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Abstract. Economic and environmental issues that translate into energy costs and
contaminations in production are growingly attracting attention from several parts
and actors. Therefore, Energy Consumption Management (ECM) is gaining ever
higher importance within production environments. Industry 4.0 provides several
opportunities to address these challenges. One of the technologies presenting the
best potentialities is the Digital Twin (DT), which has been found able to promote
ECM improvements related to production assets and processes in different ways.
Nonetheless, in the academic literature has not been found an extensive review
of DT application to ECM in manufacturing. Therefore, this paper proposes a
systematic literature review to investigate the current state of the art of the appli-
cations, features and characteristics, and implementation strategies of DT applied
to ECM in production contexts. Attention has been also paid to the human role
inside the application of the DT technology to ECM and the interaction modalities
between humans and the DT itself.

Keywords: Digital twin - Energy consumption management - Production -
Industry 4.0 - Supervision and reconfiguration of complex industrial systems

1 Introduction

Industry 4.0 (I4.0) is revolutionising the manufacturing sector [1]. The result is an
unprecedent interconnection between physical and digital environments [2] and great
potentials in many different contexts. In manufacturing, environmental sustainability is
one of the paradigm I4.0 can improve [3]. Energy Consumption (EC) and the related
atmospheric emissions reduction is among the main 14.0 areas of application [4-6].
Within 14.0, Digital Twin (DT) is described as a key paradigm [7, 8]. DT provides an
extremely high-fidelity virtual modelling, enabling process control and precise decision
making [9]. Some authors investigate from a high level perspective the potentials of DT
shop-floor in the context of Energy Consumption Management (ECM), discussing the
related applications [10]. Others perform extensive reviews on DT application in manu-
facturing, mentioning ECM as one of the main areas of intervention, but a detailed inves-
tigation is missing [11, 12]. Even though the applicability of DT in ECM is considered a
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relevant topic, an extensive review of current applications, features and implementation
modalities is missing. Thus, the main aim of this paper is to explore the state of the art
of DT applied to ECM in production contexts.

The rest of the paper is structured as follows. In Sect. 2 the adopted Literature Review
(LR) methodology is explained. In Sect. 3 the results of the LR are shown and discussed.
In Sect. 4 the conclusions and possible future works are presented.

2 Methodology

In order to properly conduct a systematic LR and to identify the correct research topics,
the CIMO (Context, Intervention, Mechanism, Outcome) framework was implemented
[13]. For Context, the manufacturing sector was considered as reference, focusing exclu-
sively on the production phase. For Intervention, DT application has been considered in
this work. Since Mechanisms explains the relationship between interventions and out-
comes and their circumstances of activity, the ECM has been considered. Finally, as an
Outcome, in this case the effects of intervention are related to EC reduction. Aiming at
covering all the relevant aspects inside the research framework, three main topics still not
clear in literature were identified: (i) the identification of DT applications that support
ECM in production; (ii) the identification of specific features typical of DTs implemented
in ECM context in production; (iii) the identification of methodologies supporting DT
implementation in the ECM in production. The recognition of these aspects allowed to
define three Research Questions (RQs):

RQ1. What are the possible applications of DT to ECM in production?
RQ2. Are there specific features and architectures to adapt DT to the ECM context?
RQ3. Are there methodologies to support the DT implementation in ECM context?

The literature search was conducted on Scopus and Web of Science, as reported in
Fig. 1. In the screening phase filters such as duplicates, language and unkown authors
were applied, resulting in 244 papers. In the eligibility phase the 78 documents focused
on ECM and production were identified. Lastly, the entire papers were analysed to
identify the 37 of them relevant to answer the RQs.

Screening:
Elimination of Eligibility: Inclusion:
Initial research results: duplicates, papers with Elimination of papers Elimination of papers
268 Scopus E> unknown authors and E> not focused on ECM in E> not useful to the
121 Web of Science papers not published in manufacturing sector purposes of the review
English 78 papers 37 papers
244 papers

Fig. 1. Literature review methodology

The final papers were classified according to relevant criteria derived from the RQs:

e For RQI, the interested area of ECM have been detected, i.e., the tasks that were
described as performing by the DT to improve ECM.
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e For RQ2, the description of the ECM DT features and the proposal of ECM DT
architecture have been analysed.
e For RQ3, the description of implementation process, or structured implementation
methodology have been considered.

All the analysed papers are presented and classified in Table 1 below. For each paper,
in each column, has been inserted only the most underlined aspect in the document.
Nonetheless, this does not mean, for each column, that the presented aspect was the only
one discussed by the paper referring to that specific column.

