
Model Signatures for Design and Usage
of Simulation-Capable Model Networks

in MBSE

Stephan Husung1(B) , Detlef Gerhard2 , Georg Jacobs3 , Julia Kowalski3 ,
Bernhard Rumpe3 , Klaus Zeman4 , and Thilo Zerwas3

1 Technische Universität Ilmenau, Max-Planck-Ring 12, 98693 Ilmenau, Germany
stephan.husung@tu-ilmenau.de

2 Ruhr-University Bochum, Universitaetsstr. 150, 44801 Bochum, Germany
3 RWTH Aachen University, Eilfschornsteinstr. 18, 52062 Aachen, Germany
4 Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria

Abstract. Product development is characterised by numerous synthesis and anal-
ysis loops. Analysis provides information on the fulfillment of the required proper-
ties of the system under development. Analysis results therefore are an important
basis for further synthesis steps. In the context of Model-Based Systems Engi-
neering (MBSE), different types of simulation models play an important role. The
overall system (product) can be broken down to system elements. For each system
element a set of models has to be established, that provides the required degrees
of fidelity, representations of system properties, flows, etc. reflecting the vari-
ety of modelling purposes. These models have to be integrated horizontally (same
system level along the relevant flows ofmaterial, energy, and information) and ver-
tically (aggregation from subsystem level to the overall system level, refinement in
the opposite direction) to create a holistic model-based system representation. An
important and challenging task is to identify and shape relevant subsystemmodels.
In order to define an appropriate structure of these models, model developers may
utilize criteria like selected properties of system elements and interrelations, their
degree of detail or modelling assumptions. The relevant criteria have to be made
transparent. For this purpose, the paper discusses the concept of model signatures
that contain relevant meta information about each single model of all system ele-
ments, subsystems up to models of the overall system. This standardized meta
information enables an identification and selection of those models and the deci-
sion on the necessary model integration. The concept is discussed on the basis of
a roller bearing as an example out of an electro-mechanical drivetrain. A potential
analysis provides information about the possible usage of the model signatures
concept.

Keywords: MBSE · Product development · System models · Model signatures ·
Meta data · Model networks

© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
F. Noël et al. (Eds.): PLM 2022, IFIP AICT 667, pp. 155–164, 2023.
https://doi.org/10.1007/978-3-031-25182-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25182-5_16&domain=pdf
http://orcid.org/0000-0003-0131-5664
http://orcid.org/0000-0002-3266-7526
http://orcid.org/0000-0002-7564-288X
http://orcid.org/0000-0003-4123-5896
http://orcid.org/0000-0002-2147-1966
http://orcid.org/0000-0001-8903-3711
http://orcid.org/0000-0002-4660-8447
https://doi.org/10.1007/978-3-031-25182-5_16


156 S. Husung et al.

1 Introduction

Product development is characterised by numerous synthesis and analysis loops to reduce
the delta between the required and as-is properties of a product [1, 2]. Analysis provides
information on the fulfillment of the required properties of the product. Therefore, anal-
ysis results are an important basis for further synthesis steps. The analysis can be carried
out bymeans of physical tests, calculations or simulations. In the context of model-based
development, different types of simulation models are required.

For the development of mechatronic products, their description using Systems The-
ory is recommended [3]. Based on this, products are described via models of so-called
mechatronic systems (systems are themselves models of the product). An essential tech-
nique to master the complexity of systems is their decomposition into system elements.
Decomposition is, in principle, arbitrary, and different forms of decomposition can be
chosen for a product depending on the objectives [4]. Decomposition is often driven
by organizational structures or even better by focusing on specific (groups of) proper-
ties, thus leading to e.g. functional structures [5, 6]. In any case, the decomposition of
a system into system elements results in hierarchically structured levels and leads to
a desired modularity of a system, such that reuse of already existing system element
libraries becomes feasible. Common system elements can then be reused in their given
qualities for building up products as overall systems.

Decomposing a system constitutes a hierarchically structured system architecture
which has to be defined at the beginning of the design phase [7]. Given the system
architecture, the implemented system elements have to be composed accordingly, which
works best, when a relevant set of properties is visible on the system element interface
and inside the system element.

