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Abstract. To apply energy efficiency monitoring and optimizing systems
for heating, ventilation and air conditioning (HVAC) systems at scale
metadata of the system components must be extracted automatically and
stored in a machine-readable way. The present work deals with the auto-
mated classification of datapoints using only historical time series data
and methods from the field of artificial intelligence. The dataset used to
conduct the research contains multiple time series from a total of 76 build-
ings and covers the months of January to November of 2018. Based on
these data, relevant features of the time series are defined. Using these
features, different classification models as well as the influence of seasonal
effects are evaluated. Overall, our approach provides very good results
and assigns on average about 92% of all datapoints to the correct class.
The datapoints of the worst recognized class are still correctly classified
to about 88% (validation data) and 90% (test data), respectively. Possi-
ble reasons for incorrect classified datapoints are discussed and a promis-
ing solution is proposed. The obtained results show that in practice these
methods can reduce the effort of creating and validating digital twins and
building information modeling (BIM) for retrofits.

Keywords: Datapoint · HVAC · Retrofit · Classification · Machine
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1 Introduction

With the Paris Agreement’s of a 1.5◦ target as a guideline efforts for reducing
energy consumption must be increased. The building sector, with its 40% share
of primary energy demand, is a particular focus. Since 90% of building floor
space in non-residential buildings are not efficiently controlled [16], automation of
heating, ventilation, and cooling is considered to have a realistic savings potential
of 13% of building energy demand by 2035 [5].

Building automation systems (BAS) provide a lot of data about the condition
of the building and the installed equipment. Often, errors in the design, program-
ming or operation of the equipment lead to increased energy consumption in
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buildings. Using a digital twin with all relevant information on the components
of the HVAC-system including their spatial and functional relationships, those
errors can be detected and processes can be improved automatically. As of now
the manual implementation of a digital twin is not only time consuming, but
also prone to human errors [13,17]. One is the lack of norms and standards for
assigning datapoint names. The various manufacturers of technical equipment
follow different systems for naming the same component, which so far made it
impossible to link the plant structure and software in a fully automated way.

In order to expand the use of digital twins and automation in the building
sector in a scalable manner, the demand of automated linking of components and
software arises. The systems setup with the spatial and functional relationships
of the components and their semantic correlations should be recognized fully
automatically at best, but at least minimizing human interaction.

This work focuses on datapoint types from ventilation systems. An important
intermediate step is the recognition of datapoint classes, i.e. a classification of
datapoint into e.g. temperature sensor, pressure sensor or damper position. The
problem of automated metadata detection has been addressed in recent years
[17]. This classification can be based on two different sources of information.
On one hand, the time series of the datapoint can be used, on the other hand,
the datapoint names are available. In [1], the ZODIAC system is presented that
automatically extracts metadata using datapoint identifiers and features of the
associated time series. Fütterer et al. [7] present a method that is, however,
only tested on a single building. The sampling rate of the datapoints used in
this process is with 1min much higher then what usually is available in real
cases. Bode et al. [2] present an approach for classification using unsupervised
learning methods. However, the results obtained are significantly worse compared
to methods based on supervised learning. Gao et al. [8] and Shi et al. [15] evaluate
several approaches to classify datapoints based on the time series and compare
the respective results for multiple buildings. In a more recent study, Chen et al.
[3] use only features of time series to detect classes. The approaches presented
achieve classification accuracies of 90% and 85%, respectively, but little attention
is given to the practical aspects in real applications such as availability of data
to train a model or seasonal effects.

