
SgIndex: An Index Structure Supporting
Multiple Graph Queries

Shibiao Zhu, Yuzhou Huang, Zirui Zhang, and Xiaolin Qin(B)

Nanjing University of Aeronautics and Astronautics, Nanjing, China

qinxcs@nuaa.edu.cn

Abstract. With the rise of social networks, traffic navigation and other
fields, graph applications become increasing extensive. To improve query
efficiency, indexes are built to manage large-scale graph data. However,
these indexes cost large memory space and can only support one single
graph operation. We propose a two-layered index structure SgIndex, in
which the first layer stores subgraph information, and the second layer
stores adjacency information to support multiple path operations and
subgraph matching queries. We propose a subgraph matching algorithm
based on path join, which completes subgraph matching by searching
SgIndex twice. The experimental results show that SgIndex achieves bet-
ter performance on path queries and subgraph matching than existing
index structures, and reduces memory overhead.

Keywords: Index · Graph data · Path query · Subgraph matching

1 Introduction

Large-scale graph data with complex internal structure and diverse query
requirements have emerged in different fields and various data operations have
appeared in the application of large-scale graph data [2,11,15]. On the one hand,
some algorithms have difficulties in adapting to large-scale graphs. On the other
hand, most of the existing index structures lack generality. In practical applica-
tions, multiple indexes need to be established for the same graph to response to
different query requirements. Therefore, this paper proposes a subgraph-based
index structure SgIndex: for large-scale graph data, establish an index structure
that meets various query requirements.

First, graph operations are expensive on large-scale graph data. Compared
with traditional relational data or XML tree, graph data lacks structural con-
straints and is complicated to operate. Second, flexible and diverse query require-
ments for large-scale graph data mean that multiple indexes need to be built to
meet these requirements. Furthermore, graph data operations usually require
loop iterations, which is also the part that our index needs to support.

We have made the following contributions in this paper: 1. We propose an
index that supports large-scale datasets, which reduces storage space by opti-
mizing the design of the index; 2. The index structure can implement various
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Li et al. (Eds.): APWeb-WAIM 2022, LNCS 13421, pp. 553–561, 2023.
https://doi.org/10.1007/978-3-031-25158-0_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25158-0_45&domain=pdf
https://doi.org/10.1007/978-3-031-25158-0_45

554 S. Zhu et al.

queries on graph data such as path query and subgraph query, including two-
point path query, path query with limited path length, path query with limited
path hops, and subgraph query.

2 Related Work

Graph is already a widely used data structure, but querying large-scale graph
data has always been a difficult problem [5]. A popular solution is to build an
index that does not waste too much storage space, but also produces effective
positive feedback on the query process under various circumstances. However, in
practical applications, there are often multiple queries that need to be satisfied
for the same graph data [2,14,15] (Fig. 1). Given a directed graph G and two
vertices s and t in it, a reachability query asks G if there is a path from s to t.
Reference [13] proposes a set of tools to quantify and query network reachability,
and uses decision graphs as data structures to represent reachability matrices.
Based on two classical shortest path algorithms, the shortest path problem can
be decomposed into a linear complex problem [1,8], or the target solution can
be optimized in terms of distance or time [7,9,10], or one or more preprocessing
steps to speed up the shortest path query time [4,12]. Subgraph is one of the
basic concepts of graph theory, which refers to a graph in which the vertex set
and the edge set are subsets of the vertex set and edge set of a certain graph,
respectively. Reference [3] adopts a left-side deep join ranking strategy, which

Fig. 1. Graph example and query graph example

Fig. 2. SgIndex structure diagrame

SgIndex: An Index Structure Supporting Multiple Graph Queries 555

models the enumeration process as a join problem. Subtree features are also
used for indexing, and they take less time to index than more general subgraph
features. BINDEX [6] is a secondary index with excellent query efficiency. It
consists of Filter Layer and Refine Layer.