As representations of complex systems, models themselves exhibit complex struc-
tures, accordingly. Modelling works best, when the models are decomposed in accor-
dance with a relevant (e.g. physical) structure of the system. Thus, system architecture
typically coincides with the model architecture.

During the composition of a system model, for each system element an appropriate
set of models has to be established, that provides the required degrees of fidelity, repre-
sentations of system properties, flows, etc. reflecting the variety of modelling purposes.
These models have to be integrated horizontally (same system level along the relevant
flows of material, energy, and information) and vertically (aggregation from subsystem
level to the overall system level, refinement in the opposite direction) to create a holistic
model-based system representation. An important and challenging task is to identify
and shape the relevant set of models. In order to define an appropriate structure of these
models, model developers may utilize criteria like selected (groups of) properties of
system elements and interrelations, their degree of detail or modelling assumptions. The
relevant criteria have to be made transparent, especially in heterogeneous simulation
environments. Naturally, models describing individual system elements may encapsu-
late internal parts as well. They should exhibit an explicit interface description, precisely
specifying the ports and interactions of models during subsystem operation (also called
runtime), the parameters of the model that allow to configure a model network for the
system element before the simulation, and further semantic information about the model
(describing objective of the model or model assumptions).



Model Signatures for Design and Usage of Simulation-Capable Model Networks 157

For this purpose, the concept of model signatures for the development, specification
and compositional integration of models is introduced in this paper. The objective of the
paper is to discuss the requirements for model signatures and first realisation concepts.
First, the requirements and the state of the art are elaborated (cf. Sects. 2 and 3). Based on
this, the concept of model signatures is explained (cf. Sect. 4), which is then illustrated
by means of an example (cf. Sect. 5). The paper concludes with an analysis of potentials
and further research questions (cf. Sect. 6).

2 Requirements for Model Signatures

The requirements for model signatures can be divided into requirements for supporting
specific use cases, requirements for usability, and requirements for implementation. The
relevant stakeholders for the model signatures are engineers who want to select the
appropriate models for model networks (use case 1) and plan their interconnections
and thus composition (use case 2). Necessary requirements for model signatures can be
derived from these use cases:

For use case 1, engineers need relevant information on the model purpose as well
as information on the specific model. This information includes the interfaces provided
by the model to the outside and the flows available at the interfaces during operation
(e.g., force, velocity, current, information etc.). Furthermore, it must be known which
state parameters (e.g. temperature) the model exhibits during operation. For the flow
variables and state parameters, it must be possible to distinguish whether they are static
or dynamic during operation and, if dynamic, whether they are influenced from outside
or controlled by the system element. In mathematical terms, a static parameter is just
a constant value, while a dynamic parameter is a discrete or continuous function in a
possible value range. Important for selecting a specific model is its level of idealization
determined by model assumptions (e.g., linear stress-strain behaviour). Assumptions
determine the scope of the model and necessarily lead to limitations in its validity.

For use case 2, the interconnectivity of models must be verified, quite like type
checking in programming languages. As described in Sect. 1, it must be possible to
network and linkmodels horizontally and vertically. For the evaluation of the networking
capability, it must be possible to provide relevant information via the model signature.
For horizontal networking, the information about the interfaces and flows as well as
the associated compatibility are required above all. Compatibility depends, among other
things, on whether the flows fit together in terms of type, granularity, physical unit,
direction, temporal behaviour, etc., as well as the modelling properties (e.g., data types
and potentially given additional value ranges).

Regarding usability, it must be ensured that the relevant information is explicitly and
unambiguously represented in the model signature.

Model signatures have to reflect (1) the interfaces of the system, sub-system, system
element that they describe, and (2) the configuration and dimensioning parameters that
engineers can decide upon during development. Furthermore, because of the need for
reduction of complexity through abstraction, e.g., by omission of relevant flows (or
their dynamics), and due to the need for discretization of continuous processes and
distributed parameters, models exhibit restrictions in their connectivity. Such restrictions



158 S. Husung et al.

are typically not driven by the original system itself, but may be rooted in the design of
the model, the underlying timing model, the form of simulation execution, etc. These
forms of restrictions also have to be taken into consideration in model signatures.

