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Abstract. Recently, researchers try to use graph neural networks (GNNs) to solve
community detection, which is a fundamental task in social network analysis. We
canpromote targeted products anddetect abnormal users bymining the community
structure in social network. In this paper, we propose the Community Detection
based on Deep Dual Graph Autoencoder (CDDGA). Our model consists of the
deep dual graph autoencoder module and clustering layer module. The autoen-
coder module can simultaneously decode the graph structure and node content.
The extension path between encoder and decoder is helpful to learn higher-order
structural features.We use clustering layermodule to achieve better clustering per-
formance. Finally, both modules are jointly optimized to divide communities. The
experimental results show that our algorithm outperforms several state-of-the-art
community detection methods.
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1 Introduction

Community detection, also known as graph clustering, is a fundamental task in social net-
work analysis. A common definition of community detection is to partition the nodes in
the graph into some disjoint groups.We can effectively promote targeted products, detect
some abnormal users and identify terrorist organizations [2] by mining the community
structure in social networks.

To effectively process graph-structured data, researchers try to use GNNs to solve
community detection, such as GAE [3], MGAE [3], GALA [6], ARGA [5], etc. These
models decode only graph structure or node content, which will weaken the learning of
the graph structure or node content. Thus Wang et al. proposed GASN [11]. To alleviate
the influence of over-smoothing problem caused by the multi-layer network, Hu et al.
proposed GCLN [1]. The above methods are all two-steps framework which firstly
achieves the node embeddings through GNN, and then uses the K-means or Spectral
clustering method for community detection. Wang et al. proposed DAEGC [9], which
designs a graph clustering layer to learn community structural features.
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Motivated by the above observations, we propose the deep dual graph autoen-
coder model CDDGA for community detection in this paper. Our contributions can
be summarized as follows:

– We propose a novel deep dual graph autoencoder model CDDGA to decode graph
structure and node content simultaneously.

– We stack multiple layers and use the extension path to learn higher-order neighbor
features.

– We jointly optimize the dual graph autoencoder and clustering layer to achieve better
clustering performance.

– Our algorithm shows state-of-the-art performance compared with other baseline
techniques on community detection tasks.

2 Related Work

There are a lot of non-Euclidean data in real life, such as social networks, academic
citation networks, etc. It is difficult for traditional deep learning methods to model non-
Euclidean data. To effectively represent non-Euclidean data, graph neural networks have
been developed.

Kipf et al. proposed GCN in 2017 [4], which can aggregate the features of first-order
neighbors. However, the coefficients are the same when the GCN aggregates neighbor
features, but the central node’s emphasis on neighbor is different in real life.Noticing this,
Veličković et al. proposed GAT [8], which uses a single-layer linear neural network to
learn the attention coefficients of neighbor nodes. Although the graph attention network
has achieved great results in the processing of graph data, there are still some limitations
in the understanding of graph structure. Thus Xu et al. proposed GIN [14], which uses
multi-layer perceptron on GCN to learn a single injection function, which has a simple
structure but is very effective.

However, these methods are two-step frameworks for community detection tasks,
which first use GNN to learn node embeddings, and then use K-means or Spectral to
divide communities. This framework cannot integrate community structural features into
node embeddings, which may lead to suboptimal clustering performance.

3 Preliminary

We consider the task of community detection on attributed graph in this paper. An
attribute network G = V ,E,X is consists of n nodes V = {v1, v2, ..., vn} and m edges
E = {

eij
} ⊆ V × V . Each node vi has a vector xi of q dimension that describes the

node content information, and the vectors of these nodes constitute the attribute matrix
X ∈ R

n×q. The topology of G can be defined as the adjacency matrix A = (aij)n×n,
if eij ∈ E, then aij = 1, otherwise aij = 0. We consider non-overlapping community,
which is defined as C = {C1,C2, ...,Ck},Ci ∩ Cj = ∅, ∀i, j. Here, Ci denotes the i-th
community. Given the graph G, community detection is to divide each node vi in G into
one of k communities through a mapping function F .
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Fig. 1. Overall framework of CDDGA

4 Proposed Method

In this section, we present the Community Detection based onDeepDual GraphAutoen-
coder (CDDGA) for community detection tasks. Our model consists of the deep dual
graph autoencoder module and clustering layer module. The framework of the whole
model is shown in Fig. 1.