Table 1. Synthesis of the analyzed papers

Paper | ECM applications | DT relevant features | Architecture proposal | Implementation
[14] |EM DA&AI N N
[6] EM DA&AI Y N
[15] |EM DA&AI Y PHI
[16] |EM DA&AI N N
[17] |UO VM&S N DI
[18] |EM VM&S N DI
[19] |UO _ Y N
[20] |UO HI N N
[21] |PEC VM&S N PHI
[22] | AEW DA&AI N SM
[23] | P&MO DA&AI Y N
[24] | PEC VM&S Y N
[25] |EPO VM&S N N
[26] |EPO VM&S Y N
[27] Unspecified _ N PHI
[28] |P&MO VM&S Y SM
[8] P&MO DAcq N DI
291 |UO _ Y DI
[30] |AEW DA&AI Y N
[31] |EPO DA&AI N PHI
[32] |UO _ N PHI
[33] Uuo Dacq Y DI
[34] |EM HI N DI

(continued)
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Table 1. (continued)

Paper | ECM applications | DT relevant features | Architecture proposal | Implementation
[35] |P&MO DA&AI Y DI
[36] |P&MO _ Y N
[37] Unspecified _ N N
[38] |P&MO VM&S Y DI
[39] |EPO DA&AI Y DI
[40] EM Dacq N PHI
[41] |EM DA&AI Y PHI
[42] |P&MO DA&AI Y PHI
[43] |EM HI N DI
[10] |EPO DAcq Y PHI
[44] |EM VM&S Y SM
[45] |EPO DA&AI N DI
[46] | AEW VM&S N N
[471 |EPO VM&S Y SM

Energy Monitoring = EM; Unspecified Optimization = UQO; Prediction of future Energy Con-
sumption = PEC; Energy Parameters Optimization = EPO; Avoid Energy Waste = AEW; Process
and Maintenance Optimization = P&MO

Data Analytics and Artificial Intelligence = DA&ALI; Virtual Model and Simulation = VM&S;
Human Interface = HI; Data Acquisition = DAcq

Yes =Y,No=N

Provides Hints for Implementation = PHI; Describes the Implementation = DI; Provides a
Structured Methodology = SM

3 Results and Discussion

In this section the main results of the LR are described and discussed.

3.1 Applications of DT to ECM in Production

The main identified ECM applications are (i) Energy Monitoring (EM); (ii) Prediction
of future Energy Consumption (PEC); (iii) Avoid Energy Waste (AEW); (iv) Process
and Maintenance Optimization (P&MO) (v); Energy Parameters Optimization (EPO);
(vi) Unspecified Optimization (UO).

PEC is related to the prediction of EC of assets, processes, or work cycles in future
stages of the lifecycle or to compare alternative configurations. The main tool for PEC
is simulation (e.g., [8, 21, 24, 28, 38, 42]). Simulation is also a key tool in the EC opti-
mization through the production scheduling [28, 38, 42], which fell inside the P&MO
cluster. Another interesting P&MO application is the optimization of machine states
timing [8] to reduce EC. Maintenance process can also be a target of ECM optimiza-
tion [23]. The analysis of the production process through a DT can lead also to AEW,
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by avoiding to use energy on not quality-compliant work in progress [22, 36], or by
identifying energy consuming non value-added activities [28, 30]. A different approach
concerns the possibility to perform the EPO, by directly controlling, through the DT,
certain EC-related parameters [10, 25, 26, 35, 38, 39, 45, 47]. Finally, several cases did
not specify how they wanted to optimize EC and fell under UO [17, 19, 20, 29, 32, 33].
As afinal consideration, it is interesting to notice that all the analyzed applications do not
substitute human-performed tasks: ECM DT enables the performing of new tasks, rather
than allowing to perform better operations already human-performed. This is crucial, as
it means that ECM DT would have a role of support and assistance to humans rather
than substitution.

3.2 Features of DT for ECM

The main DT features identidied in the literature review are (i) Data Analytics and
Artificial Intelligence (DA&AI); (ii) Virtual Model and Simulation (VM&S); (iii) Human
Interface (HI); (iv) Data Acquisition (DAcq).

