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Abstract. A car line can offer more than 10'°° variants, and for each
customer order a concrete selection of features and parts needs to be
done. The respective selection rules are interconnected and are subject
to constraints imposed by different car lines. We address the problem of
finding and fixing logical errors in these interconnected selection rules
within different contexts of allowed feature combinations. Previous work
has focused on text-based or matrix-like representations which presented
challenges regarding cognitive complexity, size of the representation, and
usability. We present an integrated visualization of the combined prac-
tical effects of item selection and feature combination rules. The imple-
mented tool detects logical errors and supports user workflows to fix the
data visually.

Keywords: Product configuration + Configuration systems *
Configuration rules + Data quality - Visualization

1 Introduction

Customization of cars increases the space of available variants. The customer can
select multiple equipment options (features). Based on this selection, the parts
(mechanical, electronic, or software functions) to assemble the car have to be
chosen. These parts are documented in the Bill-of-Materials (BoM). Typically,
this is not a 1:1 feature/part relation, but there are complex rules in place
[8]. Each rule specifies a Boolean condition on the chosen features and outputs
whether the associated part has to be chosen. In this paper, we will refer to
them as item selection rules. A general so called 150% BoM, which contains all
possible parts of all possible variants, is converted into a specific 100% BoM by
evaluating all rules. From this 100% BoM, a car can be produced.

The distance between the headlights of a car, for instance, might differ
between a limousine and a convertible. When producing one of these cars, the
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same Electronic Control Unit (ECU) could still be used but needs to be con-
figured. This ECU has to be informed which headlight distance is an accurate
description of the ECU’s context, i.e. the car. To derive that information from
the equipment options, item selection rules for the configuration of the ECU
software are defined.

In general, a customer can order from different product lines (e.g., gasoline or
electric line). In certain product lines a combination of convertible with a sports
package might be permitted, whereas other lines forbid this combination. The
context constraining the allowed combinations is called feature combination rule
context.

Item selection rules for identical parts in different contexts might be similar
and are often used as the basis for new rules. Thus, item selection rules share
similar parts but also differ in other parts. In general, a product line can also
evolve over time. Thus, an item selection rule can be applicable in, and be subject
to, multiple contexts. The main challenge is the creation of the initial rules and
recontextualization for new contexts.

In this paper we address the challenges during initial creation and recontex-
tualization by a) visualizing item selection rules, while b) being able to switch
seamlessly between different contexts, and c¢) enabling interactions on the visual
data itself. For that we start by presenting background and related work (Sect. 2).
Then we provide a running example (Sect.3). Afterwards, we discuss an algo-
rithm to calculate the visualization (based on the given context; Sect.4) and
its implementation (Sect. 5). Subsequently, the implementation is evaluated and
discussed (Sect.6). Finally, we summarize our findings and provide an outlook
on future work (Sect. 7).

2 Background and Related Work

In the automotive context, a product line defines which vehicle variants are pos-
sible. The term feature combination rule context, or context for short, entails
the declaration of features and the constraints that make feature combinations
valid or invalid. Different professional domains have different names for this con-
cept. Examples are: High Level Configuration, Feature Tree, Product Overview,
Vehicle Description Summary, and Model Description [2,7]. Automotive product
lines have been encoded in Boolean logic at least since the 1990s s and formal
validation methods based on Satisfiability Solving (SAT) have been used at least
since 2000 [8], whereas feature trees were first transformed to Boolean logic three
years later [9].

Each equipment option is represented as a Boolean variable indicating equip-
ment option presence. Thus, a concrete vehicle is modeled as an assignment of
the Boolean variables defined by the context which indicates presence or absence
of equipment options. During assembly, concrete vehicles are built. The item
selection rules define for which vehicle variants which of the items have to be
selected. In the automotive context, examples of an item are a physical com-
ponent to build a car, a software version, or a configuration parameter value.
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A concrete vehicle is segmented into alternative bundles called positions, which
need to be filled. For each position, there needs to be an item selected. Thus,
each position lists respective <item,rule> pairs. In our BoMs, positions can
contain roughly up to 30 alternative items, while up to 25 variables are used in
some item selection rules.

