
NED-GNN: Detecting and Dropping
Noisy Edges in Graph Neural Networks

Ming Xu1,2, Baoming Zhang1,2, Jinliang Yuan1,2, Meng Cao1,2,
and Chongjun Wang1,2(B)

1 State Key Laboratory for Novel Software Technology, Nanjing, China
{zhangbm,yuanjl19,caomeng}@smail.nju.edu.cn, chjwang@nju.edu.cn

2 Nanjing University, Nanjing, China

Abstract. Graph neural networks have become the standard learning
architectures in graph-based learning and achieve great progress in real-
world tasks. Existing graph neural network methods are mostly based
on message passing neural network(MPNN), which aggregates messages
from neighbor nodes to update representations of target nodes. The
framework follows the assumption of homophily that nodes linked by
edges are similar and share the same labels. In the real world, the graphs
can mostly follow the assumption. However, for nodes in the graph, the
connections between nodes are not always connecting two similar nodes.
We regard the edges as noisy edges. Such edges will introduce noise to
message passing in the training process and hurt the performance of
graph neural networks. To figure out the noisy edges and alleviate their
influence, we propose the framework called Noisy Edge Dropping Graph
Neural Network, short as NED-GNN. By evaluating the weights between
sampled negative edges and existing edges for each node, NED-GNN
detects and removes noisy edges. Extensive experiments are conducted
on benchmark datasets and the promising performance compared with
baseline methods indicates the effectiveness of our model.

Keywords: Graph neural networks · Noisy edges · Graph learning ·
Data mining

1 Introduction

Deep Learning has achieved great success in enhancing machine learning tasks
with data in Euclidean space, like computer vision [18], natural language process-
ing [17], etc. In recent years, research of the non-Euclidean graph-structured data
is increasingly popular as graphs are widely used in presenting objects and their
complex interactions. Graph learning is promoted to capture node features and
topology information in graphs by representing nodes to low-dimensional embed-
dings. In this way, the learned embeddings can be well applied to machine learn-
ing methods, thus solving downstream tasks. Graph Neural Networks (GNNs)
introduce deep learning to graph learning and show promising capacity, thus

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Li et al. (Eds.): APWeb-WAIM 2022, LNCS 13421, pp. 91–105, 2023.
https://doi.org/10.1007/978-3-031-25158-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25158-0_8&domain=pdf
https://doi.org/10.1007/978-3-031-25158-0_8

92 M. Xu et al.

being broadly used in tackling problems such as node classification [13,22], link
prediction [8,28] and graph classification [9,24]. In the real world, GNN also
becomes a promising solution for recommendation [16,21], social networks [5],
text extraction [26], knowledge graphs [1], etc.

Existing GNN methods mostly follow the manner of message passing neural
network (MPNN) [10]. The main idea of MPNN is to aggregate features from
neighbor nodes. Then the representation of nodes is updated in each iteration
and the final embeddings can be used for downstream tasks. The effectiveness of
MPNN benefits from the assumption of homophily. When the two nodes linked
by one edge are similar and share the same labels, nodes can aggregate similar
and useful information from neighbor nodes. After that, the final representa-
tions can be robust and generalized. In real-world graphs, nodes with similar
features tend to gather, which can well satisfy the assumption. However, the
particular node in the graphs sometimes connects to dissimilar neighbors. For
instance, nodes in the boundaries between classes connect to different-labeled
nodes in the connected graph. Besides, the adversarial attacks in graphs often
happens through connecting nodes of different classes. In particular, we call the
edges constructed by nodes of different classes Noisy Edges. To validate our
observations, we calculate the number of edges with nodes of different classes in
widely-used citation datasets. The results are represented in Table 1.

Table 1. Noisy Edges Counting in Datasets

Overall Edges Noisy Edges Propotion(%)

Cora 5278 1003 19.00

Citeseer 4614 1220 26.45

PubMed 44325 8759 19.76

From Table 1, we can find noisy edges exists commonly even in widely-used
benchmark datasets. Such noisy edges may hurt the performance of GNNs as
they bring the noise to target nodes by aggregating unnecessary information
and mislead the training of the model. Here we show an example in the sample
graph:

Fig. 1. An example of aggregation in graph neural networks.