ECM-DT Features. (i) DA&AI. Heterogenous approaches can be observed according
to situation, targets, and applications. Among the most notable cases, there are statistical
approaches based on gaussian distribution [22, 39], mixed integer linear programming
[24], and a hybrid model based on a self-adaptive population genetic algorithm and
autoregressive moving average [31]. Such an heterogeneity is tackled by [16], underlin-
ing the absence of an overall accepted data exchange format. (ii) VM &S. It appears that
many EC-related models are written in Matlab, for a Discrete Event Simulation (DES)
approach [25, 40, 45—47]. There are exceptions, like [24] using Modelica for an Object
Oriented Simulation, and [38] describing an integrated approach with elements of dis-
crete event, dynamic system and agent based approaches. An important feature related
to VM&S appears the integration between digital and physical entities. In [21] is used
the sequential analysis technique “Page-Hinkley test” to let the virtual model cope with
changes in the physical system. [25] describes an interactive mechanism where physical
and digital spaces behave respectively as the client and the server. One last important
feature about VM&S, can be the usage of an ontology to provide knowledge to the sim-
ulation [44]. (iii) HI. It is an aspect whose importance is enhanced by the crucial role it
has in determining the humans-DT cooperation. Human intervention is crucial for many
DT supported decision-making activities [48]. In [39] is used a Javascript Application
Programming Interface (API) for rendering 2D and 3D interactive graphics. In [8] a
Graphic User Interface (GUI) is built using Matlab. In [43] a GUI is programmed with
Kivy, an open-source Python framework. In [34] is developed a mobile app for real-
time visualization, which could have interesting consequences in the way humans relate
to DT. No explicit mentioning was found about the usage of Augmented Reality with
ECM DT, even though it can be a key element in the human-DT interaction. (iv) DAcq. A
common feature is the usage of 14.0 technologies for the data sensing and transmission
infrastructure [23, 29, 32, 34, 41, 42]. Another crucial point is the integration between
DT and the field IT systems: [8] proposes a method for MES-integration and [33] for
SCADA-integration.
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ECM-DT Architectures. For what concerns architectures proposal, in the analyzed
cases appears as quite recurrent the division in layers, usually three (in few cases four):
one layer for DAcq, one for VM&S, and the last one for DA&ALI (or applications) and
HI. Sometimes, a further layer for data transmission is added between DAcq and VM &S
[19, 23, 29, 30, 35, 42]. In [29] is also proposed to develop many separate DTs for the
single physical elements, and then to link them all. Considering alternative typologies
of DT architecture, in [10] the bottom layer presents synchronized physical and digital
equipment, and above are placed ECM services. [39] presents an architecture focused
on the transfer of data from PLCs to the web API. In [26] the data analytics module
warns the operator, involved as a crucial component of the DT architecture, who triggers
the simulation module. The architecture by [33] includes six modules (i.e., behaviour
models repository, multi-physical models repository, parameters monitoring, process
virtualization, forecast for process evolution prediction, planning management). [44]
proposes a framework for a DT applied to an industrial robot split into physical and
cyber space.

3.3 Strategies of Implementation of DT in ECM

Four of the analyzed works define a structured DT implementation and 11 describe the
implementation. The descriptions usually focus on a specific implementation phase [29,
34, 43, 45]. [45] describes a process of design focused on the theoretical model and
the results. In [29] the focus is set on the description of DT hardware implementation.
[34, 43] center on the description of the DT software requirements and the hardware
architecture of the solution. [44, 47] offer a complete description of the implementation
strategy giving an idea of the path that companies could take to implement ECM DT.
However, the DTs in both works are implemented on a cutting-edge industrial Robot
which simplifies the process. To identify the high level implementation methodology
of ECM DT, each document was analyzed and a common path of implementation was
identified. Three main phases are counted (Fig. 2).

Ideation

Need Definition of Design Implementation
ificati jecti . . e . Soluti .
Identification objectives Physical asset identification * Digital model ' pl?o:os:I Connection
hi ical | i d testi
Selection of KPIs and (theoretical model) construction (Framework) and testing

relevant variables

Fig. 2. Identified DT implementation methodology in ECM

The DT implementation requires a systematic approach to track the implementation
process and the tasks to be executed in it [22]. In [28] is highlighted that one of the
most relevant steps in the ECM DT implementation is the initial definition of KPIs and
objectives to be achieved through the DT. Nevetheless, in most of the analysed imple-
mentation strategies, such definition varies depending on the interaction among such
factors [8, 22, 28, 33, 35]. Specifically, in [8] the energy-Overall Equipment Effective-
ness is defined to be the most relevant KPI to monitor. In [35] a dynamic sleep DT
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for ECM is proposed and modelled, and the KPIs and strategy to address are different
from [8]. In some documents the way in which the definition of the objectives and KPIs
for the DT were reached are not discussed [22, 29]. In summary, the way in which the
implementation strategy varies in the different contexts of ECM is still fuzzy and can
create confusion for companies interested in the DT implementation.

4 Conclusions and Future Work

This work proposed to investigate the state of the art of the of DT applied to ECM
through a LR articulated into three RQs. The answer to RQ1 uncovered how the field of
applications appears large, variegated, and full of potentiality. Furthermore, ECM DT
clearly appears to be supporting humans rather than substituting them. RQ2 uncovered
a great heterogeneity in the ways ECM DTs work and in the features that characterize
their structuring. The only recurrent characteristic seems to be the modelling through
Matlab and usage of DES, but without evidence of a correlation between this and the
ECM objective of the DTs. Indeed, DT features seem to change according to specific
targets, industries, and situations. Thus, a topic to be developed in future might be an
analysis of the eventual correlation between DT features and ECM applications. There
seems to be though a pattern towards the definition of a recurrent type of DT architec-
ture, structured in layers, representing the sensing infrastructure, DA&AI and VM&S,
and applications and HI. Finally, for RQ3, even though there are few implementation
examples available and a common high-level implementation methodology has been
identified, there is a lack of structured methodologies to support companies in the ECM
DT implementation. This seems an issue related not just to ECM DT, but to generic DT
implementation, and analysis and works about it should be performed. Finally, there are
very few considerations about human role in ECM DT paradigm.
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