
ACF2: Accelerating Checkpoint-Free
Failure Recovery for Distributed Graph

Processing

Chen Xu1,2(B), Yi Yang1,2, Qingfeng Pan1,2, and Hongfu Zhou3

1 East China Normal University, Shanghai, China
cxu@dase.ecnu.edu.cn, {yiyang,qfpan}@stu.ecnu.edu.cn

2 Shanghai Engineering Research Center of Big Data Management, Shanghai, China
3 Shanghai Ruanzhong Information Technology Company Limited, Shanghai, China

hfzhou@softline.sh.cn

Abstract. Iterative computation in distributed graph processing sys-
tems typically incurs a long runtime. Hence, it is crucial for graph process-
ing to tolerate and quick recover from intermittent failures. Existing solu-
tions can be categorized into checkpoint-based and checkpoint-free solu-
tion. The former writes checkpoints periodically during execution, which
leads to significant overhead. Differently, the latter requires no checkpoint.
Once failure happens, it reloads input data and resets the value of lost
vertices directly. However, reloading input data involves repartitioning,
which incurs additional overhead. Moreover, we observe that checkpoint-
free solution cannot effectively handle failures for graph algorithms with
topological mutations. To address these issues, we propose ACF2 with a
partition-aware backup strategy and an incremental protocol. In particular,
the partition-aware backup strategy backs up the sub-graphs of all nodes
after initial partitioning. Once failure happens, the partition-aware backup
strategy recovers the lost sub-graphs from the backups, and then resumes
computation like checkpoint-free solution. To effectively handle failures
involving topological mutations, the incremental protocol logs topological
mutations during normal execution which would be exploited for recovery.
We implement ACF2 based on Apache Giraph and our experiments show
that ACF2 significantly outperforms existing solutions.

Keywords: Failure recovery · Graph processing · Checkpoint-free

1 Introduction

Graph processing is widely employed in various application (e.g., social network
analysis and spatial data processing). In big data era, to efficiently process big
graph data, a set of large-scale distributed graph processing systems such as
Pregel/Giraph [9], GraphLab [7] and PowerGraph [3] has emerged. Distributed
graph processing usually involves iterative computation, where each iteration is
regarded as a superstep [9]. Typically, the computation with a serial of supersteps
leads to a long execution time. During this prolonged time span, certain nodes
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Li et al. (Eds.): APWeb-WAIM 2022, LNCS 13421, pp. 45–59, 2023.
https://doi.org/10.1007/978-3-031-25158-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25158-0_5&domain=pdf
https://doi.org/10.1007/978-3-031-25158-0_5


46 C. Xu et al.

of a distributed graph processing system may encounter failures due to network
disconnection, hard-disk crashes, etc. Hence, it is vital that distributed graph
processing systems tolerate and recover from failures automatically.

A common solution in systems like GraphLab [7] and Pregel/Giraph [9] to
handle failures is to periodically write checkpoints, i.e., checkpoint-based solu-
tion. However, it consumes runtime costs to write checkpoints even though no
failure happens. In contrast, some studies propose the checkpoint-free solutions,
e.g., Phoenix [2] and Zorro [11], to tolerate failure. Once failure happens, it
reloads input data to recover the lost sub-graphs on the failed nodes, and recovers
the values of vertices on these sub-graphs by applying a user-defined compen-
sation function. Hence, checkpoint-free solution outperforms checkpoint-based
solution by saving the overhead cost of checkpointing.

Nonetheless, checkpoint-free solution still requires further improvement.
First, it has to rebuild the lost sub-graphs from input data once failure hap-
pens, which involves repartitioning. Particularly, the repartitioning incurs addi-
tional recovery overhead, since it shuffles graph data during recovery. More-
over, checkpoint-free solution fails to handle the failures involving topological
mutations (e.g., deletions of edges). Once failures occur, checkpoint-free solution
re-initializes the topology on the failed nodes from input data, but keeps the
topology on the normal nodes unchanged. This may lead to result inaccuracy,
since checkpoint-free solution discards topological mutations of vertices on failed
nodes.

