M2Det 80.99 99.98 79.10 100.00 90.02
YOLOv3 84.80 99.10 81.20 100.00 91.27
BDFFDN 90.81 90.73 84.12 100.00 91.41
CF2PN 95.52 99.42 83.82 95.68 93.61
Proposed 85.97 98.80 97.60 100.00 95.59

3.3 Ablation Study

To validate the DeepCA-Net, we performed ablation studies using the uniform
settings for the RSOD and the NWPU VHR-10, the first two rows are the exper-
imental results of Original-Net, and the last three rows are the experimental
results of DeepCA-Net proposed in this paper, as shown in Table 3. First, the
LeakyReLU activation function was verified. Compared to the ReLU activation
function, LeakyReLU does not always output 0 when the input value is neg-
ative. This ensures that the neurons can update the parameters in time. The
results show that 87.41% and 92.34% of the mAP were obtained, respectively.
Then, the IoU was replaced by the GIoU, and we found the mAP improved
again, achieving 89.62% and 94.06% mAP, respectively. Finally, the DeepCA
layer is an additional convolutional feature extract layer to better capture the
semantic information in the deep layers. The results show the importance of
re-calibrating the feature of deep channels, significantly improving the DeepCA-
Net performance. The average accuracy of 95.59% and 96.25% was obtained on
the RSOD and the NWPU VHR-10, respectively.
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Table 2. Comparing the results of proposed model with other algorithms on the NWPU
VHR-10 dataset.

Method BDFFDN RDAS512 R2CNN NL-TLFPN HSP RFN Proposed

Airplane 99.02 99.60 100.00 100.00 99.79 98.00 99.88
Ship 78.89 85.50 89.41 89.47 92.45 89.70 99.04
Storage tank 90.67 89.00 97.22 90.91 96.96 83.60 100.00
Baseball diamond 90.68 95.00 97.00 96.80 98.55 98.20 98.06
Tennis court 90.91 89.60 83.15 96.65 90.37 93.30 97.70
Basketball court 81.50 94.80 87.54 99.19 91.48 100.00 89.94
Ground track field 100.00 95.30 99.17 100.00 99.04 96.70 99.59
Habor 90.70 82.60 99.40 90.09 88.90 100.00 100.00
Bridge 86.23 77.20 75.51 79.05 87.14 85.10 90.70
Vehicle 81.30 86.50 90.10 90.16 89.07 92.40 87.59
MAP 88.99 89.50 91.75 93.23 93.38 93.70 96.25

Table 3. Ablation experiments for the RSOD dataset and the NWPU VHR-10 dataset.

Model SGD LeakyReLU GIoU DeepCA RSOD NWPU

Original-Net � 86.49 90.74
� � 87.41 92.34

DeepCA-Net � � � 89.62 94.06
� � � 91.45 94.11
� � � � 95.59 96.25

4 Conclusions

This paper proposes a one-stage DeepCA-Net for remote sensing images object
detection, aiming to solve the problem of low accuracy of remote sensing image
detection. The model introduces the SE module in the additional convolutional
feature extraction layer. This method automatically obtains the feature correla-
tion between the deep channels through learning and improves the sensitivity to
the features in the deep channels. An additional scale feature extraction layer is
added to enrich the semantic features of small objects and improve the overall
detection performance to extract the semantic features of small objects better.
We perform ablation experiments on the RSOD and the NWPU VHR-10, and
is also compared with other algorithms. According experimental results show
that the DeepCA-Net model achieves the current other advanced model’s per-
formance.
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Abstract. Unmanned-Aerial-Vehicles’ (UAVs) inherent features such as
high dynamicity, quick deployment, and line of sight communication have
motivated the research of UAV-assisted IoT networks. In such networks,
one critical issue is path planing scheduling, which unfortunately is a
complex multi-objective optimization problem (MOP). Although there
exist extensive traditional MOP algorithms, the efficiency is unaccept-
able due to the resource constrains and they are unscalable for dynamic
scenarios. In order to achieve a more efficient yet scalable multi-objective
path planing algorithm, we innovatively propose a framework integrating
deep reinforcement learning (DRL) and transformer. We firstly decom-
pose the MOP problem into a series of sequencing subproblems with
weighted objectives, and then we present a modified transformer network
to solve each sequencing subproblem and further a DRL algorithm to
facilitate the subproblem network training. Experimental results demon-
strate that the proposed algorithm is superior to NSGA-II, MOEA/D
and pointer network in terms of robustness, convergence, diversity of
solutions, and temporal complexity.

Keywords: Transformer · Multi objective optimization · Deep
reinforcement learning

1 Introduction

A UAV assisted IoT-sensor network has attracted extensive attentions recently. In
a data collection application, UAV needs to fly to the target IoT sensor nodes (SNs)
and hover over them while collecting data in sequence. Therefore, the global path
planning (GPP), involving the scheduling on the visiting sequence, the hovering
time and the data transmission amount of each target SN, is critical [4].
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In fact, GPP usually needs to achieve several conflicting performance metrics.
However, the existing MOP algorithms are unsatisfactory in terms of efficiency
and scalibility. In this paper, we propose an efficient yet scalable GPP algorithm,
which can solve the MOP problem elegantly by combining deep reinforcement
learning (DRL) with transformer. The main contributions of our work are as
follows:

– We propose a framework combining DRL with transformer for solving the
multi-objective GPP problem, which utilizes a neighborhood-based param-
eter transfer strategy to speed up the training process. To the best of our
knowledge, it is the first time to use DRL and transformer to solve multi-
objective GPP problem.

– We conduct extensive experiments and demonstrate that the proposed algo-
rithm has superior convergence, diversity, and time complexity compared with
the traditional MOP algorithms and pointer network. When the locations of
SNs change, traditional MOP algorithms have to compute from scratch due
to the variable distance matrix, which is unacceptable in practice. Our algo-
rithm is robust to the dynamicity and can be applied to a new IoT network
without effort.

2 Related Work

Most of literatures focusing on GPP for UAV-assisted IoT networks [2,4,7] are
single objective optimization problems (SOP), which can be divided into three
categories according to the optimization objectives: energy consumption mini-
mization, data throughput maximization, and latency minimization. Although
this works solve SOP efficiently, they are not suitable to solve the MOP for GPP.

Traditional MOP algorithms such as NSGA-II and MOEA/D have proven to
be effective in dealing with MOP. However, they are not suitable for dynamic
scenarios and still have room for effect improvement due to the limitation of
distance matrix.

In recent years, DRL shows its potential in solving MOPs. An end-to-end
framework using DRL has been demonstrated to be superior regarding general-
ization ability, convergence speed, and solution quality [3,6,8]. It is also capable
to integrate pointer network based subproblem solvers. However, the perfor-
mance is limited by the pointer network and the training speed is relatively
slow. As Kool et al. [1] have verified a transformer model based on multi-head
attention mechanism that is able to fasten the training speed in a SOP, we are
motivated to propose an efficient MOP algorithm for GPP integrating DRL and
transformer.

3 System Model

Considering the network scenario shown in Fig. 1, massive battery powered SNs
are randomly distributed in a two-dimensional plane and a UAV fles over the
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target area to collect the data from SNs and return to the data center finally. We
assume a clustering routing protocol is adopted and cluster head nodes (CHNs)
are elected accordingly [5]. In this paper, we assume that the data amount of each
CHN must exceed a given threshold value to ensure the data quality requirement.

CHN

SN

data centerUAV

Fig. 1. Network scenario.

Let C = {c1, c2, · · · , cn} represent the CHNs and c0 represents the data
center. The visiting sequence and data amount to be collected are expressed
as ρ = [c0, ρ1, ρ2, · · · , ρn, c0]

T and D = [drec
1 , drec

2 , · · · ]T , respectively, where ρk

represents the kth visiting target, which is a CHN or the data center, drec
k denotes

the data collection amount of the kth visiting CHN ρk. For the GPP, we have
the following constraints: ρi �= ρj , if i �= j and dk ≤ drec

k ≤ dmax
k , which means

that a CHN can only be visited once and the data collection amount of ρk must
be beyond a threshold dk and below its data storage capacity dmax

k .
The first objective of GPP is to maximize the data collection amount of all

CHNs, which is formulated as

min
D

f1 = −
n∑

k=1

logdmax
k

(
κ + drec

k

κ
), (1)

where κ is a positive number to ensure that the antilogarithm is greater than 1.
The second objective is to minimize the total waiting time of all CHNs, consists
of the travailing time of the UAV and the data collection time (hovering time
over all CHNs). Thus, the second objective is formulated as :

min
ρ,D

f2 =
n∑

k=1

(ttra
k + tcol

k ), (2)

where ttra
k and tcol

k are the traveling time and data collection time of UAV
when visiting the kth CHN, respectively. Here comes the specific definitions:

ttra
k =

k∑
j=0

dist(ρj ,ρj+1)
v , tcol

k =
k∑

j=1

drec
j

ε , where dist(ρj , ρj+1) represents the dis-

tance between ρj and ρj+1, v and ε refer to the speed of a UAV and data
transmission rate between CHNs and the UAV respectively.
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The aim of our MOP is to determine the visiting sequence and actual data
collection amount of each CHN while maximizing the data collection amount
and minimizing the waiting time of all CHNs simultaneously:

min
ρ,D

L = [f1, f2] (3)

4 Optimization Algorithm

4.1 General Framework

We define a set of uniformly distributed weight vectors λ0,λ1, · · · ,λM , where
λi = (λi

1, λ
i
2), and M is the number of subproblems. The original MOP is decom-

posed into M + 1 scalar optimization subproblems,

min
ρ,D

fi = λi
1f1 + λi

2f2

s.t. (3), (3)
(4)

where λi
1 = 1 − 1

M i, and λi
2 = 1 − λi

1. We adopt a DRL framework and model
each subproblem as a neural network and train the networks cooperatively to
reduce the computational complexity.

Specifically, we denote the parameters of the ith neural network fi as P i .
Two neighboring subproblems, say fi−1 and fi , should have similar solutions as
their weight vectors are numerically close. Thus, P i−1 can be utilized to obtain
P i and accelerate the overall model training.

4.2 Subproblem Solution

A modified transformer network is utilized to solve the subproblems, and a
greedy rollout baseline algorithm [1] is used to train this network.

First, we introduce the input form of the subproblem X = {x1, · · · ,xn},
where xi = (ai, bi, di) is a tuple composed of the geographic abscissa, ordinate,
and minimum transmitted data amount of the ith CHN. Then, the output of the
subproblem model is the permutation of CHNs, i.e., Y = {ρt, t = 1, 2, · · · , n}.
Y is calculated by decomposing the sequence using the chain rule:

P (Y |X) =
n−1∏

t=1

P (ρt+1|ρ1, · · · , ρt). (5)

A modified transformer network is utilized to model (5), which consists of an
encoder and a decoder. The structure of the encoder is shown in Fig. 2. From the
3-dimensional input features X, the encoder computes the initial dh-dimensional
embedding H = {h1, · · · ,hn} = W embX + bemb through a linear projection,
where W emb and bemb are trainable parameters. Then N attention layers are
utilized to process the embedding H. Each attention layer is consisted of two
sublayers : a multi-head attention (MHA) layer with M heads and a node-wise
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fully connected feed-forward (FF) layer. In addition, batch normalization (BN)
and residual (RES) connect are used in each sublayer to speed up training and
mitigate information loss. We denote the outcome of the ith attention layer as
Ai = {αi

1, · · · , αi
n}, i ∈ {1, · · · , N}. The encoder also computes an aggregated

vector avg according to the last attention layer’s outcome AN : avg = 1
n

n∑
i=1

αN
i .

Fig. 2. The structure of the encoder.

We calculate the probability of visiting CNHs pro using single-head attention
mechanism at decoding steps. We augment hc to represent the decoding context
: hc = [avg, previous, rest]. Here [·, ·, ·] is horizontal concatenation operator.
previous is the information of the last visited CHN processed by the encoder,
which is one of the AN = {αN

1 , · · · , αN
n }. rest is the remaining storage capacity

of the UAV. Here we compute a new decoding context h
′
c using M-head MHA

at each decoding step:

Q
′
= WQ

′
hc K

′
= WK

′
AN V

′
= WV

′
AN (6)

temp =

{ −∞ rest ≤ drec

Q
′
K

′T
√

dk
rest > drec

(7)

Attention(Q
′
,K

′
, V

′
) = softmax(temp)V

′

headi = Attention(Q
′
WQ

′

i ,K
′
WK

′

i , V
′
WV

′

i )

h
′
c = Concat(head1, · · · , headn)WO

′

(8)

where WQ
′
, WK

′
, WV

′
, WQ

′

i , WK
′

i , WV
′

i and WO
′

are trainable parameters.
drec is the data collection amount of all CHNs and its details will be given in
Sect. 4.3. Then we compute the possibilities of visiting the next CHN pro using
single-head attention mechanism:
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Qpro = WQpro

h
′
c, Kpro = WKpro

AN , (9)

temppro =

{
−∞ rest ≤ drec

C · tanh(QproKproT

√
dk

) rest > drec,
(10)

pro = [pro1, · · · , pron] = softmax(temppro), (11)

where Qpro and Kpro are trainable parameters.

