l‘)

Check for
updates

Integrating Computational Design
Support in Model-Based Systems
Engineering Using Model
Transformations

Eugen Rigger!(®™ | Simon Rédler?, and Tino Stankovic?

L Zumtobel Lighting GmbH, Schweizerstrasse 30, 6851 Dornbirn, Austria
eugen.rigger@zumtobelgroup.com
2 Business Informatics Group, TU Vienna, Favoritenstrae 9-11/194-3, 1040 Vienna,
Austria
3 Department of Mechanical and Process Engineering Chair in Engineering, Design
and Computing, CLA F 21.2 Tannenstrasse 3, 8092 Ziirich, Switzerland

Abstract. Model-based systems engineering (MBSE) combines the
rigor of systems engineering with formal models to support communica-
tion in multidisciplinary engineering. With industrial adoption of MBSE,
the maturity of modeling environments supporting MBSE increased.
Still, efficient means to integrate computational design methods in MBSE
are missing. Here, we present a method that enables systems engineers to
directly integrate computational methods for solving design tasks. The
method relies on established semantics of the systems modeling language
(SysML) and therefore can be directly integrated with existing system
models so to avoid redundant knowledge formalizations for computa-
tional methods. Next, model transformations are applied to generate the
mathematical model based on the relevant parts of the system model.
These temporary models are used to solve the design task and generate
output that is fed back to the system model. Therefore, the proposed
method contributes by relying on a single and comprehensible knowledge
formalization understandable to engineers. Further, it enables systems
engineers to formalize design tasks for automated reasoning themselves
by bundling the complexity of the mathematical modeling within the
model transformations. An industrial case for designing sealing elements
for piping is used to illustrate the potential of the proposed approach.
Future work needs to further elaborate on automated selection of appro-
priate mathematical methods as well as computational support for the
identification of opportunities for integration of computational design
methods readily while developing a system model.

Keywords: Model-based systems engineering - SysML -
Computational design method - Design automation

© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023

F. Noél et al. (Eds.): PLM 2022, IFIP AICT 667, pp. 186-195, 2023.
https://doi.org/10.1007/978-3-031-25182-5_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25182-5_19&domain=pdf
https://doi.org/10.1007/978-3-031-25182-5_19

Integrating Computational Design Support in Model-Based Systems 187

1 Introduction

Systems engineering and in particular model-based systems engineering (MBSE)
are design methodologies integrating different engineering disciplines in product
development, promising increased design performance for the development of
complex systems [4]. Establishing a central formalization of system characteris-
tics and explicit modeling of dependencies within the system are core to MBSE
[3]. In this respect, dedicated languages for MBSE exist, with the Systems Mod-
eling Language (SysML) being an established standard for graphical modeling
of systems [7]. From the inception of SysML, validation of systems using the
formalized dependencies in the systems, particularly parametric constraints, are
a core point of interest [9] and tools enabling evaluation of parametric relations
using SysML models are currently commercially available. In this context, cur-
rent state of MBSE practice focuses on the evaluation of a limited number of
design alternatives [1]. Methodologies to integrate MBSE and set-based design
for systematic design space exploration have recently been conceptually intro-
duced [15]. Yet, the integration of computational design support and systems
modeling that goes beyond parametric evaluation is cumbersome and causes
redundant knowledge formalizations: Either, the semantics of the computational
methods need to be integrated to the system model extending the modeling syn-
tax and requiring fundamental insight to the computational method [14], or, the
computational model is developed from scratch directly within the environment
of the computational method guided by the information captured in the system
model [16].

Here, we present a method for seamless integration of computational design
support while developing a system, solely relying on established syntax of the
standardized modeling language SysML and model transformations [2] from
SysML to the computational formalization. The utilization of the computational
design support does not require expert knowledge regarding the mathematical
modeling or implementation specifics of the underlying computational method.
For the type of computational design support, we focus on methods from the
domain of design automation [12]. Thereby, this work contributes by proposing
a means for direct integration of computational design methods with engineering
design. A novel approach regarding the formalization of design tasks strength-
ening the role of the SysML as unified meta-model in systems engineering is
presented. In this work, the definition of critical system parameters of pressure
pipe sealing mechanisms is used as an example to illustrate the proposed concept
for conceptual design of a mechanical subsystem.

