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Abstract. Currently, the use of crowd intelligence in which the knowledge from
different disciplines is integrated for complex product design has attracted increas-
ing attention from both academia and industry. However, the multi-modal, multi-
temporal and multi-spatial characteristics of multi-disciplinary knowledge hin-
der its implementation. The perception-retrieval cognitive mechanism of human
beings’ brain shows its unique advantages in the cognitive process of multi-modal,
multi-temporal and multi-spatial knowledge, and can quickly integrate external
information and retrieve memory. In order to solve the problems of low effi-
ciency and poor acquisition accuracy of multi-disciplinary knowledge, inspired
by the brain’s perception-retrieval cognitivemechanism, this paper adopts a crowd
intelligence-drive to achieve efficient integration, dynamic storage and real-time
acquisition of multi-disciplinary knowledge.

First, a deep survey relating to the current research studies on knowledge-
based engineering approaches and the perception-retrieval cognitivemechanism is
conducted. Second, the brain-inspired crowd intelligence-driven design approach
for complex products and the techniques that can be used as the potential solutions
to each step are presented. Finally, the authors draw the conclusion and point out
the future research direction.

Keywords: Knowledge-based engineering · Systems engineering · Product
design · Perception-retrieval cognitive mechanism · Crowd intelligence

1 Introduction

With the development of technologies such as the Internet of Things and big data in
today’s era, product has become more and more complex, and the use of crowd intelli-
gence in which knowledge from various disciplines is integrated for the complex prod-
uct design has become the current development trend [1]. However, if the multi-modal,
multi-temporal and multi-spatial characteristics of multi-disciplinary design knowledge
have not been considered during the knowledge-based engineering (KBE) process for
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complex products, the design efficiency and quality will be negatively affected, which
may lead to the project delay or design failure [2].

Currently, the research field of neuroscience has brought great inspirations to the
artificial intelligence, information engineering and other fields [3, 4]. According to cog-
nitive psychology, biological cognition is a process of continuous perception of various
information in the environment, and comparing and retrieving it with existing memory
[5]. This perception-retrieval cognitive mechanism of human beings’ brain has formed
the unique natural advantage of organisms in the cognitive process of multi-modal,
multi-temporal and multi-spatial information or knowledge [6, 7]. Inspired by brain’s
perception-retrieval cognitive mechanism, this paper proposes a human-like knowledge
organization, integration and acquisition approach to support KBE process for complex
products.

This paper is organized as follows. Section 2 presents current research studies on
knowledge-based engineering approaches and perception-retrieval cognitive mecha-
nism. Section 3 introduces the brain-inspired crowd intelligence-driven design approach
for complex products and the techniques which can be used as the potential solutions to
each step of the proposed design approach. Section 4 draws the conclusion and proposes
the future research.

2 Literature Review

2.1 Knowledge Based Engineering Approaches for Complex Product Design

KBE is an automated process of identification, acquisition, and re-use based on design
knowledge, and has been widely used to promote the rapid design of products [8]. Poko-
jski et al. proposed a KBE approach which tries to integrate the knowledge from design-
ers, users, operators, etc. to achieve the multi-disciplinary integrated design for complex
products [9]. Johansson et al. developed a KBE framework to combine the knowledge
relating to information interaction, quality control and design evaluation [10]. Camarillo
et al. presented a KBE approach which uses case-based inference to push similar cases
to designers and resolve problems encountered by integrating multi-disciplinary knowl-
edge of stakeholders during the entire product life cycle [11]. However, the multi-modal
(i.e., design knowledge represented in different modalities such as natural language,
video, image, etc.), multi-temporal (i.e., design knowledge proposed in different stage
of the product lifecycle such as conceptual design, detailed design, manufacturing, main-
tenance, quality control stages, etc.) and multi-spatial (i.e., design knowledge proposed
by different stakeholders, such as designers, users, operators, etc.) characteristics of
design knowledge affect the crowd intelligence decision-making, because the informa-
tion from different sources may conflict with each other and therefore negatively affect
the reliability of crowd intelligence.

Therefore, the traditional KBE technology needs to be transformed to adapt to the
new product design requirements.