4.3 Determination of Data Collection Amount

Given next visiting target ρi, its appropriate data transmission amount is deter-
mined by optimizing:

max w1 · logdmax
i

(
κ + drec

i

κ
) − w2 · l · drec

i

ε
,

s.t. di ≤ drec
i ≤ dmax

i

(12)

where w1 and w2 refer to the weight of the data collection benefit and waiting
time respectively, l is the number of remaining CHNs, that is l = n − i + 1.
Accordingly the solution of Eq.(12) can be obtained as follows:

drec
i =

⎧
⎨

⎩

di si < di

si di ≤ si < dmax
i

dmax
i dmax

i ≤ si

(13)

4.4 Training Method

Here we define the loss function according to (3): L = L(Y ), where
Y = Transθ(X). We optimize L by gradient descent : ∇L = E[(L(Y ) −
L(BL(X))) �θ log Transθ(X)], where BL is a rollout baseline network that
measures the effectiveness of the modified transformer network. Algorithm 1
presents the training procedure. First, we initialize θ and θBL randomly in line
1, which are the parameters of transformer network and baseline network. Then,
two visiting sequences Yi and Y BL

i are obtained by using our modified trans-
former network and baseline networks respectively in line 4 and 5. Gradient
information can be calculated from two permutations in line 6 and the parame-
ters of transformer network can be updated in line 7. As for baseline network, the
parameters are updated only if the improvement of target network is significant
according to a paired t-test.
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Algorithm 1. REINFORCE with Rollout Baseline
Input: number of epochs E, batch numbers of each epoch T, batch size B, significance

γ
1: Init θ, θBL ← Random Initialize
2: for epoch = ← 1,· · · ,E do
3: for i = ← 1, · · · , T do
4: Yi ← Sample(Xi,θ)
5: Y BL

i ← Greedy(Xi,θ
BL)

6: �L ← (L(πi) − L(πBL
i )) �θ log Transθ(πi)

7: θ ← Adam(θ, �L)
8: end for
9: if OneSidedPairedTTest(θ, θBL) < γ then

10: θBL ← θ
11: end if
12: end for

5 Results and Discussion

We first compare the PF (Pareto Front) obtained by our algorithm, traditional
MOP algorithms and pointer network with 20 and 30 CHNs. As shown in Fig. 3,
all of the compared algorithms show a great ability of convergence. It is observed
obviously that our method can obtain less f2 for varying f1, that is it can collect
more data with varying total waiting time.

Fig. 3. PF from modified transformer, traditional MOP algorithms and pointer net-
work. (a) and (b) show the case of 20 CHNs (c) and (d) show the case of 30 CHNs.

We further compare the running time and HV values of the algorithms.As
shown in Table 1, our modified transformer network performs best. In addition,
due to the limitation of distance matrix, NSGA-II and MOEA/D have to execute
every time once the optimization problem changes. In contrast, our DRL and
transformer method is robust to the problem dynamics.
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Table 1. Comparison of algorithm execution time and HV values

20 CHNS 30 CHNS

Time/s HV Time/s HV

NSGAII-500 5.75 62.51 5.98 55.93

NSGAII-1000 11.86 66.03 10.99 62.60

NSGAII-2000 20.95 67.20 21.14 59.09

NSGAII-4000 41.92 68.61 44.07 73.30

MOEA/D-500 24.04 54.02 24.13 33.97

MOEA/D-1000 48.25 57.27 49.64 37.76

MOEA/D-2000 99.72 60.09 103.40 57.74

MOEA/D-4000 207.94 63.64 211.14 60.78

Pointer network 5.28 10.43 7.68 10.02

Ours 2.65 94.08 8.38 220.00

6 Conclusions

In this paper, we present a novel algorithm to solve the multi-objective global
path planning for UAV-assisted IoT, where the data collection benefit is maxi-
mized and the waiting time of CHNs is minimized. MOP based on DRL is still
in its infancy. Our work, as we believe, shall contribute useful insights helping
the development and application of UAVs and MOP based on DRL.
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Abstract. In real scenarios, robots usually face dynamically chang-
ing environments, and traditional navigation methods require a prede-
fined high-precision map, which limits the achievability of navigation in
dynamic and uncertain environments. To solve this problem, this paper
uses a Partially Observable Markov Decision Process (POMDP) to model
the uncertain navigation planning problem and proposes a soft actor-
critic with prioritized experience replay (SAC-PER) method based on
multi-sensor perception to achieve efficient navigation. The method uses
multi-source information fusion for environment perception and Deep
Reinforcement Learning (DRL) for continuous control of navigation. The
multi-source SAC-PER method can effectively avoid obstacles and enable
robots to perform navigation tasks autonomously in uncertain environ-
ments without building high-precision maps. We evaluate the proposed
method using Robot Operating System (ROS) and Gazebo simulator.
The results demonstrate that the SAC-PER method has high efficiency
and robustness in different environments, and shows good generalization
ability.

Keywords: Uncertain environments · Multi-sensor data · POMDP
model · Deep reinforcement learning · Navigation and obstacle
avoidance

1 Introduction

The intelligent autonomy of mobile robots enables them to be used in more com-
plex or dangerous environments to replace human tasks, such as ground explo-
ration [9], and disaster rescue [5]. With the expansion of the application range,
many uncertainties have been added to the operating environment, which makes
the field of motion planning and navigation extremely challenging. Therefore,
navigation control in unknown environments, especially in dynamic uncertain
environments, has been a research hotspot in the field of mobile robots [2,4].
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Traditional navigation technologies mostly make path planning through com-
plete map information [6]. In an unknown environment, traditional algorithms
can only use the knowledge stored in the map and need to manually adjust the
parameters, which is difficult to generalize to more complex scenarios [11]. The
current navigation research shows that although traditional navigation tech-
nologies have made great progress, they still cannot deal with environmental
uncertainty, which limits the generalization ability in complex environments.

To solve the above problems, many scholars apply reinforcement learning to
navigation systems to control mobile robots [3,12]. However, the classical rein-
forcement learning algorithm has the disadvantages of slow convergence speed
and manual extraction of data features in complex and dynamic environments.
To make up for these defects, Google’s AI team DeepMind proposes a deep
reinforcement learning algorithm, which combines the perception ability of deep
learning with the autonomous decision-making ability of reinforcement learning.

To solve the motion planning problem of robots in unknown and uncertain
environments and further optimize navigation efficiency, this paper carries out
research work from two aspects of perception and decision-making.

• Environmental perception: A multi-sensor perception method is proposed
that fuses precise data from laser measurement with complementary infor-
mation from visual images. This method can extract richer environmental
features, enhance the observability of the environment, and make navigation
in uncertain environments more reliable and robust.

• Decision making: We model the uncertain navigation problem as a POMDP
model and propose a deep reinforcement learning SAC-PER algorithm to
solve the navigation model. Our method takes perceptual signals as input
and motion control as output, avoiding complex dynamics theory. It can deal
with the change of uncertain dynamic environments and achieve collision-free
navigation safely with low cost and computation.

2 Related Work

There are two main decision-making methods for navigation, one is the classic
map-based navigation, and the other is the map-less navigation. According to
environmental information obtained by robots, map-based navigation methods
are divided into global path planning and local path planning, such as the D*
algorithm, Rapidly Exploring Random Tree (RRT) [1], Probabilistic Roadmap
Method (PRM) [10], and so on, which are relatively easy to implement. How-
ever, the environmental information perceived by the robot is limited, and the
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environmental information is unpredictable and uncertain [8]. The above tra-
ditional navigation methods are overly dependent on environmental maps and
easily affected by environmental changes, which makes it difficult to ensure the
safety and stability of navigation.

Traditional navigation methods need to prepare prior knowledge of envi-
ronments in advance and have poor flexibility. Therefore, map-less navigation
based on deep reinforcement learning (DRL) is being actively researched. It is
better than traditional methods and has better adaptability to high-dimensional
dynamic unknown environments. Lei Tai et al. [7] propose a map-less method
based on DRL, which takes laser results and target position as input, and takes
control commands as output. The trained planner can be applied to complex
environments. Although the DRL-based method is a hot topic in the field of
navigation, most research works do not consider dynamic obstacle avoidance.

3 Uncertain POMDP Model and SAC-PER Approach

Considering the dynamic properties and uncertainties of the environment, we
design the POMDP process to model the navigation problem, and use the deep-
RL strategy to convert the multi-source fusion information into robot actions.

3.1 Designed Uncertain Model for Navigation Problem

The movement of obstacles will lead to environmental uncertainty. To find an
effective path, we design the dynamic navigation problem as a POMDP model:

tuple = (S,A, P,R,Ω,O, γ) (1)

where S is the state space; A is the action space; P is the state transition function;
R is the environmental reward; Ω is the observation space, where the observa-
tions represent obstacles information; O is the observation transfer function.
Below are descriptions of the important components of the POMDP model.

State Space S: Through the analysis of the odometer sensor information, the
state space is the set of all possible states of the mobile robot:

si = (position.x, position.y, yaw) i ∈ (0, n) (2)

Observation Space Ω: The observation space at time t is composed of multi-
sensor information, the current speed of the robot, and the target position:

Ot = [Opercep
t , Ov

t , Ogoal
t ] (3)
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where Opercep
t = [Olaser

t , Ocamera
t ], which represents obstacle distance samples

observed by multiple sensors. It consists of two parts, Olaser
t represents laser

measurement samples, and Ocamera
t represents the ‘Pseudo-laser’ distance data

converted from a depth image. Ov
t represents the speed of the robot, including

the linear and angular velocity, and Ogoal
t represents the relative target position.

Action Space A: An action space is a set of velocity instructions. The motion
of the robot consists of linear and angular velocities, namely at = [vt, wt].

Model Goal: The goal of the POMDP model is to maximize the cumulative
discounted reward Rt. γ is a discount factor for future rewards, which represents
uncertainty by discounting future rewards.(γ ∈ (0,1)).

Rt =
∞∑

i=t

γi−tri (4)

Reward Value Mechanism: We combine sparse and dense rewards to design
the mechanism, which reduces the number of interactions, accelerates learning
process, and improves the utilization of samples.

r(st, at, s(t + 1)) =

⎧
⎨

⎩

rarrive arrive to the goal
rcollision collisions occur
rdistance : μ(dt − dt+1) close to the goal

(5)

Model Uncertainty Analysis: (1) State uncertainty analysis: Since the envi-
ronment changes at any time, even if the agent takes deterministic actions, the
new state may be uncertain. POMDP model uses the state transition matrix P
to represent the new uncertain state.

(2) Environmental observation uncertainty analysis: The observation space
Ω and the observation transfer function O are results of uncertain environmental
observation. Ω contains observation values, and O is calculated from states and
actions, which can effectively deal with environmental uncertainty.

Figure 1 is the framework diagram of the navigation method proposed, which
mainly includes three parts: sensor data processing, POMDP dynamic navigation
model, and model solution based on SAC-PER learning algorithm.
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Fig. 1. Structure diagram of map-less navigation approach based on DRL.

3.2 Environmental Obstacle Perception

Algorithm 1. Multi-sensor data processing
Input: Laser distance and camera image data (sensors readings)
Output: Distance Ot from obstacles observed by multiple-sensors
1: Initialize Tfinal, Vector R, R1, L[n], V[n]
2: while Time < Tfinal do
3: R ← laser scan ranges received at time t
4: for i = 1 to length(R) do
5: if R(i) == NaN then
6: R(i) ← Rmax

7: elseR(i) == NULL
8: R(i) ← 0

9: Convert RGB to Depth Map Dt via Depth Estimation Model
10: (Pseudo-Laser) R1 ← Compress the Dt into Pseudo-Laser Data
11: for i = 1 to n do
12: L ← take n feature samples from R
13: V ← take n feature samples from R1

14: L ← L/max(L)// Normalized laser feature samples to the (0,1) range
15: V ← V/max(V)// Normalized camera feature samples to the (0,1) range

16: Ot ← concat distance information L from laser and V from camera

To collect environmental information accurately, we use the fusion data from
the laser and the camera as perception information for navigation. For laser
data, image data has a lot of redundant information, which leads to difficulty in
convergence. To solve this problem, we restore the depth information from the
camera data and convert it into ‘pseudo-laser’ data. This not only retains the
advantages of simple and easy transfer from the laser but also retains important
information from images. The process of multi-sensor perceiving environmental
information and data processing is shown in Fig. 2 and Algorithm 1.
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Fig. 2. Structure diagram of multi-sensor perception module.