For each position, there are quality criteria in place [8]: 1. Each item selection
rule is statisfiable in its context (satisfiability). 2. For each variable assignment,
there is at most one item hit (uniqueness). 3. For each variable assignment,
there is at least one item hit (completeness). Identical data quality goals have
also been found by Astesana et al. [2]. The quality criterion of satisfiability has
been identified by Berndt et al. [3]: Multi-valued decision diagrams (MDDs)
have been there for computation only. The quality criteria of uniqueness and
completeness also have been identified by Voronov et al. [14].

Tidstam et al. [12] present an approach for item selection rules captured in
matrices. One dimension captures the product families, the other dimension cap-
tures the items to be selected. An element in the matrix indicates whether an
item is always selected, not selected, and sometimes selected. The case “some-
times” appears, because the context cannot be fully captured in the matrix.
In contrast, our approach presents an explicit visualization of selections, the
implications of a context, and the visualization is not bound to a matrix repre-
sentation. Tidstam and Malmqvist [13] compared their matrix-based approach
with a list-based approach. It turned out that the matrix-based approach was
preferred by their target audience.

Shafiee et al. [11] conducted a survey on visual representation techniques
for product configuration systems in industrial companies. Their result indicates
that companies using visual knowledge representation techniques tend to have
(i) higher quality of the product configuration system’s knowledge base and (ii)
higher quality with respect to communications with domain experts [11]. This
supports our approach to use visual representations instead of text-based ones.

Amilhastre et al. [1] encoded context validity in a Constraint Satisfaction
Problem (CSP), compiled the CSP into an automaton and represented it graph-
ically. The automaton accepts valid feature selections, but, in contrast to our
approach, does not encode which part selection follows, i.e. which and how many
parts are involved in a potential collision.

POSEIDON is the first decision-diagram-based item selection rule editor,
that has build-in quality checks and while allowing for seamless context switches.

3 Running Example

The example we will use throughout the rest of this paper centers around the
configuration of an ECU that is used in two vehicle contexts called Electric
(E-Series) and Gasoline (G-Series), respectively. We will focus on a single con-
figuration value that represents the distance between the headlights called head-
light _distance_ mm.

Among the variables we use are LIMOUSINE, KOMBI, COUPE, and
CABRIO to indicate body types and FR, LU, BE, NL, DK, PL, CZ, AT, LI,
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and CH to name distribution countries. The variables SPORT, NIGHT, and
ELEGANCE are used to represent extras.

The context of E (yg) and G-Series (y¢g) is defined in Eq. (1) and Eq. (2),
respectively. Here, pseudo Boolean constraints are used for brevity and can be
transformed into pure Boolean constraints [5]. They are generally of the form
Y (v) < 1, which we refer to as an at-most-one (AMO) constraint, or ¥(v) = 1, an
exactly-one (EXQO) constraint. Some of these are shared between the contexts.
We generally use the following operator precedence: =, A,V, —> <= (from
strongest to weakest binding).

vi = [LIMOUSINE + KOMBI + COUPE + CABRIO = 1] A
[SPORT + NIGHT + ELEGANCE < 1] A
[FR+ LU + BE + NL+ DK + PL+ CZ+ AT + LI + CH < 1] A
((LIMOUSINE v KOMBI) = —SPORT A —~NIGHT) A
(NL = NIGHT) A
(CABRIO = —DK A-PLA—CZ)

va = [LIMOUSINE + KOMBI + COUPE + CABRIO = 1] A

[SPORT + NIGHT + ELEGANCE < 1] A

[FR+ LU + BE + NL+ DK + PL+ CZ+ AT + LI + CH < 1] A )
(NL = —SPORT A ~ELEGANCE) A
(CABRIO = SPORT) A

~(KOMBI A (BEV NEV LU) A SPORT)

Table 1. The position for headlight_distance_mm used in the example.