NED-GNN: Detecting and Dropping Noisy Edges 93

In Fig. 1, we conducted 1-step aggregation in the sample graph, and different
colors indicate different features. According to the figure, as the node a and node
d share neighbors with same colors, respectively, their colors remain the same
after aggregation. However, node b and node c change their colors as different-
colored neighbors’ information propagated, and their final representations are
unreliable. What’s worse, the noisy information will influence other nodes with
the procedure of iterative aggregation.

To alleviate the undesirable effects of noisy edges, an intuitive approach is
to remove such edges. Some works are proposed to update the structure with
different strategies. DropEdge [20] tries to drop edges randomly to improve the
generalization capacity of GNNs. However, the edge dropping without supervi-
sion sometimes breaks the topology structure and discards the essential relations
among nodes in graphs. Besides, some methods update topology structure by the
prediction of the model or co-training both structure learning and GNN models.
The methods achieve success, but somehow they get stuck in the confidence of
predictions with the setting of prediction threshold or the interpretability of the
structural modifications in the graph.

In this paper, we focus on modifying the graph structure to obtain better
node embeddings. In particular, we proposed an effective method, Noisy Edges
Dropping Graph Neural Networks(NED-GNN), to evaluate the edges and
remove the noisy ones. We first sample negative edges for nodes, which connect
the node with negative nodes of different classes in the graph. After that, we
evaluate the weights of edges and the negative edges after sampling by calculating
the similarity between linked nodes. If the weights of edges connecting neighbors
are smaller than negative edges, we tend to regard the edges as noisy edges and
remove them in the graph. As nodes in the graphs are mostly unlabeled, we
propose that high-order neighbor nodes are more likely to be negative nodes
that are different-labeled. So we sample negative edges by connecting nodes
to corresponding high-order neighbor nodes. By evaluating similarity weights,
we can drop the noisy edges to improve the node representations learned by
graph neural networks. From the extensive experiments on benchmark datasets,
promising performance indicates the effectiveness of our method.

We summarize the main contributions of this paper as follows:

– We proposed an effective framework to detect and drop noisy edges in the
graph.

– We designed a method called NED-GNN by dropping detected noisy edges
to update the topology structure and obtain better node embeddings.

– We conducted extensive experiments on semi-supervised node classification
and prove the effectiveness of our method.

The remaining part of the paper is organized as follows. Section 2 reviews
the related works. We show an observation of real-world datasets in Sect. 3. In
Sect. 4 we introduce some preliminaries and our method in detail. Extensive
experiments are conducted in Sect. 5 to evaluate the performance of our model.
At last, Sect. 6 concludes the paper with discussions and future works.

94 M. Xu et al.

2 Related Works

In this section, we briefly review the related works, including graph neural net-
works and modifications to graph structure. For more details in graph neural
networks, we refer readers to some surveys [11,30].

2.1 Graph Neural Networks

Graph Neural Networks achieve great success in tackling graph learning tasks in
recent years. GNN models encode nodes in the graph into low-dimensional dense
embeddings and preserve both node features and structure topology at the same
time. Graph convolution is first proposed in [2] from the respective of graph
signal processing, and many variants are proposed to simplify the framework in
both spectral and spatial domain [11,14,30]. Kipf e.t. [13] simplify the model by
considering the direct neighbors of nodes in GCN. The simpleness and concise-
ness of GCN make the model popular and become the baseline in graph learning.
Existing graph neural network models are mainly based on message passing neu-
ral network (MPNN) [10], which aggregates messages from neighbors nodes and
then update representations of target nodes [22,24].

The models based on MPNN mostly follow the assumption of homogeneity,
which states that nodes connected by edges are similar and beneficial information
can be propagated in the graph. However, the goal is hard to achieve as there
always unintentional or intentional exists noise in real world graphs. We focus on
the structural noise, mainly noisy edges, and give a brief introduction to graph
structure modification in the next subsection.