3 Index Based on Subgraph

3.1 Index Structure and Establishment Method

Algorithm 1. Create SgIndex
Input: Graph data G(VG, EG); Vertex set VG; Edge set EG; Threshold r;
Output: Index I;
1: i ← 0;
2: while i < |EG| do
3: if ei.weight < r then
4: Put ei.end into the interior collection of ei.start;
5: else
6: Put ei.end into the boundary collection of ei.start;

7: i++;

8: i ← 0;
9: while i < |VG| do

10: Get interior collection of vi as INi;
11: j ← 0;
12: while j < |INi| do
13: Get interior node of vj ;
14: Calculate the sum of the weights w;
15: if w < r then
16: Put the interior node of vj into the interior collection of vi;
17: else
18: Put the interior node of vj into the boundary collection of vi;

19: j++;

20: i++;

SgIndex is a subgraph-based index structure. This index has two layers. First, we
need to locate each vertex of the graph to the head of the adjacency list by hash.
Secondly, for each vertex, we store interior vertex information and boundary
vertex information for it, as shown in Fig. 2(a). Both types of vertex information
include vertex value, path weight, and path hop. For each vertex, its internal
vertices are vertices in the local subgraph, and the vertices directly adjacent
to subgraph are classified as boundary vertices. The scale of the subgraph is
denoted as threshold.

556 S. Zhu et al.

The selection of the threshold is not an optimal problem. For the currently
implemented query, the larger the threshold, the faster the query speed. The
only cost is the space occupied by the storage index and the cost of index estab-
lishment. Although for local information query, such as general contact query
of the new crown epidemic, fast query can be guaranteed as long as the limit
threshold is a specified number of hops, but in practical applications, it is often
impossible to easily predict the required query scale, so the threshold should be
chosen based on acceptable storage overhead.

Algorithm 1 gives the pseudocode of the new index algorithm. First we fill
the edge information of the graph into the index (lines 1–7). Second we iterate
over the interior vertices of each vertex until the complete subgraph information
is stored (lines 8–20). We can build an index as shown in Fig. 2(b).

3.2 Path Query Algorithm

Algorithm 2. Path Query
Input: SgIndex I; Start Point start; End Point end; Empty List path;
Output: Result Path List path;
1: Get INs, the interior vertex set of start, from I;
2: Get BNs, the boundary vertex set of start, from I;
3: if end ∈ INs then
4: return path;
5: else
6: i ← 0;
7: while i < |BNs| do
8: path ← FindPath(I, vi, end, path);
9: if path is found then

10: return path;

11: i++;

Algorithm 2 shows how to find a path of two points. First we query the index
and get the interior set and boundary set of the starting vertex (lines 1–2). If
the interior set contains the end vertex end, it will return path directly (lines
3–4). If not, it will iteratively search in the boundary set, and each round of
iteration will use the vertex in the boundary set as the new starting vertex to
perform a new path query, until the path is found (lines 5–11). The function
FindPath(I, v1, v2, path) indicates that by querying the index I, it is judged
whether v2 is in the interior set of v1. If it exists, path is updated. If it does not
exist, the next iteration will be performed in the boundary set of v2.

SgIndex: An Index Structure Supporting Multiple Graph Queries 557

Algorithm 3. Subgraph Matching
Input: SgIndex I; Query Graph Gq;
Output: Result Subgraph Gs;
1: Decompose subgraph Gq into set Path and get join condition Join;
2: i ← 0;
3: while i < |Path| do
4: CandidatePathi ← Searchpath(I, pathi.hop, pathi.weight);
5: i++;

6: i ← 0;
7: while i < |CandidatePath0| do
8: j ← 0;
9: while j < |CandidatePath1| do

10: if (candidatepath0i , candidatepath1j) ∈ Join then
11: Gs ← Join(candidatepath0i , candidatepath1j);

12: j++;

13: i++;

14: iternum ← 2;
15: while iternum < |Path| do
16: Gs ← Union(Gs, CandidatePathinternum);
17: iternum + +;

18: return Gs;

3.3 Subgraph Matching Algorithm

The subgraph matching algorithm based on this index can be divided into three
steps: 1. Decompose the query graph into multiple paths (line 1); 2. Generate
an n-tuple for each path by index (lines 2–5); 3. Compare n-tuples by index to
get the resulting subgraphs (lines 6–18).