Item Item selection rule ¢

1650 mm | CABRIO vV COUPEV

SPORT A (-KOMBI AN -LIMOUSINE V KOMBIA

(~(BEV CZVv DKV FRV NLV PL)V LIV ATV CHV LU))V
NIGHT A (-LIMOUSINE v KOMBI)

1700 mm | KOMBI AN =NIGHT N ~SPORT Vv

NIGHT A (LIMOUSINE ¥ ~CABRIO AN -~COUPE N ~KOMRBI)
1750 mm | LIMOUSINE N -NIGHT VvV

ELEGANCE AN -(CABRION COUPE N KOMBIV LIMOUSINE) vV
KOMBI AN SPORT N (BEV CZV DKV FRV NLV PL)

The position configuring headlight_distance_mm is given in Table1. To
produce simpler diagrams, the rules used in this example initially meet all quality
criteria (Sect. 2).
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4 Visualizing Item Selection Rules

Algorithm 1 describes a procedure how to generate a decision diagram data struc-
ture based on a context, items, and item selection rules. This data structure
can then be used as input for a graph layout algorithm. We will describe the
most important aspects of Algorithm 1 in the following sections. The algorithm
described here extends our previously published technique [4] by a) adding group-
ing of variables and b) the capability to visualize under different contexts.

Algorithm 1. Generate Visualization Data Structure
Given Context v
Given Map of <Item i, Item Selection Rule ¢; > of length n
configVars « Variables that occur in {¢o,...,¢n—1}
~* « project(v, configVars)
groups «— group(y”, configVars)
n—1
Y= A _/\O(¢z‘ < H,)
result «— bdd(¢, groups)
result < terminals(result)
result < mdd(result, groups)

: result « labeling(result)
: return result;

O X P gul Wi

—_ =

4.1 Projection

Projection aims to provide focus on the visualization in terms of the configura-
tion variables: Variables not used in the configuration, but defined in the context
should be removed. However, they still might have an effect on the configura-
tion. Thus, their effects on valid combinations of the configuration variables are
kept. To implement the projection, we use the model enumeration-based quan-
tifier elimination as described and evaluated by Zengler and Kiichlin [15]. In the
running example, the contexts (yg and 7¢, Sect. 3) are already projected to the
set of configuration variables for better readability.

4.2 Grouping

The grouping step (Line 5) partitions the configuration variables such that the
variables in each group exclude each other. The context is the main source of
potential groups, since it contains explicit at-most-one (AMO) and exactly-one
(EXO) constraints. To generate more potential groups we implemented function-
ality which allows our users to propose groups, which we then validate against
the context by checking whether context =—> AMO(proposal) is a tautology. If
the proposal turns out to be valid, we store it in our database, which realizes a
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user-defined group storage for each context. This shared and growing common
knowledge is used during future groupings. In our example the groups are 1. the
four body types, 2. the options SPORT, NIGHT and ELEGANCE, and 3. the
distribution countries.

4.3 Constructing a BDD

The first step of constructing our visualization is to build a Binary Deci-
sion Diagram. For this purpose, we create a set of Boolean helper variables
H = {Hy,...,H,_1} representing the n items. Together with the n item selec-
tion rules ¢ = {¢o,...,d,—1} and the projected context v* they are used to
create the core formula

Y=9"A A(¢1<:>H1) 3)
i=0

We call H the set of item wvariables, in contrast to the configuration variables
that occur in the selection rules ¢.

The core formula v consists of two components — the context and a rep-
resentation of the position. The construction of the position representation
n—1
N\ (¢; < H;) assures that no assignment of only the configuration variables
(Z:arol falsify this second part of 1. There is always an otherwise unconstrained
helper variable H; to match the value of ¢;, thereby providing a trivial solution
to all constraints. We can therefore conclude that any assignment of the config-
uration variables falsifying 1) represents a violation of the context constraints,
and thus an invalid vehicle. As a result, the item selection rules determine the
resulting item for each variant, while the context defines which variants are con-
sidered.