In this work, we propose a prototype system, namely ACF2, with a partition-
aware backup strategy to reduce the recovery overhead, and an incremental pro-
tocol to handle failures involving topological mutations. The partition-aware
backup strategy backs up the sub-graphs of all nodes into reliable storage after
partitioning. Once failure happens, the partition-aware backup strategy recov-
ers the lost sub-graphs from the backup and then restarts computation like
checkpoint-free solution. Our experimental results show that, in case of failures,
the partition-aware backup strategy is able to reduce the overall execution time
by 29.4% in comparison to Phoenix [2], a state-of-the-art checkpoint-free solu-
tion. The incremental protocol logs the topological mutations during execution.
Upon failure, our protocol utilizes these logs to recover the topology on all nodes
to a certain superstep before failure. In our experiments, we find the incremental
protocol improves the result accuracy by up to 50% compared to Phoenix.

In the rest of this paper, we introduce the background of the checkpoint-free
solution and our motivation in Sect. 2, and make the following contributions.

– We propose a partition-aware backup strategy in Sect. 3 that decreases the
overhead imposed by checkpoint-free solution on the lost sub-graphs.

– We devise an incremental protocol in Sect. 4, so as to support fault tolerance
with graph topological mutations.

– We describe the implementation of ACF2 based on Giraph in Sect. 5 and
demonstrate the ACF2 outperforms state-of-the-art solutions via experimen-
tal evaluation in Sect. 6.

We discuss the related work in Sect. 7 and conclude this paper in Sect. 8.



ACF2: Accelerating Checkpoint-Free Failure Recovery 47

Fig. 1. The working process of checkpoint-free solution

2 Background and Motivation

Many graph processing systems such as GraphX [4] employ a checkpoint-based
solution to tolerate failures. During normal execution, the checkpoint-based solu-
tion writes checkpoints periodically. Once failure happens, the systems read the
latest checkpoint for rollback and start recomputation. Clearly, this checkpoint-
based solution incurs a high overhead even though no failure happens.

To avoid the checkpointing overhead, some studies propose checkpoint-free
solution, such as Phoenix [2], optimistic recovery [12] and Zorro [11]. Differently,
the solution does not write any checkpoint during normal execution. Once fail-
ure happens, it loads input data to recover the lost sub-graphs on failed nodes
via partitioning. After that, the checkpoint-free solution employs a user-defined
compensation function to recover the value of vertices on lost sub-graphs and
continues computation. In particular, it does not rollback the value of vertices
and starts recomputation, but utilizes semantic properties of graph algorithms
to set the value of vertices, so as to decrease the overhead of recomputation [2].

Figure 1 takes maximum value calculation as an example to illustrate the
checkpoint-free solution. Here, the job executed on two nodes N1 and N2 con-
sists of four suspersteps from superstep S0 to S3. As shown in Fig. 1(a), before
executing S0, N1 and N2 load sub-graphs from input data splits split1 and
split2, respectively. However, according to partition function, the vertex C on
the sub-graph in split1 does not belong to N1. Likewise, A does not belong to
N2. Hence, N1 and N2 exchange vertices with each other during loading, called
shuffle. After that, the job executes computation from S0 to S3. During computa-
tion, the checkpoint-free solution achieves zero overhead, since it does not write
checkpoints. Once N2 fails at S2, as shown in Fig. 1(b), the sub-graph consisting
of C and D on N2 is lost. To recover the lost sub-graph, the checkpoint-free
solution requires N1 and N2 to reload the sub-graphs from split1 and split2.



48 C. Xu et al.

Fig. 2. Impact of topological mutations

Then, the checkpoint-free solution compensates the value of vertices C and D to
minimum value, i.e., 0. This avoids the recomputation overhead on updating the
value of D to 3. After that, the job continues the computation and terminates
the iteration at S5.

Recovery Overhead. Once failure occurs, the checkpoint-free solution has to
reload the splits of input data and executes partitioning. However, the partition-
ing shuffles data via the network during recovery, which introduces additional
overhead. We take Fig. 1(b) as an example to illustrate this. Once N2 fails at
S2, the checkpoint-free solution asks N1 and N2 to reload input data. Then, N1

recovers the vertex C by shuffle, i.e., N1 sends C via the network to N2 after
reading C from split1. Clearly, the checkpoint-free solution avoids the additional
overhead incurred by shuffle if N2 can read the vertex C directly.