The function Searchpath(I, h, w) means to search for paths with vi.hop = h
and vi.weight = w through index I. The function will output a collection of
paths. The function Join(path1, path2) means that the two paths and the join
condition are combined into a subgraph, then the subgraph will be added to the
subgraph set Gs. The function Union(Gs, Path) compares subgraphs in the set
Gs with paths in the set Path, and unions sunbgraphs and paths that meet the
join conditions.

4 Experiments

4.1 Experimental Environment and Dataset

The machine used in this experiment has Intel(R) Core(TM) i5-10300H CPU
@ 2.50 GHz processor, 16.0 GB memory, 64-bit operating system. The compiler
used is Visual Studio 2019.

The datasets are all from KONECT, respectively: wikipedia link mi(Wmi),
wikipedia link lez(Wlez), wikipedia link sah(Wsah), wikipedia link cy(Wcy),
wikipedia link bn(Wbn). The scale of these datasets is shown in Table 1 (Fig. 4).

558 S. Zhu et al.

Table 1. Datasets

Name Vertices Edges

Wmi 7,996 116,464

Wlez 5,171 204,133

Wsah 15,531 352,209

Wcy 142,648 2,967,435

Wbn 226,501 2,832,143

4.2 Path Query

Fig. 3. Shortest path query

Fig. 4. Shortest path query (compare with system)

Figure 3(a) illustrates that the shortest path query time increases with the size
of the dataset. For the smallest dataset Wmi, the query time on SgIndex is 50%
of that on G*Tree; while for the largest dataset Wbn, the query time required on
SgIndex is 35% of that on G*Tree. SgIndex performs better on larger datasets,
which is determined by the structure of the bi-level index. SgIndex summarizes
and stores subgraph information so that the shortest path can be obtained with-
out traversing the entire graph. Figure 3(b) shows that SgIndex achieves bet-
ter results in longer paths. Figure 3(c) is our test for extreme cases. When the
required path does not exist, we need to traverse at least all the successor ver-
tices of the starting vertex. Experiments show that SgIndex has withstood this

SgIndex: An Index Structure Supporting Multiple Graph Queries 559

test and achieved an advantage of more than 50%. Figure 3(d) is a comparison
between using our index structure and using a mature graph data management
system.

4.3 Subgraph Matching

We select the classic SPATH index in the field of subgraph matching and the
above G*Tree as a comparison, and use the above real graph data to conduct
experiments. Since SPATH takes up too much memory on large graphs, it exceeds
the limit supported by our experimental environment. We only conduct experi-
ments on three datasets, Wmi, Wlez and Wsah. We select subgraphs with 5, 6,
8, and 10 vertices for experiments. As can be seen from Fig. 5, SgIndex is more
efficient than SPATH in subgraph matching query, especially with the increase
of subgraph size. This is because the index established by SPATH still adopts
the traditional method of finding candidate vertices and pruning them one by
one. However, our method combines the advantages of indexing and invokes
indexing in both the search candidate path stage and the pruning stage, thereby
improving the overall query efficiency. Figure 6 shows how our index compares
to different systems.

Fig. 5. Subgraph matching

Fig. 6. Subgraph matching (compare with system)

560 S. Zhu et al.

5 Conclusion

From the perspective of practical application, we propose an index that supports
large-scale data sets, and reduces the storage space from the design of the index;
at the same time, the index structure we propose is a general index structure
that can realize queries on various graph data. Experiments show that our index
has advantages in both storage space and query efficiency.

Acknowledgement. This work was supported by the National Natural Science Foun-
dation of China (61972198).