2.2 Graph Structure Modification

Graph neural networks utilize both node features and graph structure to encode
nodes. However, the commonly existing structural noise, like noisy edges, may
hurt the performance of GNNs as the noise may mislead information spread
in graphs. To alleviate the influence of structural noise, training with a better
topology structure is crucial for better node embeddings. For instance, DropEdge
[20] randomly removes a certain number of edges at each epoch to improve the
generalization capacity and alleviate over-smoothing. NeuralSparse [31] learns
k-neighbor subgraphs for robust graph representation learning by selecting at
most k edges for each nodes. Methods like self-enhanced GNN [25], EGAI [15],
and AdaInf [6] add or remove edges based on the predicted labels by the model.
Bayesian GCN [29], LDS [7] and IDGL [4] adopt different strategies to learn
the graph structure and node embeddings simultaneously to make graph struc-
ture more suitable for model learning. There are contrasting models try to con-
struct multi views by modifying the structure [3,27]. The methods achieve great
progress in acquiring better node embeddings with modified structure, how-
ever they may get stuck in randomicity or lack interpretability of the modified
structure.

NED-GNN: Detecting and Dropping Noisy Edges 95

In this paper, we try to update the structure of the graph to help the training
of GNNs. In particular, we proposed a simple but effective method to detect end
drop noisy edges in the graph.

3 Case Study

GNNs utilize message passing framework to propagate messages from neighbor
nodes by assuming that nodes connected in graphs are similar. In this section,
we did some simple analysis on the widely used benchmark citation dataset
Cora from DGL [23], and the findings prove the necessity and rationality of our
method.

Fig. 2. Accuracy with Different Percent-
age of Noisy Edges Dropping

Fig. 3. Probability of Connecting
Different-labeled Nodes beyond k-Order
Neighbors

Model Performance Without Noisy Edges. We design an empirical exper-
iment to figure out the influence of noisy edges. In particular, we randomly
remove noisy edges in Cora with given percentages. After that, we train GCN
in the updated graph and use trained embeddings for node classification. The
results of classification accuracy are shown in Fig. 2. The results indicate that the
representation capacity of GCN would be better with more noisy edges dropping.

The statistical results show that noisy edges are common in real-world graphs,
and they will harm the performance of GNNs. Naturally, the conclusion prompts
us to consider dropping noisy edges in the training process.

Nodes and the Corresponding High-Order Neighbors. According to the
assumption of homophily, nodes with similar features and labels tend to gather,
while different-labeled nodes keep away from each other. We calculate the proba-
bilities of nodes sharing different labels with the corresponding high-order neigh-
bors in Cora, and the results are presented in Fig. 3. From the figure, we can
figure out that nodes are becoming more dissimilar with the distance between
nodes growing. The observation can help find out the noisy edges in the graph.

96 M. Xu et al.

4 Our Approach

The case study shows the motivation of our work. To better explain and prove
our idea, we propose the method called NED-GNN. The main framework is
shown in Fig. 4. Our key insight is to drop noisy edges in the graph and update
the topology structure to improve the performance of GNNs.

Fig. 4. The Framework of proposed NED-GNN Layer.

4.1 Notations and Preliminaries

This paper mainly focuses on undirected graphs, but the method can also be
used in directed graphs. We present G = (V, E ,X) as a graph, where V consists
of the set of nodes in G, with |V| = N . E is the collection of edges. X ∈ R

N×F

denotes node feature matrix, where xi ∈ R
F represents the attributes of node

vi, and F is the dimension of node features. Adjacency matrix A ∈ {0, 1}n×n is
the topological structure of graph G, where Aij > 0 indicates that there is an
edge between nodes i and j. Otherwise, Aij = 0.

Given topological structure A and feature matrix X as input, the goal of GNN
framework is to learn low-dimensional dense node embedding matrix Z ∈ R

N×d

with d � F . The learned node embeddings can well preserve topology and
feature information so as to be applied to downstream tasks.