Inaccuracy. Besides recovery overhead, the checkpoint-free solution leads to a
decrease in the result accuracy to recover graph algorithms with topological muta-
tions. To elaborate this, Fig. 2 shows the normal execution and failure recovery of
maximum value graph job with topological mutations. As shown in Fig. 2(a), the
vertex B sends the maximum value 6 as a messages to C by edge 〈B,C〉 during
normal execution. Then, the vertex C updates its value to 6 at S2. Meanwhile,
the job removes the edges 〈B,C〉 and 〈C,B〉. Subsequently, the job updates the
value of vertex D to 6 and finishes the computation at S3. Once N2 fails at S2, as
shown in Fig. 2(b), the checkpoint-free solution employs the same way as Fig. 1(b),
i.e., reloading input data, to recover the topology of N2 to initial topology at S0.
Moreover, for normal node N1, the checkpoint-free solution keeps its topology
unchanged. Hence, at superstep S3, there is an edge 〈C,B〉 but no edge 〈B,C〉
in the graph. Without the edge 〈B,C〉, vertex B is unable to send the maximum
value 6 as a messages to C again. Hence, C and D cannot update their values to
the maximum value 6, so that the job eventually outputs inaccurate results.

Further, combining the above example, we summarize the reasons for the
inaccuracy introduced by the checkpoint-free solution. There two reasons for
the inaccuracy: (a) computation on the failed nodes requires messages from



ACF2: Accelerating Checkpoint-Free Failure Recovery 49

Fig. 3. Partition-aware backup strategy

the normal nodes, while topological mutations break the link used to transfer
message from the vertices on normal nodes to the vertices on failed nodes; (b)
the checkpoint-free solution does not fix these links, since it keeps the topology
of the normal nodes unchanged during recovery.

3 Partition-aware Backup Strategy

To avoid the additional overhead caused by the checkpoint-free solution during
recovery, we propose partition-aware backup strategy which saves the sub-graphs
of all nodes to distributed file system (DFS) during normal execution. Once
failures occur, our strategy recovers the lost sub-graphs directly from the backups
instead of from the input data. Then, we are able to apply a user-defined function
following the checkpoint-free solution.

During normal execution, the design of the partition-aware backup strategy
involves two questions: how many times to backup; and when to backup. For
the first question, the times of backuping depend on whether the system reparti-
tions the sub-graphs on the nodes during computation. However, repartitioning
sub-graphs does not offer significant performance improvements except under
particular conditions [6,10]. Based on this observation, we assume that the sys-
tem does not repartition the sub-graphs, and therefore back up the sub-graphs
of all nodes only once. Moreover, we employ an unblocking manner to minimize
the influence of backup on computation. This manner backs up the sub-graphs
in parallel with the computation. For the second question, our strategy imme-
diately backs up sub-graphs after partitioning, i.e., at superstep S0, so as to
make the backup available as soon as possible. As an example in Fig. 3(a), at
superstep S0, our strategy asks the sub-graph writers on N1 and N2 to back up
their sub-graphs. Here, the backup is in parallel with the iterative computation,
which involves a low overhead cost.

Once failure happens, our strategy checks the availability of backup. Then,
our strategy allows the sub-graph readers on the failed nodes to recover the



50 C. Xu et al.

Fig. 4. Incremental protocol

lost sub-graphs from the backup when the backup is available. Otherwise, it lets
these readers recover the lost sub-graphs from the input data. Then, our strategy
employs the same way as checkpoint-free solution to recover the values of the
vertices. As illustrated by the example in Fig. 3(b), the backup is available when
N2 fails at superstep S2. Hence, the sub-graph reader on N2 recovers the lost
sub-graph from the backup rather than the input data, and resets the values of
vertices following checkpoint-free solution.

4 Incremental Protocol

In this section, we propose an incremental protocol to deal with failure involving
topological mutations, so as to ensure the result accuracy. To improve the result
accuracy, a näıve solution is to reset the topology of normal nodes to their initial
topology at S0, which ensures that normal nodes can resend messages to failed
nodes. However, this solution forces the job to recompute from the initial graph
topology, wasting the computation.

To reduce the overhead on recomputation, we propose an incremental proto-
col, which logs topological mutations of all nodes during execution. Once failure
occurs, our protocol utilizes these logs to redo mutations on failed nodes, so as
to avoid the overhead of recomputation involving message transmission and pro-
cessing. In detail, our protocol consists of the following two phases, i.e., normal
execution and failure recovery.

During normal execution, once the node Ni modifies the topology of graph at
superstep Sj , our protocol lets the logger on Ni log these modifications to DFS.
In particular, the logger also stores the type of modifications, e.g., adding or
removing edges, as well as the superstep where the mutations occur. Moreover,
when the modifications of all nodes at superstep Sj is fully stored, our protocol
creates a log flag file of Sj on DFS. This log flag file indicates that it is viable
to redo the mutations from S0 to Sj on failed nodes once failure happens.