3.3 Navigation and Obstacle Avoidance Strategy: SAC-PER

Our navigation strategy SAC-PER does not require prior knowledge of the envi-
ronment. The strategy obtains the optimal objective function through maximum
entropy. Compared with on-policy algorithms, SAC-PER can reuse past experi-
ence and improve the utilization efficiency of training samples. Compared with
deterministic strategies, SAC-PER adopts a stochastic strategy which improves
the sensitivity of hyper-parameters, and poor convergence.

Algorithm 2. SAC with Prioritized Experience Replay (SAC-PER)
Input: Initial state st

Output: Action at and DRL trained models
1: Initialize network parameters, weights and an experience buffer D
2: for each episode do
3: for each environment step do
4: Observe state st and select at ∼ πφ(at|st)// get action using ActorNet
5: Execute at and observe immediate reward r and new state s’
6: Calculate the sampling priority of each transition (s,a,r,s’)

7: Add transition (s, a, r, s
′
, P (i)) to experience buffer D

8: for each gradient step do
9: Sample a mini-batch of N transitions according to the priority P(i)

10: Calculate the TD-error of each sample and update it to buffer D
11: Update network weights and each transition’ priority
12: Update soft Q-value parameters and soft V-value parameters
13: Update policy network parameters by sampling strategy gradient
14: Update target networks’ parameters
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Fig. 3. SAC-PER algorithm structure. Fig. 4. SAC-PER network input and
output.

The SAC-PER algorithm is shown in Fig. 3 and Algorithm 2. The SAC-PER
network’ input and output are shown in Fig. 4. To speed up the convergence,
we integrate the Prioritized Experience Replay mechanism (PER) into the SAC
network to improve the algorithm. The method uses metrics to measure sam-
ple value, prioritizes each sample based on its value, and finally non-uniformly
samples empirical data in order of their priorities, which can quickly search for
high-priority experience samples.

4 Experiments and Performance Evaluation

4.1 Experiment Setup

The experimental platform is based on ROS-melodic. We use Gazebo as a sim-
ulator and use TensorFlow to implement the SAC-PER algorithm and neural
network model. Table 1 gives the optimal parameters obtained by experiments.
We design four environments in Gazebo for training and testing (see Fig. 5).

Fig. 5. Gazebo simulation scenarios.

Table 1. Hyper-parameters

Parameter Value Parameter Value Reward Value Action Value

γ : discountfactor 0.99 threshold arrive 0.25 rreached 100 Vmax 0.25

Replay memory size 1 × 105 threshold collision 0.15 rcollision –100 Wmax 1

Batch size 256 Max episode 1000
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4.2 Experimental Results

Training Results. DDPG and PPO are widely used algorithms and have
achieved good results in tasks of robots. Therefore, we choose them to verify
the efficiency of the SAC-PER algorithm. We train the model in Env1 (see
Fig. 6). According to Fig. 6(a)-(d), the robot has many random behaviors at the
beginning of training. As the number of training episodes increases, the robot
learns the environment and the navigation ability faster by getting more pos-
itive rewards. The training results show our method tends to be stable after
about 400 episodes, and the average reward is better than the DDPG and PPO
algorithms. Figure 6(e) shows that our algorithm is better than the other in the
accuracy of obstacle avoidance. To test the influence of the multi-sensor percep-
tion algorithm in Sect. 3.2, we conduct a comparison experiment. As shown in
Fig. 6(f), the SAC-PER training models of different sensors all begin to converge
after about 500 episodes. And the average reward of the multi-sensor perception
is better than that of the single-sensor perception.

Testing and Analysis. As is shown in Fig. 7, there are a few timeouts or
collisions at first. After 60 episodes, the robot can successfully avoid obstacles,
and the success rate reaches 95%. As shown in Fig. 8, the average navigation
time is lower than comparison algorithms, which can complete the navigation
faster. To further evaluate the generalization ability of the navigation model, we
conduct some experiments (see Table 2). We can find that when the environment
becomes complex, the success rate of PPO and DDPG decreases greatly. And
our algorithm still maintains stable efficiency and has a better avoidance effect.

Fig. 6. Performance comparison results on Env1 for 1000 training episodes.
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Table 2. Success rate and average path length results

Metric Method Env1 Env2 Env3 Env4

Success rate (%) PPO 0.87 0.75 0.80 0.73

DDPG 0.90 0.74 0.78 0.6

SAC-PER (Ours) 0.93 0.88 0.91 0.85

AVG path length (m) PPO 2.26 4.24 3.68 8.85

DDPG 2.03 5.45 4.56 10.47

SAC-PER (Ours) 1.59 3.75 3.51 6.52

Fig. 7. SAC-PER test results for 100 tra-
jectories in Env1.

Fig. 8. Navigation time.

5 Conclusion

To solve the poor robustness of traditional navigation in uncertain environ-
ments, our method uses sensor perception and the POMDP uncertainty model
to solve the navigation process. To improve the efficiency of obstacle avoidance,
we propose a multi-sensor fusion dynamic perception method and the SAC-PER
algorithm to learn the navigation strategy. Future research work is to consider
complex outdoor environments to improve the network structure.
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Abstract. Reference-based image super-resolution methods, which
enhance the restoration of a low-resolution (LR) images by introducing
an additional high-resolution (HR) reference image, have made rapid and
remarkable progress in the field of image super-resolution in recent years.
Most of the existing methods use an implicit correspondence matching
approach to transfer HR features from the reference image (Ref) to the
LR image. However, these methods lack the further judgment and pro-
cessing of the HR features from Ref, which limits them in challenging
cases. In this paper, We propose an image super-resolution method based
on mixed attention and feature transfer (MAFT). First, we obtain the
deep features of the LR and Ref images through the encoder network,
then extract the transferred features from Ref through the attention net-
work, and perform adaptive optimization processing on the features, and
finally fuse the transferred features with LR features to achieve a high-
quality image reconstruction. The quantitative and qualitative experi-
ments on these benchmarks, i.e., CUFED5, Urban100 and Manga109,
show that MAFT outperforms the state-of-the-art baselines with signif-
icant improvements.

Keywords: Computer vision · Machine learning · Super-resolution ·
Attention mechanism

1 Introduction

Image super-resolution (SR) is a fundamental computer vision task that aims to
recover natural high-frequency details from a given low-resolution image. The
study of image super-resolution is usually divided into two types: single-image
super-resolution (SISR) and reference-based image super-resolution (RefSR).
SISR methods relies primarily on the prior knowledge learned by the model
to recover the image, However, due to the inherent lack of information between
LR and HR images, these classical SISR methods [3,6] often results in blurry
effects or visual artifacts.
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In this paper, we explore the RefSR method, which additionally introduces
HR images as Ref and provides finer details to the LR image by transferring the
texture features of Ref to achieve good reconstruction performance. State-of-
the-art Approaches [2,5] find the deep feature correspondence between LR and
Ref images by an implicit correspondence matching approach to transfer more
accurate texture features. However, due to the huge difference between LR and
Ref images, some noise information that remains in such texture features will
have negatively affect the subsequent fusion with low-resolution image features,
network convergence and final results.

To address the above problems, we propose a RefSR method called MAFT,
which implements a filtering mechanism oriented to the feature transfer pro-
cess by combining multiple attention structures, and can effectively distinguish
important information from noisy information in the process of transfering fea-
tures, and enhance the learning of important information and suppress the prop-
agation of noisy information.

2 MAFT Method

Fig. 1. (a) Framework of the proposed MAFT, which consists of an encoder, Fea-
ture Matching Attention Modules (FMAM), Mixed Attention Modules (MAM) and
an decoder. (b) Structure of Feature Matching Attention Modules (FMAM), which is
used to search for available textures in Ref features. (c) Structure of Feature Match-
ing Attention Modules (MAM), which is used to adapt to strengthen the important
information and weaken the noise information in the feature.

As shown in Fig. 1, our framework mainly consists of an encoder network, a
decoder network, and an attention layer, where the encoder network is used for
feature extraction to extract deep feature information from LR and Ref images,
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and the attention layer consists of a feature matching attention module and a
mixed attention module. The feature matching attention module obtains the
correlation between LR features and Ref features and uses the correlation to
find the matching features from the high-resolution Ref features, while the mixed
attention module further adaptively adjusts the matched features to obtain the
final transferred features, and through this coarse-to-fine feature selection mode,
the useful feature information on the reference image is accurately mined, and
finally the decoder network combines the transferred features with the original
LR features to achieve high-quality image recovery.

2.1 Feature Matching Attention Module

The structure of the feature matching attention module is shown in Fig. 1(b). LR
denotes the input low-resolution image, Ref denotes the high-resolution image
referenced by this low-resolution image, Q and V are the feature maps obtained
by passing the LR and Ref through the encoder respectively, and K is the feature
map obtained by passing the Ref through a 4-fold factor downsampling first and
then through the encoder. The correlation between LR and Ref is first obtained
by Q and K, and then the obtained correlation is applied to V to obtain accurate
texture transfer information. Details will be discussed below.

Relevance Embedding. The relevance between LR and Ref images is
embedded by estimating the similarity between Q and K. First, We
unfold both Q and K into patches, denoted as qi (i ∈ [1,HLR × WLR]) and
kj (j ∈ [1,HRef × WRef ]), with each position corresponding to one patch, and
each patch consists of a tensor composed of that position and eight surrounding
positions. Then for each patch qi in Q and kj in K, we calculate the relevance
ri,j between these two patches by normalized inner product:

ri,j =
〈

qi
‖qi‖ ,

kj
‖kj‖

〉
(1)

The relevance is further used to obtain the hard-attention map and the soft-
attention map.

Hard-Attention. Find the most relevant position in V for each position in Q
by the relevance ri,j of qi and kj and transform V to obtain a high-resolution
feature representation T for feature transfer. Specifically, we first calculate a hard
attention graph H where the i-th element hi (i ∈ [1,HLR × WLR]) is calculated
from the relevance ri,j :

hi = argmax
j

ri,j (2)

where the value of hi can be considered as an index, which represents the most
relevant position in the Ref to the i-th position in the LR image. Then we apply
an index selection operation to the unfolded patches of V using the obtained
hard-attention map as the index:

ti = vhi
(3)
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where ti denotes the value of T in the i-th position, which is selected from the
hi-th position of V . Finally, we aggregate all the ti (i ∈ [1,HLR × WLR]) to get
the HR feature T after feature matching.

Soft-Attention. We further apply different attention weights to different posi-
tions of the feature T by using the relevance ri,j of qi and kj . Specifically, we first
calculate a soft attention graph S where the i-th element si (i ∈ [1,HLR × WLR])
is calculated from ri,j :

si = max
j

ri,j (4)

where si denotes the i-th position of the soft-attention map S. Then the soft-
attention map S is applied to T to obtain the features F :

F = T � S (5)

where � denotes element-wise multiplication between feature maps.

2.2 Mixed Attention Module

The process of feature matching LR image with Ref was introduced in Sect. 2.1,
and this part will introduce the process of implementing further processing on the
obtained matched features. Inspired by ACTION-Net [4], we proposes a mixed
attention module to do further feature screening on the transferred features
extracted from the previous step.

Fig. 2. Structure of channel attention module

Channel Attention. Inspired by RCAN [7], we first used a channel attention
mechanism to direct the operational focus of deep neural networks to areas with
more important information.