4.1 Deep Dual Graph Autoencoder

The deep dual graph autoencoder module includes the graph encoder and the graph
decoder. Inspiredby theGAE[3],weuseGCNas the layer of the graph encoderwhich can
effectively encode both the graph structure and node content into the node embeddings.
The l-th layer of the encoder is defined as follows:

H (l+1) = σ(D̃− 1
2 ÃD̃− 1

2H (l)W (l)) (1)

where Ã = A + IN , A denotes the adjacency matrix of the graph, and IN denotes the
identity matrix. D̃ii = ∑

jÃij, W (l) is the weight matrix of the l-th layer of the encoder.

σ(·) means an activation function, here we use ReLU (•) = max(0, •). H (l) ∈ R
n×d

denotes input feature matrix of the l-th layer of the encoder, H (0) = X .
The graph decoder, which simultaneously reconstruct the graph structure A and node

content X , consists of the graph structure reconstruction decoder and the graph attribute
reconstruction decoder,

The node embeddings learned by the graph encoder part contain structure and content
information, if the value of xu • xv is larger, there is a high probability that an edge is
connected between node u and node v, thus we choose a simple inner product decoder
as the graph structure reconstruction decoder to predict the links between nodes.

A
∧

= sigmoid
(
ZZT

)
(2)

where Z ∈ R
n×d denotes the node embeddings of the encoder output. We use the

cross-entropy loss function to measure the difference between A and A
∧

.

Ladj = − 1
n2

∑n
i
∑n

j aijlog
(
a
∧

ij
)

(3)



548 Z. Jiang et al.

The graph attribute reconstruction decoder is symmetric with the encoder, the input
feature dimension of the l layer is equal to the output feature dimension of the L − l
layer (l ≤ L/2), L denotes the number of the network layer. In the experiment, L = 8.
In order to alleviate the problem of over-smoothing, the encoder and the graph attribute
reconstruction decoder are connected by the extension path, which can feed the lower-
order structural information into the higher layer [1].

H (l)
expand = sum

(
H (l),H (L−l)

)
(4)

Finally, we can get the reconstructed node attribute matrix X
∧

, then we use mean
square error loss function to measure the difference between X and X

∧

.

Lattr = 1
n

∑n
i ‖xi − x

∧

i‖2 (5)

4.2 Clustering Layer

In this clustering layer, it is necessary to consider how to assign the nodes to different
communities, when the embeddings of the nodes is obtained. The t-distribution can be
used as a kernel function [13] to measure the similarity between the embedding hi of
node i and the embedding μj of cluster center j.

qij =
(
1+‖hi−μj‖2/v

)− v+1
2

∑
j
′
(
1+‖hi−μ

j
′ ‖2/v

)− v+1
2

(6)

where v denotes the degrees of freedom in the t-distribution, we set v = 1. qij is a
probability of assigning node i to community j, i.e. soft assignment probability. After
obtaining the probability distribution Q = [

qij
]
, we need to find a high-confidence

probability distribution P, so that the model can optimize the node representations in
the process of Q constantly approaching P. We use the method proposed by Xie [13] to
calculate P by Q.

Pij = q2ij/fj∑
j
′ q2

ij
′ /fj′

(7)

Here, fj = ∑
iqij denotes the frequency of the soft cluster. Finally, we can use the KL

divergence between the two probability distributions to obtain the following objective
function.

Lclu = KL(P‖Q) = ∑
i
∑

j pijlog
pij
qij (8)

To avoid instability in the optimizing process, we consider updating Q for several
iteration before updating P in our experiment.
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4.3 Joint Optimization

We jointly optimize the dual graph autoencoder and the clustering layer, we define total
objective function as:

L = Ladj + βLattr + δLclu (9)

where Ladj denotes the structure reconstruction loss, Lattr denotes the attribute recon-
struction loss and Lclu denotes the clustering loss. β and δ are hyperparameter. We could
gain our clustering result directly from the last optimized Q:

ci = argmax
j

qij (10)

5 Experiment

5.1 Experimental Settings

Datasets. We used three standard citation networks (Cora, Citeseer, and Pubmed) for
experiments. The summary of each dataset is presented in Table 1.