The following use case is assumed for our investigations: Historical data is
available from an unknown building but the amount of historical data can vary
between a few days and multiple years. A classifier assigns a datapoint class
and a classification error probability to each datapoint. For this purpose we
developed a concept by selecting and combining existing techniques for a suitable
classifier and realized its implementation. The influences of seasonal effects are
taken into consideration to evaluate the portability of the developed solution
towards different climate zones. Finally, the classifier will be tested with the
data of two buildings and the result will be evaluated with regard to the practical
applicability, especially the necessary amount of operational data.
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2 Dataset and Classification Pipeline

Our approach for classifying datapoints is based on the properties and charac-
teristics of the time series only and consists of the following steps:

1. All data of each datapoint is divided into sections of 24 h (daily time series,
DTS).

2. Characterizing features for classification are extracted from the DTS.
3. Based on the extracted features, a classification model is trained.
4. Steps 2 and 3 are repeated with different combinations of features and classi-

fication algorithms. The best one is chosen (measured by weighted F1-score).
5. For the final classification of a datapoint each DTS is classified individually,

then the class of a datapoint is determined according to the majority principle.

The two-step procedure for classifying the datapoint distinguishes the present
study from previous approaches and drastically improves results and robustness.
The underlying idea is that there are typical daily courses for each datapoint
class, but atypical progressions occur on individual days. Using a day-by-day
classification we reduce the influence of atypical courses on the overall results.

In the following Sect. 2.1 the dataset is described in more detail. Subsequently,
Sect. 2.2 further explains the procedure for the classification of datapoints.

2.1 Description of the Dataset

The dataset used in the paper is from the Mortardata database (Modular Open
Reproducible Testbed for Analysis & Research) [6], which was published in 2019.
This database collects and unifies a variety of measurements and metadata from
over 100 buildings. At the time of the study, the database only includes buildings
from the area around San Francisco, California (USA). Possible influences due
to the geographic location on the results are considered in Sect. 3. The data is
predominantly available with a temporal resolution of 15min (G. Fierro (UC
Berkeley), personal communication, March 11, 2020). For this study all time
series were sampled at this rate.

To account for seasonal effects when classifying datapoints, data from almost
the entire year 2018 is used. In the building sector, typical patterns are often
observed on a daily basis, so the length of each time series was set to 24 h (DTS).
Thus in our data each DTS is represented by a vector with 96 elements. Thus,
one datapoint provides up to 365 individual time series of measured values in
one year. Time series which provide less than 96 measured values are discarded.

Figure 1 shows the classes and the corresponding number of datapoints and
DTS. They come from a total of 76 buildings. The dataset is divided into training,
validation and test data. The training data is used to train models and the
validation data is necessary for feature and hyperparameter selection. Test data
is used for a final performance evaluation only. The dataset is split based on
buildings (holdout set) to represent a real application. The validation data comes
from 12 buildings that contain all classes. The test data consists of 2 buildings,
each one containing all classes.
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Fig. 1. Number of DTS per class (number of datapoints in brackets)

The dataset is highly imbalanced with respect to the number of DTS per
class. To reduce negative effects on the models learning behavior, all classes in
the training data are reduced to the size of the second smallest class (Econ-
omizer_Damper_Command) by undersampling (randomly removing samples)
on a quarterly basis. The class sizes of both validation and test data remain
unchanged.

2.2 Classification Procedure

To perform a classification features must be calculated from the DTS. In addi-
tion to standard features of descriptive statistics such as mean or extreme values,
features based on patterns and shapes of the DTS are also taken into consid-
eration. To find the best combination of time series features and classifications
algorithms, we proceeded as shown in Fig. 2:

Fig. 2. Process of feature and model selection

An initial selection of features is made based on the literature (“L0”).
Subsequently, the list “L0” is extended by multiple features from the library
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TSFresh (0.16.0) [4] that we expected to bring high information gain, resulting
in the list “Custom” with a total of 122 features. The additional features were
chosen based on domain knowledge and are calculated using the Python library
TSFresh with default settings.

We use different State of the Art approaches to determine feature relevance
(Table 1). With each of these feature selection methods, all models from Table
2 are trained and evaluated respectively. For hyperparameter the default values
from the Python libraries Scikit-Learn, XGBoost and LightGBM were used. The
weighted F1-score is used as a measure of the performance.