As shown in Fig. 2, for a feature mapping x of size C × H × W , the spatial
information of the feature mapping is first aggregated using average pooling to
generate a channel descriptor zavg that can represent each channel, where the
c-th element is computed from all elements of that channel:

zcavg = Fsp (xc) =
1

H × W

H∑
i=1

W∑
j=1

xc(i, j) (6)
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where xc(i, j) is the value of the c-th channel feature at (i, j), Fsp(·) is the global
average pooling function, and then this channel descriptor zavg adaptively learns
the weights through an activation network:

s = Fex (zavg) = σ (WUδ (WDzavg) (7)

where σ(·) and δ(·) denote the Sigmoid function and the ReLU function, respec-
tively. WD is the weight of the first layer of this activation network and WU is
the weight of the second layer of this activation network. The obtained weights
of each channel further act on the input feature mapping x to achieve a different
focus on each channel:

yc = sc · xc (8)

where sc and xc are the weight and feature map in the c-th channel.

Fig. 3. Structure of spatial attention module

Spatial Attention. In order to further optimize the spatial information of fea-
tures, we use a spatial attention as shown in Fig. 3. It uses the spatial relationship
between features to generate a spatial attention map to act on the original fea-
tures to achieve the deflation of location information. For a feature mapping
x of size C × H × W , the position information of the feature mapping is first
aggregated using average pooling to generate a position descriptor Zavg that can
represent each position, where the i-th element is computed from all the channel
elements at that position:

Zi
avg = Fsp (xi) =

1
C

C∑
k=1

xk
i (9)

where xk
i is the value of the i-th position of the feature map x at the c-th channel

and Fsp(·) is the global average pooling function. This position descriptor Zavg

is then passed through a convolution layer to generate a two-dimensional spatial
attention map:

m = F7×7 (Zavg) = σ (WcZavg) (10)

where F7×7 denotes the convolution operation with a filter size of 7×7, σ(·)
denotes the Sigmoid function, and Wc is the weight of this convolution layer. The
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obtained spatial attention map is further acted on the input feature mapping x
to realize different attentions for each position:

y = m � x (11)

where � denotes element-wise multiplication between feature maps.
As shown in Fig. 1(c), finally, we use the residual block to apply the mixed

attention formed by combining channel attention and spatial attention to the
feature F to obtain the final transferred features Fout:

Fout = F + SAM (CAM (W2δ (W1F ))) (12)

where W1 and W2 are the weights of the two convolutional layers in the residual
block, CAM denotes the channel attention operation, and SAM denotes the
spatial attention operation.

2.3 Loss Function

Reconstruction Loss. We adopt L1 loss as the reconstruction loss as:

Lrec = ‖IHR − ISR‖1 (13)

where IHR and ISR denote the ground truth image and the network output.

Perceptual Loss. We use the error between the predicted image and the target
image on the feature space as the perceptual loss:

Lpec = ‖φvgg
i (IHR) − φvgg

i (ISR)‖2 (14)

where φvgg
i is the i-th layer feature map of VGG19, here we use relu1−1, relu2−1,

relu3−1 and conv5−4.

Adversarial Loss. We adopt the Relativistic GANs [6]:

LD = −EIHR
[log (D (IHR, ISR))] = −EISR

[log (1 − D (ISR, IHR))] (15)

LG = −EIHR
[log (1 − D (IHR, ISR))] = −EISR

[log (D (ISR, IHR))] (16)

The final loss is expressed as:

L = λrecLrec + λperLper + λadvLadv (17)

The weight coefficients λrec, λper and λadv are set to 1, 0.5, and 0.005, respec-
tively.

3 Experiments

3.1 Datasets and Settings

In this paper, we mainly use CUFED5 as the training set in our experiments, it
consists of a combination of 11871 training image pairs, each of which contains
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an original HR image and a reference image with 160×160 resolution. To validate
the generalization capacity of our model, we test it on three popular benchmarks:
CUFED5 testing set, Urban100 and Manga109. There are 126 test images in
the CUFED5 test set, and each image corresponds to 4 reference images with
different similarities. Urban100 contains 100 building images without references,
and each image takes its LR image as a reference, and for Manga109, which also
lacks reference images, the HR images in the randomly sampled dataset are used
as reference images.

In the training process, we choose Adam as the algorithm for training opti-
mization, and the parameters β1 and β2 are set to 0.9 and 0.999, respectively.
The learning rate is set to 10−4 and the batch size is 9.

3.2 Evaluation

To evaluate the effectiveness of MAFT, we compare our model with other state-
of-the-art SISR and RefSR methods. The SISR methods include EDSR [1],
RDN [8], RCAN [7], ESRGAN [3], RSRGAN [6], The RefSR methods include
TTSR [5], MASA [2]. All the models are trained on the CUFED5 training set,
and tested on the CUFED5 testing set of Urban100 and Manga109. All experi-
ments are performed with a scaling factor of 4× between LR and HR images.

Table 1. PSNR/SSIM comparison among different SR methods on 3 testing datasets.
Methods are grouped by SISR (top) and RefSR (bottom).

Method CUFED5 Urban100 Manga109

EDSR [1] 25.93/0.777 25.51/0.783 28.93/0.891
RDN [8] 25.95/0.769 25.38/0.768 29.24/0.894
RCAN [7] 26.06/0.769 25.42/0.768 29.38/0.895
ESRGAN [3] 21.90/0.633 20.91/0.620 23.53/0.797
RSRGAN [6] 22.31/0.635 21.47/0.624 25.04/0.803

TTSR [5] 25.53/0.765 24.62/0.747 28.70/0.886
TTSR-rec [5] 27.09/0.804 25.87/0.784 30.09/0.907
MASA [2] 24.92/0.729 23.78/0.712 27.23/0.845
MASA-rec [2] 27.54/0.814 26.09/0.786 30.18/0.908
MAFT 25.84/0.768 24.71/0.745 28.67/0.878
MAFT-rec 27.72/0.825 26.11/0.788 30.52/0.910

Quantitative Evaluations. MAFT denotes the model obtained by using total
loss training, MAFT-rec denotes the model obtained by minimizing the recon-
struction loss training only, and the same for the rest of RefSR methods. Table 1
shows the quantitative comparisons on PSNR and SSIM, where the best results
are bolded to indicate. As shown in Table 1, our model outperforms state-of-the-
art methods on all three testing sets.
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Qualitative Evaluations. We show visual comparison between our model and
other SISR and RefSR methods in Fig. 4. Our proposed MAFT outperforms
other methods in terms of visual quality.

Fig. 4. Visual comparison among different SR methods on CUFED5, Urban100.
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Abstract. A medical report is a textual description of the informa-
tion presented in a medical image, which includes detailed information
about different body organs and the radiologist’s diagnosis from medical
images. However, when summarizing the medical image content into a
complete and accurate medical report, doctors usually face problems such
as time-consuming and repetitive work. Although there are many studies
in the field of automatic medical report generation, a lot of challenges
still exist. First, when describing multiple organs and lesions presented
in medical images, the generated report based on the single-scale feature
extraction method is still inadequate and inaccurate. Second, when gen-
erating reports, most existing methods encounter problems such as dupli-
cate words or lack of key descriptions. To solve the problems mentioned
above, we propose Multiscale Feature Extraction and Word Attention
Network (MFWAN) which is an automatic medical report generation
model. The model contains three modules. In order to focus on abnormal-
ities in different regions, the model includes the EPSA (Efficient Pyra-
mid Split Attention) Multiscale Feature Extraction module which utilizes
spatial information at different scales of medical images. After that, the
visual features are classified by a Multi-Classification Context Genera-
tion Module to generate context messages. Then, by assigning different
weights to the hidden layers of word LSTM, the Word-Attention-Based
Report Generation module generates more accurate words with implicit
disease critical information. Experimental results on benchmark datasets,
IU X-Ray, show that our proposed MFWAN outperforms previous works
and generates more accurate reports.

Keywords: Medical report generation · Word attention · Hierarchical
LSTM · Multiscale

1 Introduction

Medical images, such as radiological and pathological images, are important for
medical diagnosis and treatment. A medical report, on the other hand, is a
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textual description of the information presented in a medical image. Figure 1 is
an example of a chest X-ray report. “FINDINGS” is a detailed description of each
region of the image and “IMPRESSION” indicates the clinical diagnosis inferred
by the radiologist through medical images and “FINDINGS”. As the number of
medical images increases, the workload for radiologists to write reports grows
daily. The risk of miscalculations will increase under such a heavy workload,
which is detrimental to medical diagnosis and treatment. Therefore, at this stage,
there is an urgent need for methods that can generate high-quality medical
reports in a short time to reduce the burden on doctors and patients.

Fig. 1. An example of a medical report.

With the development of deep learning, the encoder-decoder structure has
achieved good results in image captioning tasks. For a long time, medical report
generation models follow the encoder-decoder structure. For the encoder, most
models directly utilize pre-trained Convolutional Neural Networks (CNN), how-
ever, abnormal lesion regions of medical images rely on local features, and differ-
ent diseases exist in different regions [6]. In order to extract abnormal information
from images more accurately, some models introduce attention mechanisms into
the feature extraction stage [7]. However, using single-scale feature extraction
cannot guarantee the models extract important spatial information. In addition,
medical image reports consist of multiple sentences, so some models utilize a hier-
archical LSTM [4] or Transformer [2] as the decoder. However, such approaches
make redundant sentences or ignore key information. Recently some models [5]
introduce external knowledge into the decoder, but such methods only generate
words close to the real medical concepts and cannot extract key information
from the images.

Our works focus on two main difficulties in medical report generation: (1)
absence of important spatial information of multiple organs and lesions; (2)
redundancy of words and lack of keywords. By simulating the practical process
of radiologists’ work, we propose the Multiscale Feature Extraction and Word
Attention Network (MFWAN). Our model follows the standard encoder-decoder
paradigm. First, the EPSA Multiscale Feature Extraction module utilizes spa-
tial information at different scales to focus on abnormalities in different image
regions, effectively solving the problem of missing important spatial informa-
tion and establishing correlations between channels according to their impor-
tance. Second, the Multi-Classification Context Generation module classifies the
extracted visual features and generates high-level semantic vectors with context.
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Then, in order to improve the readability of reports, the Word Attention-Based
Report Generation module generates words with key information by assigning
weights to the hidden layer of word LSTM. Quantitative and qualitative experi-
ment results on benchmark dataset IU X-Ray show that our model outperforms
previous works.

2 Methodology

To address two problems of the existing medical report generation methods:
(1)ignorance of important information based on single-scale feature extraction and
(2)word redundancy, we propose an automatic medical report generation model
MFWANwhich follows the encoder-decoder structure. The framework ofMFWAN
is shown in Fig. 2, as the input of the encoder, the chest X-ray image is fed into
the EPSA Multiscale Feature Extraction module. The output of this module is
visual features containing spatial information. Then, the visual features are fed
into a Multilabel Classification network (MLC) to predict labels noted as tags.
The output of the encoder is a ctx vector with high-level semantic information.
The decoder utilizes a hierarchical LSTM with ctx as input, generating seman-
tic topics in stages and controlling the number of reported statements. The word
LSTM takes the topic and the special word token START as input with a word
attention mechanism. The generated words are concatenated to form the complete
report. All the modules of the model are described as follows.
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Fig. 2. The framework of proposed MFWAN.

2.1 EPSA Multiscale Feature Extraction Module

Most existing models utilize single-scale CNN for feature extraction of medical
images. However, for chest X-ray images, there is more than one lesion area, such
as the lung and heart, so the generated report should describe each area. For this
reason, this module incorporates multiscale convolutional attention [8] mecha-
nism based on ResNet152 to exploit spatial information at different scales, which
helps the model better focus on different regions in the image and improves the
accuracy of disease category prediction. Specifically, as shown in Fig. 3, the input
feature X ∈ RH×W×C are divided into S groups at the channel level denoted
as [X0,X1, . . . , Xs−1] ∈ RH×W×C′

. For each Xi, the module utilizes different
kernel sizes and groups, the generated and multiscale features are denoted as:

Fi = Conv2d (ki × ki, Gi) (Xi) i = 0, 1, · · · ,S − 1 (1)



MFWAN: Multiscale Feature Extraction and Word Attention Network 523

concat

K0×k0
G0

K1×k1
G1

K2×k2
G2

K3×k3
G3

H
W

C

split

H×W×C/4

SE
Module

Att-score

C

H
W W

H

C

Fig. 3. The framework of EPSA Multiscale Feature Extraction Module.

where Fi ∈ RH×W×C′
. For each multiscale channel feature map Fi, we use the

SEModule [3] to extract the channel attention weights. The weights are denoted
as:

Atti = SEModule (Fi) i = 0, 1, · · · ,S − 1 (2)

where Atti ∈ R1×1×C′
, and each multiscale channel attention vector is con-

catenated to obtain Att ∈ R1×1×C . Then, we multiply the multiscale channel
attention with the corresponding scale features to obtain a new feature map:

Yi = Fi × Atti i = 0, 1, · · · ,S − 1 (3)

where Yi ∈ RH×W×C′
pays more attention to the patient’s abnormal region.