2.2 Perception-Retrieval Cognitive Mechanism

Cognitive psychology believes that biological cognition is a process of continuous per-
ception of various information in the environment through the senses, and retrieval of it
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compared with the existing memory. Under this perception-retrieval cognitive mecha-
nism, the brain can quickly organize and integrate information with different modalities
and spatiotemporal characteristics in an optimal way, and achieve a fast and accurate
memory retrieval based on external information, thus demonstrating the inherent advan-
tages in processing the multi-modal, multi-temporal and multi-spatial complex correla-
tions and providing inspirations for the proposed research on the efficient organization
and accurate acquisition of design knowledge for complex product design. The existing
studies on perception-retrieval cognitive mechanism will be presented hereafter.

Perception Process Based on Multi-sensory Integration: McGurk and MacDonald
first proposed the concept of biological multi-sensory integration, arguing that the infor-
mation from different modalities such as image, text, sound, touch, etc. can be effectively
integrated in certain areas of the brain to form unified, coherent and stable perceptual
information [12]. In response to this phenomenon of sensory information integration,
researchers have carried out research work in two directions, i.e., psychophysics and
neuroanatomy.

Psychophysics focused on the relationship between stimulus information and sensa-
tion in the process ofmulti-sensory integration from themacroscopic behavior of biology.
Tenenbaum et al. proposed a multi-sensory integration model based on Bayesian infer-
ence [13]. The visual and auditory integration experiment conducted by Battaglia et al.
[14], the visual and haptic integration experiment by Ernst et al. [15], and the visual and
vestibular signal integration experiment by Hou et al. proved the effectiveness of this
model in the process of multi-sensory integration [16].

Neuroanatomy starts from the microscopic nerve cell level and studies the biological
multi-sensory integration mechanism. Quiroga et al. reported for the first-time multi-
modal nerve cells that can respond to both image and text modal information [17]; Stein
and Meredith et al. reported multi-modal nerve cells that can simultaneously process
vestibular and visual signals [18]. Based on these studies, Rowland et al. proposed a
multi-sensory integration model at the level of individual nerve cells [19].

In order to establish a unified multi-sensory integration model at macro and micro
levels, it was found that the process of multi-sensory integration was no longer regarded
as the result of the action of single multi-modal nerve cells, but was realized by the
collective action of nerve cell populations in specific regions of the brain [20–22]. Beck
et al. proposed a centralized framework for the multi-sensory integration model [23].
Gu et al. proved through experiments that different brain regions can simultaneously
participate in the same multi-sensory integration process. In addition to dorsolateral
superior temporal, ventral parietal region [24], the frontal eye field [25] and the visual
posterior sylvian area [26] can also participate in the integration of visual signals and
vestibular signals. Based on this discovery, Zhang et al. proposed a distributed multi-
sensory integration model (Fig. 1). In this model, different multi-sensory integration
brain regions estimate the stimulus information according to the input they receive, and
then send their estimates to other brain regions. Finally, each brain area can integrate
multiple inputs, resulting in more accurate estimation of stimulus information [27].

Decision-making Process Based on Memorial Retrieval. The process of memorial
retrieval is completed under the combined action of short-term and long-term memory.
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Fig. 1. Distributed multi-sensory integration model.

Short-term memory has little information and short storage time, but it is the main mod-
ule to complete the complex reasoning and calculation process in the decision-making
process. Long-term memory has a large amount of storage information and a long stor-
age time [28]. Long-term memory can quickly recall the memory content associated
with the received information [29] and can be updated and modified autonomously [30].
The Atkinson-Shiffrin memory model [31] proposed by Atkinson and Shiffrin and the
Working memory model proposed by Baddeley [32] have both explained the memorial
retrieval mechanism: after the process of multi-sensory integration, the stimulus of envi-
ronmental information is stored in the form of short-term memory in the temporal lobe
of the brain, and it is compared with the prior knowledge in long-term memory to infer
the state of the outside world, so as to actively complete the final decision.

On the basis of the above mechanism, Damasio et al. further proposed that memory
information is expressed and stored in the form of vectors after a large number of neu-
roanatomical experiments [33]. Shiffrin proposed the retrieving effective from memory
(REM). When memory retrieval occurs, the received short-term memory feature vector
matches the stored long-term memory feature vector, and Bayesian decision-making is
used to calculate whether the received information has been learned. If the information
has been learned, the decision is made using the existing experience; otherwise, it is
considered as new information and stored in long-term memory. Jiang et al. proposed a
method of learning, storing and extracting visual images based on memory recall mode
[34].