ACF2: Accelerating Checkpoint-Free Failure Recovery 51

Fig. 5. System architecture

Figure 4(a) provides an example on how the incremental protocol works dur-
ing normal execution. At superstep S2, the vertex C on N2 updates the value
to 6 and removes the edge 〈C,B〉 after receiving the message from B on N1.
Meanwhile, the logger on N2 logs the information related to the modification
“r 〈C,B〉 3 6 S2” to DFS. These information contains the type of modification
r, the removed edges 〈C,B〉, the change in the value of vertex from 3 to 6 as
well as the superstep S2. Likewise, the logger on N1 logs the information related
to the modification. Once these information at superstep S2 is fully stored, our
protocol creates a log flag file of S2 on DFS.

Once failure occurs at superstep Sf , our protocol loads all log flag files and
generates a list L consisting of the supersteps in these flag files. Then, our pro-
tocol requires all nodes to load their respective log from DFS. For failed nodes,
our protocol obtains the superstep St of each modification in log and redoes the
modification when St belongs to L. In contrast, our protocol does not redo the
modification when St does not belong to L, since our protocol may not have
wrote fully the mutations on failed nodes to DFS during execution. To redo
these mutations, the failed nodes still requires messages from the normal nodes.
Hence, our protocol undoes the modification when St does not belong to L for
normal nodes, so as to fix the link used to transfer messages.

Figure 1(b) depicts how the incremental protocol works during recovery. As
shown in Fig. 4, once N2 fails at superstep S2, our protocol generates a list L
including S2 and lets the log replayers on N1 and N2 read logs from the DFS.
Then, the log replayer on N2 redoes the modification “r 〈C,B〉 3 6 S2”, since L
contains S2. Meanwhile, the log replayer on N1 does not redo the modification
involving B, since it is normal node and L contains S2. It is worth noting that
the log replayer undoes the modification involving B if L does not contain S2,
so as to fix the link from B to C. Then, the vertex D receives the message from
C and performs the subsequent computation. Eventually, the computation will
produce accurate results.



52 C. Xu et al.

Algorithm 1: Normal Execution of the Worker n

1 while iteration is not terminated do
2 i ← current superstep
3 Gn ← get the sub-graph maintained by the worker n
4 if i = 0 then // Sub-graph Writer

5 backuping Gn

6 initialize set L // Logger

7 for v ∈ Gn do
8 if v modifies topology then
9 Ri

n ← topological mutations

10 add Ri
n into L

11 write L to DFS
12 i ← i + 1

5 System Implementation

In this section, we present the implementation of ACF2 which is based on Apache
Giraph. Figure 5 shows the architecture of our proposed ACF2, which inherits
the master/worker architecture of the existing systems. Specifically, the master
is responsible for coordinating worker activity, whereas the worker executes com-
putation via a series of executor threads. Moreover, the worker integrates the
failure recovery mechanism implemented through an executor thread. To achieve
the partition-aware backup strategy, we introduce a new component Sub-graph
Writer for the worker and integrate it into the thread responsible for the compu-
tation. Also, we modify the execution logic of the thread responsible for failure
recovery on the worker, so as to integrate the new component Sub-graph Reader.
Likewise, to achieve the incremental protocol, we add two new components to
worker, i.e., Logger and Log Replayer. Moreover, we modify the execution logic
of the Coordinator component on the master to record the failed supersteps, so
as to coordinate these new components in the worker.

Algorithm 1 illustrates the implementation details of one worker (say worker
n) during normal execution. Our partition-aware backup strategy employs sub-
graph writer obtains and backs up the sub-graph of each node after partitioning,
i.e., superstep S0 (line 3–5). The logger in incremental protocol monitors the
behavior of each vertex v at each superstep. When v modifies the graph topology,
the logger logs the topological mutations Ri

n in superstep Si of worker n, and
adds it to a set L that stores all topological mutations (line 6–10). Then, it
uploads logs to DFS (line 11).

Algorithm 2 describes the implementation details of worker n upon failure.
The partition-aware strategy adopts sub-graph reader to load lost sub-graphs
from the backup if it exists (line 2). Otherwise, it reloads the input data (line 4).
The log repalyer in incremental protocol get a list F of failed supersteps from
master and read logs from DFS into L (line 5–6). For each record Ri

n in logs,



ACF2: Accelerating Checkpoint-Free Failure Recovery 53

Algorithm 2: Failure Recovery of the Worker n

1 if backup exists then // sub-graph reader

2 load lost sub-graphs from the backup

3 else
4 recover lost sub-graphs from input data

5 list F ← get failed supersteps from Master
6 L ← read logs for worker n

7 for each Ri
n in L do // log replayer

8 if i ∈ F then
9 undo Ri

n

10 else
11 redo Ri

n

the protocol obtains the superstep Si saved in Ri
n and undoes it if Si belongs to

F (line 9). Otherwise, our protocol redoes Ri
n (line 11).