Feature maps are concatenated to obtain Y ∈ RH×W×C . As the output of this
module, the feature Y contains not only the spatial information of different
regions of the image, but also the association between each channel.

2.2 Multi-classification Context Generation Module

In order to predict the top n labels that are most suitable to represent the image,
the visual feature Y is fed to a Multilabel Classification network (MLC). The
classification result is recorded as tags to represent the whole image. Different
from CoAtt [4] giving co-attention to visual and semantic features, we only
distribute different attention weights αn to the semantic features An, after that
the pairs 〈Ai, αi〉 are multiplied and summed to obtain the context vector ctx
as the input of the following modules.

2.3 Word-Attention-Based Report Generation Module

The medical report often contains a multi-sentence description with a global
description. More detailed descriptions of each region are given with indepen-
dent and nonrepetitive words. In order to generate multiple and long paragraph
descriptions, most existing methods utilize a hierarchical LSTM. However, a
single LSTM often suffers problems such as word redundancy and lack of key-
words. To solve the problems mentioned above, this module distributes different
attention to the hidden layer state of each word to generate more accurate words.

The use of sentence LSTM is the same as that of CoAtt [4]. As shown in
Fig. 4, the word LSTM is a two-layer LSTM, which takes the topic obtained
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from sentence LSTM and a special word token START as inputs. The subse-
quent inputs at each step are the embedding vectors learned from the words.
Considering that the words learned in each step should have different values, the
hidden layer states generate different weights for different words. The output of
the word LSTM is transformed by a linear layer, and then the importance of
each word is calculated by a softmax layer. The result from the previous step
is multiplied with the output of LSTM as the final word representation. This
process can be formalized as:

Yi = softmax (tanh (Ww · hit)) · LSTM(topic, START ) (4)

where softmax (tanh (Ww · hit)) denotes the weight corresponding to each word,
Yi denotes the last generated word, and Ww is the parameter matrix.
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... ...
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Fig. 4. The framework of Word-Attention-Based Report Generation Module.

2.4 Parameter Learning

For each training sample (X, T, Y), X is the chest X-Ray image, T is the classifi-
cation label, and Y is the medical report, each report Y contains K sentences and
each sentence contains L words. We train our model in an end-to-end manner,
the loss function contains three parts, �tag is the Mean Square loss between the
predicted tag Predi and the ground-truth tag Ti, �p is the Cross-Entropy loss
between the stop control distribution P ′

i generated from sentence LSTM and
the ground-truth stop control distribution Pi, �word is the Cross-Entropy loss
between the generated word Y ′

i and the real word Yi in the report Y.

loss = λtag �tag (Predi, Ti) + λp
∑K

1 �p
(
Pi, P

′
i

)
+ λword

∑K
1

∑L
1 �word

(
Yi, Y

′
i

) (5)

where λtag, λp and λword are loss weights.

3 Experiments

3.1 Dataset and Experiment Details

We conduct our experiments on the Indiana University Chest X-Ray (IU X-
Ray) which is a commonly used dataset for medical report generation tasks.
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The dataset contains 7,470 images and 3,955 reports. For images in the dataset,
we transform their size to 224 × 224. Tags in the dataset are automatically
encoded using MeSH and MTI. We train our model with PyTorch 1.10.0 on a
single NVIDIA GeForce RTX 3090 GPU. During the training process, the batch
size is set to 16. We adopt the Adam optimizer in an end-to-end method with an
initial learning rate of 1e-4, and the number of training epochs is 250. We adopt
the ResNet152 and ESPA structure as encoder, where the group information S
is set to 4 and the corresponding kernel sizes are 3, 5, 7, and 9. The number of
classes in the MLC network is set to 210, and the 10 classes with the highest
scores are selected for word embedding. The dimension of all hidden layer states
and word embedding are set to 512. The threshold of stop control, the maximum
number of sentences Kmax and the maximum number of words Lmax are set to
0.5, 6 and 30. λtag, λp and λword are set to 1, 1, and 0.5 respectively.

3.2 Quantitative Experiments

We compare our model (denoted as “Ours”) with the following medical report
generation methods: the encoder-decoder-based models CoAtt [4] and MVH [7],
the Transformer-based models PPKED [5] and TransB [1], respectively. Note
that we conduct the ablation experiments by setting the CoAtt [4] model as base-
line. And we evaluate the models mentioned above and “Ours” with NLG metrics,
which include BLEU, METEOR and ROUGE-L. According to Table 1, our model
outperforms other models in most of the metrics. In the meanwhile, conventional
encoder-decoder models perform better than Transformer-based models, which
can be illustrated by the comparison between “Ours” and “TransB”. The reason
behind might be that most encoder-decoder models use cascade decoders, which
generate more accurate words based on the semantics of each sentence.

Table 1. Comparison results with other models. The best results are highlighted.

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

CoAtt 0.502 0.357 0.295 0.267 0.241 0.430
Mul-Att 0.529 0.372 0.315 0.259 0.343 0.453
PPKED 0.483 0.315 0.224 0.168 – 0.376
TransB 0.479 0.359 0.219 0.160 0.205 0.380
MFWAN (Ours) 0.501 0.437 0.381 0.340 0.271 0.473

3.3 Qualitative Experiments

To further investigate the effectiveness of our model, we implement qualitative
experiments on the IU X-Ray dataset. As shown in Fig. 5, we compare the gen-
erated reports from our model (denoted as “Generated”) with CoAtt [4] and
ground-truth, (a) and (b) are normal medical reports while (c) and (d) are
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abnormal medical reports. There are some findings from Fig. 5. First, the gen-
erated normal reports are very similar to the ground-truth. For images with
abnormal regions, our model is able to predict keywords accurately and reduce
repetitive statements, but the model also generates mismatched sentences. The
reason behind this might be that we select the top ten highest-scoring classes
in MLC. Second, according to the experimental results, the generated reports
based on the normal images are of high quality, while the results of abnormal
images are somewhat unsatisfactory. The reason might be that the number of
normal medical reports in the dataset exceeds far more than the number of
abnormal medical reports. Therefore, it is hard for the model to learn abnormal
information.

Fig. 5. Comparison results of the qualitative experiments.

3.4 Ablation Experiments

To illustrate the effectiveness of our proposed EPSA Multiscale Feature Extrac-
tion module and Word-Attention-Based Report Generation Module, we perform
ablation studies with baseline model CoAtt [4] on the same dataset IU X-Ray.
The NLG metrics of ablation studies are shown in Table 2. In addition, we con-
ducted ablation experiments to verify how convolution kernel size in the EPSA
Multiscale Feature Extraction module affects the model performance, the exper-
imental results are shown in Table 3.
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Table 2. The results of the ablation experiments on IU X-Ray dataset.

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

CoAtt 0.502 0.357 0.295 0.267 0.241 0.430
Ours (no-WordAtt) 0.445 0.373 0.302 0.271 0.241 0.434
Ours (no-ESPA) 0.487 0.399 0.346 0.318 0.252 0.363
MFWAN (Ours) 0.501 0.437 0.381 0.340 0.271 0.473

Table 3. Ablation experiments results of the EPSA module with different convolution
kernel sizes.

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

k = 1,3,5,7 0.477 0.340 0.300 0.299 0.250 0.394
k = 3,5,7,9 0.501 0.437 0.381 0.340 0.271 0.473
k = 5,7,9,11 0.249 0.222 0.198 0.180 0.200 0.394

4 Conclusion

We propose a novel model MFWAN for medical report generation task. In our
model, the EPSA Multiscale Feature Extraction module solves the problems
of missing spatial information caused by single-scale feature extraction, hence
improving the accuracy of disease prediction. The Multi-Classification Context
Generation module predicts disease categories in medical images and gener-
ates high-level semantic features. The Word-Attention-Based Report Genera-
tion module improves the readability of the generated reports and solves the
word redundancy. Experimental results on the IU X-Ray dataset demonstrate
that our model outperforms previous works, results of ablation studies show the
effectiveness of the three modules mentioned above. However, there is still room
for improvement in generating high-quality abnormal medical reports. And we
will evaluate our model on other datasets in the future.
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Abstract. Data missing is a common problem in multi-modal fusion,
and existing incomplete multi-modal methods usually only consider the
case of two modalities and ignore the semantic information of samples
during data recovery. In this paper, we propose dictionary-induced man-
ifold incomplete multi-modal latent space representation, which recon-
structs missing views with dictionary to assist consensus representation
and captures the local manifold structure with reverse graph regulariza-
tion. Specifically, we adopt dictionary learning to recover missing data
with linear combinations of available samples for latent space alignment,
and Laplacian matrix is utilized to embed the structural information
of the high-dimensional space into the low-dimensional manifold latent
space for optimizing the common representation. The proposed method
can not only deal with multi-modal data fusion task, but also recover-
ing missing data by effectively mining the structural information among
different modalities. Experimental results demonstrate that our method
performs better than other incomplete multi-modal fusion methods.

Keywords: Data recovery · Multi-modal data fusion · Dictionary
learning · Manifold learning

1 Introduction

Multi-modal fusion has advantages in many fields with the complementarity of
multi-modal data [1]. However, data missing limits the fusion performance due
to uneven data quality. The current proposed incomplete multi-view methods
can be divided into subspace-based methods and recovery-based methods.

Subspace-based methods focus on learning a common representation of mul-
tiple views through subspace mapping. Li et al. [2] proposed Partial Multi-view
Clustering (PVC) algorithm based on Nonnegative Matrix Factorization (NMF)
to learn the common representation of two views. Yin et al. [3] enhanced the
clustering indication matrix through the similarity of samples within view and
cross views. Wang et al. [4] integrated canonical correlation analysis and exclu-
sive representation for incomplete cross-modal subspace clustering. However, the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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above methods ignore the effect of missing objects in the original space, and they
cannot guarantee their effectiveness under high feature missing rates.

Recovery-based methods repair the incomplete samples through the spatial
changes [5]. Pan et al. [6] proposed a feature-consistent generative adversarial
network (FGAN), which shares network parameters to ensure the mutual genera-
tion of MR and PET images. Hu et al. [7] developed a disentangled multi-modal
adversarial autoencoder (DMM-AAE) for missing modality by employing the
shared information and specific information. However, the above reconstruction-
based methods are prone to introduce noise through reconstruction, which may
negatively affect the tasks with small amounts of complete data [8].

In addition, the above methods ignore semantic information, and only two
views are taken into account in fusion. In this paper, we design a novel incom-
plete multi-modal method that adopts dictionary learning to recover the missing
modalities for consensus representation and utilizes reverse graph regularization
embedded with semantic information to capture the local manifold structure of
the common representation.

In general, this paper has the following contributions: 1) The proposed incom-
plete multi-modal method can process multiple modalities for wider applicability.
2) We propose a unified framework with recovery and subspace representation,
which adopts dictionary to restructure the incomplete modality with intra-modal
similarity. 3) We guarantee the manifold structure of latent space through reverse
graph regularization with considering the sample consistency cross modalities.

2 Method
2.1 Dictionary-Induced Manifold Incomplete Multi-modal

Representation

The proposed method consists of following four sub-models, and the framework
is shown in Fig. 1.

Consensus Representation Learning: Previous incomplete multi-modal
methods focus on non-missing views to construct common representation, while
ignoring the latent information of missing views. We introduce the multi-modal
consensus representation [9], which exploits both non-missing and missing views:

min
E(v),U(v),P

l∑

v=1

∥∥∥X(v) + E(v)A(v) − U (v)P
∥∥∥
2

F
, s.t. U (v)T U (v) = I (1)

where X(v) ∈ R
mv×n denotes the vth view composed of n samples with dimen-

sion mv, and the missing samples in X are filled with 0. E(v) ∈ R
mv×nm

v is the
error matrix used to model the missing samples nm

v , while U (v) ∈ R
mv×d is the

basis matrix for mapping data into the latent space P ∈ R
d×n. And constraint

U (v)T U (v) = I is imposed for orthogonal basis matrices. A(v) ∈ R
nm
v ×n is the
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Fig. 1. The framework of the proposed dictionary-induced manifold incomplete multi-
modal latent space representation.

index matrix of missing samples in each view:

A
(v)
i,j =

{
1, if the j-th instance is the i-th missing instance in the vth view
0, otherwise

(2)
It can be seen from Eqs. (1) and (2) that X(v) +E(v)A(v) to construct com-

pleted view and promote consensus representation.