2.3 Summary of Literature Review

In order to take advantage of the crowd intelligence for the design of complex products,
the multi-modal, multi-temporal and multi-spatial knowledge needs to be integrated,
stored and acquired. By using the perception-retrieval cognitive mechanism based on
multi-sensory integration and REM, which enables the brain to continuously receive and
rapidly organize and integrate external multi-modal, multi-temporal and multi-spatial
information in an optimal way, and accurately achieve retrieval of memory according
to the external information[35, 36], it is possible to realize the efficient integration,
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dynamic storage and real-time acquisition of design knowledge, thus achieving a crowd
intelligence-driven design for complex products.

3 Crowd Intelligence Driven Design Framework Based
on Perception-Retrieval Cognitive Mechanism

In order to solve the problems of low efficiency and poor accuracy in the organization
and acquisition of the multi-modal, multi-temporal and multi-spatial knowledge during
the design process of complex products, the framework of perception-retrieval cognitive
mechanism was designed from the following three aspects.

3.1 Organization and Integration of Multi-modal, Multi-temporal
and Multi-spatial Knowledge

The knowledge adopted for the design of complex products has the characteristics of
multi-modal, so the first step to achieve the crowd intelligence-driven design should be
the organization and integration of the different design knowledge.

According to the multi-sensory integration process in the perception-retrieval cogni-
tive mechanism, the features of the design knowledge can be extracted. First, the struc-
tured knowledge represented in OWL, RDF and other formats can be directly extracted.
Second, the semi-structured knowledge (represented by XML or JSON) which cannot
express semantic information explicitly, should be extracted semantic information by
analyzing the hidden in data tags and element structures, and an OWL ontology doc-
ument and description can be constructed to represent the semi-structured knowledge
structure. Third, the unstructured knowledge represented by natural language, pictures
or videos is identified using methods such as Polyglot [37], Mask R-CNN [38] or LSTM
[39], and feature extraction is carried out in combination with the semantic relation-
ship between the identified entities. After extracting the semantic features of the design
knowledge, a semantic network with different structures can be formed, which needs to
be semantically aligned. Semantic alignment is accomplished through distance-based
semantic similarity, which measures the location of knowledge entities in the design
ontology database. The ontology library is based on OntoSTEP in the field of mechan-
ical design, ORA in the field of robot design or SIARAS in the field of manufacturing.
Once the semantic alignment is completed, a unified representation of the design knowl-
edge should be provided. Knowledge graph is a semantic networkwith graph data, which
uses nodes and edges in graph structure to express knowledge entities and their rela-
tions. However, knowledge graph can only be used to express static and data-oriented
knowledge, and cannot express the multi-modal, multi-temporal and multi-spatial char-
acteristics of knowledge in KBE. Therefore, it is necessary to construct a multi-modal
dynamic knowledge graph based on the knowledge graph.

At the same time, knowledge provided by different sourcesmay contain noise, redun-
dancy or even conflicting knowledge, which must be processed and integrated to form
a semantically unified and coherent knowledge representation (Fig. 2(a)). The attention
mechanism in the multi-sensory integration model proposed by Tenenbaum is used to
filter and sift through noisy, redundant or conflicting information.
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3.2 Storage and Update of Multi-modal, Multi-temporal and Multi-spatial
Knowledge

According to the REMmodel, human long-term memory is stored in the form of feature
vectors. Therefore, the knowledge graph composed of knowledge in KBE should be
represented in the form of vector. Once the multi-modal dynamic knowledge graph
has been constructed, and the knowledge nodes and their relations in the graph should
be expressed in the form of feature vectors. Knowledge graph embedding technology
can directly map the knowledge entities and their relations in the multi-modal dynamic
knowledge graph into the low-dimensional vector space to realize the feature coding
of knowledge. Feature vector can be can be obtained by using the knowledge graph
embedding technology based on TransR model.

After the feature vector is obtained, the feature vector should be stored. In order
to reduce the computing and searching time, according to the distributed multi-sensory
integration model of brain long-term memory, the knowledge in different disciplines
is featured by clustering and stored in different knowledge modules (Fig. 2(c)). Graph
attention networks is used to complete the clustering of design knowledge.

Large-scale knowledge in KBE shows a high dependence on time and space, so the
knowledge stored in KBE needs to be in a dynamic form of continuous renewal. Accord-
ing to the perception-retrieval cognitive mechanism, the newly-received knowledge is
retrieved using the knowledge subgraph coding algorithm that can be developed based
on the TransR model, and then compared with the existing knowledge for storage and
update. Since only the subgraphs with changes are encoded, the computational load of
the encoding in the process of knowledge updating can be greatly reduced.