The implementation of model signatures is subject to requirements regarding the
definition of templates of model signatures, their instantiation and coupling with the exe-
cutable simulation models. The implementation of these requirements is not described
in concrete terms in this paper.

3 State of the Art

3.1 System Development

An established method for virtual development of mechatronic systems including their
interacting subsystems isModel-Based Systems Engineering (MBSE) [6, 8, 9]. Thereby,
the system to be developed is represented by a system model that is continuously both
further specified (synthesis) and used for virtual behaviour verification (analysis) by all
domains involved in the product development process. In order to control the complexity
in the systemmodel, the entire system is decomposed several times into system elements,
so that a system architecture may span across several hierarchy levels (see e.g. Fig. 1) [6,
10]. Due to the encapsulation, these system elements have a handy complexity, interact
with each other via interfaces and jointly represent the behaviour of the superordinate
system.

Fig. 1. Functional system architecture of system elements (according to [6, 11])

Using analysis based on defined characteristics of a product, its properties can be
determined or – if the product does not yet exist – predicted [1]. In principle, analyses
can be carried out using physical tests or simulation that can be based on proprietary and
problem-specific simulation models. The reuse of models (product description [12] and
simulation) is becoming increasingly important in order to reduce the effort required
for model creation and to transfer existing knowledge between simulations. Standards
such as FMI [13] have become established for the reuse of existing simulations, even in
heterogeneous simulation environments.



Model Signatures for Design and Usage of Simulation-Capable Model Networks 159

3.2 Model Management

There is a variety of MBSE modelling tools to support engineers creating system mod-
els on different abstraction and fidelity levels for different purposes and views. The
compatibility of those tools is limited; data exchange between different tools requires
well-suited interfaces, model transformations and mappings. The limits in collaboration
lead to a very restricted ability of composing and using model networks.

Most MBSE tools already enable some amount of analysis whereas deeper analysis
or simulation requires software for simulation or custom analysis [14]. There are some
approaches for integrating SysML and PLM systems for data and model management
purposes. Heber and Groll [15] introduce a meta model to connect MBSE with PLM.
Kirsch et al. [16] present an approach for SysMLmodel management within PLM. PLM
tools focus on data management in hierarchical (product) structures (BOM) but MBSE
leads to data networks instead of hierarchies.

Wang [17] introduces an MBSE-Compliant Product Lifecycle Model Management
(PLMM) as a methodology tailored to industrial application of MBSE, which imple-
ments a system of systems methodology in managing multitudinous models throughout
a product lifecycle. One key aspect is the use of the SysML language as the unified top-
level modelling method for building product meta models representing a set of specific
product domainmodels (sub-models). The aim is to realize trans-phase and trans-domain
model integration and synchronization, which tackle various challenges encountered in
complex product developments.

Parrott and Spayd [18] focus in their research on the configuration management
aspects of MBSE model management, in particular the change management of con-
figuration controlled items. It was investigated, how changes to the models could be
implemented with regard to how base content is affected and how the model versioning
could be controlled. Hu et al. [19] propose a simulation models’ meta model and ontol-
ogy for their universal description. The meta model reflects the most essential features
of simulation models without the consideration of a specific implementation method.
Allen et al. [20] developed the Model-Driven Development Process (MDDP) methodol-
ogy, which extends modelling to combine MBSE with Lean Information Management
(LIM). The result is a fully consistent model for all relevant engineering items (EI) using
only real-world semantics. Particular focus was put on model consistency and alignment
to ISO 15288 to ensure that all information created during the process is automatically
added to the model in its most appropriate form. In the context of mechatronic prod-
uct development, Friedl et al. [21] propose the method of a Model Dependency Map
(MDM) to disclose and describe the complex interrelations (e.g., inputs, outputs and
their stakeholders) between different models of existing model networks. This approach
may serve as a first step towards model signatures.

The management of a model network reflecting different abstraction and fidelity
levels as well as the management of model transformations and mappings within the
product development process is a challenge in PLM system environments. The model
signature approach is a basis for tackling this issue on meta-model level.



160 S. Husung et al.

4 Model Signature Approach

The requirements described in Sect. 2 illustrate that a formalised description is needed
for the model signatures, which comprises the relevant information of a simulation
model and can be read by the model user and, if necessary, be coupled without the
specific executable simulation model (see Fig. 2). A model signature is necessary for
each executable simulation model.