The training procedure of GNNs is as follows. First, the framework learns
node representations by aggregating the features of neighbor nodes. The output
of the k-th layer of the framework can be generally expressed as,

h(k)
i = σ(h(k−1)

i , AGG(h(k−1)
j)), j ∈ N (i) (1)

where h
(l)
i is the node representation of node vi at the k-th layer with h

(0)
i = xi

and N (i) is the direct neighbors of node vi. AGG(·) is the aggregation function
and σ(·) is the non-linear function.

NED-GNN: Detecting and Dropping Noisy Edges 97

After that, the framework calculates the loss of prediction on labeled
nodes,VL, to update the parameters in the framework. The loss function can
be expressed as,

L = − 1
|VL|

∑

i∈VL

k∑

l=1

yil log ŷil, (2)

where ŷi is the prediction of vi, yi indicates the original label for node vi in
one-hot embedding, k is the length of label embedding.

4.2 Noisy Edges Dropping

Before the introduction of our method, we regard the nodes which are labeled
differently to target nodes as negative nodes and the connected edges as neg-
ative edges.

The main idea of our method is to figure out noisy edges and update the
topology structure by removing the edges. Intuitively, if we find the neighbor
node is less similar to the target node than a negative node, we think the edge
connecting the neighbor is the noisy edge. Figure 5 is an example. We sample a
negative node j for the target node t and constructed a negative edge (t, j). Then
we evaluate the weight of edge (t, i) and (t, j), namely the similarities between
nodes. If sim(t, i) < sim(t, j), the edge between t and i is possible noisy. As a
result, the edge will be removed.

Fig. 5. An example of noisy edge dropping

To calculate the similarity between nodes, we set,

sim(i, j) = similarity(hi,hj) (3)

hi is the representation of node vi, the choice of similarity(·) can be any func-
tion that measures the similarity of two embeddings, like Cosine similarity and
Euclidean Distance. For the simplicity, we choose Cosine similarity as our simi-
larity function.

However, the nodes in the graph are mostly unlabeled, which is unable for
us to directly sample negative nodes and negative edges. To solve the problem,
we proposed the idea of sampling negative edges according to the property of

98 M. Xu et al.

graphs. The similarity of nodes becomes weaker as the distance increasing in
graphs. The case study in Sect. 3 also validates our assumption. In particular,
for each node, no more than r-hop neighbors can be regarded as the positive
nodes which are more likely to be similar, while the other nodes are seen as the
negative nodes. So we sample neighbor nodes beyond r-order as the negative
nodes and then constructing negative edges.

Algorithm 1: NEDLayer Algorithm
Input: Adjacency matrix A, Representation Matrix Z
Output: Updated Adjcency Matrix A′

1 Aneg = Sample(A¬r) ← Sample k negative edges beyond r-order neighbors

2 Â = A + Aneg ← Concatenate the negative edges with original graph

3 for node i in Â do

4 for node j where Âij > 0 do

5 simij = similarity(Zi,Zj) ← Evaluate the weight of edge (i, j) in Â

6 indicesi = Topk(simi,, k = Degree(i)) ← Remove the less similar edges
constrained by the degree in original graph

7 A′
i, = {A′

ij = 1|Aij > 0 and j ∈ indicesi} ← Remove sampled negative
edges

8 return A′

Algorithm 1 summarizes the overall training of the NEDLayer. In each epoch,
we sample k negative edges connecting nodes that are beyond r-order neighbor-
hood in Line 1–2. For each node i, we evaluate the connected edges(i, j) by
calculating the similarity of two-side nodes, thus dropping likely noisy edges by
removing the edges with lower similarity in Line 3–6. The constraint of Degree(i)
is the degree of i in the original graph, which is used to accelerate the proce-
dure. In Line 7, we remove the sampled negative edges. Then we get the updated
topology structure A′.

In the process, we sample negative edges randomly from the whole graph and
remove noisy edges for each node, and the updated A′ is an asymmetrical matrix.
With the NEDLayer, we update the topology structure in a self-supervised man-
ner by considering the embeddings of nodes and the property of graphs.

