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Abstract. Medical devices today often consist of complex mechatronic products
which help to provide treatment services for patients. Beside safety and reliability
also sustainability aspects need to be considered for such products and services.
The ability to describe, analyze and predict products and services throughout all
phases of its lifecycle is becoming a core competence of engineering departments
(Lifecycle Engineering). In order to have a digital representation of the product
and services along the lifecycle (digital model, digital twin), well-established
engineering approaches need to be combined.

This paper builds on a stream of research, proposing to leverage and com-
bineModel-based Systems Engineering (MBSE), Product LifecycleManagement
(PLM) and Artificial Intelligence (AI) to strengthen the Lifecycle Engineering.
The so called Engineering Graph is a key element of this research work to bridge
those engineering disciplines and enable AI-driven engineering in the lifecycle
context.

Keywords: Lifecycle Engineering (LCE) · Systems Engineering (SE) · Product
Lifecycle Management (PLM) · Artificial Intelligence (AI) · Engineering Graph

1 Introduction

Mega-trends in society, economy, politics, regulatory and technology lead to increased
volatility, uncertainty, complexity and ambiguity (VUCA) for companies in multiple
industries [1]. Especially the trend of sustainability is getting more and more impact on
products and services [2].

The ability to develop and assess products and services from a lifecycle perspective
is a key success factor to operate in such a volatile and complex environment. Concepts
such as Product LifecycleManagement (PLM) or Lifecycle Engineering (LCE) emerged
to address this environment. The representation and assessment of the lifecycle in the
virtual environment is the foundation.

By integrating and leveraging digital technologies – especially in early product devel-
opment phases – innovative options and chances can be created. To represent products
and services across the lifecycle, model-based engineering approaches can be used.
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These virtual product models can be analyzed by artificial intelligence (AI) and data sci-
ence technologies to gain further information and support lifecycle spanning use cases
such as Life Cycle Sustainability Assessments (LCSA).

This paper introduces the Engineering Graph as a concept that combines current
engineeringmethods likeModel-based SystemsEngineering (MBSE) and PLM,modern
theory from computer science for product modeling and machine learning to support
LCE. This concept is applied at a leading medical device company.

2 Related Work for Engineering

Engineering as one of the core competences of manufacturing industries undergoes an
evolution similar to the products and technologies developed by engineering itself. The
digitalization is a main driver for this evolution in engineering: from geometry-oriented
to behavior and meaning-oriented engineering and modelling approaches [3].

This section will point out disciplines and approaches of engineering which can be
seen as a foundation for a lifecycle-oriented approach of engineering: LCE.

2.1 Model-Based Systems Engineering

The transdisciplinary and integrative approach of Systems Engineering (SE) enables the
successful realization, use and retirement of engineered systems [4].

SE covers all processes of the system lifecycle: agreement and organizational project
enabling processes; technical management processes and technical processes itself [5].
In the “Architecture Definition Process” the system architecture is developed. One core
element of SE is the decomposition of a System of Interest in sub-systems. Those sub-
systems can be elaborated inSystemElements.ASystemof Interest can also be described
by its operational environment and enabling systems.

In order to describe those elements and relationships amodel-based approach is used,
typically supported by the modelling language System Modeling Language (SysML).
SysML is a dialect of UML 2 that customizes the language via three mechanisms:
Stereotypes, Tagged Values, and Constraints [6].

2.2 Product Lifecycle Management

PLM is a concept which enables representations, perspectives and validations of a prod-
uct in its lifecycle phases. PLM is evolutionary based on Product Data Management
(PDM). PDM was developed in the context of document management and Computer
Aided Design (CAD). With the evolution towards PLM so called product models or
virtual products were introduced [7].

