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Abstract. Great demands are placed on the role of digital technology and arti-
ficial intelligence for sustainable development. External shocks, like the current
pandemic, as well as creeping degradation, like the effects of carbon economy
on the climate, need convincing concepts to control lasting negative effects on
society, environment, and economy. This paper is intended to contribute to the
search for ways of enabling resilience through technology.

High expectations are being put on data driven artificial intelligence in this
respect. We consider that artificial intelligence tends to fall short of scientific rigor
regarding cause-and-effect relations and discuss the inherent limitations of so-
called formal systems that are at the bottom of artificial intelligence systems. We
take into view what data analysis and reasoning can deliver regarding the discov-
ery of empirical phenomena, arguing that targeted, reflective data reasoning can
well help discover correlations worth further theoretical investigation. We sug-
gest combining established methods of epistemic knowledge generation with data
driven artificial intelligence, i.e. human intelligence with machine-based algo-
rithmic intelligence, in support of advanced human-systems integration. For this
concept of hybrid intelligence, we provide a procedural framework.

This methodological approach gets exemplified by the description of recently
published cases of a technical application resp. Scientific practice, illustrating the
potential of hybrid intelligence for the scientific as well as technical solution of
problems. Concluding remarks finally draw the line to future work on sustainable
artificial intelligence as a pathway to resilience delivered by technological means.

Keywords: Artificial intelligence · Formal systems · Data reasoning · Hybrid
intelligence · Human-systems integration

1 Introduction

External shocks are often perceived as being sudden surprises. However, this only holds
true under superficial observation or deficient reflection. So have the causes and effects
of climate change been named since decades, but it took long to establish public insight,
based upon scientific rigor. Likewise, the emergence of the SARS-CoV-2 virus and the
subsequent global pandemic were only surprising as to the specific virus type – there
have been numerous indications and warnings regarding potential virus pandemics since
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many years. And geopolitical tensions were virulent for long, including the risk of severe
political and economic confrontation.While their extension intomilitary action has been
well observable, it was hardly believed until the day it turned into reality, leading to a
major assault on a sovereign country which was a surprise to many in Europe. Although
not coming out of the blue, these cases generated shock waves across the globe. They
originated from technological (carbon economy), natural (virus evolution), or societal
(geopolitical claims of imperial power) grounds.

And they arewhat the International RiskGovernance Council (IRGC) calls emerging
risks, resulting from the complexity of the concerned dynamic, non-linear systems they
are part of. With focus on systemic risks in socio-economic systems, Helbing in [7]
elaborated on the effects of complexity, in particular their cascading spread involvedwith
network interactions. In their report [8] the IRGC built on his observations specifying
several contributing factors that make up the fertile ground for risk emergence. Among
these is the issue of technological advances. Changes in technologymay become a source
of risk if their impacts are not scientifically investigated in advance or surveyed after
deployment - even more so if there is insufficient regulatory framework in place1. Thus,
the IRGC are strongly arguing for ex ante as well as ex post risk assessment. The aim can
be taken as a kind of sustainability evaluation, in the broad sense of securing sustaining,
desirable implications whilst avoiding undesired side effects.

Interestingly, new technologies appear likewise to support the ability to adapt to
future shocks. Brunnermeier [19], with a general societal perspective, points out that
dealing with risk can either mean trying to avoid it, or to accept it in accordance with a
framework of institutions, rules, and processes that are bound to enable recovery from
external shocks. The first option remains constrained though, because total robustness,
which covers any conceivable emergency, can hardly be realized as it would normally
involve unacceptable high cost. The latter approach in fact finds increasing interest these
days in the concept of resilience. A most relevant question then is to what extent can
technology contribute to resilience, respectively become a driving force to it.

The currently most prominent technological field in this respect is digital transfor-
mation along with the resumed concept of artificial intelligence. The availability of mas-
sive data via digitization enables novel ways of empirical investigation. Techniques for
their analysis do not only offer new approaches for applications in domains as diverse
as health, mobility, manufacturing, agriculture, finance, energy, public administration
etc. They also drive the development of what may be called Artificial Intelligence for
Resilience, or Artificial Intelligence for Risk Governance.