In the following, first, the relevant background regarding systems model-
ing, computational design methods from the field design automation, and model
transformations are introduced. Next, the principles for integration of compu-
tational methods in a systems engineering process are described and illustrated
by a case study. In the discussion section, the observations from the case study
are critically discussed as well as the scaleability of the approach for design
automation tasks along the product lifecycle. The paper closes with concluding
remarks.

188 E. Rigger et al.

2 Background

In the following, first, processes and methods for model-based systems engi-
neering are reflected. In this context, the application of SysML in the context
of computational design methods is assessed. Next, principles of computational
design methods from the research field design automation are reviewed so to
derive requirements regarding the semantics for design automation task formal-
ization. Finally, the concept of model transformations is introduced.

2.1 Model-Based Systems Engineering

MBSE centers around a formal system model that captures system character-
istics in a neutral domain-independent manner. In practice, several processes
supporting MBSE can be identified [3] and industrial standards have been estab-
lished such as VDI 2206 that follows the v-model [17]. Similarly, standardized
modeling languages such as SysML exist [8]. SysML provides the semantic foun-
dation for documentation of system requirements, behavior, structure, and para-
metric relations.

2.2 Computational Design Methods for Systems Engineering

Design automation aims to increase efficiency and effectiveness in design by the
application of computational methods for reasoning with formalized knowledge.
Regarding the actual formalization of a design automation task, conventional
approaches rely on dedicated knowledge formalization for design automation
[16]. Efforts towards using standardized languages such as SysML exist. How-
ever, they rely on extensions of SysML tailored for the targeted computational
method, for example [14]. With the aim to derive a basis for a more unified repre-
sentation independent of a specific computational method, [12] analyzed existing
design automation methods with respect to the required types of knowledge to
describe a design automation task fully. They derived multiple classes of design
automation tasks that can be distinguished based on a unique combination of
the required knowledge regarding input and goals of a design automation task
as well as the generated output knowledge. Building upon this work, [10] intro-
duced a method for modeling a product configuration problem solely relying on
SysML syntax. Yet, a detailed elaboration on the actual processing of the SysML
model to yield a computational formalization is missing.

2.3 Model Transformations

Models can be defined as machine-readable artifacts, enabling the representation
of a relevant aspect of interest [2]. Model transformations allow deriving a specific
viewpoint on an artifact to make use of these machine-readable artifacts and
can be classified as model-to-model and model-to-code/text transformations [2].
Model transformations are typically applied to meta-models. In model-to-model,
the mapping between the input and output meta-model is given by different
conditions and operations [13]. The purpose of model-to-model transformation
are bringing two systems together, derive a specific viewpoint or align models etc.

Integrating Computational Design Support in Model-Based Systems 189

In model-to-text transformations, the input meta-model is depicted and mapped
to an output, given as blocks of text, filled with input properties and combined in
a logical order. Similarly, text-to-model transformations can be defined. Model
transformations are supported by different transformation engines, like ATL [5]
or Epsilon [6].

Based on the gaps identified in the preceding sections, the research gaps
addressed in this work concerns the seamless integration of computational design
methods within systems engineering.

3 Method for Integration of Computational Support
in Model-Based Systems Engineering

In this section, we introduce the proposed method to show how computational
design methods and model-based systems engineering can be seamlessly inte-
grated. First, the overall principle is highlighted showing the interplay of a
generic model-based systems engineering process, the system model and model
transformations. Next, SysML modeling semantics are introduced so to define the
context for integration of computational support. Finally, the details of applied
model transformations are presented.

