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Abstract. Acerola (Malpighia emarginata DC) is an exotic fruit that
has a high agro-industrial potential. It is known to be rich in ascor-
bic acid, phenolic compounds, and carotenoid pigments. These nutrients
make acerola one of the best sources of natural antioxidants, helping to
prevent many conditions and delay aging. Acerola fruit is transformed
into concentrate juice then powder to be incorporated into nutritional
supplements. The natural ascorbic acid content of juice powders must
be between 16 and 17%. Unfortunately, the origin of ascorbic acid in
acerola-based products is not always natural. That is to say, some food
manufacturers add synthetic ascorbic acid to reach the recommended
values (16 to 17%), which can be considered as a falsification of the
product. Since a decade, the control of the life cycle and the quality of
foodstuffs is an increasingly important concern. In this context, EVEAR
Extraction (French company) establishes a high level of traceability of
its extracts by combining sourcing, extraction processes and laboratory
controls throughout the production process. The determination of the
composition of raw material and final products can be determined by
spectrometric analysis and more precisely by Nuclear Magnetic Reso-
nance (NMR) spectroscopy. However, spectral analysis remains a tedious
and time-consuming task requiring an expert.

In this study, the feasibility of discriminating acerola-based product
was investigated using 1H NMR spectroscopy in combination with a
supervised classification procedure consisting of several steps: principal
component analysis (PCA), a fast Fourier transform (FFT) and a neu-
ronal network classification. A total of 6 classes (Colored Acerola pow-
der, Acerola concentrate, Acerola powder, Ascorbic Acid, Acerola with
added ascorbic acid, Other extract) were examined. Following the clas-
sical approaches, we opted for a convergent network using hidden layers
and a divergent output. The results demonstrate that 1H NMR spec-
troscopy combined with ANN analysis is an effective tool for verifying
the nature of Acerola samples.
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1 Introduction

Acerola (Malpighia glabra L.) is a small tree that grows in dry deciduous forests.
It is native to central and northern South America and has been cultivated in
large areas of Brazil [4]. Its red fruit, which resembles the European cherry, con-
tains about 80% juice and a large amount of ascorbic acid (vitamin C), but it
is also rich in other nutrients such as carotenes, thiamin, riboflavin, niacin, pro-
teins, and mineral salts, mainly iron, calcium and phosphorus [2,3]. Acerola’s
high vitamin C content makes it one of the best sources of natural antioxidants,
helping to prevent many diseases and delay aging [5]. Vitamin C is involved
in several biological functions, such as enhancing collagen formation [8] and is
considered one of the major vitamins required by the human body because of
its antioxidant properties [15]. Indeed, increased antioxidant intake has been
associated with a lower risk of cardiovascular disease [7]. As a result, acerola
concentrate is used in the manufacture of many dietary supplements and their
quality depends on the quantity of key active components and the absence of
undesirable materials such as adulterants and residual solvents. Claims of benefit
depend on the presence of specific molecules in the extracts, which must therefore
be identified and quantified with great precision. Recently, NMR spectroscopy
has been widely used as a qualitative and a quantitative tool to characterize plant
extracts. NMR spectroscopy-based metabolome analyses can be highly effective
in identifying and quantifying novel and known metabolites [6,14,18,20]. How-
ever, the spectral analysis remains a tedious and time-consuming task requiring
an expert. Proton nuclear magnetic resonance (1H NMR) allows to obtain a
metabolomic profile of the analyzed sample but does not allow to detect the
addition of synthetic ascorbic acid in acerola products. Moreover, the addition
of 1 to 2% ascorbic acid changes the metabolomic profile slightly but it is not
possible to see this modification with the human eye. Hence the interest of using
artificial intelligence. The idea is to train the model with real acerola concen-
trates, concentrates transformed into powder (without addition of ascorbic acid)
and concentrates transformed into powder with addition of ascorbic acid, then
query it to classify spectra of unknown products. To date and to the best of our
knowledge, No NMR method coupled with artificial intelligence has been imple-
mented for the classification of acerola products according to their composition
in order to detect the addition of synthetic ascorbic acid.

The determination of the nature of the extracts can be summarized as a
classification problem. Data classification is the process of analyzing structured
or unstructured data and organizing them into categories based on the type
and content of the signals. There are several types of classification: unsupervised
and supervised (Logistic Regression, SVM, etc.) techniques [12]. Among the
methods in the literature, the classification proposed in this work is based on
Convolutional Neural Networks (CNNs) [1]. Indeed, CNNs have shown their
efficiency in the creation of feature maps. These maps are a strong point for
NMR spectrum analysis since they are invariant to the small transformation
introduced by the measurement.
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To detail this approach, the paper is decomposed as follows: first, a state
of the art on spectral analysis methods and on neural network classification
is proposed. In Sect. 3, we will explain how the data are collected and how our
model is made. Section 4, that details the first results of our approach, is followed
by a discussion in the conclusion.