This paper is intended to contribute to the search for technological ways of enabling
resilience in that sense. The availability of massive data from digitization, along with
powerful algorithms for analysis and reasoning, are the means to pro-actively assess risk
scenarios and prepare for adequate responses of choice. We argue for the combination
of human intelligence with algorithmic intelligence for the purpose of expanding theo-
retical knowledge from a theoretical as well as practical perspective. Our starting point

1 For the technological field of Artificial Intelligence, and more general the digital transforma-
tion on its way these days, we have presented an investigation of risk mitigation matters in
[10], comprising functional, societal, and cybersecurity risks. And their relation to regulative
frameworks in the EU.
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are reflections on formal systems, which are the methodological foundation of every
scientific domain, and their limitation that must be accounted for in any application of
artificial intelligence. A formal system is a set of axioms and rules for inference, and
the resulting space of propositions, which altogether govern a domain of knowledge. It
cannot be complete, free of contradiction, and closed at the same time. We then take into
view what data reasoning, in particular machine learning can deliver for the discovery of
empirical phenomena. As algorithmic machine-driven systems can become sources of
novel security issues, need arises for precautionary searching of potential flaws by use of
theoretical models. Respective procedural interrelations get illustrated in the framework
for hybrid intelligence we suggest in the subsequent section, showing the combination of
formal deductive methodology and probabilistic approaches. We continue by recurring
to recently published cases of technical resp. Scientific examples showing the practical
benefits, and close with concluding remarks as to future work on sustainable artificial
intelligence.

2 Formal Systems are Limited

The scientific way of generating knowledge rests upon well-established processes that
comprise the formulation of concepts, the generation of assumptions and their testing,
the validation of findings and their alignment within a theory, and their incorporation
into a coherent set of theorems and propositions which make up the body of domain
knowledge [cf. 12]. Science is, in terms of methodology, extensively while not com-
pletely determined work, according to Kuhn [12]. Scientific progress is incremental and
sometimes even disruptive when legacy paradigms get shifted – where the rationale of
such a shift remains unclear in Kuhn’s work [12]. Rovelli [16], on the contrary, argues
that science and its progress work through continuity, not discontinuity. He identifies
two origins of conceptual shifts in science: new data exerting decisive rationale for
change, e. g. in the case of Kepler getting to his ellipses by mathematical analysis of
empirical data of planet’s courses, and informed investigation of contradictions within
an existing theory, e. g. heliocentrism of our solar system. Following his observation
of philosophy having contributed essentially to scientific development especially in the
case of physics, Laplane et al. [13] more generally localize this impact of philosophy in
the conceptual clarification and the critical assessment of assumptions or methods in a
scientific discipline. We consider this a little deeper.

As mentioned, a scientific theory consists of a coherent set of theorems and propo-
sitions that are derived from a set of axioms with the help of rules of inference. The
question of the validity of a theory in the sense of ‘being true’ has been subject to a
wealth of debates in science theory. While the question ‘What is truth?’ could not be
finally answered by philosophers throughout millennia up to now, Penrose [15] provided
a comprehensive elaboration on the simplified question ‘What is mathematical truth?’.
The interest of our paper here are formal systems as part of artificial intelligence systems,
i.e. abstract sets of axioms and rules for the purpose of inferring propositions to build a
knowledge base to a certain domain. Mathematics is considered the perhaps most basic
manifestation of such an axiomatic system, so it is safe to refer to Penrose’s work [15].

Penrose [15] draws on the finding by Goedel formulated in his incompleteness the-
orem which applies to any formal system, consequently to any attempt of founding an
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artificial intelligence system on such a formalism. We content ourselves to refer the line
of argument in brief without extensive detail: To ensure only valid propositions - in the
sense of being mathematically proven - be derived, mathematical reasoning must be
free of contradiction. Goedel showed that any such mathematical system, of whatever
type, which is free of contradiction must include statements that are neither provable nor
disprovable by the means allowed within the system. So full truth cannot be achieved
within an axiomatic system by methods of proof. Penrose [15] pointed out that there is a
way to get to the validity of a proposition he calls the reflection principle. By repeatedly
reflecting upon the meaning, we can see it is true although we cannot derive it from the
axioms. This seeing requires a mathematical insight that is not the result of deductive
proof, or purely algorithmic operations which could be coded into some mathemati-
cal formal system. Admittedly, the status of this insight, as a mental procedure, remains
unclear except its non-algorithmic nature. Its applicability appears as and insofar it leads
to a coherent mathematical theory. At the very end, the consequence most interesting
in the context of artificial intelligence - taken as a machine based algorithmic inference
engine –may be: “…the decision as to the validity of an algorithm is not itself an algorith-
mic process” [15, p. 536]. Hence the inherent theoretical limitation of formal systems,
which is depicted in Fig. 1: the object of human intelligence along with epistemics are
domains of the real world, which include the physicalist part (‘knowledgeable’ in Fig. 1)
and the non-physical qualities (‘qualia’)2. A formal system builds a proper part of a
knowledgeable domain.