4.3 NED-GNN

After the procedure of NEDLayer, we detect and drop the likely noisy edges
in the graph and generate the modified graph structure. With the generated
structure, we can update the aggregation process by setting,

A′(k) = normalize(NEDLayer(A,H(k−1))) (4)

H(k) = σ(A′(k)H(k−1)W + B) (5)

where normalize(·) performs L1 normalization by row to the adjacency matrix.
σ(·) is the non-linear method, W is the parameters of GNNLayer, and B is

NED-GNN: Detecting and Dropping Noisy Edges 99

the bias. As the representations of nodes are unstable at early epochs and may
result in mistakenly removing edges connecting two similar nodes, we update
the topology from the original graph in each epoch to avoid the situation.

4.4 The Variant of NED-GNN

Though NED-GNN can alleviate unnecessary information aggregation in graph
neural networks, the modification of graph structure sometimes brings side
effects. As we focus on homophily graphs in the paper, where nodes mostly
follow the assumption of homophily, there is no need for the negative edges sam-
pling for all nodes. Besides, most of the graphs are sparse in the real world,
so the process of edge dropping may break the substructure and result in poor
performance when excessive edges are dropped.

According to the training process of graph neural networks, we can find
that the parameters of the framework mainly depend on the labeled nodes by
calculating the prediction loss. Inspired by the observation, we promote the
variant of NED-GNN, Noisy Edges Dropping Graph Neural Networks on
Training Nodes(NED-GNN-t), which focuses on the training nodes, namely
sampling negative nodes and dropping noisy edges only for labeled nodes. Then,
we can decrease the number of negative edges and the calculation of similarity
between nodes. In this way, we can accelerate the process of NEDLayer and
improve training efficiency. What’s more, as NED-GNN-t only removes the edges
of the training nodes, the modification of the structure is mild with less edges
dropped, and the model can preserve more topology information.

5 Experiments

The goal of our method is to detect and drop noisy edges in the graph which
may harm the aggregation in the training of GNNs. To prove the effectiveness of
our method in improving GNN representation capacity, we designed the semi-
supervised node classification experiments on benchmark datasets. The proce-
dure is introduced as follows.

5.1 Experimental Settings

Datasets. Following previous works [13], we utilize three benchmark datasets
of citation network, Cora, Citeseer and Pubmed. In these datasets, nodes and
edges represent documents and citation relations between documents, respec-
tively. Each node is represented by the bag-of-words features extracted from the
content of the document. Each node corresponds a label with one-hot encoding
of the document category. We employ the same data split in DGL [23] module
and the data distribution is shown in Table 2.

100 M. Xu et al.

Table 2. Data distribution of Three Datasets

Cora Citeseer Pubmed

Nodes 2078 3327 19717

Edges 5278 4614 44325

Features 1433 3703 500

Classes 7 6 3

Training Nodes 140 120 60

Validation Nodes 500 500 500

Test Nodes 1000 1000 1000

Baseline Methods. To evaluate the effectiveness of our method, we compare
with the following state-of-the-art methods.

– DeepWalk [19]. The typical shallow network embedding model.
– GCN [13]. The baseline of graph nerual networks, which considers aggregat-

ing messages from direct neighbors.
– GraphSage [12]. Extending the mean aggregator of GCN to perform multi

aggregation and performing a sampling strategy before aggregation.
– GAT [22]. Considering introducing attention mechanism to GCN and assigns

different weights to neighbor nodes according to attention scores.
– GAT-single. The method which only utilizes a single attention head for

GAT. As our method can somehow be regarded as an further step for single-
head GAT by removing low weights.

– DropEdge [20]. Randomly removing a certain number of edges at each epoch
to improve the generalization capacity of GCN.

– NED-GNN. Our method, we choose the GCN and GAT as our baseline
method.

– NED-GNN-t. The variant of NED-GNN, which samples negative edges only
for labeled nodes.

Parameter Settings. In parameter settings, We designed 2-layer neural net-
works with the same hidden layer dimension and the same output dimension
simultaneously for every method. For baseline methods like DeepWalk, GCN,
GAT, and DropEdge, we follow the instruction of original codes in Github pub-
lished by the authors. For GraphSage, we only consider the situation with mean
aggregator, and the model is implemented the same as the authors’ guidance.
With our methods, we follow most settings of GCN except that we use an early
stopping strategy the same as GAT with a patience of 100 epochs. For all models,
we conducted 10 times and got the average results to show the performance.