Fig. 2. Definition and usage of model signatures (with interfaces for variable exchange during
runtime)

The analysis of different examples of simulation models (such as the lubricated line
contact, see Sect. 5) shows that different types of simulation models can be found in
the application. The possible types of simulation models are not considered in detail in
this paper and are subject of further research activities. For the model signatures, this
differentiation of the simulation models means that there can also be different classes
of model signatures. A useful classification of model signatures supports the search for
appropriate simulation models for specific applications.

If appropriate model signatures have been selected for specific use cases, their inter-
connectivity has to be ensured. Therefore, the model signatures must be represented in
such a way that they can be used as a basis for checking whether the interfaces and flows
or state variables are compatible in terms of content. Furthermore, due to the potential
heterogeneous executable simulation models, it must be possible to ensure model com-
patibility on the basis of model signatures. Therefore, a model signature has to describe
at least (1) the flows of themodel of the system element for physical compatibility check-
ing, and (2) the forms of encoding in the model, that unfortunately often also comprise
tool specific properties such as data types, meshing parameters, time increments etc.,
for simulation compatibility.

In software development, object-orientation (OO) is a powerful concept to describe
interfaces through their signatures and to encapsulate internal details. Domain Specific
Languages (DSL) [22] tend to be defined from scratch and for a specific small purpose
only. Composition, however, enforces them to provide explicit model signatures [23].
The concrete form of a model signature is rather dependent on the kind of model, but
a common pattern of model signatures is an explicit naming of symbols that can be



Model Signatures for Design and Usage of Simulation-Capable Model Networks 161

accessed or even influenced from outside [24]. Therefore, in this paper, the authors
propose an approach based on semi-formal modelling languages such as SysML (see
Fig. 3). They allow the representation of the relevant information in the model signatures
as well as the interfaces including the flows or state variables when using the language
in a clearly defined methodological form as discussed before. With such a sound use
of SysML, semi-formal description languages for the model signatures can be used
to determine their interconnectivity and various other models of consistency issues. In
particular, it would allow to carry over the idea of a strong type system fromprogramming
to systems engineering models.

Fig. 3. Representation of model signatures using SysML

5 Example

The system element “lubricated line contact” as it appears in bearings and gear contacts,
aswell as themodels belonging to it arewell-known by literature. Therefore, it is selected
as example for the intended model signature.

Figure 1 shows the system element “lubricated line contact” existing out of principle
solution [11], a set of models and workflows [6]. The principle solution as a well-known
element of design theory contains physical effects and acting surfaces [25]. Themodel set
of the system element describes behaviours of the system element in different domains.
Within this publication, we focus on the engineering domain, which includes models
of analytical and numerical nature. With the intended model signature, the selection
of appropriate models for specific purposes and fidelities is supported. Result is a case
specific selection of models out of the system element’s full model set. Those selected
models are connected by workflows which allow the execution of the model chain.

The engineering models that are linked to the system element “lubricated line con-
tact” are depicted in Fig. 4. They can be differentiated by purpose and fidelity [6]. For
example, three models of different fidelity can be distinguished for the purpose “tem-
perature calculation”. In dependency of the required purpose of the system element (e.g.
TEHD-calculation), a meaningful combination of multiple models as indicated by the
black line has to be found. The decision on possible combinations of models needs deep
insight into each model, which the authors aim to formalize by an appropriate model
signature in order to support the compositional integration of models.

Figure 5 shows on the left hand side the parameters that are exchanged between
the models when a TEHD calculation is executed. Obviously, state parameters, design



162 S. Husung et al.

Fig. 4. Selection of engineering models for the scope “lubricated line contact”

Fig. 5. Model chain of the lubrication model “Eyring, Barus, Vogel” and “2d stationary Energy
Conservation” with their parameters (left side) as well as the proposed model signature of the
lubrication model “Eyring, Barus, Vogel” (right side)

parameters and functional flows can occur as input, output or internal parameters. Each
parameter can be of static or dynamic nature. A dynamic parameter can be driven exter-
nally or by the system element itself. The decision which parameter is input, output or
internal depends on the purpose the model is used for. Especially, the lack of access to
the instance of an internal parameter often leads to contradictions between the instances
of the same parameter in other models. Models with inconsistent parameter instances are
still a common problem in system modelling. Therefore, the model signature comprises
input, output and internal parameters (Fig. 5, right hand side).