The algorithmic nature of purely machine-based Artificial Intelligence systems
allows for formal procedures that cannot fully cover the related knowledge domain,
not even the knowledgeable subset. Autonomous AI applications therefore will always
have a blind spot area of propositions. The engineering of such AI systems needs to take
care respectively, e.g. by ruling out their application in situations which might bear the
risk of touching this area, or by calling in human guidance in such a situation. These
issues get addressed under the concept of operational design domains, ODD, where
functional constraints are introduced to avoid system states of that nature (cf. The case
of autonomous vehicles engineering). Or by utilization of digital twins, which enable
the investigation of such states for mitigation purposes (cf. The case of robotics).

2 The difference between real domains and what is physically explainable is known as the onto-
logical or epistemic gap – ‘knowledgeable’ then is a proper subset of reality. This philosophical
distinction is not addressed in our context here.
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Domain

Knowledgeable

Formal System

Fig. 1. The set of propositions of a formal system is a subset of the knowledgeable content of a
domain which is a subset of the domain itself

3 Data Reasoning and Discovery

With the rise of digitization came data analytics as a source of innovation in science,
industry, administration, and commercialmarketplaces. Increasing utilization ofmassive
data for automated decision making, machine learning and autonomous systems lead to
several issues to be taken care of, among them data privacy (including data sovereignty,
protection, safety) and data quality [cf. 9], and the validity of processes for their analysis
and reasoning [cf. 10]. Uncontested, though, is the valuable potential of data driven
artificial intelligence. The expectations are high: novel applications supporting societal
and or economic progress; enhanced decisionmaking based on algorithms; advancement
of computational methods in sciences. In the context of this paper the latter both are of
interest.

Our understanding of problems with our making decisions has been fundamentally
enriched by the work of Kahneman et al. [11]. Deficient judgements appear to have
two kinds of sources that are not related to the quality of information available: bias,
the systematic deviation from neutral assessment, triggered by personal preferences;
and noise, the statistical variance of judgements resulting from personal disposition3.
They raise the question if and how bias and noise can be overcome with the help of
metric criteria and parameter, and whether machine-based algorithms are per se more
suited. Their answer is: they can be, it depends on the availability of parameters, their
correct measurement, and the selection of parameters and measurement process being

3 Eren and Mocan [6] provided an impressive empirical investigation of the correlation of unex-
pected football match losses with the length of sentences of judges, showing the impact of
emotions in one domain on human decisions made in a completely unrelated domain.
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free from bias and noise. However, Ludwig and Mullainathan [14] presented evidence
of the fallibility of algorithms – be they controlled by humans or machines – depending
on the algorithm as such, i.e. its fragility resulting from deficient construction. They
resume that it is possible to reduce bias by well-built algorithms. If done right, artificial
intelligence has the potential to undohuman fallibility. They suggest humanplusmachine
combination to be the best choice, though. A similar conclusion is drawn by Athey et al.
[3]. Discussingwhen and howhumans andmachine-based algorithms should collaborate
and who would be best to have formal decision authority, they argue for the AI system
under optimal conditions as to data and algorithms employed, but for the combination
of AI and human agent knowledge if that cannot be guaranteed.

The second option of harvesting the potential benefits of data reasoning lies in the
generation of scientific novelty forced by data. It is not restricted to Physics if Rovelli
[16] highlights sophisticated use of induction based upon accumulated empirical and the-
oretical knowledge as themost promisingway forward in science. Regardless of whether
massive data in a domain becomes available through digitization as such or by targeted
experimental collection, it can be used to discover patterns and detect correlations that
suggest new cause and effect relations (or propositions within the formal theory) to be
tested for their validity. This is nothing new (recall the Kepler case mentioned in Sect. 2),
but modern machine learning operations open a wealth of opportunities of that kind as
they can find out conspicuous patterns in seconds instead of years of calculation. The
basic process description is visualized in Fig. 2, as compared to Fig. 1 in Sect. 2. For
exemplification, we present two recently published cases, one from pharmaceutical and
another from historical research, in Sect. 5.

Domain

Knowledgeable

Formal System X

Fig. 2. A new empirical observation X stimulated the finding of a new proposition, what expands
the formal system
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4 Hybrid Intelligence and Its Potential

The limitation of Artificial Intelligence is a matter of principle, not of practicability [cf.
15]. Formal systems cannot completely cope with reality due to missing instantiations of
e.g. ‘understanding’ and ‘meaning’, mental capabilities that are fundamentally human.
But Artificial Intelligence enables the detection of correlations by data analysis tech-
niques a human would not be capable of in terms of quantity of data to process. These
techniques are at the heart of machine learning operations, with algorithmic procedures
as their major building blocks. Algorithmic processes are the very kernel of Artificial
Intelligence. Human intelligence, however, comprises these and alsowhat Penrose called
‘reflection’ and ‘insight’. Both human and artificial intelligence are subject to bias, while
artificial intelligence appears to be free of noise, other than humans. This is the ratio-
nale of combining human and artificial intelligence in the concept of hybrid intelligence
(Fig. 3).