Dictionary Learning Constraint: In order to better recover incomplete views
with reducing the noise. We adopt dictionary learning to recover the missing
sample with similar samples within modality, and the equation is as follows:

min
Z(v),E(v)

l∑

v=1

(
∥∥∥E(v)A(v) − X(v)Z(v)

∥∥∥
2

F
+ λ ‖Z‖1) (3)

where the view X(v) is regarded as a dictionary, and the missing view E(v)A(v)

can be constructed by the coefficient matrix Z(v) ∈ R
n×n with L1 norm.

Reverse Graph Regularization: Considering the consistency of sample rela-
tions between modalities, the Laplacian matrix embedded with semantic infor-
mation is utilized to capture common local manifold structure in low-dimensional
latent space, and the representation is as follows:

min
U(v),P

l∑

v=1

n∑

j=1

n∑

i=1

∥∥∥U (v)P:,i − U (v)P:,j

∥∥∥
2

2
Wi,j (4)
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where the adjacency matrix W ∈ R
n×n promotes similar samples to be closer in

the latent space, and it is defined as:

Wi,j =

{
1, If the labels of the j-th sample and the i-th sample are the same
0, otherwise

(5)
According to the graph-based manifold learning„ we rewrite Eq. (4) as

min
U(v),P

l∑

v=1

Tr(PLwPT ) (6)

where Lw is the Laplace matrix calculated by L = D−W and Di,i =
∑n

j=1 Wi,j .
We constrain the low dimensional manifold of implicit space with Tr(PLwPT )
to retain the structural information of the original high-dimensional space.

Adaptive Multi-modal Weight: To differentiate the contribution of multiple
modalities, we apply an adaptive weighting strategy [9] to balance the impor-
tance of different modalities:

min
∂(v)

l∑

v=1

(∂(v))rΓ (v), s.t.
l∑

v=1

∂(v) = 1, ∂(v) ≥ 0 (7)

where Γ (v) denotes the objective function of the v-th modality mentioned above.
∂(v) is a positive weight to balance the modal significance, and parameter r > 1.

Overall Objective Function: Finally, we integrate all sub-models by intro-
ducing regular parameters, i.e., λ1, λ2, λ3, to form the overall objective function:

min
U(v),P,E(v),Z(v)

l∑

v=1

(∂(v))r(
∥∥∥X(v) + E(v)A(v) − U (v)P

∥∥∥
2

F

+ λ1

∥∥∥E(v)A(v) − X(v)Z(v)
∥∥∥
2

F
+ λ2Tr(PLwPT ) + λ3‖Z(v)‖1)

s.t. U (v)T U (v) = I,

l∑

v=1

∂(v) = 1, ∂(v) ≥ 0

(8)

2.2 Optimization Algorithm

We adopt the Alternating Direction Multiplier Method (ADMM) to solve the
proposed objective function, which iteratively updates one variable with rest of
the variables fixed until the function converges. We introduce a new auxiliary
variable Zv

1 to further transform the problem (8) into the following form:
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min
U(v),P,C(v),Z(v)

l∑

v=1

∂(v)(
∥∥∥X(v) + C(v) − U (v)P

∥∥∥
2

F
+ λ1

∥∥∥C(v) − X(v)Z(v)
∥∥∥
2

F

+ λ2Tr(PLwPT ) + λ3‖Z
(v)
1 ‖1)

s.t. C(v) = E(v)A(v),U (v)T U (v) = I,
l∑

v=1

∂(v) = 1, ∂(v) ≥ 0, Z(v)
1 = Z(v)

(9)

The problem (9) can be optimized by Augmented Lagrange Multipliers
(ALM):

L =
l∑

v=1

(∂(v))r(
∥∥∥X(v) + E(v)A(v) − U (v)P

∥∥∥
2

F
+ λ1

∥∥∥E(v)A(v) − X(v)Z(v)
∥∥∥
2

F

+ λ2Tr(PLwPT ) + λ3 ‖Z1‖1 +
〈
Y1, U

(v)T U (v) − I
〉
+ 〈Y2, Z − Z1〉

+
μ

2

∥∥∥U (v)T U (v) − I
∥∥∥
2

F
+

μ

2
‖Z − Z1‖2F )

(10)
where Y1 and Y2 are Lagrange multipliers, μ > 0 is the augmented Lagrange
parameter. The problem (10) can be solved by the Inexact Augmented Lagrange
Multiplier (IALM), when

∥∥∥U (v)T U (v) − I
∥∥∥

∞
< ε and ‖·‖∞ is l∞− norm.

The solution process of the algorithm is as follows:
Step 1 (Update P ): P can be updated by solving:

P ∗ = argmin
P

λ1

∥∥∥E(v)A(v) − X(v)Z(v)
∥∥∥
2

F
(11)

The result of solving problem (11) is shown as:

P = (
l∑

v=1

(∂(v))rU (v)T (X(v) + E(v)A(v)))(I + λ2Lw)−1/

l∑

v=1

(∂(v))r (12)

Step 2 (Update Z): Z can be updated by solving the problem:

Z(v)∗
= argmin

Z(v)

l∑

v=1

(∂(v))r(
∥∥∥X(v) + E(v)A(v) − U (v)P

∥∥∥
2

F
+λ2Tr(PLwPT ) (13)

The solution result is shown as:

Z(v) = X(v)−1
E(v)A(v) (14)

Step 3 (Update Z
(v)
1 ): We solve the problem (15) to update Z

(v)
1 :

Z∗
1 = argmin

Z1

λ3 ‖Z1‖1 +
μ

2

∥∥∥∥Z − Z1 +
Y2

μ

∥∥∥∥
2

F

(15)
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The result is shown as:

Z1 = shrink(Z +
Y2

μ
,
λ3

μ
) (16)

Step 4 (Update U (v)): U (v) can be obtained by solving:

U (v)∗
= argmin

U(v)

∥∥∥X(v) + E(v)A(v) − U (v)P
∥∥∥
2

F
+

u

2

∥∥∥∥U (v)T U (v) − I +
Y1

μ

∥∥∥∥
2

F

(17)

The calculation result is:
U (v) = BRT (18)

where B and RT are the left and right singular value matrices of X(v) +
E(v)A(v)PT , respectively.

Step 5 (update E(v)): E(v) can be updated by optimizing the problem
(19):

E(v)∗
= argmin

E(v)

∥∥∥X(v) + E(v)A(v) − U (v)P
∥∥∥
2

F
+ λ1

∥∥∥E(v)A(v) − X(v)Z(v)
∥∥∥
2

F

(19)
The result is shown as:

E(v) =
1

1 + λ1
(U (v)P + λ1X

vZ
(v)
1 )A(V )−1

(20)

Step 6 (update ∂(v)): ∂(v) can be obtained by solving:

argmin
∂(v)>0,

∑l
v=1 ∂(v)=1

l∑

v=1

(∂(v))rd(v) (21)

The calculation result is shown as:

∂(v) = (d(v))1/(1−r)/

l∑

v=1

(d(v))1/(1−r) (22)

Step 7 (update Y1, Y2 and μ): The Lagrange multipliers Y1, Y2 and iter-
ation step μ can be update by:

Wi,j =

⎧
⎪⎨

⎪⎩

Y1 = Y1 + μ(U (v)T U (v) − I)
Y2 = Y2 + μ(Z − Z1)
μ = min(ρU (v), μmax)

(23)

3 Experiments

3.1 Dataset Introduction

In the paper, we adopt the ADNI dataset from the Alzheimer’s Disease Neu-
roimaging Initiative to validate our proposed method. ADNI contains 202 sub-
jects of three types, including 51 AD patients, 99 MCI patients and 52 normal
controls. Refer to [10], we perform preprocessing work on the brain images of
ADNI and obtain three modalities, i.e., MRI, PET and CSF, with 93 MRI fea-
tures, 93 PET features and 3 CSF-related biomarkers.
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3.2 Comparison with Baseline Completion Methods

In order to verify the effectiveness of our method, we choose four algorithms as
comparison methods, including mean interpolation (Zero), k nearest neighbors
(KNN), regular expectation maximization (RegEM) and singular value decom-
position (SVD). Specifically, Zero fills the missing values with the average of all
available samples in a certain modality, while KNN chooses the mean of the K
nearest samples to replace the missing values. RegEM applies the regular esti-
mation algorithm to the regression parameters of Gaussian data. For SVD, it is
used to update the predicted missing values based on the KNN- completed data
in our paper.

We perform experiments on AD vs. HC and MCI vs. HC tasks with ten-fold
cross-validation. We randomly impose 10%, 30%, 50% deletions on the data and
ensure that three modalities of the sample are not missing at the same time.
All methods adopt support vector machines (SVM) for classification after data
completion and connection of modalities, and grid search is used to select optimal
parameters. The experimental results are shown in Table 1. It can be seen from
the results that as the missing rate increases, accuracy drop due to the lack
of information. However, compared with the baseline method, we improve the
overall accuracy from 66.53% – 71.52% to 86.95% – 88.54% in AD vs. HC task,
and from 63.09% – 65.88% to 72.33% – 73.66% in MCI vs. HC task. The results
show that our method is effective in missing modality recovery.

Table 1. Comparison between our method and four baseline completion methods

Task Missing rate Zero KNN RegEM SVD Ours

AD vs. HC 10% 69.85 70.37 71.31 71.52 88.54
30% 67.96 68.77 71.02 70.47 88.17
50% 67.89 66.53 69.44 69.88 86.95

MCI vs. HC 10% 64.26 64.03 65.88 64.93 73.66
30% 64.11 63.58 65.19 64.06 72.91
50% 63.09 63.12 64.52 63.21 72.33

3.3 Comparison with Incomplete Multi-modal Methods

In this section, we compare the proposed method with three state-of-the-art
incomplete multi-modal algorithms, i.e., Partial View Clustering (PVC), Par-
tial View Clustering with Graph Regular Non-negative Matrix Factorization
(GPVC), Incomplete Multi-Source Feature Learning (IMSF). Specifically, PVC
works on the data of two modalities and embeds the structural information of
the sample into the latent space. GPVC is an improved method based on PVC,
which introduces graph Laplacian regularization and extends PVC to tasks with
more than two modalities. IMSF is an ensemble-based method that tries to
obtain a common representation of each sample and creates a classifier for each
modality to ensemble classification.
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Table 2. The comparison between our method and incomplete multi-modal method

Task AD vs. HC MCI vs. HC
Missing rate Method ACC (%) SEN(%) SPE (%) AUC (%) ACC (%) SEN (%) SPE (%) AUC (%)

10% PVC 78.35 77.45 80.24 79.04 67.36 72.41 56.74 70.12
GPVC 79.74 79.10 81.02 80.24 68.45 73.99 58.17 72.41
IMSF 82.61 83.11 83.44 83.16 68.75 75.44 60.11 74.36
Ours 88.54 88.47 89.14 90.06 73.66 85.41 67.74 81.17

30% PVC 77.42 77.08 79.41 78.12 65.47 70.48 56.14 68.79
GPVC 78.64 78.45 79.93 79.55 68.02 73.17 58.46 71.64
IMSF 81.04 81.96 82.41 82.77 67.99 75.29 59.37 73.33
Ours 88.17 87.98 88.81 88.97 72.91 85.09 68.01 80.38

50% PVC 77.12 76.86 79.24 77.85 65.31 70.56 56.02 68.58
GPVC 78.42 78.10 79.43 79.01 67.83 72.50 58.63 71.44
IMSF 80.54 81.74 81.99 82.06 67.42 73.98 59.66 73.17
Ours 86.95 87.88 88.46 88.04 72.33 84.55 67.53 80.07

Similar to Sect. 3.2, we conduct experiments under different missing rates
in the two recognition tasks and adopt four indicators, i.e. accuracy (ACC),
sensitivity (SEN), specificity (SPE), and area under the curve (AUC), to eval-
uate the diagnostic performance. The results are shown in Table 2. Specifically,
most of the indicators decrease with the increase of the missing rate, which is
consistent with our previous experimental results. Overall, our method achieves
significant advantages in all missing rates and diagnosis tasks, which shows that
our proposed method is effective in incomplete multi-modal data fusion problem.