6 Experiments

This section introduces our experimental setting and demonstrates the efficiency
of the partition-aware backup strategy and the incremental protocol.

6.1 Experimental Setting

Cluster Setup. We conduct all experiments on a cluster with 13 compute
nodes. Here, each compute node has a eight-core Intel Xeon CPUs, a 32GB
RAM, a 300GB SSD and 1Gbps Ethernet. We deploy Hadoop 2.5.1 on this
cluster, since the Giraph program is executed via a MapReduce job on the top
of Hadoop. By default, we issue 13 map tasks and each task owns 24GB memory.
Here, we follow previous studies [1,8,13] to set the size of task memory.

Algorithms. We choose two algorithms to evaluate the effectiveness of
partition-aware backup strategy and incremental protocol. They are the sin-
gle source shortest path without topological mutations and the maximum weight
matching with topological mutations. These algorithms are popular in graph
analysis applications [5]. In the rest of this paper, we refer to above algorithms
as SP and MWM, respectively. We set the number of iterations of MWM to
50. Moreover, we conduct the experiments over three real-life graphs, Orkut1,
WebCC122 and Friendster3, with million-scale or billion-scale edges.

1 http://networkrepository.com/orkut.php.
2 http://networkrepository.com/web-cc12-PayLevelDomain.php.
3 https://snap.stanford.edu/data/com-Friendster.html.

http://networkrepository.com/orkut.php
http://networkrepository.com/web-cc12-PayLevelDomain.php
https://snap.stanford.edu/data/com-Friendster.html


54 C. Xu et al.

Fig. 6. Impact of the number of failures

Baselines. We take the original checkpoint-based recovery solution in Giraph
as a baseline. The checkpoint interval for this solution imposes an impact on
performance. For fairness, based on previous studies [12,15,17], we set the check-
pointing interval to two and six, respectively. Also, we take the state-of-the-art
checkpoint-free solution, i.e., Phoenix, as a baseline and implement it in Giraph.
Compared to these baselines, we evaluate our proposed ACF2 consisting of a
partition-aware backup strategy and an incremental protocol.

6.2 Efficiency of Partition-aware Backup Strategy

In this section, we evaluate performance of the partition-aware backup strategy
which means that ACF2 does not enable the incremental protocol, denoted as
ACF2(Partition-aware) in Fig. 6, 7, 8, 9 and 10. In particular, we consider the
impact of two factors on performance: (i) the number of failures and (ii) the time
at which they occur, i.e., failed superstep.

Number of Failures. We focus on the case where the number of failures is less
than three, since checkpoint-free solution assumes that modern clusters has large
mean time between failures of a machine [11]. Figure 6 depicts the execution time
of failure recovery with different number of failures n ranging from zero to three.
Particularly, the failure does not happen when n = 0. When n = 1, we issue one
failure at superstep S6. When n = 2, we issue two failures at S6 and S8. When
n = 3, we issue three failures at S6, S8 and S10.

As shown in Fig. 6, Giraph with a checkpointing interval of six, i.e., Giraph(6)
in Fig. 6, always outperforms Giraph with a checkpointing interval of two denoted
as Giraph(2). The reason is Giraph with a checkpointing interval of six writes
fewer checkpoints. Based on this observation, in the following discussion, we only
discuss the differences between Giraph with a checkpoint interval of 6 and other
recovery solutions.

In general, Phoenix performs better than the Giraph. However, Phoenix per-
forms worse than the Giraph in some cases because of its additional overhead
involving repartitioning. As an example in Fig. 6(a), in comparison to Giraph,
Phoenix decreases the overhead by up to 58.6% when n = 0, while they exceed
the execution time of the Giraph when n = 2.