PLM manages all data from development, production, warehouse and sales and
supports single source of data through the entire lifecycle [8]. The whole product range
is covered, from individual part to the entire portfolio of products [9].
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2.3 Lifecycle Engineering

LCE is a sustainability-oriented engineering methodology that considers the compre-
hensive technical, environmental, and economic impacts of decisions within the product
lifecycle [10]. In this context, the product lifecycle is formally defined by ISO 14040 as
the “consecutive and interlinked stages of a product system, from rawmaterial acquisition
or generation from natural resources to final disposal.” [11].

In recent years, modern concepts to LCE are emerging in the literature. These are
leveraging different data sources and a high level of computational capabilities.

The IntegratedComputational LifeCycle Engineering (IC-LCE) integrates data from
the entire product lifecycle via coupledmodels [12]. The results of LCE can be visualized
to be communicated to expert and non-expert users by combining LCEwith Visual Ana-
lytics [13]. Also, knowledge-based engineering can be combined with LCE. A manual
way to engineer knowledge and make it available for LCE is introduced [14]. Based on
that, a framework to automatically collect data during a products lifecycle is developed
[15].

Sakao et al. (2021) identify current challenges and opportunities of LCE and develop
a vision for Adaptive and Intelligence LCE (AI-LCE) based on their findings [16]. Here,
different engineering capabilities are supported by business intelligence tools based on
a database called “memory” and external factors and requirements.

All studies identify issues of current LCE methodologies and therefore derive the
need for a new concept. The issues identified are summarized in Table 1.

Table 1. Issues identified with current LCE

Issue # Issue Source

1 Lack of Speed [12, 16]

2 Oversimplified models [12]

3 Lack of comprehensiveness [12]

4 Lack of transparency [12]

5 Lack of integration between environments of core engineering disciplines [13]

All concepts introduced to solve the issues identified require some sort of database,
repository or memory. However, there is no concept of how to build that database and
how existing methodologies like PLM and SE can be included into the database concept.
Therefore, this paper proposes a new concept based on the Engineering Graph and
combining the methodologies of PLM and SE.

3 Related Work for Computer Science

With increased digitalization in engineering and an increased amount of product data
that needs to be stored and analyzed, theories from the field of computer science become
important in engineering. This section introduces modeling languages that can be used
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to connect and store engineering data and technologies that are designed to derive
information from large datasets such as AI and data science.

3.1 Modeling Languages

SysML has emerged as a machine and human understandable language which describes
a product system through requirements, structure, and behavior [17]. The language
was invented by the OMG in cooperation with the International Council of Systems
Engineering (INCOSE) [6, 18], and was developed to support modeling and (re)-using
of engineering information across the lifecycle [19].

Graphical databases focus on relationships between data points. They consist of
nodes, which represent data points, and relationships, which connect them. Nodes and
relationships can have properties that are used to filter and find data quickly [20]. Prop-
erties can be qualitative or quantitative information. The objects and their relationships
are represented naturally and clearly by using abstraction concepts [21]. The schema
of the graphical database is not fixed at its creation, contrary to relational databases
[22]. This leads to their capability to include data from different sources without the
need to match the schemas. Therefore, the graphical database can be extended with new
and unexpected sources, which is especially useful in complex environments such as
engineering [23].

The capability of graph databases to include data from different and unforeseen
sources allows building a large and interconnected database from public sources.
Thereby, public knowledge from semantic web sources such as Wikimedia [24] or the
Google Knowledge Graph [25] can be harvested and linked to a company specific meta
structure. That meta structure allows the connection of data from outside sources with
company internal data, together building a dataset large enough to allow the application
of AI technology.

3.2 Machine Learning and Graph Data Science

Machine Learning is a technology that is capable of making sense of large datasets and
deriving information from them without explicit programming [26]. In recent years,
several applications to engineering problems such as identification of new product ideas
[27], requirements elicitation [28], creativity [29], configuration management [30] and
decision support in early design phases [31] are explored.

Machine Learning works by showing a neural network a large dataset of training
data. During the supervised training process, the internal weights in the neural network
are adjusted automatically to create a model that achieves the desired outcome. This
model is then tested on the verification dataset. If it passes, it can be applied to new data
and moved to production [32].