Subsequently, we compute a BDD for . Thereby, the item variables H are
always last in the BDD’s ordering, while the configuration variables that belong
to the same group are next to each other. For this purpose we adapted the sifting
algorithm [10], which turned out best [6]. For our example this yields the result
shown in Fig. 1 for the E-Series context.

4.4 Terminal Generation

To compress the visualization further, we traverse the graph top-down. Every
path eventually assigns all configuration variables. At this point, a terminal node
is generated that contains exactly those item variables H; which must be true
in order to reach the final $true node of the BDD. This path is unique at this
point, because the core formula (3) constrains all H; to be equivalent to their
already fixed ¢; counterparts. For our example this yields Fig. 2.



POSEIDON: A Graphical Editor for Item Selection Rules 9

@ ® @D DD D
N O G ECECRCR CRGR DR CROR:
p

N OROEC o)
2R ORONORO)

N ® D
S OLC

Fig. 1. The BDD for headlight_distance_mm in the E-Series context. The $false node
is hidden with all its incoming edges for better readability.
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Fig. 2. The BDD for headlight distance_mm in the E-Series context with terminals.
The $false node is hidden with all its incoming edges for better readability.

4.5 Multi-decision Diagram Generation

We traverse the graph top-down. For every node that contains a configuration
variable, we collect the variables of its children nodes recursively until we find
the first variable of another group or a terminal. For those collected variables we
form a multi-decision node representing the possible selections from the group.
For our example this yields Fig. 3.

The multi-decision nodes replace the binary ones and have several outgoing
edges. For each group member an outgoing edge exists, which may be shared with
other members if they lead to the same result. One additional edge represents
the no selection option for that group, where all variables are assigned $false. It



10 D. Bischoff et al.

. N [orher\\'ise]
[night] e

[ot]\en\ lse]

[orhen\:se] al]

[otherwise]

> il

[otherwise]

[coupe]

Countries

C ountries

[o(hen\ 1se]

62 dk. nl. pl]

\ [cz dk pl] -
[orhen\ 1se] C onnn ies

Lombl ~— nl T
BOd‘ r\pes E“‘“ __ [night. spon] T~ [ ]
Amousme] e —
[mOht sport]
E\mas

\ [otl\en\ ise] [n1]

/
[othen\ nse] [orhcn\ lsc] /

Fig. 3. The MDD for headlight distance _mm in the E-Series context. The text in
square brackets represents the decision in the previous MDD node.

may happen that no selection leads to the same item as choosing some member
of the group, so that the edges may be shared.

The no selection edge is called otherwise in our figures, representing all
options that are not explicitly noted on other outgoing edges of the same MDD
node.

For example the topmost Countries node in Fig.3 has a single outgoing
edge otherwise which represents all possible countries or no country at all since
they all result in the same item selection of 1650 mm. The Countries node right
below has two outgoing edges, where NL leads to $false and therefore represents
a configuration in contradiction with the context constraints and the otherwise
edge representing all other or no country selection resulting in the 1650 mm item
being chosen.

4.6 Label Creation and Propagation

We introduce labels to reduce the size of the graph. For this, we traverse the
graph top-down. If a node has the $false node as a child, a label is generated
to indicate that this assignment contradicts the context. The label contains the
opposite variable assignment and is placed on all incoming edges of the node.
The edge to the $false node is then removed (cf. Fig. 4). If a node has the same
label on all its outgoing edges, the label is propagated up from all outgoing to
all incoming edges. Labels on the same edge are combined using the A operator.
This may result in nodes with only a single unlabeled outgoing edge, which are
then removed. For our example this yields Fig. 5.
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some parent node another parent node some parent node another parent node
group
/«]

Sfalse

subtree

Fig. 4. Selecting A leads to a contradiction, thus A needs to be assigned $false. We
force = A by adding labels and (since the group now has a single unlabeled child) remove
the decision node by rerouting its incoming edges to its valid subtree.