ACF2: Accelerating Checkpoint-Free Failure Recovery 55

Fig. 7. Different failed
supersteps

Fig. 8. Impact of the number of failures

The partition-aware backup strategy keeps low overhead under failure-free
cases, so as to achieve similar performance to Phoenix when n = 0. As shown in
Fig. 6(c), the overhead cost of the partition-aware backup strategy on the Orkut
dataset only increases 4.6% as against Phoenix. In case of failure, the partition-
aware backup strategy outperforms other recovery solutions, and achieves the
best performance. For example, in Fig. 6(c), the partition-aware backup strategy
decreases the overhead by 31% compared to the Giraph, and by up to 9% com-
pared to Phoenix when n = 1. Notably, for individual cases depicted in Fig. 6(a),
the partition-aware backup strategy performs worse than Giraph. The reason is
that the backup is not completed in time when the SP algorithm is executed on
the small dataset Orkut. This leads to the partition-aware backup strategy to
recover lost partition data using a similar way to Phoenix.

As the number of failures n increases, the partition-aware backup strategy
benefits more than Phoenix on the execution time. As shown in Fig. 6(c), the
percentage of overhead cost reduced by the partition-aware backup strategy
increases from 9% to 29.4% as against Phoenix when n increases from 1 to 3.

Overhead of Recovering Lost Sub-graphs. The change of n has an impact
on the overhead of recovering lost sub-graphs, which decides the performance of
different recovery solutions. Next, we further evaluate the overhead of recovering
lost sub-graphs caused by these solutions.

In Fig. 6, the partition-aware backup strategy achieves a lower recovery over-
head than Phoenix, since it recovers lost sub-graphs from backups which avoids
the repartitioning during recovery. As depicted in Fig. 6(b), the Giraph decreases
the overhead of recovering lost sub-graphs by up to 81.2%, compared to Phoenix
when n = 1. In particular, Giraph obtains a similar recovery overhead as the
partition-aware backup strategy, since it recovers lost sub-graphs from the check-
point which also avoids the repartitioning.

Along with n increases, advantages of the partition-aware backup strategy
during recovery phase becomes significant. As shown in Fig. 6(c), our strategy
decreases the overhead by 67.2% as against Phoenix when n = 1. Moreover, as
n increases, the overhead of recovering lost sub-graphs for Phoenix grows faster
than that of the partition-aware backup strategy, since the cost on reloading the
input data is higher than the cost on loading backup.



56 C. Xu et al.

Different Failed Supersteps. Next, we study the performance of the
partition-aware backup strategy when failure occurs in different supersteps, since
failures always happen at certain supersteps in the aforementioned experiments.
Figure 7 provides the execution time of SP on the Friendster dataset with one
failure which happens in different supersteps. Here, we consider the case of one
failure (i.e., n = 1), as we have already observed that the partition-aware backup
strategy achieves more benefits as n increases. In this experiment, the failed
superstep is varied from S3 to S8.

Clearly, as shown in Fig. 7, the partition-aware backup strategy outperforms
other recovery solutions as long as the backup of sub-graphs is available, i.e., the
failure occurs after superstep S5. Otherwise, the partition-aware backup strat-
egy behaves similarly to Phoenix. In other words, the partition-aware backup
strategy degenerates to Phoenix when the backup is not available.

In summary, the partition-aware backup strategy outperforms Giraph and
Phoenix in most cases. Moreover, with the increasing of the number of failures,
the partition-aware backup strategy obtains more benefits as against Phoenix.

6.3 Efficiency of Incremental Protocol

In this section, based on the partition-aware backup strategy, we compare the
performance of the incremental protocol against other recovery solutions. This
means that ACF2 enables both the partition-aware backup strategy and the
incremental protocol, denoted as ACF2(Incremental). In particular, we exclude
Giraph with a checkpointing interval of two in this group experiments, since pre-
vious experiments have demonstrated that Giraph with a checkpointing interval
of six outperforms it.

Number of Failures. Figure 8 reports the total execution time of different
recovery solutions with the number of failures n ranging from zero to three. Here,
we follow the previous failures setting and issue failures at the same supersteps.
Moreover, due to space limitation, we only take MWM on Orkut and WebCC12
datasets as examples. However, similar results hold on Friendster.

As shown in Fig. 8, the incremental protocol outperforms Giraph in most cases.
As an example depicted in Fig. 8(b), compared to Giraph, the incremental pro-
tocol reduces the overhead by 28.7% on the execution time when n = 2. Due to
the logging overhead, our incremental protocol performs worse than the partition-
aware backup strategy and Phoenix. For example, in Fig. 8(b), the execution time
of incremental protocol is always longer than that of the partition-aware backup
strategy, no matter how many times the failure occurs. Moreover, compared to
Phoenix, the overhead of incremental protocol increases 32% when n = 1. How-
ever, incremental protocol saves the execution time up to 5% when n = 3.