3.1 Linking the System Model and Computational Design Methods

Figure 1 shows the overall concept for the usage of computational design meth-
ods in model-based systems engineering: the system model is gradually refined
and elaborated on during the design process. A design task can be described by
the input, output and goals [12]. These design tasks can be mapped to design
automation tasks supported by available computational design methods [11].
Once a design automation task is identified, relevant parts of the system model
can be extracted and used to formalize the design automation task. The specific,
modeling semantics are detailed in Subsect. 3.2. The yielded subset of the sys-
tem model can then be used to generate the mathematical model using model
transformations as described in Subsect. 3.3 and, finally, the obtained results
are fed back to the system model integrating the output generated by applying
the computational design method on the task formalization. It has to be noted,
that the generated mathematical model solely serves the purpose of generating
a new design and can be withdrawn after usage.

3.2 SysML Modeling Guidelines for Computational Support

To comprehensively introduce the required modeling semantics, first, the formal-
ization of input knowledge is presented. Next, the semantics for the formalization
of the goals of a task are specified.

190 E. Rigger et al.

Intermediate Mathematical

MBSE Process SysML Sub- representation Model

Model

Task
izati model2model model2code /f =<
System formalization
Model ; 5

Updated et taa
System) code2model ’ ¢+ solve
. + +
Model A Y
"\
+

Solution
Space

Fig. 1. Process overview

Formalizing Input of a Design Task. First, the product architecture of the
model needs to be formalized. Depending on the maturity of the systems model,
this can refer to a functional, logical or physical architecture. SysML Block
Definition Diagrams are used to depict hierarchical structures of blocks using
part-of associations. Associations’ multiplicities can be used to depict degrees of
freedom in the model, e.g. a multiplicity 1..4 defines that one to four instances
of a specific component can be defined. Additionally, value properties are used
to describe specific properties of a block, e.g. the diameter of a wheel. If a
numeric value property is instantiated, but not assigned any value this property
is considered a variable when generating the mathematical model. When it comes
to the selection of types of sub-components/-systems, abstract blocks can be
defined in SysML indicating that a specific instance of this block needs to be first
selected. Using specialization relations, the value properties of the abstract block
can be propagated to all possible variants. Using parametric diagrams relations
among blocks can be defined so to evaluate a system’s performance. In particular,
value and part properties can be linked. In case parametric relations between
the properties exist, constraint blocks and the related constraints and constraint
properties can be used to formalize more complex dependencies. The constraint
itself can be a regular mathematical expression following JAVA syntax but could
also be an external simulation model [9]. Finally, to conclude the specification
of input of a task definition, specific values need to be assigned to selected value
and part properties in order to narrow down the solution space. In this respect,
a block named “input” needs to be defined as well as corresponding properties.
These properties can then be linked to the system’s properties using parametric
diagrams.

Formalizing Goals of a Design Task. Similar to the formalization of con-
straints for evaluation of the system, performance constraints can be formalized
using parametric diagrams and constraint blocks, e.g. the weight of a system
must not exceed a threshold value. When it comes to finding optimal solutions,
the objective function can be defined simply by using the SysML stereotype
“objectivefunction” upon a specific constraint block.

Integrating Computational Design Support in Model-Based Systems 191

3.3 Model Transformations Relying on SysML

As depicted in Fig.1, multiple transformations are required to transform the
task formalization to a mathematical model and then migrate the yielded results
back to the system model. First, a model-to-model transformation is performed
generating an intermediate representation that is designed to efficiently provide
all information required for deriving the mathematical model using a model-to-
code transformation. In contrary to the SysML model, the intermediate model
captures only the artifacts that are relevant for the mathematical model. Thus,
the size of the model can be reduced to increase efficiency of transformations.
For example, the artifacts of the intermediate model are enriched so to con-
tain explicit references to children, parents etc. Thereby, unidirectional access
to all relevant information is warranted required for the subsequent model-to-
text transformation. As a representation of the mathematical model, various
mathematical modeling languages targeted at optimization can be used such as
AMPL or MiniZinc. These languages follow similar structures. In a first step,
all parameters and variables of the mathematical model are created in plain
text. Thereby, iterative looping through the intermediate model searching for
variable and parameter declaration is performed. Following this, constraints are
generated and constraint parameters are replaced by variable and parameter
definitions defined in the previous step. Finally, the objective function is defined
and a an appropriate solver is identified based on problem characteristics, such
as types of constraints, variables etc. Figure 8 illustrates the concept of applied
model transformations.