4 Conclusion

In this work, we propose an dictionary-induced manifold incomplete multi-modal
latent space representation. The algorithm recovers missing samples with avail-
able samples in the modality through dictionary learning. Furthermore, manifold
learning incorporates semantic information for capturing local structural infor-
mation in the learned common representation. Two experiments show that our
method achieves convincing performance under different missing rates and tasks.
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Abstract. As a branch of psychology, personality plays an important
role in distinguishing individuals in the society. The existing personality
prediction models need to be further improved in precision and general-
ization. Recently, deep neural network (DNN) models are being applied
to personality prediction tasks to obtain promising results. However, only
extracting the semantic features of text through deep learning is very lim-
ited to improve the performance of the model. We propose a BERT-based
Model for Personality Prediction named BSAM to extract semantic fea-
tures and use the statistical information of corpus as external features.
In this model, we concatenate the output of BERT with the statisti-
cal information and use bidirectional long short term memory networks
(Bi-LSTM), bidirectional gated recurrent unit (Bi-GRU) and improved
convolutional neural networks (CNN) to extract deep semantic features.
We also compare the results with benchmark models on social media
datasets and test the effectiveness of statistical features. The experimen-
tal results show that our model can effectively improve the classification
performance of the five dimensions of the Big-Five personality.

Keywords: Personality prediction · BERT · Deep learning ·
Statistical information · Big-five

1 Introduction

As one of the branches of psychology, personality psychology mostly identifies
people’s internal personalities by their external behaviors and studies the rela-
tionship between them.

In order to unify the classification standard of personality, psychologists try
to set some personality dimensions as the industry standard. But even profes-
sional researchers will follow their own rules when judging individual personal-
ity, which leads to the absence of an absolute standard personality classification
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model. In 1928, psychologists put forward the DISC self-assessment tool, which
aims to help enterprises optimize personnel management. With the deepening
of personality prediction research, Big-Five is the most widely used and rec-
ognized model in the field of personality prediction, which divides personality
into five dimensions: Extraversion(EXT), Agreeableness(AGR), Conscientious-
ness(CON), Neuroticism(NEU) and Openness(OPN) [1].

The existing personality prediction methods mostly suffer from deficiencies
in terms of precision and generalization. Therefore, we propose a new personality
prediction model named BSAM to extract the semantic features of text, which
are combined with the statistical information of the text.

2 Related Works

Similar to other text classification tasks, personality prediction based on social
media data focuses on the semantic features of texts. Many researchers use deep
learning models that have performed well in other fields. RNN and CNN were
used to extract text features and outperformed benchmark models [2]. Majumder
et al. [3] proposed a network based on CNN to predict users’ personality and
achieved a good result. Zhao et al. [4] proposed an attention-based LSTM net-
work, which was extremely helpful to identify user personality. Thus, in our
model BSAM, we integrate these deep learning networks to extract complex
features of text.

Although the deep learning model can extract rich semantic features, it is
limited to improving the performance of the model. In recent years, more and
more studies have focused on external knowledge. Researchers have found many
tools that can be applied in the field of personality prediction, such as LIWC [5],
a tool for extracting statistical text features, and the Mairesse baseline set [6],
a document-level benchmark feature set. Inspired by them, our model takes the
correlation between labels and words into account by introducing the statistical
feature of corpus: the word frequency information of labels.

In summary, the contributions are as follows:

– Based on deep learning, we propose a BERT-based model for personality
prediction and merge statistical features into our model.

– We propose an adaptive adjustment strategy for balancing mean-pooling and
max-pooling method.

– We conduct some experiments on benchmark datasets and the results indicate
that our model outperforms all other models.

3 Proposed Model

3.1 Overview of the Model

The structure of BSAM model is shown in Fig. 1. We use BERT [7] and deep
learning model to fulfill the feature extraction task. In order to rich text features,
a statistical feature of text is introduced in our model.
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Let D = {si}Ni=1 be the set of sentences, which contains N sentences. Each
sentence si = {wi1, wi2, ..., wim} contains m words. The goal of personality pre-
diction is to get the most relevant labels in each dimension according to the
input text representation.

Fig. 1. The structure of proposed model BSAM

3.2 Statistical Features Extraction Network

For each sentence, we firstly use BERT to form all word vectors of the sentence
into a m × d word embedding matrix X = [X1,X2, ...,Xm]. In order to use the
feature map X efficiently, we use a dense layer for the output of BERT:

˜X = Relu(WX · X + bX) (1)

Word frequency information is a static feature of the corpus and presnts the
importance of a word to a label. Different words have different word frequencies
on different labels. If a word frequency is higher in a label, it means that the word
is more important to the label, and vice versa. As shown in Table 1, the label
“yes” indicates that the person is of this kind of personality, and “no” indicates
that he is not of this kind of personality. We can see in Extraversion personality,
the word “happy” and “haha” appears 8327 times and 3286 times in label “yes”,
1689 times and 108 times in label “no”, but in Neuroticism personality, there
is no significant difference in the word frequency of word “happy” and word
“haha”, which indicates that people whose posts contain the words “happy” or
“haha” are more likely to be of extraversion personality.

Given a word w and a label with k classes in each personality dimension. For
each word w, the word frequency is:

Cw = [Cl1 , Cl2 , ..., Clk ] (2)
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Table 1. Word frequency information of sentences under different personality dimen-
sions

Personality Sentence Label

Traveling Makes Me Very Happy Haha

Extraversion 658 5073 15689 6734 8327 3286 Yes

246 4968 12487 7835 1689 108 no

Neuroticism 364 3278 16992 7823 2551 81 Yes

337 4116 12487 5456 4877 177 No

where Cli represents the occurrences of the word w in label li. For a sentence,
the word frequency matrix is:

Cs = [Cw
1 , Cw

2 , ..., Cw
m] (3)

where Cw
i is the word frequency of the i-th word of a sentence. We use a dense

layer for the statistic information C:

˜C = Relu(WC · C + bC) (4)

3.3 Deep Features Extraction Network

In order to fully utilize the personality information of social media text dataset,
we improve CNN to extract different local features. CNN uses convolutional fil-
ters to extract local semantic traits in text, then sentence features are connected
by local features of different lengths. At first, we fuse ˜X and ˜C to get a new
latent feature:

H = ˜X � ˜C (5)

where � denotes an element-wise product. Then we use attention mechanism to
combine latent feature map H and word embedding matrix X:

˜H = attention(H,X) (6)

In the improved-convolution network, we use 2,3,4-gram kernels to extract the
local sentence information. The convolutional layer performs an e×d convolution
operation on the m × d word embedding matrix X, the convolution kernel W ∈
Rm×d. The local semantic sentence features are computed as:

Ci = f(W
˜H × ˜Hi:i+k−1 + b

˜H) (7)

where Ci is local semantic features, ˜Hi:i+k−1 is the word vector matrix from
word i to word i+k −1, b is a bias term, W

˜H is the filter and f is the activation
function.

In addition, there are two common methods to reduce parameters while
retaining the local optimal features: max-pooling and mean-pooling. These two
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pooling methods have their own advantages in different situations. We propose a
mixed-pooling method suitable for most situations and realize adaptive selection
of pooling method by learning a weight parameter α. The equation is calculated
as follows:

fmixed(Ci) = αfmean(Ci) +
1
α

fmax(Ci) (8)

Because our dataset comes from social media posts which are of vast quanti-
ties and in various forms. There are contextual dependencies in the structure of
long text, which can extract deeper textual semantic information if the connec-
tion between contexts is considered. In our experiments, we apply Bi-LSTM and
Bi-GRU to the output of the convolutional layer HC in parallel, which can ana-
lyze complex sentence structure and extract forward and backword dependencies
in the anterior-posterior direction:

HT = Tanh(WT (HL � HG) + bT ) (9)

where HL and HG are the outputs of Bi-LSTM and Bi-GRU. The output of this
layer is fed to sigmoid layer for classification.

4 Experiment and Analysis

4.1 Experimental Dataset

We conducted experiments on two classical datasets. The first dataset Stream-
of-Consciousness Essays dataset [8] is authoritative in personality prediction.
It contains 2467 anonymous articles that label the personality of authors. The
mean length and max length of sentences are 662 and 3836.

The second dataset MyPersonality contains 250 users from Facebook and
9917 statuses labeled on the Big-Five personality. The mean length and max
length of sentences are 163 and 687.

4.2 Experiment Results and Analysis

In this section, we choose several classical models in personality prediction as
our contrast models: 2CLSTM [9], Deep-CNN [3], Text-CNN [10]. To measure
the effectiveness of our model in personality prediction, we use precision as the
evaluation index, the results of contrast models and our model are shown as
Table 2 and Table 3. The bold data represent the best experimental results for
each dimension.

On the dataset Essays, our model BSAM has achieved the highest preci-
sion in five dimensions. On the dataset MyPersonality, BSAM outperform other
models in four dimensions. This is because BSAM has good performance in pro-
cessing long text and short text and statistical features can capture words that
are important to the label. Furthermore, our model solves the problem of poor
generalization of the model in previous studies. Almost in every dimension, the
precision is more than 70% on both two datasets, and there is no situation where
the experimental results of two dimensions differ significantly.
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Table 2. The precision under different classification methods by using Essays dataset

Models EXT NEU AGR CON OPN

2CLSTM 58.87% 55.64% 53.52% 56.77% 54.19%

Deep-CNN 50.55% 50.20% 48.10% 50.47% 50.60%

Text-CNN 50.29% 53.21% 49.23% 48.59% 47.73%

BSAM 70.73% 69.58% 70.83% 71.34% 70.03%

Table 3. The precision under different classification methods by using MyPersonality
dataset

Models EXT NEU AGR CON OPN

2CLSTM 62.58% 65.46% 60.89% 62.83% 72.48%

Deep-CNN 62.48% 60.67% 65.39% 52.01% 78.69%

Text-CNN 59.47% 58.21% 58.46% 57.66% 70.23%

BSAM 72.36% 70.59% 71.79% 67.82% 76.22%

4.3 Ablation Experiment

To further test the performance of the statistical features, we conducted ablation
experiments and proposed BAM model. Compared with BSAM, this model has
the same parameters and removes word frequency matrix.

Table 4. Ablation experiment results on Essays and MyPersonality datasets

Models EXT NEU AGR CON OPN

Essays

BAM 62.63% 60.83% 61.57% 58.16% 64.40%

BSAM 70.73% 69.58% 70.83% 71.34% 70.03%

MyPersonality

BAM 68.33% 64.74% 66.98% 64.02% 72.56%

BSAM 72.36% 70.59% 71.79% 67.82% 76.22%

Table 4 demonstrates the experimental results. Even without introducing the
statistical features of the text, the performance of BAM is better than previous
model in three dimensions on the dataset Essays and four dimensions on the
dataset MyPersonality, which also proves that our model has strong feature
extraction ability and can mine the deep semantic features of the text. After
introducing word frequency information, the precision of BAM is significantly
better than other models. This also verifies the effectiveness of introducing word
frequency matrix into our experiment.
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4.4 Case Analysis of Attention

In the study of personality prediction, each user document corresponds to five
personality dimensions. As the attention mechanism is used in predicting differ-
ent labels of the same document, and each word and phrase in the document has
different attention weight to the label. We cite a case to visualize the attention
weight corresponding to the label in Fig. 2, and the highlighted words represent
the information that the current tag pays more attention to.

Fig. 2. Important words captured by different labels

We can see that the label “Conscientiousness” is more closely related to
the words “challenging”, “busy” and phrase like “without getting lazy”. Sen-
tence contains phrase “worked hard” and “all good” carry high “Extraversion”
personality information. Moreover, our personality prediction model can’t only
automatically select informative words and assign larger weight according to
labels, but also analyze the structural information of complex sentences. For
example, note sentence “and stayed on track the last two years without get-
ting lazy” in Fig. 2(a), this sentence can easily be mistaken for not belonging to
“Conscientiousness”, but our model takes the word “without” in the previous
content into account and correctly predicts the personality. This further proves
that the introduction of attention mechanism can more accurately predict the
user’s personality.

5 Conclusion

Personality prediction, as an emerging research area, has been increasingly
noticed by researchers and the public with the rapid development of social
networks, including automatic inference of users’ personality based on social
network. We propose a deep learning-based model and introduce statistical fea-
tures of text. After evaluating the performance of our model on the benchmark
dataset, the results indicate our model has significant improvement than con-
trast models and has good generalization. We also conduct further experiments
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to prove the effectiveness of using BERT and word embedding matrix. In the
following research, we will shift our focus from single personality prediction task
to multiple personality prediction problem.
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Abstract. Oil plays a key role in economic development. It could help people
to make plans and decisions. Because oil price is affected by some factors, it is
difficult for people to predict it accurately with current existing models. With the
development of deep learning, it is often used to solvemultivariate nonlinear prob-
lems. In this paper, a combined model based on gated recurrent units is proposed,
Mahalanobis distance is used to eliminate outliers and the multivariate nonlinear
regressionmodel is constructed, Spearman correlation coefficient is used as feather
selection and evaluation metric. Experiment shows that the proposed combined
method performs better and could predict the price of crude oil effectively.