Result Accuracy. Next, we focus on the result accuracy, since the incremental
protocol affects it. To evaluate the accuracy of MWM, we define the correct
match metric, which means the fraction of matched vertices with the same value
as the original result, i.e., the result under the failure-free case. This metric is



ACF2: Accelerating Checkpoint-Free Failure Recovery 57

Fig. 9. Result accuracy Fig. 10. Different failed
supersteps on MWM

computed via mc(v)/ma(v) ∗ 100%, where mc(v) denotes the matched vertices
with the same value as the original result and ma(v) denotes all matched vertices
in the original result.

As shown in Fig. 9, Phoenix and the partition-aware backup strategy do not
effectively handle failures when running graph algorithms with topological muta-
tions. For example, in Fig. 9(b), Giraph achieves no accuracy loss in all cases.
However, Phoenix and the partition-aware backup strategy achieve the maxi-
mum accuracy of around 40% when n = 1. Moreover, the accuracy of Phoenix
and the partition-aware backup strategy continue to decline as n increases from
1 to 3.

The incremental protocol efficiently handles failures when running graph
algorithms with topological mutations. As shown in Fig. 9(a), compared to
Phoenix and the partition-aware backup strategy, the incremental protocol leads
to an inaccuracy of 0.4% when n = 1. Further, when n increases from 1 to 3,
the incremental protocol still ensures an accuracy over 98.6%, even though its
accuracy decreases. The incremental protocol still sacrifices the accuracy of the
results, which is because we limit the number of iterations. However, our protocol
achieves 100% accurate results if we do no limit the number of iterations [2].

Different Failed Supersteps. Similarly, we continue to investigate the perfor-
mance trend of the incremental protocol when failure occurs in different super-
steps. Also, we follow the previous failure setting. Figure 10 provides the results
on the Friendster dataset.

As shown in Fig. 10, no matter in which superstep the failure happens, the
incremental protocol always outperforms Giraph. Moreover, the incremental pro-
tocol performs worse than Phoenix and the partition-aware backup strategy,
when the failure occurs before S5. This is because our protocol introduces log-
ging overhead and employs a similar way as Phoenix to recover lost sub-graphs.
However, the performance of the incremental protocol is close to that of Phoenix
when the failure occurs after S5, due to the backup of sub-graphs.

In summary, our incremental protocol outperforms Phoenix, since we effec-
tively handle failures involving topological mutations. Also, our protocol achieves
similar accuracy as Giraph and faster execution than Giraph.



58 C. Xu et al.

7 Related Work

This section discusses the related work on recovery solutions of distributed graph
processing systems, in term of checkpoint-based and checkpoint-free solutions.

The checkpoint-based solutions require the system to write checkpoints or
maintain a certain number of replicas during normal execution. Once failure
occurs, the system utilizes the checkpoints or replicas to recover. In general, dis-
tributed graph processing systems such as Pregel [9], GraphLab [7], GraphX [4]
and PowerGraph [3] employ the checkpoint-based solution to tolerate failure.
These systems periodically write the checkpoints during normal execution and
reload the latest checkpoint upon failure. Rather than writing all the edges in
each checkpoint, the lightweight checkpointing [17] reduces the data volume of
checkpoint by saving the vertices and incrementally storing edges. Xu et al. [16]
explore unblocking checkpoint to decrease the overhead of blocking checkpoint
for graph processing on dataflow systems. CoRAL [14] applies unblocking check-
pointing to asynchronous graph processing systems. Shen et al. [13] propose
a repartition strategy to reduce the communication cost during recovery, so
as to accelerate recovery. However, these works focus on checkpoint-based fail-
ure recovery, whereas our work targets checkpoint-free failure recovery. Also,
Spark [18] employs checkpoint-based solutions to tolerate failure. In particu-
lar, Spark utilizes the lineage of RDD to accelerate recovery. During recovery, it
replays the transformation to recompute the lost RDD sub-graphs. However, our
work directly loads the lost sub-graphs from the backups and resets the vertex
value by semantic properties of graph algorithms, which avoids the recomputa-
tion.

In contrast to the checkpoint-based solutions, the checkpoint-free solutions
achieve failure recovery without any checkpoint or replica. Schelter et al. [12]
propose the optimistic recovery which reloads the lost partitions from input
data and applies the algorithmic compensations in the lost partitions once fail-
ure happens. As a variant of optimistic recovery, Zorro [11] utilizes the implicit
replicas of vertices in graph systems to recover the value of lost vertices, so
as to accelerate recovery. The optimistic recovery is applicable only to partial
graph algorithms. Different from optimistic recovery, Phoenix [2] classifies exist-
ing graph algorithms into four classes and provides APIs for these different
classes of algorithms to achieve failure recovery. However, these works do not
consider the additional overhead caused by recovering lost sub-graphs, and the
failure involving topological mutations.