4 Case Study

In this section a case study is presented for a use case from oil&gas industries.
Specifically, the design task to pre-dimension the sealing of a pressurized pipe
is addressed that can be considered a crucial step in the early stages of the
system development. In the following, the SysML model as well as the resulting
MiniZinc model are introduced.

4.1 SysML Model

Figure 2 shows a schematic of an o-ring sealing system considered here as use
case. Figure 3 shows the product architecture of the use case. The calculation
model, which is the core of the concept, is shown on top. It consists of two sub-
components, the Pipe and the O-Ring. Each component contains value properties
describing the components. The italic font applied for naming the O-Ring indi-
cates that the block is abstract. Figure4 shows an excerpt of possible O-Rings
assigning specific values to the properties inherited from the abstract block.
Figure5 shows how input values of a block can be semantically linked to
system properties using a parametric diagram . To evaluate specific designs,
a constraint to calculate the smallest possible Groove Diameter given the

192 E. Rigger et al.

Groove_Width

j

Bore_lnner_Diameter
Groove_Diameter_Male
Plug_Diameter_Male

Fig. 2. Schematic of use Fig. 3. Product architec-
case ture Fig. 4. O-Rings

Bore_Inner_Diameter, tensile and burst rating as well as corresponding safety
factors. Figure 6 depicts the constraint block linked to the system model using a
parametric diagram. The objective function of the design task is shown in Fig. 7.
It states that an O-Ring needs to be selected that is as close as possible to the
smallest possible Groove_Diameter. An additional functional constraint is added
to the model stating that the pipe’s groove diameter needs to be smaller than
the O-Ring’s diameter in order to enable physically meaningful solutions, only.

“Blocks
] CalculationModel

& Groove Diameter Male:Real

Fig. 6. Constraint block
Fig.5. Connecting input integrated using a para- Fig. 7. Objective function
values to the model metric diagram

4.2 Model Transformations

The Java-based model transformation family of Eclipse Epsilon is used to trans-
form the SysML 1.6 model from Eclipse Papyrus 6.0 into the intermediate model
and further to a MiniZinc model. In this respect, the model-to-model transfor-
mation apply the Epsilon Transformation Language (ETL). For each instance
of an entity in SysML such as a block, constraint block or connections, one or
multiple transformation rules are applied. In ETL, guards can be defined so that
a specific transformation is only applied for the right model artifacts.

Based on the intermediate model, the model-to-text transformation is applied
using the Epsilon Generation Language (EGL) yielding a MiniZinc model.

Integrating Computational Design Support in Model-Based Systems 193

<Blocks
5 GalculationModel

e e

p |

Male = 221.0261284724278
le =

G

Boooo

-0.0
8816517651356
- 214

g_Product_architecture = { 0_201, 0_202, 0_%
225, 0.226, 0227, 0_228, 0_229, 0_230, 0_231, 0_23
0_254, 0_255, 0_256, 0_257, 0_258, 0_259, 0_260, 0_26:
0.283, 0.284 };

enum
0_225.

Fig. 8. Transformation Round-Trip

Within the EGL, text and loops are implemented. To enable execution of gen-
erated model, a specific solver needs to be selected, e.g. COIN-BC! solver.

5 Discussion

In the following, the proposed method is critically discussed from two perspec-
tives: First, the formalization of the mathematical model using SysML without
the creation of new stereotypes, and, second, the model transformations applied
to integrate computational design methods and SysML models.