2 State of the Art

2.1 Overview

To ensure the authenticity of herbal extracts or herbal products, the process
of standardization is a lengthy one, requiring proper sample preparation, time-
consuming analytical method development for the resolution of an analyte peak
from the complex natural extract, and more importantly, a pure authentic nat-
ural product. As a solution to these issues, the creation of a reliable and simple
method is needed as an alternative to standard analyses.

Metabolomic profiling is a discipline that focuses on the detailed description
of the metabolite composition of herbal extract. Metabolomics thus focuses on
the analysis of metabolites that represent the final phenotype of the extracted
herb. These metabolites are low molecular weight molecules (molecular weight <
1500 Da) and can be sugars, amino acids or fatty acids, their levels reflect changes
in the genome, transcriptome and proteome. Proton nuclear magnetic resonance
(1H NMR)) is used in this kind of study because it is a highly reproducible tech-
nology that offers information about all metabolites in a herbal extract sample
that are over the limit of detection. While artificial intelligence has been widely
used in the pre-processing of NMR data, peak identification, peak integration,
its use in metabolomics is not as developed as it is in other omics domains like
as genomics [16]. In this study, artificial intelligence techniques such as artificial
neural networks, genetic algorithms, and genetic programming will be applied
to metabolomic data.

2.2 Nuclear Magnetic Resonance (NMR)

Nuclear Magnetic Resonance (NMR) spectroscopy has evolved into a power-
ful tool for metabolomic analysis of plant extract [6]. it’s non destructive, fast,
accurate, quantitative and information-rich analytical method. It is a highly
repeatable and reproducible method when compared to mass spectrometry. It is
possible to compare, distinguish, or classify samples using NMR, spectra. How-
ever, because of the high level of signal overlap, especially in one-dimensional
NMR spectra, this approach has been limited in its application. Indeed, NMR
appears to be a good fit for artificial intelligence techniques because of this.
The most typical process in NMR, data handling is data pre-processing, which
involves converting the free induction decay (FID) to a matrix of chemical shift
and intensity, baseline correction, normalization and peak alignment [16]. On an
NMR spectrum, each metabolite has characteristic peaks whose position is well
defined and whose intensity correlates with the amount of this metabolite.
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In this study, NMR spectra of acerola samples under different formulations
and of other extracts are recorded. The spectra are processed and transformed
into a matrix with the chemical shifts on the x-axis and the intensity on the
y-axis. The classification of the spectra of large series is generally done using
unsupervised (PCA) or supervised statistical (PLS) methods.

2.3 Classification

In machine learning applications, the goal is to train a model (or enable it to
learn) from the data it is given, and thus improve its output (results). Machine
learning techniques are generally split into two families: supervised and unsu-
pervised learning methods. Unsupervised models learn from unlabelled data: the
trained model works on raw data and looks for patterns in the given information.
They are very convenient because the input data does not need to be tagged or
labelled. However these techniques can be limited when the task is to distinguish-
ing between many complex classes. Supervised models require labelled data and
they usually need more computing capacity (and more data). Given the exact
information of the expected class for each data (label), the model is able to
discern the specificity of two closely related classes since it knows they must be
different. However, when using supervised techniques, one must be careful about
over-fitting. When the training of the model is not well established (for instance,
when the input data is too specific), it can identify false relations that bias the
reasoning, resulting in wrong classifications.

The NMR spectra of some molecules are very close and are quite difficult
to differentiate for humans. As a result, the use of unsupervised models seems
inconsistent with the high similarity of the data. In our case, supervised model
seem the most appropriate. The distinction between two close NMR spectrum
seems too complicated to be done by the model itself.

In this context, many algorithms for spectral matching have been developed
since the 1970s [9,11]. Most of these algorithms were developed for mass spec-
trometry. Their applications quickly extended to vibrational spectroscopy. These
conventional spectral matching approaches are iterative techniques. They are
based on the identification of the largest similarities between the unknown spec-
trum and the reference spectrum. These approaches document the tools and
techniques that are used to automate this classification through AI. The first
results of 1D CNN for spectral data analysis [21] revealed the potential of using
machine learning methods for spectral analysis, from classification of a substance
to identification of components in a mixture in various scientific fields [13]. The
majority of recent publications use 1D CNNs for various spectral applications.