Model Signatures for Design and Usage of Simulation-Capable Model Networks 163

6 Relevant Research Questions for Further Steps

The discussions in this paper point out key messages and research questions derived
therefrom:

• Model selection for analysis, and assurance of interconnectivity require explicit
descriptions of model contents, model assumptions as well as modelling specifica-
tions in the form of model signatures in addition to executable models → derived
research question: How must the model signatures (contents and formalization) be
described (part of the paper)? Can the usual typing techniques known from software
programming be adapted to these model signatures?

• Themodels of the systemelementsmust be interconnected for composition.→derived
research question: How is the interconnection of the models performed based on the
model signatures? (research question is only partly addressed in this paper)

• In the context of today’smodelling, differentmodel types exist. For the differentmodel
types different model signatures are necessary → derived research question: Which
model types exist and which model signatures are therefore necessary?Which techni-
cal requirements are necessary to implement the signatures (SysML or an extension)?
(research question is only partly addressed in this paper)

• For compositional integration of models at different hierarchical levels, the signatures
must reflect different hierarchical levels as well → derived research question: Which
properties of the models have to be included in model signatures to ensure vertical
compatibility and to enable hierarchical integration of models across different levels?
(research question will be concretized in further publications)

The research questions will be investigated interdisciplinary in further activities.

References

1. Weber, C., Husung, S.: Virtualisation of product development/design - seen from design
theory and methodology. In: 18th International Conference on Engineering Design (ICED
2011), pp. 226–235 (2011)

2. VDI: Entwicklung technischer Produkte und Systeme/Design of technical products and
systems. Blatt 2 (VDI 2221:2019) (2019)

3. Ropohl, G.: Systemtechnik. Grundlagen und Anwendung, Hanser, München (1975)
4. Ariyo, O.O., Eckert, C.M., Clarkson, P.J.: Hierarchical decompositions for complex product

representation. In: 10th International Design Conference, pp. 737–744 (2008)
5. Browning, T.R.:Applying the design structurematrix to systemdecomposition and integration

problems: a review and new directions. IEEE Trans. Eng. Manag. 48(3), 292–306 (2001).
https://doi.org/10.1109/17.946528

6. Jacobs, G., Konrad, C., Berroth, J., Zerwas, T., Höpfner, G., Spütz, K.: Function-oriented
model-based product development. In: Krause, D., Heyden, E. (eds.) Design Methodology
for Future Products, pp. 243–263. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-
78368-6_13

7. VDI: Entwicklungsmethodik für mechatronische Systeme/Design methodology for mecha-
tronic systems (VDI 2206:2004) (2004)

https://doi.org/10.1109/17.946528
https://doi.org/10.1007/978-3-030-78368-6_13


164 S. Husung et al.

8. Rumpe, B.: Modeling with UML. Language, Concepts, Methods. Springer eBook Collection
Computer Science. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33933-7

9. Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML: The Systems Modeling
Language, 3rd edn. The MK/OMG Press, Burlington (2015)

10. Husung, S., Weber, C., Mahboob, A.: Model-based systems engineering: a new way for
function-driven product development. In: Krause, D., Heyden, E. (eds.) Design Methodology
for Future Products, pp. 221–241. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-
78368-6_12

11. Zerwas, T., et al.: Mechanical concept development using principle solution models. In: IOP
Conference Series: Materials Science and Engineering, p. 012001 (2021). https://doi.org/10.
1088/1757-899X/1097/1/012001

12. Hick, H., Bajzek, M., Faustmann, C.: Definition of a system model for model-based
development. SN Appl. Sci. 1(9), 1–15 (2019). https://doi.org/10.1007/s42452-019-1069-0

13. Blochwitz, T., et al.: The functional mockup interface for tool independent exchange of
simulationmodels. In: Proceedings of the 8th InternationalModelicaConference, pp. 105–114
(2011)