5.2 Experiments Comparison

Table 3 shows the results of the compared methods on semi-supervised node clas-
sification. From the table, we can find the following observations. Our method
achieves the best or competitive performance compared with baseline methods

NED-GNN: Detecting and Dropping Noisy Edges 101

in all datasets. The promising results show the effectiveness of our method which
removes the noisy edges in the graph by comparing with negative edges. NED-
GAT performs better than NED-GCN as GAT can still assign different weights
to noisy edges which are not detected. DropEdge randomly removes a certain
percentage of edges in the graph to achieve better performance. However, the
randomicity is hard to control and sometimes discards the important interac-
tions between nodes, resulting in unsatisfying results. GraphSage also performs
a sampling strategy before aggregation and would get stuck in the randomicity
with a performance drop.

Table 3. The results of node classification accuracy(%) on the three datasets

Data Cora Citeseer Pubmed

DeepWalk 67.2 43.2 65.3

GraphSage 77.4 67.0 76.6

GIN 77.6 66.1 77.0

DropEdge 79.6 67.6 73.4

GCN 81.6 70.5 78.7

NED-GCN 82.9 70.9 79.0

NED-GCN-t 82.6 73.4 78.8

GAT 82.6 70.3 77.5

GAT-single 81.6 70.3 77.4

NED-GAT 83.3 71.0 78.1

NED-GAT-t 83.3 73.1 78.1

NED-GNN-t shows competitive performance in Cora compared with NED-
GNN, which indicates that the representative embeddings of labeled nodes are
essential for graph neural networks. In the sparse graph like Citeseer, NED-GNN-
t outperforms NED-GNN as the side-effects of NED-GNN break the important
topology structure, which result in sub-optimal performance. While NED-GNN-
t focuses on labeled nodes and modifies a small part in the graph to preserve
more topology information.

Besides, GAT outperforms other baselines in Cora as they can prevent the
aggregation of nodes from different classes by assigning the noisy edges small
weights. However, as GAT uses softmax(·) functions to calculate the weights
of attention, the weights of edges will always be positive. Our method tries to
remove a part of noisy edges, namely setting the weights of the edges to 0, thus
our method performs competitive results. In fact, our method can somehow be
regarded as a single-head attention mechanism that calculates the similarity of
neighbors directly, but we apply the weights to filter out the dissimilar nodes
with a further step. And the results show that our method can learn better node
embeddings than GAT with a single head.

Among the baseline methods, the GCN model performs better than Deep-
Walk as graph convolution is powerful by combining node features and topology
information. GAT outperforms GCN in some cases as GAT introduces attention

102 M. Xu et al.

to graph convolution to decide the more correlative neighborhoods. The results
are consistent with those in previous works.

5.3 Parameter Study

We conduct the ablation study to verify the effect of the number of negative
edges k and the order of sampling neighbors r. The results of node classification
on Cora dataset are shown in Fig. 6 and Fig. 7. We traverse k from 200 to 2000
and r from 2 to 6 to show the influence of the parameters.

The Number of Sampled Edges. From the results of Fig. 6, we can figure
out that when we sample more edges, the performance of the model increase
at first as more negative edges are sampled in the graph which can help detect
noisy edges. However, more is not always better. When we sample more than
800 edges in the graph, the performance decreases. As the discussion in Sect. 3,
noisy edges occupy a small proportion in the graph. The capacity gain brought
by negative edges is then offset by the side-effects of NED-GNN. In conclusion,
there is no need for a large number of sampled negative edges.

Fig. 6. Accuracy with Different Number of
Sampled Edges

Fig. 7. Accuracy with Different Neighbor
Order

The Order of Sampled Neighbors. In Fig. 7, classification accuracy is robust
with the increasing order of sampled neighbors. The results are consistent with
our statistical results. When we sample nodes without nodes in 3-order neigh-
bors, the probability of noisy edges is larger than 83%. So in the practice of our
method, the choice with low order neighbors can well satisfy the model training.