3.3 Push of Multi-modal, Multi-temporal and Multi-spatial Knowledge

Referring to the short-term memory mode in the REM, the existing knowledge is called
and matched to complete the push of knowledge. The research on the praxeology shows
that when design participants conduct the design work, their behavior patterns are not
chaotic, but have their own rules. When analyzing the behavior patterns of operators
to determine whether they need knowledge, the context aware computing is adopted
to determine whether they need knowledge through real-time perceptual monitoring of
their own behavior and software operation. At present, the context aware computing
technology based on information communication, sensors and machine learning is very
mature, which provides data and technical support for signal acquisition and processing
in the process of behavior pattern recognition.

After confirming that operators need knowledge, it is necessary to further acquire
their knowledge needs and judge what knowledge they need. However, the traversal
methodwill consume a lot of computing time of the system in themass andmiscellaneous
crowd knowledge, which seriously affects the real-time performance of knowledge push.
Nowadays, inferential methods based on ontology and rules have been widely applied in
the field of information, and various inference machines supporting ontology and rules
have also been developed, such as Jena, Jess and Racer inference machines, which can
provide support for the reasoning process required. Therefore, a semantic inferential
model is used to locate the required knowledge quickly.
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In order to reduce the time spent in knowledge search, the knowledge feature vector
stored in theKBE is retrieved and comparedwith the knowledge requirement feature vec-
tor after the system is quickly positioned using probability-based reasoning. The retrieval
and comparison between the knowledge feature vector in the knowledge module and
the knowledge demand feature vector can be regarded as the process of calculating the
likelihood of two equal-dimensional vectors. Therefore, Bayesian formula can be used
to calculate their likelihood and complete the final matching of knowledge (Fig. 2(b)).

Fig. 2. Crowd intelligence driven design of perception-retrieval cognitive mechanism.

4 Conclusion

Considering the limitations of current KBE approaches, the authors propose a crowd
intelligence-driven framework based on the brain’s perception-retrieval cognitive mech-
anism for the organization, storage and push of multi-modal, multi-temporal and multi-
spatial knowledge. This mechanism solves the problems of low organizational efficiency
and poor acquisition accuracy of crowd design knowledge in different modalities at mul-
tiple time and space scales, and will provide theoretical basis and application prospect
for promoting the intelligent design of advanced aviation manufacturing equipment and
complex products such as aerospace, ships and automobiles in the future. Especially
in the field of advanced aviation manufacturing equipment, the application in the field
of manufacturing equipment is promoted by integrating process knowledge, product
knowledge, equipment knowledge and program control knowledge commonly used in
the development of manufacturing equipment.

Future research can be generally divided into two parts. First, knowledge graph has
become a widely adopted knowledge representation method. The multi-modal dynamic
knowledge graph proposed in this paper introduces new factors τ. On the one hand, on
the basis of head node(h), relation node(r), and tail node(t), τ is integrated to realize the
time correlation of the knowledge in the full-time domain. On the other hand, the modal
and spatial features cannot only be integrated into the dynamic knowledge graph as the
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tail node of the knowledge graph, but also form a representational spatial relationship
(hasProvider) and modal relationship (hasDescription or hasImage) with the entity head
node.At the same time, τ represents the update cycle of crowddesign knowledge.When a
new integrated knowledge graph is received, the new knowledge graph is retrospectively
compared with the previous knowledge graph.

Second, the existing TransE, TransH, TransR, etc. are used as plane distance models,
and their corresponding algorithms are verymature. Compared with other plane distance
models, the TransR model not only solves the complex one-to-many, many-to-one and
many-to-many relationships between the head and tail nodes, which cannot be realized
by TransE model, but also improves the semantic expression ability of TransH model
for relationships between knowledge entities. The principle of the proposed algorithm
can be summarized as follows. Firstly, the low-dimensional vectors is used to initialize
knowledge entities (head node (h) and tail node (t)) and their relationship (r), and the
positive and negative training samples consisting of (h, r, t) can be constructed. Secondly,
the TransR model based on plane distance to define the scoring function fr(h, t) is used
to calculate the total loss value of the feature vector for positive samples and negative
samples. Finally, taking theminimum total loss value as the optimization goal, the feature
vector of knowledge in KBE is obtained through continuous calculation.
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