14. Bretz, L., Tschirner, C., Dumitrescu, R.: A concept for managing information in early stages
of product engineering by integrating MBSE and workflow management systems. In: IEEE
International Symposium on Systems Engineering (ISSE), pp. 1–8 (2016)

15. Heber, D.T., Groll, M.W.: A meta-model to connect model-based systems engineering with
product data management by dint of the blockchain. In: IEEE International Conference on
Intelligent Systems (IS), pp. 280–287 (2018). https://doi.org/10.1109/IS.2018.8710527

16. Kirsch, L., Müller, P., Eigner, M., Muggeo, C.: SysML-Modellverwaltung im PDM/PLM-
Umfeld. In: Tag des Systems Engineering, pp. 333–342. Carl Hanser (2016)

17. Wang, C.: MBSE-compliant product lifecycle model management. In: 14th Annual Confer-
ence System of Systems Engineering (SoSE), pp. 248–253. IEEE (2019). https://doi.org/10.
1109/SYSOSE.2019.8753869

18. Parrott, E.L., Spayd, L.C.: Configuration and data management of the NASA power and
propulsion element MBSE model(s). In: 2020 IEEE Aerospace Conference, pp. 1–11. IEEE
(2020). https://doi.org/10.1109/AERO47225.2020.9172375

19. Hu, C., Xu, C., Fan, G., Li, H., Song, D.: A simulation model design method for cloud-based
simulation environment. Adv. Mech. Eng. 5, 932684 (2013)

20. Allen, C., DiMaio,M., Kapos, G.-D., Klusmann, N.:MDDP: a pragmatic approach tomanag-
ing complex and complicated MBSE models. In: IEEE International Symposium on Systems
Engineering (ISSE), pp. 1–8 (2016). https://doi.org/10.1109/SysEng.2016.7753165

21. Friedl, M., Weingartner, L., Hehenberger, P., Scheidl, R.: Model dependency maps for
transparent concurrent engineering processes. In: 14th Mechatronics Forum International
Conference (Mechatronics 2014), pp. 614–621 (2014)

22. Fowler, M., Parsons, R.: Domain-Specific Languages. Addison-Wesley (2011)
23. Clark, T., van den Brand, M., Combemale, B., Rumpe, B.: Conceptual model of the global-

ization for domain-specific languages. In: Cheng, B.H.C., Combemale, B., France(†), R.B.,
Jézéquel, J.-M., Rumpe, B. (eds.) Globalizing Domain-Specific Languages. LNCS, vol. 9400,
pp. 7–20. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26172-0_2

24. Butting, A., Hölldobler, K., Rumpe, B., Wortmann, A.: Compositional modelling languages
with analytics and construction infrastructures based on object-oriented techniques—the
MontiCore approach. In: Heinrich, R., Durán, F., Talcott, C., Zschaler, S. (eds) Compos-
ing Model-Based Analysis Tools, pp. 217–234. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-81915-6_10

25. Koller, R.: Konstruktionslehre für den Maschinenbau. Grundlagen zur Neu- und Weiteren-
twicklung technischer Produkte mit Beispielen. Springer, Heidelberg (1994). https://doi.org/
10.1007/978-3-662-08165-5

https://doi.org/10.1007/978-3-319-33933-7
https://doi.org/10.1007/978-3-030-78368-6_12
https://doi.org/10.1088/1757-899X/1097/1/012001
https://doi.org/10.1007/s42452-019-1069-0
https://doi.org/10.1109/IS.2018.8710527
https://doi.org/10.1109/SYSOSE.2019.8753869
https://doi.org/10.1109/AERO47225.2020.9172375
https://doi.org/10.1109/SysEng.2016.7753165
https://doi.org/10.1007/978-3-319-26172-0_2
https://doi.org/10.1007/978-3-030-81915-6_10
https://doi.org/10.1007/978-3-662-08165-5

	Model Signatures for Design and Usage of Simulation-Capable Model Networks in MBSE
	1 Introduction
	2 Requirements for Model Signatures
	3 State of the Art
	3.1 System Development
	3.2 Model Management

	4 Model Signature Approach
	5 Example
	6 Relevant Research Questions for Further Steps
	References