Graph data science technology is especially developed to be used on graph databases
[33]. The capabilities include community detection, centrality, link prediction and
similarity, which will be described in the following.

Community Detection evaluates how a group is clustered or partitioned, as well as
its tendency to strengthen or break apart [34]. The weakly connected components can
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analyze the graphs’ structure and find not connected parts. Additionally, the number
of communities within a graph can be identified, which brings an understanding of the
number of subtopics a graph contains.

Centrality can be used to determine the importance of distinct nodes in a network
[34]. One of the most widely applied algorithms is Pagerank [35].

Link prediction is done by using machine learning. Amodel is trained to learn where
relationships between nodes in a graph should exist [34]. This model can then be used
to predict further relationships.

Similarity algorithms compute the similarity of pairs of nodes [34]. The similarity
between two nodes is calculated based on the nodes they are connected to.

4 Engineering Graph Enhancing MBSE for LCE

This section introduces the evolution in product modeling towards graph-based and
summarizes the ongoing research on the Engineering Graph that brings this concept
to live in the area of engineering. Lastly, a concept is introduced how the Engineering
Graph can bridge PLM and SE and enable Data Science and AI to support LCE.

4.1 Evolution Towards Graph-Based Modeling

The scope of product development has increased. When a product was designed on its
own, geometry-based models were sufficient. The increased scope and complexity to
design product systems consisting ofmechanic, electric and software parts and designing
systems of systems where different product systems interact with each other to bring
value to the end user needed a new modeling approach with higher abstraction: model-
based [36].

Now that the scope is increasing again towards system environments, where product
systems and systems of systems are viewed in their environment, e.g. by lifecycle assess-
ments, there is a need for a newmodeling approachwith higher abstraction: graph-based.
Figure 1 shows this evolution.

Fig. 1. Evolution of modeling

4.2 Engineering Graph

Previous research already explored the application of graphical databases in engineering.
The EngineeringGraphwas introduced as a graph-based database to support engineering
applications such as LCSA [37].



562 G. M. Schweitzer et al.

The Engineering Graph connects data from different sources within a company and
from external sources such as suppliers, partners and public sources like the semantic
web. Data is stored at a high level of abstraction, where the focus lies on the connections
between data points and not the data itself. Already existing data and configuration
information is not duplicated in the Engineering Graph.

4.3 Engineering Graph Bridging SE, PLM and AI to Support LCE

The Engineering Graph as a graphical database can be used to bridge different engi-
neering methodologies and their underlying data and schemas. This results in a
comprehensive and interconnected database.

SE offers the information of product breakdown, how parts are connected and how
they work together using which interfaces. PLM offers the product data including con-
figuration information. The information from both methods is connected and enriched
with lifecycle data such as where and how a product is used, what norms and regu-
lations it needs to comply with in its target market and additional information from
non-government organizations such as the World Health Organization (WHO) or the
United Nations (UN).

Graph database technology is able to support LCE and address the issues identified
in Sect. 2.3 when the established engineeringmethodologies PLM and SE are combined.
By leveraging already existing models, speed (Issue #1) is increased because there is
no duplicate work. This also addresses the issue of oversimplified models (Issue #2)
and lack of comprehensiveness (Issue #3) as the models from SE and PLM are very
sophisticated. The integration between environments of core engineering disciplines
(Issue #5) is increased because the graph can directly integrate the data from these
different systems.

Many of the use cases of LCE such as LCSA or cost assessment are predefined in
early design phases. The Engineering Graph can be one way to support design decisions
in early phases to improve LCE measures by providing large amounts of data early. It
contains all freely available LCE information and data from previous product genera-
tions. Data Science and AI technologies can be applied if the graph contains a large
enough dataset for these technologies to be applicable.