Table 1. Feature selection approaches

Approach #features Encoding

Features from literature 60 L0
Extended list (L0 + additional features) 122 Custom
Chi2 Feature Importance 60 L1
RFE Default Random Forest 69 L2
Mutual Information 60 L3
Feature Importance Default Random Forest 58 L4
TSFresh Feature Selection 121 L5
Intersection of features of all approaches 23 L6
Features in at least 4 approaches selected 45 L7

Table 2. Used models

Model Used in literature

Linear Discriminant Analysis (LDA) [8,9]
k-Nearest Neighbor (kNN) [7–9]
Random Forest [7–12,14]
Gradient Boost
ExtraTrees
LightGBM
XGBoost

Comparing the results of all combinations of models and lists of features, the
models XGBoost (F1 = 0.89) and ExtraTrees (F1 = 0.87) with the features of
the list “L7” were selected based on the achieved results. XGBoost achieved the
highest F1-score and is used for the final evaluation of our approach. Extra Trees
has a significantly shorter training time and only slightly worse results and is
therefore suitable for systematic tests concerning seasonal effects as described in
the following section. Both models stem from the family of tree-based algorithms
and therefore we expect a high transferability of the results.
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3 Results

3.1 Influence of Seasonal Effects

Ideally, a classifier is trained with data from an entire year, thereby enabling
classification of datapoints of unknown buildings independent of the recording
date of the DTS. When considering the influence of seasonal effects, we investi-
gate whether the performance of a model depends on the date of the time series.
For this purpose, a model is trained with the training data of the whole year and
evaluated for each month separately with validation data. In Fig. 3 the weighted
F1 scores for each month are shown, where a red horizontal line represents the
mean of all calculated F1 scores. Since neither training nor evaluation data are
available for December, no result can be shown for this month. In the lower part
of the figure, the number of DTS is plotted over the months.

Fig. 3. Model trained with data of whole year, classification performed for each month
individually (Extra Trees with “L7” Features)

It turns out that the performance of the classification is mostly independent
of the date of the time series. Only in April there is a noticeable deviation from
the mean value. One possible reason is the significantly small amount of training
data for this month. On the other hand the training dataset contains very little
data for November as well, but the performance in this month shows only a
insignificant difference from the mean value. Therefore the number of training
data does not seem to be the only influencing factor and seasonal effects could
in fact play an important role.

The climate in San Francisco, California is subject to large fluctuations (as
it can be seen in standard climate charts), especially in the months of spring
and autumn. If only a few DTS are available during these months, information
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about possible fluctuations of e.g. sensor data could only be partially recorded.
As a result, the classifier will receive less information from this period of the year.
With an extended dataset of multiple years a more comprehensive understanding
of the influence of seasonality could possibly be achieved.

In terms of flexibility for using the classifier for unknown buildings, the annual
climate seasonality plays an important role. For the present dataset of buildings
from the San Francisco area, the seasonal temperature pattern seem to play
minor role(cf. Fig. 3) though. To apply the classifier in central european countries
such as Germany, the influence of the seasons on the performance must be verified
with an appropriate dataset.

3.2 Classification: From Time Series to Datapoints

This section examines the results of the classifier with test data which were pre-
viously completely unknown to the model and thus represents a real use case
scenario. The test is conducted with the XGBoost model, which achieved the
best results during model and feature selection. For this purpose, the model
is trained with a combination of training and validation data to maximize the
amount of training data. As described in Sect. 2.2, in a first step the time series
of all datapoints are classified. Subsequently the datapoint class is determined
by majority principle. Figure 4 (left) shows the weighted F1-scores for the clas-
sification of DTS and datapoints. The classification of the DTS already achieves
a F1-score over 0.925. After the second step of the datapoint classification, the
result improve significantly and reach a weighted F1-score of about 0.975.