Keyword: Time series ·Mahalanobis distance · Outlier detection · GRU

1 Introduction

Oil is a major source of energy. Fluctuations in the price of crude oil have a huge impact
on a country’smacro-economy. The factors affecting crude oil price include origin, trade,
interest rate, income and so on, which makes it a difficult task to predict WTI crude oil
price effectively. There are complex nonlinear and non-stationary characteristics, which
makes the oil prediction more difficult. Especially due to the recent epidemic outbreak,
we have observed large fluctuations in crude oil prices. Therefore, it is necessary to build
an efficient and intelligent mathematical model for the prediction of industrial crude oil
prices.

In recent years, some studies have shown that hybrid models can improve the accu-
racy of prediction. Li et al. [1] developed a text-based crude oil price prediction model
using deep learning techniques and sentiment analysis. They observed that news text
can add useful information to crude oil predictions. Chen et al. [2] used deep learning to
predict crude oil prices. They constructed a hybrid model combining ARMA and deep
learning-based prediction. They observed that the deep learning model for crude oil
price prediction improved the accuracy of the prediction value. Chen et al. [3] proposed
a grey-wave prediction technique for predicting daily crude oil prices early. Gumus and
Kiran [4] used the machine learning algorithm XGBoost to predict oil prices. Luo et al.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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[5] proposed a CNN-based prediction model for predicting short-term crude oil futures
prices, in which they used matrix inputs and claimed to be more powerful than the
benchmark model. Salvi et al. [6] highlighted the advantages of the LSTM in predicting
oil prices.

In other area, Mahajan R et al. [7] proposed to predic geolocation of tweets by using
CNNandLSTM. Sugiartawan et al. [7] developed a hybridmodelwithwavelet transform
and LSTM. Cen and Wang et al. [9] applied the LSTMmodel to predict the volatility of
crude oil prices. They set up a new data transmission mode to improve the predictability
of global crude oil price fluctuations. Siddhaling et al. [10] designed several variants of
the multivariate model based on the combination of feature transformation and LSTM
to predict crude oil prices.

The recurrent network has derived many variant models such as LSTM (Long Short-
Term Memory) and GRU (Gated Recurrent Unit). LSTM adds the gate mechanism to
control the circulation and loss of features. GRU is also proposed to solve the problems
of long-term memory and gradient in back propagation. It is a new neural network deep
learning algorithm suitable for solving nonlinear and sequential problems, and has one
less gate mechanism than LSTM. Moreover, the overall training speed of GRU is faster,
which can greatly improve the training efficiency. Therefore, GRU will be preferred in
many cases.

This paper proposes a method based on outlier processing and multivariate GRU
model to predict crude oil prices with Mahalanobis distance to eliminate outliers, select
themost effective features for identificationwith Spearman correlation coefficient. Then,
we construct and train the hybrid model MGRU-3F-RM with three features and Maha-
lanobis distance, and finally compare it with other models, the experiments show that
our proposed method performs better and has higher accuracy. The main innovations
and contributions are as follows:

(1) A novel method is proposed to predict oil price for multiple nonlinear regression
models with deep learning model.

(2) The method uses Mahalanobis distance transformation to eliminate outliers
during time series data from the statistical view.

(3) The method uses Spearman correlation coefficient not only for feature extraction
but also for model evaluation metrics.

(4) The method shows better sensitivity and consistent behaviors under model
evaluation metrics than the previous approaches.

The rest of this paper is arranged as follows. In the second part, we introduce Maha-
lanobis distance and our proposed MGRU model. In the third part, we introduce the
specific experiments, including data preprocessing, feature engineering, model training
and so on. In the fourth part, the combined model we constructed is compared with other
models based on the model evaluation metrics. Finally, we make a summary and outlook
of our research work.
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2 Methodology

2.1 Mahalanobis Distance

Mahalanobis distance was proposed by Indian statistician P. C. Mahalanobis, which
represents the distance between a point and a distribution. It is an effective method to
calculate the similarity of two unknown sample sets, and it can effectively represent
the multivariate distance measure, which can measure the distance between points and
distributions. Mahalanobis distance can also eliminate the interference of correlation
between variables. It can also be defined as the degree of difference between two random
variables that follow the same distribution. If the covariance matrix is an identity matrix,
then the Mahalanobis distance is reduced to the Euclidean distance and hyperbolic
distance described by [11]. it can also be used for outlier detection as described by
Titouna [12]. David et al. [13] illustrate the application of the Mahalanobis distance and
point to their observation that for multivariate non-Gaussian data, it’s used to detect and
eliminate outliers.

For a multivariate X with mean is µ and covariance matrix C, the Mahalanobis
distance is as shown in formula (1):

D =
√
(x − µ)T · C−1 · (x − µ) (1)

If the covariancematrix is a diagonal matrix, then it can also be called the normalized
Euclidean distance. Mahalanobis and Euclidean distance relationships are shown in
Fig. 1.

Euclidean transform

Mahalanobis 

transform

Outliers detection

Fig. 1. Outlier detection with Mahalanobis distance transformation

As shown in the above figure,Mahalanobis distance effectively solves the problem of
large-scale outliers and the correlation of variables after the rotation transformation scal-
ing. The geometric meaning of the Mahalanobis distance is that outliers are successfully
separated.
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2.2 Our Model

GRU is a kind of RNN, which has been widely used in complex prediction problems,
such as time series prediction. In GRU, it has a special input, as well as an oblivion gate
to better control the gradient by deciding what information to remember. This helps to
maintain a long range of output by solving common RNN problems. Compared with
traditional neural networks, GRU can remember a series of data points for a long time
and overcome the limitation of gradient disappearance. GRU is a variant of LSTM,
combines the forget gate and the input gate into a single update gate. It also mixes the
cellular state with the hidden state, with a few other changes. The resulting model is
simpler than the standard LSTM model and is a very popular variant.

Our proposed the combined framework of oil price prediction model using GRU and
Mahalanobis distance is shown in Fig. 2. The time series data and other financial char-
acteristics are derived from internet sources, which need to be cleaned and preprocessed
with visual analysis, correlation coefficient analysis, feature selection, outlier elimina-
tion, missing value filling, data standardization and splitting data. Feature selection is
carried out through the relationship between feature variables and target variables by the
Spearman correlation coefficient. Mahalanobis transformation makes the transformed
data have the properties of characteristic uncorrelation and standard deviation, these
transforms can effectively for outlier detection and remove some outliers, then we build
and train the Multivariate GRU model and tune the parameters optimization, which was
helpful for improving the accuracy of the model. After completing evaluation and com-
paration of model, the innovative model is trained finally, and then we will apply it to
predict oil price in practice.

Train Set                                                       Model

Test Set

Data Preparation
1. Standardization

2. Outlier Detection

3. Feature Selection

Model Training
1. Mahalanobis  distance 

2. Multivariate GRU

3. Parameters Optimization

Model Application
1. Prediction

2. Evaluation

3. Comparation

Fig. 2. Work flow of MGRU model

3 Experiment

3.1 Feature Engineering

We collect historical time series data sets of West Texas crude oil prices and influencing
factors for experiments, It’s from websites (https://in.investing.com/) and (https://fin
ance.yahoo.com/). This study mainly considers five factors affecting oil prices for time
series regression analysis. WTI is the target variable and GOLD, SP500, USDINDEX,
US10B, DJU are the features. We will preprocess the data, including that we fill the
missing value of the attribute by taking the value of the previous day, normalize all

https://in.investing.com/
https://finance.yahoo.com/
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data for preprocessing, lag the WTI and then, according to the Spearman correlation
coefficient, we eliminate features under coefficient less than 0.4 shown with the heatmap
in Fig. 3(a). we could see that the annual price of WTI crude oil fluctuates greatly. It’s
shown by the boxplots in Fig. 3(b). There are some outliers in 2002, 2003, 2008, 2014
and 2018 years.

Fig. 3. Spearman correlation coefficient heat map and box chart of WTI

We use the distribution of z-score and Mahalanobis distance to eliminate outliers
respectively. we consider all the z-score points that are more than 2.5 times away from
the mean as outliers shown in Fig. 4(a). Another method is Mahalanobis distance, which
can be effectively used to eliminate outliers. We consider points with a Mahalanobis
distance greater than 10 to be outliers. It’s shown in Fig. 4(b).

Fig. 4. Density distribution of WTI with Z-score and Mahalanobis distance

3.2 Model Training

Wewill split the dataset to train and test parts, then develop fourMGRUmodels:MGRU-
5F, MGRU-3F, MGRU-3F-RZ and MGRU-3F-RM to predict WTI oil prices, which
represent five features, three features, three features with Z-score outlier elimination,
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and three features with Mahalanobis distance. All four models were trained over 50
epoch cycles with a batch size of 32. Sixty times steps were used for all MGRUmodels,
60 previous day records were considered to calculate day 61, It can be seen that with
the extension of the training period, the error and loss values of the Basic MGRUmodel
gradually decrease and tend to steady, and the curves of model training are shown in
Fig. 5.

Fig. 5. Basic MGRU model training loss curve

A plot of the predicted and actual WTI values for all these models on the test data is
shown in Fig. 6. It shows the predicted WTI values based on the models MGRU-3F-RM
and MGRU-3F-RZ respectively. Obviously, we could see the predicted value is much
closer to the actual WTI value and it can be observed in Fig. 6(a).

Fig. 6. Prediction and actual value of WTI by MGRU model with outers removal

4 Discussion

4.1 Model Evaluation

In order to further study the predictive ability of the model, we use some regression
model evaluation indicators, They are Mean absolute error (MAE), Root mean square
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error (RMSE), Coefficient of Determination (R2). The specific formula is as follows from
formula (2) to (5), where yi is the true value, f (xi) is the predicted value, y represents
the average value of the sample, m is the number of samples and where di represents
the difference between the ranks of the corresponding variables and n is the number of
observations.

SCC = 1− 6
∑n

i=1 d
2
i

n(n2 − 1)
(2)

MAE = 1

m

m∑

i=1

(|yi − f (xi)|) (3)

RMSE =
√√√√ 1

m

m∑

i=1

(yi − f (xi))2 (4)

R2 = 1− MSE(yi, f (xi))
1
m

∑m
i=1 (yi − y)2

(5)

4.2 Model Comparisons

In this study, we compare the proposed method with the common Linear Regression,
Polynomial Regression, SVR, Random Forest, XGBoost, deep learning LSTM, GRU
and other models in order to further verify the sensitivity of our model. The comparison
results are shown in Table 1.

Table 1. Comparison of prediction effects of different models.

Models SCC MAE RMSE R2

Linear regression 0.893 10.701 13.115 0.747

Polynomial regression 0.907 8.229 10.651 0.879

SVR 0.852 12.592 16.728 0.695

Random forest regressor 0.956 2.251 3.766 0.956

XGBoost 0.953 4.612 6.511 0.968

LSTM 0.976 2.793 3.212 0.974

MGRU-5F 0.971 0.483 0.556 0.690

MGRU-3F 0.964 0.378 0.522 0.727

MGRU-3F-RZ 0.984 0.264 0.318 0.890

MGRU-3F-RM 0.986 0.163 2.212 0.986

It can be seen that the proposed model MGRU-3F-RM performs well in all perfor-
mance indicators, although it has not the lowest RMSE. In addition, it can be seen that
although the R2 value of LSTM and XGBoost is similar, the RMSE has still a certain
gap. With the increase of data volume, the deep learning model may be better.
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5 Conclusion

In this study, a framework for oil price forecasting was developed based GRU using
Mahalanobis distance transform to remove outliers in combination with MGRU.We use
Spearman correlation coefficient for feature selection and eliminate outliers by Maha-
lanobis distance, we construct MGRU-3F-RM model based on data-driven. Four met-
rics were used to measure the performance of these models. Our model MGRU-3F-RM
achieves a better performance level. However, the oil price may be influenced by other
events, it’s still very challenging to predict the price precisely, sowewill focus on explor-
ing other new intelligent models combined with specific real business to predict oil price
well in the future.
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