8 Conclusions

This paper proposes ACF2 to mitigate the shortcoming of checkpoint-free solu-
tion. In specific, ACF2 includes a partition-aware backup strategy and an incre-
mental protocol. Instead of reloading input data, the partition-aware backup
strategy recovers the lost sub-graphs from the backups on DFS, so as to reduce
the recovery overhead incurred by checkpoint-free solution. The incremental pro-
tocol which logs topological mutations during normal execution and employs



ACF2: Accelerating Checkpoint-Free Failure Recovery 59

these logs for failure recovery. The experimental studies show that ACF2 out-
performs existing checkpoint-free solutions in general. Presently, we implement
ACF2 based on Giraph. Nevertheless, it is possible to integrate ACF2 in other
distributed graph processing systems such as GraphLab.

Acknowledgments. This work has been supported by the National Natural Science
Foundation of China (No. 61902128).

References

1. Ammar, K., et al.: Experimental analysis of distributed graph systems. Proc.
VLDB Endow. 11(10), 1151–1164 (2018)

2. Dathathri, R., et al.: Phoenix: a substrate for resilient distributed graph analytics.
In: ASPLOS, pp. 615–630 (2019)

3. Gonzalez, J.E., et al.: Powergraph: distributed graph-parallel computation on nat-
ural graphs. In: OSDI, pp. 17–30 (2012)

4. Gonzalez, J.E., et al.: Graphx: graph processing in a distributed dataflow frame-
work. In: OSDI, pp. 599–613 (2014)

5. Kalavri, V., et al.: High-level programming abstractions for distributed graph pro-
cessing. IEEE Trans. Knowl. Data Eng. 30(2), 305–324 (2018)

6. Li, B., et al.: : A trusted parallel route planning model on dynamic road networks.
TITS (2022)

7. Low, Y., et al.: Distributed graphLab: a framework for machine learning in the
cloud. Proc. VLDB Endow. 5(8), 716–727 (2012)

8. Lu, Y., et al.: Large-scale distributed graph computing systems: an experimental
evaluation. Proc. VLDB Endow. 8(3), 281–292 (2014)

9. Malewicz, G., et al.: Pregel: a system for large-scale graph processing. In: SIGMOD,
pp. 135–146 (2010)

10. McCune, R.R., Weninger, T., Madey, G.: Thinking like a vertex: a survey of vertex-
centric frameworks for large-scale distributed graph processing. ACM Comput.
Surv. 48(2), 1–39 (2015)

11. Pundir, M., et al.: Zorro: zero-cost reactive failure recovery in distributed graph
processing. In: SoCC, pp. 195–208 (2015)

12. Schelter, S., et al.: “All roads lead to rome”: optimistic recovery for distributed
iterative data processing. In: CIKM, pp. 1919–1928 (2013)

13. Shen, Y., et al.: Fast failure recovery in distributed graph processing systems. Proc.
VLDB Endow. 8(4), 437–448 (2014)

14. Vora, K., et al.: Coral: confined recovery in distributed asynchronous graph pro-
cessing. In: ASPLOS, pp. 223–236 (2017)

15. Wang, P., et al.: Replication-based fault-tolerance for large-scale graph processing.
In: DSN, pp. 562–573 (2014)

16. Xu, C., et al.: Efficient fault-tolerance for iterative graph processing on distributed
dataflow systems. In: ICDE, pp. 613–624 (2016)

17. Yan, D., et al.: Lightweight fault tolerance in Pregel-like systems. In: ICPP, pp.
1–10 (2019)

18. Zaharia, M., et al.: Resilient distributed datasets: a fault-tolerant abstraction for
in-memory cluster computing. In: NSDI, pp. 15–28 (2012)


	ACF2: Accelerating Checkpoint-Free Failure Recovery for Distributed Graph Processing
	1 Introduction
	2 Background and Motivation
	3 Partition-aware Backup Strategy
	4 Incremental Protocol
	5 System Implementation
	6 Experiments
	6.1 Experimental Setting
	6.2 Efficiency of Partition-aware Backup Strategy
	6.3 Efficiency of Incremental Protocol

	7 Related Work
	8 Conclusions
	References