The first results of 1D CNN for spectral data analysis [21] revealed the poten-
tial of using machine learning methods for spectral analysis, from classification
of a substance to identification of components in a mixture in various scientific
fields [13]. The majority of recent publications use 1D CNNs for various spec-
tral applications. However, a few studies have highlighted the need for further
research in order to address the problem of not having enough samples compared
to the number of features.
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3 Material and Methods

3.1 Global Overview

This section provides a description of the dataset used, containing NMR sig-
nal recordings of the different samples to be analyzed, as well as the extracted
features used to generate the classification model. Then, the methodology used
all along the experimentation is described. The design and implementation of
the ANN presented in this work relies on Python programming language and on
Keras and Tensorflow libraries, that are among the most used for deep learn-
ing applications. The key steps in the proposed classification process for sample
tractability are: data preparation, network construction, training and evaluation.

3.2 Data

1D 1H NMR spectrum was acquired for each sample. Spectra were acquired on
a Bruker Advance-400MHz spectrometer using a 5mm broad-band probe tuned
to detect 1H resonances at 400.15 MHz. Data were collected without sample
rotation at 300K, as a 64K complex points using a noesygppr pulse sequence
with 90° pulse length and pre-saturation to remove the residual water signal.
The number of scan was set at 16. The receiver gain was set to 90.5 and the
spectral width was fixed to 20ppm. Obtaind FID were converted to spectra
using Topspin 3.5 software. Spectra were processed (phase correction, baseline
correction) and the signal of TSP set at 0 ppm was used as an internal reference
for chemical shift measurement. Finally, spectra were converted to csv files using
Mnova software. The csv files contain the chemical shifts on the x-axis and the
corresponding intensities on the y-axis.
The data are distributed in the following way (Table1).

Table 1. Dataset distribution

Class Number of spectrum
Colored acerola powder 1390
Acerola concentrate 1990
Acerola powder 1040
Acerola powder with added ascorbic acid | 1290
Ascorbic acid 2720
Other extracts 520

The following figure (Fig. 1) show two spectra that are visually close but
belong to two different classes.

3.3 Model

When exploring existing work in Sect. 2, we identified two techniques that could
be relevant for our classification problem:
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Fig. 1. Examples of spectra from two different classes.

Deep Neural Network (DNNs) are fully connected networks, all neurons in
each neuron in each layer are connected to all neurons in the following layer. The
input of a neuron is therefore equal to the number of neurons in the previous
layer. The classic DNN structure consists of an input layer, several hidden layers
and an output layer. When data enters the input layer, the output values are
calculated layer by layer in the network. In each hidden layer, after receiving
a vector consisting of the output values of each neuron in the previous layer,
it is multiplied by the weights associated with each neuron in the current layer
to obtain the weighted sum. The activation function of a neuron is specific to
its layer. The functions are chosen according to the type of problem. Sigmoid
functions are non-linear as opposed to Rectified Linear Unit (ReLu) for example.

Convolutional Neural Networks (CNNs) are a particular architecture of
deep networks [10]. They are designed to process data from several sources: 1D
for sequences, 2D for images and 3D for videos [17]. They are very suitable for
shape or pattern recognition while being insensitive to scale factor, rotation,
etc. In opposition to DNNs, convolution networks are not strongly connected.
The hidden layers are separated by layers acting like filter. These filters rep-
resent weights and biases. In general, the basic structure of CNNs consists of
convolution layers, nonlinear layers and pooling layers. To avoid combinatorial
explosion, all neurons in a convolution layer share the same filter, i.e. the same
weights and biases, in order to reduce the number of training parameters. As
with DNNs, the outputs of these filters are then passed through nonlinear layers
that typically use the ReLLU function. The role of pooling layers is to aggregate
semantically similar features to identify complex features by creating maximal
or average subsamples in the feature maps. Sometimes pooling layers are also
used to avoid network overfitting and improve model generalization. Given the
excellent ability of CNNs to analyze spatial information, they can be applied to
NMR spectra reconstruction, denoising, and chemical shift prediction. A convo-
lution network is more appropriate in our case of study because it will allow us to
build a feature map corresponding to the different parts of the NMR spectrum.

When using Keras library to implement an ANN in Python, it is necessary
to specify the type of model to be created. There are two ways to define Keras
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models: Sequential and Functional. A sequential model refers to the fact that
the output of each layer is taken as the input to the next layer, and this is the
type of model developed in this work. The objective is to build a feature map
representing the different metabolites characteristic of a class of plant extract
(Fig. 2).