Fig. 3. Combining human and artificial intelligence

The Artificial Intelligence side of this concept is mainly building on data collection
and analysis, and on pattern recognition and related reasoning. Altogether they make up
the machine learning operation of the AI system. If such a system operates completely
autonomous, the developing experience base can become instable and get out of order,
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as examples with text generation applications let show. Rudin [17] therefore strongly
suggests machine learning to be tailored specifically to the domain of interest, thus
enabling interpretability, as opposed to pure black box machine learning. This approach
becomes focus in the concept of federated learning. Likewise, Athey [2] argues for big
data applications in the policy field. She contests the usefulness of machine learning
‘off-the-shelf’, which is without understanding of underlying assumptions that require
domain expertise to verify. Thus, she makes a strong point for supervised machine
learning as it would be inherent to hybrid intelligence. And for computational social
sciences Watts, Beck et al. [18] claim that data reasoning for predictive purposes must
rest upon consistent estimation of causal relation, which requires the involvement of
human domain knowledge.

Human supervision is represented in the left part in Fig. 3. It has controlling impact on
the machine-based operations via digitization and design. Reversely, data reasoning on
the AI side influences the advancement of the domain knowledge base by formalization
and validation of assumptions drawn from patterns that were detected. It is worth noting
here that in certain contexts of application human supervision can be important as it
enables the purposeful introduction of bias which is explicitly desired. Cirillo et al. [5]
discuss this for the field of precision medicine, where there is the need to consider sex
related differences with physiological parameters or digital biomarkers when empirical
patient data is collected for analysis.

5 Exemplifying Cases and Concluding Remarks

It is worthwhile to note that hybrid intelligence, as illustrated above, is not only meant to
apply to scientific fields. It is appropriate in the industrial or public administration sphere,
too, and also in commercial applications. In terms of innovation through knowledge
generation however we expect the most valuable impact on science. Two cases of this
kind that were subject to recent publications shall be described briefly here.

The first one is related to the COVID19 pandemic. When the SARS-CoV-2 virus
emerged in the year 2019 and spread worldwide since 2020, a most unique innovation in
pharmaceutics was accomplished in record time: the development of mRNA vaccines.
They turned out the most powerful preventive measure against the COVID19 disease.
However, numerous virus variants started to develop quickly and steadily. The mutant
viruses showed significantly different levels of infective potential and severity of symp-
tomatic illness. Soon questions arose about the effectiveness of vaccines and eventual
need for adjustment. In the past the evaluation of new mutant risk rested on ex post
observation of manifest infections, which required significant lead time for empirical
investigation. Recently, though, as a novel approach a hybrid intelligence concept was
put into action. The preprint of first results became available in December 2021. Beguir,
Sahin et al. [4] describe their approach to the early computational detection of high-risk
virus variants. It builds upon the combination of human domain expertise, as to the rela-
tion of specific virus structures and their potential implications, and the so called in silico
assessment of their risk level with the help of supervised machine learning technique.
Results of the machine learning application were reviewed by human domain experts as
to their validity, and to enhance the model employed. The researchers report significant
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improvements regarding the time needed to detect dangerous variants, on average two
months ahead of WHO sourced respective warnings. Furthermore, they demonstrated
the applicability of their approach to real-time risk monitoring of mutations by an Early
Warning System.

The second case is about historical research into the restoration of ancient text inscrip-
tions that are damaged or remain preserved only partially, as most recently published [1].
The established scientific methods of epigraphy are constrained to the use of repositories
of textual and contextual parallels and bring along high levels of generalization but low
certainty of results. Assael et al. [1] applied a deep learning software based on neural
networks that, with the help of human domain expertise, was carefully tailored to the epi-
graphic tasks to accomplish. They conducted experimental evaluation by applying their
approach to a couple of ancient Greek inscriptions, using a specific metric to evaluate the
performance achieved. They found substantial improvements of accuracy and speed of
the restoration tasks under use of the combined human-machine intelligence concept. In
fact, they report that the combination of human and artificial intelligence in an iterative
process achieves significantly better results than human or artificial intelligence only.

These examples point to how technological resilience can be achieved with the help
of hybrid intelligence approaches, be it pro-active risk governance, e. g. in health, or
life-cycle advancement of ODD’s, e.g. with autonomous vehicles, or enhancement of
simulation models using digital twins, e. g. in smart manufacturing.
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