5 Use Case in the Medical Device Industry

In this section the application of the Engineering Graph for LCE is demonstrated at a
leadingmedical device company. First, it is described how the system is built and second,
its application for LCE is shown.

5.1 Engineering Graph Connects PLM, SE and External Information

In order to move towards graph-based LCE and support the application of AI technolo-
gies, the Engineering Graph is created at a leading Medical Device Company using
Neo4J software. The graph spans across different Systems of Interest that are defined
as part of the companies SE activities. The “product system” data is stored in the PLM
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system and connected to the graph (see green nodes in Fig. 2). The brown nodes in Fig. 2
show norms such as the ISO 14044 that is relevant to LCSA. Additionally, it is important
to include norms relevant to medical devices such as ISO 62304 as the medical device
industry is highly regulated.

Fig. 2. Engineering Graph connecting data from SE and PLM

The data from the different sources is added to the graph via the importAPIs ofNeo4J
and connected to each other by a predefinedmeta model (blue nodes). Company external
sources such as the Google Knowledge Graph, Wikimedia Graph and information from
the WHO as well as the UN are also added via the Neo4J APIs to further enrich the
Engineering Graph. The connection to existing nodes is performed manually for the
most obvious ones, other relationships can be proposed by the system as shown in the
following section.

This database with many connections is made available in early phases of develop-
ment. Here, it is leveraged to influence the sustainability impact of a products lifecycle.
Having this information in early phases of development is important, as many decisions
influencing its sustainability impact are made here.

5.2 Engineering Graph Supports LCE

After building the Engineering Graph, the following paragraphs will focus on the analy-
ses that it enables to support LCE. These are the graph data science algorithms introduced
in Sect. 3.2. Analyzing the graph across the entire product life cycle and considering
relevant norms and regulations can lead to the detection of unknown and unexpected
relationships. Discovering the impact of the elements in the graph on each other in an
automated way can lead to decreased time to market due to less rework.

First, the graph is analyzed to ensure that it is well connected and that there are no
unconnected nodes left. Therefore, the Weakly Connected Components is used. In this
example, it could be shown that there exists only one component which means that the
graph is well connected. Second, Label Propagation is used to identify communities of
nodes in the graph. These can be an indication of howmany subtopics the graph contains.
In the graph for this paper, 7 communities could be detected.
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After the graphs communities are analyzed, Pagerank is used to identify the most
important nodes in the graph. In the case of the Engineering Graph in this paper, the
“UN Sustainable Development Goals” is the most connected node in the graph.

Next, predictions for new relationships can be generated based on the existing graph.
The predicted relationships can be used to complement the graph and to detect unex-
pected relationships that can represent cause-effect chains. This prediction is based on
machine learning. Therefore, a model is first trained on the current relationships in the
graph. Second, it is used to generate predictions for new relationships. In the Engineering
Graph for this paper, it predicted relationships between all existing nodes with a prob-
ability of 49.9%. This result shows that the amount of data in the Engineering Graph is
not large enough to successfully apply machine learning. Therefore, the database needs
to be increased by adding product data and freely available data from the semantic web.

6 Discussion

The literature of LCE advances towards standardization, comparability and the adoption
of new technologies. This paper proposes the application of the concept of the Engineer-
ing Graph to LCE to offer a standardized and easy to expand database that leverages
existing models and concepts. The concept of the Engineering Graph was introduced
in prior research and is here extended by adding data science and AI capabilities and
showing its usefulness for LCE use cases.

Larger sample data in the graph will yield more exact data. Currently, the database
is not large enough to yield robust results from machine learning technology.

Future research needs to be conducted to embed the creation and maintenance of the
Engineering Graph into standard development processes such as the V-model or ISO
15288 for SE. Furthermore, it needs to be shown how the graph can be automatically
extended leveraging Natural Language Processing technology. Additionally, the results
based on a graph based on a larger dataset need to be reported. Lastly, the graph needs
to be applied to further use cases to demonstrate general usefulness.
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