5.4 Training Visualization

In this section, we conduct experiments on Cora and Citeseer to verify the noisy
edges dropping in the training of NED-GNN. The proportion of noisy edges
dropped by our methods in the training process is shown in Fig. 8 and 9. The
blue lines in the figures are the probability of randomly dropping noisy edges.

NED-GNN: Detecting and Dropping Noisy Edges 103

Fig. 8. The proportion of noisy edges in dropped edges when training NED-GCN.

Fig. 9. The proportion of noisy edges in dropped edges when training NED-GCN-t.

From the figures, we can conclude that our method can effectively detect
and drop the noisy edges in the graph compared with randomly dropping the
edges. Considering the performance in Citeseer, which is too sparse with the
average degree of node is 2.8, we can also figure out that NED-GCN-t can better
detect and drop noisy edges than NED-GCN. The reason is that NED-GCN-
t performs a wilder edge dropping strategy and can preserve more topology
structure information in the graph.

6 Conclusion

Existing graph neural network methods mostly follow the assumption of homo-
geneity, which states that nodes connected by edges are similar and share
the same labels. However, particular nodes in the graph sometimes break the
assumption. In this paper, we try to discuss noisy edges in the graph and remove
the edges to obtain better embeddings. In particular, we proposed a simple and
effective method called Noisy Edge Dropping Graph Neural Network, short as
NED-GNN, to detect and remove noisy edges in the graph by sampling negative
edges. Extensive experiments are conducted on benchmark datasets and promis-
ing performance shows the effectiveness of our method. In the future, we aim to
improve the capacity of our method in detecting noisy edges by more strategies.

104 M. Xu et al.

Acknowledgements. This paper is supported by the National Key Research and
Development Program of China (Grant No. 2018YFB1403400), the National Natural
Science Foundation of China (Grant No. 61876080), the Key Research and Development
Program of Jiangsu(Grant No. BE2019105), the Collaborative Innovation Center of
Novel Software Technology and Industrialization at Nanjing University.

References

1. Arora, S.: A survey on graph neural networks for knowledge graph completion.
arXiv preprint arXiv:2007.12374 (2020)

2. Bruna, J., Zaremba, W., Szlam, A.D., Lecun, Y.: Spectral networks and locally
connected networks on graphs. CoRR abs/1312.6203 (2014)

3. Chen, X., Zhang, Y., Tsang, I., Pan, Y.: Learning robust node representations on
graphs. arXiv preprint arXiv:2008.11416 (2020)

4. Chen, Y., Wu, L., Zaki, M.: Iterative deep graph learning for graph neural networks:
Better and robust node embeddings. Proc. Adv. Neural Inf. Proc. Syst. 33, 19314–
19326 (2020)

5. Fan, W., Ma, Y., Li, Q., He, Y., Zhao, E., Tang, J., Yin, D.: Graph neural networks
for social recommendation. In: Proceedings of the World Wide Web Conference,
pp. 417–426 (2019)

6. Feng, F., Huang, W., Xin, X., He, X., Chua, T.S.: Should graph convolution trust
neighbors a simple causal inference method. In: Proceedings of the International
ACM SIGIR Conference on Research and Development in Information Retrieval,
pp. 1208–1218 (2021)

7. Franceschi, L., Niepert, M., Pontil, M., He, X.: Learning discrete structures for
graph neural networks. In: Proceedings of the International Conference on Machine
Learning, pp. 1972–1982 (2019)

8. Gao, H., et al.: CSIP: enhanced link prediction with context of social influence
propagation. Big Data Res. 24, 100217 (2021)

9. Gao, H., Ji, S.: Graph u-nets. In: Proceedings of the International Conference on
Machine Learning, pp. 2083–2092 (2019)

10. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message
passing for quantum chemistry. In: Proceedings of the International Conference on
Machine Learning, pp. 1263–1272 (2017)