OO0 : OO0

000 : OO0

000 - OO0
OO

Pooling | Pooling

Linear

Input Convolutional Feature map Convolutional Convolutional
regression

layer layer layer

Fig. 2. Feature extraction

The built network has 7 layers. The input layer is composed of as many
neurons as there are points on the spectrum. It has been reduced to 1300 datas
thanks to Evear’s expertise. The following layers reduce little by little the vector
to propose an output vector of 6 neurons, as summarized in Table 2.

Table 2. Network topology

Layer (type) Output shape | Param #
Input (Dense) (None, 1300) | 75401300
Layer2 (Dense) (None, 800) | 1040800
Dropout (Dropout) (None, 800) |O
Layer4 (Dense) (None, 500) | 400500
Layer 5 (Dense) (None, 300) | 150300
Layer 6 (Dense) (None, 100) | 30100
Outupt (Dense) (None, 6) 606
Total params: 77,023,606

A network is associated with several metrics:

— Optimization algorithm: The ANN will use an optimization algorithm to cal-
culate the weight of each neuron. There are several ways to do this. The most
common one is to minimize (or maximize) an objective function E(X) which
is a mathematical function depending on the internal training parameters of
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the model where X are features. The result of E(X) is used to compute the
objective values Y of the set of training parameters where Y ars labes. The
most commonly used optimization algorithms in ANNs are gradient descent.
In our case, we use a classical backpropagation proposed by Tensorflow.

— Loss function: The loss function, also known as the cost function, is a func-
tion that measures the quality of the network response. A high result indicates
that the ANN is performing poorly and a low result indicates that the ANN
is performing positively. This is the function that is optimized or minimized
when backpropagation is performed. There are several mathematical func-
tions that can be used, the choice of one of them depends on the problem to
be solved. The most suitable function for classification is the cross-entropy
function. The cross-entropy loss, or log loss, measures the performance of a
classification model whose output, Y, is a probability value P, between 0 and
1, and is calculated using the following equation (Eq.1). The cross-entropy
loss increases as the predicted probability deviates from the actual label. This
function is used for classification problems.

— (ylog(p) + (1 —y)log(1 — p)) (1)

4 Results

Our dataset contains a set of 8960 spectra distributed as describe in Table 1.
Following a similar procedure as in traditional approaches [19], the dataset was
randomized and then separated into two samples: Training 80% and Validation
20%. The learning (training) phase is a backpropagation repeated thirty times.

The indicators of the training phase are presented in this section. Reviewing
learning curves of models during training can help to diagnose problems with
learning, such as an underfit or overfit model, and if the training and validation
datasets are suitably representative.

We first observe the accuracy of the model (how well it is able to guess
the expected class for a given input spectra). This learning curve is calculated
from a hold-out validation dataset that gives an idea of how well the model is
generalizing.

As illustrated in Fig. 3(a), the accuracy increases with the repetition of the
training batch. At the end of this step, we can see that our network reaches
an accuracy level of 93% on the validation dataset. On samples that are not
part of the original dataset, we observed similar results. The loss curve, depicted
in Fig. 1(b), shows that our network is learning well and is converging to an
optimum. There would not be much benefit in extending the learning phase.
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Fig. 3. Learning curves

5 Conclusion and Future Work Direction

The aim of this work was to create a classification model of acerola samples using
an NMR spectrum as a data source. Once the data was made usable by the clas-
sical techniques of chemistry, we could use it to ensure a better traceability. The
advantage of this model is to save time and precision to the Evear-extraction
team. Through the introduction of a CNNs, we were able to define and train
a model capable of meeting our expectations. The training game was discrim-
inating enough to properly train the 7 layers of our CNN. However, from an
industrial point of view, it will be necessary to increase the capabilities of the
POC to take into account more complex plant extracts. However, from an indus-
trial point of view, it will be necessary to increase the capabilities of the POC
to take into account more complex plant extracts.

However, this work is only a proof of concept. The proposed classification
method of plant extracts could be significantly improved by exploring the fol-
lowing directions:

— using different (and more) classes for the network. Indeed, the acerola is only
one example of the plants to be traced. For this, it will be necessary to increase
the precision of the network and rework its topology.

— increasing the reliability of the traceability by being able to define the metabo-
lites and their quantity present in a spectrum.

— strengthening our knowledge of the spectrum by analyzing the parameters
described in the architecture of the neural network or using feature selection
techniques for the dataset.
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