[kombi]: “NIGHT A —=SPORT A —NL

[limousine]: “NIGHT A =SPORT A =NL 4=/175(Jmm

Body types eabrio]: ~CZ A DK A —PL

[otherwise]: -NL
[night]

Extras 1650mm

Fig. 5. The final MDD for headlight distance _mm in the E-Series context with labels.
The text in square brackets represents the decision in the previous MDD node.

4.7 Roundtrip

We allow users to manipulate the graphical representation, e.g., by introduc-
ing new nodes or redirecting edges. Effectively, this allows for a complete (re-)
definition of item selection rules merely through the GUI. The resulting graph
can then be transformed back into individual rules by reading off the possible
necessary assignments to reach a terminal. E.g., we can read the resulting item
selection rule for 1700 mm from Fig. 5, as KOMBI A—~NIGHT AN—~SPORT AN—NL
for the top-most path. Hence, we can transform a position and a context into an
MDD representation, let the user change the MDD visually, and transform the
result back into the updated position for the used context.

5 Implementation

We implemented Algorithm 1 in a web-based tool which layouts the decision
diagram and makes it editable. In order to demonstrate the use cases of our
application and to be able to show how we deal with questionable data quality,
we now change the position by adding another item 1800 mm with its selection
rule CABRIO N NIGHT. Since this case was already covered by the rule for
1650 mm, this leads to a data quality issue which we visualize to the user as
shown in Fig. 6. The ambiguity highlighted in red indicates that there are vehicle
configurations in this context that select multiple items. The path from the
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Fig. 6. A position containing an ambiguity in the context shared by E and G-Series.

diamond-shaped root node to the ambiguity identifies the vehicle(s) affected, in
this case all Cabrios with the Night extra need correction.

Our user interface allows users to rearrange the ordering of groups in which
case we simply skip automatic ordering in the algorithm. If a user thus has
a certain ordering in mind they can manually force this ordering. This works
when creating new positions as well as when working with preexisting positions.
We implemented editing functionality which allows the user to work with the
graph while keeping it valid until they want to retrieve the item selection rules
(based on the roundtrip functionality described in Sect.4.7). Therefore, a user
can manipulate the graphical representation and retrieve the resulting rule set
after the change.

6 Evaluation and Discussion

Using the implementation, we evaluated a model series from 2019 and took
positions with 10 or more items resulting in 535 positions with sizes from 10
to 100 and a median of 17. Thereby, the runtime of the complete algorithm
ranged from 0.8s to 12.3s, whereby the median runtime was 1.4s. Within this,
projection (Sect.4.1) took 40% of the total runtime (in the median) with a
minimum of 3% and a maximum 87%. As a consequence, we implemented caching
for the projection: When a context had been projected to a given configuration
variable set previously, the result is reused. At a cold start with caching activated,
the runtime of the complete algorithm changed to the range of 0.02s to 13s, with
a median of 1s.

The scaleability primarily depends on the context. More precisely the number
of combinations of the variables used in the item selection that are considered
context-valid, is the primary driver of the visualization size. A decision diagram
is always smaller than an analogous table, since inner nodes can be re-used.

The solution is applicable for other products and domains whenever the con-
text and item selection rules are either written in or translatable to Boolean
logic. This translation is possible for feature trees [9].
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7 Conclusion and Outlook

We showed the theoretical foundation and a practical implementation of a tool
for visualizing and editing item selection rules. It supports seamless context
switches and direct visual data editing during initial creation and recontextual-
ization. We showed that the tool can handle industry-grade sizes of item selection
rules and contexts.

By allowing each branch to have its own ordering, we foresee that it is pos-
sible to reduce the size of the graph even further. Since the concrete impact on
industry-sized item selection rules, especially when it comes to readability, is
unclear, this investigation is our next research step.

Acknowledgements. This work has received funding by the BMWK-funded project
SofDCar (19521002D).
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