11. Hamilton, W.L.: Graph representation learning. Synth. Lect. Artif. Intell. Mach.
Learn. 14(3), 1–159 (2020)

12. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large
graphs. In: Proceedings of the International Conference on Neural Information
Processing Systems, pp. 1025–1035 (2017)

13. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: Proceedings of the International Conference on Learning Represen-
tations (2017)

14. Kipf, T.N., et al.: Deep learning with graph-structured representations (2020)
15. Liu, C., Wu, J., Liu, W., Hu, W.: Enhancing graph neural networks by a high-

quality aggregation of beneficial information. Neural Netw. 142, 20–33 (2021)
16. Liu, Y., Li, B., Zang, Y., Li, A., Yin, H.: A knowledge-aware recommender with

attention-enhanced dynamic convolutional network. In: Proceedings of the 30th
ACM International Conference on Information Knowledge Management, pp. 1079–
1088 (2021)

http://arxiv.org/abs/2007.12374
http://arxiv.org/abs/2008.11416

NED-GNN: Detecting and Dropping Noisy Edges 105

17. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed rep-
resentations of words and phrases and their compositionality. In: Proceedings of
Advances in neural information processing systems, pp. 3111–3119 (2013)

18. O’Mahony, N., et al.: Deep learning vs. traditional computer vision. In: Proceedings
of Science and Information Conference, pp. 128–144 (2019)

19. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social represen-
tations. In: Proceedings of the ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pp. 701–710 (2014)

20. Rong, Y., Huang, W., Xu, T., Huang, J.: Dropedge: Towards deep graph con-
volutional networks on node classification. In: Proceedings of the International
Conference on Learning Representations (2020)

21. Sun, J., et al.: Neighbor interaction aware graph convolution networks for rec-
ommendation. In: Proceedings of the International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 1289–1298 (2020)

22. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
Attention Networks. In: Proceedings of the International Conference on Learning
Representations (2018)

23. Wang, M., et al.: Deep graph library: A graph-centric, highly-performant package
for graph neural networks. arXiv preprint arXiv:1909.01315 (2019)

24. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural net-
works In: Proceedings of the International Conference on Learning Representations
(2019)

25. Yang, H., Yan, X., Dai, X., Chen, Y., Cheng, J.: Self-enhanced GNN: Improv-
ing graph neural networks using model outputs. arXiv preprint arXiv:2002.07518
(2020)

26. Yao, L., Mao, C., Luo, Y.: Graph convolutional networks for text classification.
In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 7370–7377
(2019)

27. You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., Shen, Y.: Graph contrastive learn-
ing with augmentations. Adv. Neural Inf. Proc. Syst. 33, 5812–5823 (2020)

28. Zhang, M., Li, P., Xia, Y., Wang, K., Jin, L.: Revisiting graph neural networks for
link prediction. arXiv preprint arXiv:2010.16103 (2020)

29. Zhang, Y., Pal, S., Coates, M., Ustebay, D.: Bayesian graph convolutional neural
networks for semi-supervised classification. In: Proceedings of the AAAI Confer-
ence on Artificial Intelligence, pp. 5829–5836 (2019)

30. Zhang, Z., Cui, P., Zhu, W.: Deep learning on graphs: a survey. IEEE Trans. Knowl.
Data Eng. 34(1), 249–270 (2020)

31. Zheng, C., et al.: Robust graph representation learning via neural sparsification.
In: Proceedings of the International Conference on Machine Learning, pp. 11458–
11468 (2020)

http://arxiv.org/abs/1909.01315
http://arxiv.org/abs/2002.07518
http://arxiv.org/abs/2010.16103

	NED-GNN: Detecting and Dropping Noisy Edges in Graph Neural Networks
	1 Introduction
	2 Related Works
	2.1 Graph Neural Networks
	2.2 Graph Structure Modification

	3 Case Study
	4 Our Approach
	4.1 Notations and Preliminaries
	4.2 Noisy Edges Dropping
	4.3 NED-GNN
	4.4 The Variant of NED-GNN

	5 Experiments
	5.1 Experimental Settings
	5.2 Experiments Comparison
	5.3 Parameter Study
	5.4 Training Visualization

	6 Conclusion
	References