References

1. Arz, J., Luxen, D., Sanders, P.: Transit node routing reconsidered. In: Bonifaci,
V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933,
pp. 55–66. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38527-
8 7

2. Cui, W., Xiao, Y., Wang, H., Wang, W.: Local search of communities in large
graphs. In: Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data, pp. 991–1002 (2014)

3. He, H., Singh, A.K.: Graphs-at-a-time: query language and access methods for
graph databases. In: Proceedings of the 2008 ACM SIGMOD International Con-
ference on Management of Data, pp. 405–418 (2008)

4. Klein, P.N., Mozes, S., Weimann, O.: Shortest paths in directed planar graphs with
negative lengths: a linear-space o (n log2 n)-time algorithm. ACM Trans. Algorith.
(TALG) 6(2), 1–18 (2010)

5. Li, L., Zhang, F., Zhang, Z., Li, P., Bu, C.: Multi-fuzzy-objective graph pattern
matching in big graph environments with reliability, trust and social relationship.
World Wide Web 23(1), 649–669 (2020)

6. Li, L., et al.: Bindex: a two-layered index for fast and robust scans. In: Proceedings
of the 2020 ACM SIGMOD International Conference on Management of Data, pp.
909–923 (2020)

7. Möhring, R.H., Schilling, H., Schütz, B., Wagner, D., Willhalm, T.: Partitioning
graphs to speedup Dijkstra’s algorithm. J. Exp. Algorith. (JEA) 11, 2–8 (2007)

8. Nannicini, G., Baptiste, P., Barbier, G., Krob, D., Liberti, L.: Fast paths in large-
scale dynamic road networks. Comput. Optim. Appl. 45(1), 143–158 (2010)

9. Potamias, M., Bonchi, F., Castillo, C., Gionis, A.: Fast shortest path distance
estimation in large networks. In: Proceedings of the 18th ACM Conference on
Information and Knowledge Management, pp. 867–876 (2009)

10. Schulz, F., Wagner, D., Weihe, K.: Dijkstra’s algorithm on-line: an empirical case
study from public railroad transport. J. Exp. Algorith. (JEA) 5, 12-es (2000)

11. Seo, J., Guo, S., Lam, M.S.: Socialite: an efficient graph query language based on
datalog. IEEE Trans. Knowl. Data Eng. 27(7), 1824–1837 (2015)

12. Sommer, C.: Shortest-path queries in static networks. ACM Comput. Surv.
(CSUR) 46(4), 1–31 (2014)

13. Tesfaye, B., Augsten, N., Pawlik, M., Böhlen, M.H., Jensen, C.S.: An efficient index
for reachability queries in public transport networks. In: Darmont, J., Novikov, B.,
Wrembel, R. (eds.) ADBIS 2020. LNCS, vol. 12245, pp. 34–48. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-54832-2 5

https://doi.org/10.1007/978-3-642-38527-8_7
https://doi.org/10.1007/978-3-642-38527-8_7
https://doi.org/10.1007/978-3-030-54832-2_5

SgIndex: An Index Structure Supporting Multiple Graph Queries 561

14. Yuan, L., Qin, L., Zhang, W., Chang, L., Yang, J.: Index-based densest clique
percolation community search in networks. IEEE Trans. Knowl. Data Eng. 30(5),
922–935 (2017)

15. Zhuge, H., Liu, J., Feng, L., Sun, X., He, C.: Query routing in a peer-to-peer
semantic link network. Comput. Intell. 21(2), 197–216 (2005)

	SgIndex: An Index Structure Supporting Multiple Graph Queries
	1 Introduction
	2 Related Work
	3 Index Based on Subgraph
	3.1 Index Structure and Establishment Method
	3.2 Path Query Algorithm
	3.3 Subgraph Matching Algorithm

	4 Experiments
	4.1 Experimental Environment and Dataset
	4.2 Path Query
	4.3 Subgraph Matching

	5 Conclusion
	References