5.1 Mathematical Modeling Using SysML

By applying model transformations, the proposed method integrates design task
formalizations directly within the system model. Therefore, the role of the sys-
tem model as a single source for system modeling is strengthened by avoiding
redundant formalizations as required by existing approaches from the domain
of design automation. A major benefit of our proposed method is that already
existing product knowledge captured by the system model can be directly reused
preventing errors in formalizations and saving time. By strictly separating sys-
tems modeling and mathematical modeling using the transformations, systems
engineers are enabled to integrated computational design methods in their work.
Nevertheless, the systems engineer needs to be knowledgeable about the oppor-
tunities for the application of computational design methods. Methods exist [11],
yet, more rigorous support is desirable, for example using pattern recognition
upon the system model to identify design tasks that can be potentially supported
using computational design methods. Future work needs to focus upon facilitat-
ing design task modeling for systems engineering by providing means to assess
design task formalizations. For instance, network analysis of constraints and
models could support early debugging of faulty relations in the design task for-
malization. Additionally, future work needs to investigate how machine learning

! https://github.com/coin-or/Cbc.

https://github.com/coin-or/Cbc

194 E. Rigger et al.

models can be formalized using SysML so to enable an even broader application
of computational design methods.

5.2 Model Transformation and Information Backflow

The presented method relies on an intermediate model that acts as a compre-
hensive source of information for derivation of a mathematical model. For the
depicted use case, a MiniZinc model was generated. However, any other target
domain can be addressed. Yet, it needs to be taken into account that generating
the mathematical model requires transforming an object-oriented model to a
declarative representation. Hence, developing these transformations can be con-
sidered a challenge. For example, combining multiplicities and abstract blocks
means that a number of decision variables corresponding to the degrees of free-
dom of the multiplicities times the available instance of the abstract block need to
be defined. Therefore, complex mathematical models can be yielded for allegedly
simple design task formalizations in SysML. In this respect, future work needs
to elaborate on automatically selecting appropriate solvers for a given design
task formalization. A challenge to be considered is that the solver’s performance
depend on the mathematical modeling. In this regard, automatic selection of
appropriate algorithms and improvements based on the selection could enhance
the results. Additionally, some solvers can describe a solution space or generate
multiple solutions. Backpropagation of results should then enable to represent
all generated variants in SysML.

6 Conclusion

This paper presents a method enabling seamless integration of computational
design methods and model-based systems engineering. Based on a case study
addressing the pre-dimensioning of a mechanical subsystem, it is shown how
semantics of the systems modeling language SysML can be used to formalize
a design automation task directly within the system model avoiding redundant
formalization of knowledge. Further, the applicability of model transformations
to transform a SysML model to a mathematical model is shown. Hence, seamless
integration of computational design support is enabled. Future work will elabo-
rate on the actual identification of design tasks as well as further elaborating on
the optimization of generated mathematical models.

Acknowledgements. This work has been partially supported and funded by the
Austrian Research Promotion Agency (FFG) via the “Austrian Competence Center
for Digital Production” (CDP) no. 881843, the K2 centre InTribology, no. 872176.

Integrating Computational Design Support in Model-Based Systems 195

References

Beihoff, B., et al.: A world in motion - systems engineering vision 2025

2. Brambilla, M., Cabot, J., Wimmer, M.: Model-driven software engi-

10.

11.

12.

13.

14.

15.

16.

17.

neering in practice: Second edition 3(1), 1-207. https://doi.org/10.2200/
S00751ED2V01Y201701SWE004

Estefan, J.A.: Survey of model-based systems engineering (MBSE) methodologies.
Incose MBSE Focus Group 25, 1-70 (2007)

Huldt, T, Stenius, I.: State-of-practice survey of model-based systems engineering.
vol. 22(2), pp. 134-145. https://doi.org/10.1002/sys.21466,65

Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model transformation tool.
Sci. Comput. Program. 72(1), 31-39 (2008). https://doi.org/10.1016/j.scico.2007.
08.002

Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The epsilon transformation language.
In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063,
pp. 46-60. Springer, Cham (2008)