For practical applications with limited availability of data the question arises
how many time series per datapoint are necessary in order to make a reliable
statement about the datapoint class. This question can be answered using the
binomial distribution. Thus, the probability P (X = k) =

(
n
k

)
pk(1 − p)n−k that

exactly k of n DTS are correctly classified is calculated, where p corresponds to
the probability that a single time series is correctly classified. p varies for different
datapoint classes. For a conservative estimation, the value of p is taken to be the
worst datapoint class recognized on test and validation data (p = 0.72). For this
approach, classification errors are assumed to occur randomly and the individual
tests are assumed to be stochastically independent. The plot in Fig. 4 (right)
shows that with 13 DTS per datapoint, the overall probability of determining
the correct datapoint class is already greater than 95%.

When using the model with the data of unknown buildings, it is not only
important to know the predicted class, but also the probability of the pre-
diction being correct. This allows the class assignment to be fully automated
for some classes and focusing expert knowledge on classes with low classifica-
tion confidence. The prediction probability can be directly read from the main
diagonal of the classification matrix in Fig. 5. They express the ratio of cor-
rectly assigned datapoints of a class to all datapoints of this class. More than
half of the classes are recognized correctly in all cases. Only the three classes
Damper_Position_Setpoint, Return_Air_Temperature and Supply_Air_Flow
Sensor show classification errors at all.
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Fig. 4. Left: Comparison classification of individual time series and datapoints
(XGBoost with “L7” features, test data), right: Overall probability over the number of
time series per datapoint

Fig. 5. Normalized classification matrix (XGBoost with “L7” features, Test data)
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4 Discussion and Conclusions

For the data used in this research a very good recognition of datapoint types was
achieved. The reliability increases with the number of available DTS, whereby
on average a classification accuracy of 95% is exceeded if more than 12 DTS are
available. In practice, this should lead to a drastic reduction of the expert effort in
many cases. With respect to the season from which the DTS originate, the results
are reliable for at least the investigated climate zone (San Francisco/USA). The
transferability of this finding to other climate zones still has to be examined with
an appropriate dataset. It is to be expected that problems can occur in climatic
zones with more pronounced annual temperature variations: Heating systems
in Germany, for example, do not operate for weeks in the summer, nor does
cooling in the winter. In cases where the systems are not in operation, very little
information can be extracted from corresponding time series. In theses cases,
data of multiple seasons must be provided in order to achieve reliable results. As
a rough guideline, however, it remains to say that about 2 weeks of operating
data make the datapoint of the respective active systems well automatically
identifiable (cf. Fig. 4).

It turned out that the classification results for individual classes such as
“Damper_Position_Setpoint” (flap position) was comparatively poor. The rea-
son for this could be that this datapoint class was imprecisely defined in the
dataset. Dampers can be used at very different locations in a ventilation system
and can have very different operating characteristics depending on their cor-
responding function. Thus, the comparatively poor detection performance indi-
cates a fuzzy taxonomy of datapoint rather than problems with data availability,
feature selection or the overall classification approach.

Also some datapoint of the Return_Air_Temperature class are not recog-
nized correctly. More detailed investigations showed that the DTS of the incor-
rectly classified datapoint have a significantly larger range of values than the
training data. One possible reason for this is the different usage profile of a sin-
gle room in the existing dataset. It is expected that additional buildings with
similar usage profiles in the training data may improve the classification results.

To create a useful digital twin of a building, all relevant technical components
need to be included. Knowing the type of datapoints can enable (semi)automatic
datapoint mapping or support evaluation of manually mapped datapoints to
avoid errors (e.g. check if components are mapped in a unusual order). The
results obtained in this work thus show that the classification of datapoints based
on features of the time series could be a practical way to reduce the expert effort
in creating and validation digital twins and BIM for retrofit applications in the
building sector.

In this work, however, a number of other aspects such as the automatic detec-
tion of functional relationships and the affiliation to different parts of the plant
are not considered. For these tasks, other sources of information such as data-
point identifiers or graphical representations of the plant structures will play a
major role. However, since these sources of information are often incomplete and
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subject to errors, time series can offer valuable information for the plausibility
check of information from other sources.
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