OMG: OMG SysML. http://www.omgsysml.org/

OMG: SYM SysML-modelica transformation. https://www.omg.org/spec/SyM/1.
0/

Peak, R.S., Burkhart, R.M., Friedenthal, S.A., Wilson, M.W., Bajaj, M., Kim, I.:
Simulation-based design using SysML part 1: a parametrics primer. In: INCOSE
International Symposium, vol. 17, pp. 1516-1535. Wiley Online Library (2007).
http://onlinelibrary.wiley.com/doi/10.1002/j.2334-5837.2007.tb02964.x /abstract
Rigger, E., Fleisch, R., Stankovic, T.: Facilitating configuration model formaliza-
tion based on systems engineering. In: Proceedings of the Workshop on Configu-
ration (ConfWS’21)

Rigger, E., Shea, K., Stankovié¢, T.: Method for identification and integration of
design automation tasks in industrial contexts. Adv. Eng. Inform. 52, 101558
(2002). https://doi.org/10.1016/j.aei.2022.101558

Rigger, E., Stankovi¢, T., Shea, K.: Task categorization for identification of design
automation opportunities. https://doi.org/10.1080/09544828.2018.1448927
Sendall, S., Kozaczynski, W.: Model transformation: the heart and soul of model-
driven software development. IEEE Softw. 20(5), 4245 (2003). https://doi.org/
10.1109/MS.2003.1231150

Shah, A.A.) Paredis, C.J.J., Burkhart, R., Schaefer, D.: Combining mathematical
programming and SysML for automated component sizing of hydraulic systems.
vol. 12(4), p. 041006. https://doi.org/10.1115/1.400776400009

Specking, E., Parnell, G., Pohl, E., Buchanan, R.: Early design space explo-
ration with model-based system engineering and set-based design. Systems 6(4),
45 (2018). https://doi.org/10.3390/systems6040045

Stjepandié, J., Verhagen, W.J.C., Liese, H., Bermell-Garcia, P.: Knowledge-based
engineering. In: Stjepandié, J., Wognum, N., Verhagen, W.J.C. (eds.) Concurrent
Engineering in the 21st Century, pp. 255-286. Springer, Cham (2015) https://doi.
org/10.1007/978-3-319-13776-610

VDI-Verlag: VDI-guideline 2206: Design methodology for mechatronic systems

https://doi.org/10.2200/S00751ED2V01Y201701SWE004
https://doi.org/10.2200/S00751ED2V01Y201701SWE004
https://doi.org/10.1002/sys.21466,
https://doi.org/10.1016/j.scico.2007.08.002
https://doi.org/10.1016/j.scico.2007.08.002
http://www.omgsysml.org/
https://www.omg.org/spec/SyM/1.0/
https://www.omg.org/spec/SyM/1.0/
http://onlinelibrary.wiley.com/doi/10.1002/j.2334-5837.2007.tb02964.x/abstract
https://doi.org/10.1016/j.aei.2022.101558
https://doi.org/10.1080/09544828.2018.1448927
https://doi.org/10.1109/MS.2003.1231150
https://doi.org/10.1109/MS.2003.1231150
https://doi.org/10.1115/1.4007764
https://doi.org/10.3390/systems6040045
https://doi.org/10.1007/978-3-319-13776-610
https://doi.org/10.1007/978-3-319-13776-610

	Integrating Computational Design Support in Model-Based Systems Engineering Using Model Transformations
	1 Introduction
	2 Background
	2.1 Model-Based Systems Engineering
	2.2 Computational Design Methods for Systems Engineering
	2.3 Model Transformations

	3 Method for Integration of Computational Support in Model-Based Systems Engineering
	3.1 Linking the System Model and Computational Design Methods
	3.2 SysML Modeling Guidelines for Computational Support
	3.3 Model Transformations Relying on SysML

	4 Case Study
	4.1 SysML Model
	4.2 Model Transformations

	5 Discussion
	5.1 Mathematical Modeling Using SysML
	5.2 Model Transformation and Information Backflow

	6 Conclusion
	References