Table 1. Benchmark graph datasets

Dataset Nodes Edges Dims Clusters

Cora 2708 5429 1433 7

Citeseer 3327 4732 3703 6

Pubmed 19717 44338 500 3

Baselines. We compared ten algorithms with our method in experiments.
K-means&Spectral are the most widely-used clustering algorithm.
DeepWalk [7] is a widely-used structural representation learning methods based on

random walk.
M-NMF [12] is a novel modularity non-negative matrix factorization model that

uses both microscopic graph structure and macroscopic community structure.
GAE&VGAE [3] combine graph convolutional network with the (variational)

autoencoder to learn embeddings.
MGAE [10] introduces noise in the graph structure and node attribute.
ARGA&ARVGA [5] are adversarially regularized autoencoder, which can integrate

features of graph structure and node content.
DAEGC [9] is a goal-directed graph clustering approach employing an attention

network.
Metrics. In our experiment,we use threemetrics to evaluate the community detection

results: clustering accuracy (ACC), normalized mutual information (NMI) and adjusted
rand index (ARI).
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Parameter Settings. For the baseline algorithms, we carefully select the parameters
for each algorithm, following the procedures in the original papers. We run the K-means
algorithm 50 times to get an average value for all embedding learning baseline methods
for fair comparison. For our method, we set the total number of network layers L = 8.
For Cora and Citeseer we set the encoder neurons to be 1024–512-256–16 respectively,
for Pubmed we set to 256–128-64–16. We uniformly set β = 4 and δ = 24 for all the
datasets. The update period of the probability distribution P is set to 3 for the stability of
the optimization process.We train ourmodel for 200 iterations using theAdamoptimizer
with the learning rate of 0.00001.

Table 2. Experimental results on datasets

Methods Info Cora Citeseer Pubmed

ACC NMI ARI ACC NMI ARI ACC NMI ARI

K-means F 0.503 0.317 0.244 0.544 0.312 0.285 0.580 0.278 0.246

Spectral G 0.398 0.297 0.174 0.308 0.090 0.082 0.496 0.147 0.098

DeepWalk G 0.484 0.327 0.243 0.337 0.089 0.092 0.543 0.102 0.088

M-NMF G 0.423 0.256 0.161 0.336 0.099 0.070 0.470 0.084 0.058

GAE F&G 0.611 0.482 0.302 0.456 0.221 0.191 0.632 0.249 0.246

VGAE F&G 0.592 0.408 0.347 0.467 0.261 0.206 0.619 0.216 0.201

MGAE F&G 0.681 0.489 0.436 0.669 0.416 0.425 0.593 0.282 0.248

ARGA F&G 0.640 0.449 0.352 0.573 0.350 0.341 0.681 0.276 0.291

ARVGA F&G 0.638 0.450 0.374 0.544 0.261 0.245 0.513 0.117 0.078

DAEGC F&G 0.704 0.528 0.496 0.693 0.397 0.410 0.671 0.266 0.278

CDDGA F&G 0.714 0.540 0.492 0.689 0.429 0.437 0.686 0.292 0.305

5.2 Experiment Result

The experimental results of different methods on different datasets are summarized in
Table 2, where the values marked in bold are the best among all methods. C, S and
C&S indicate if the algorithm uses only content, structure, or both content and structure
information, respectively.

We can see that our method is significantly better than most of the comparison
methods in evaluation metrics, which shows the effectiveness of the algorithm on the
task of community detection. The methods of GAE, MGAE, ARGA and DAEGC only
decode graph structure and ignore higher-order structural features. Our method decodes
both the graph structure and node content, which can better fuse structure and content
information. The multiple network and extension path help learn higher-order structural
features in our model. Therefore, the performance of CDDGA is better than most of the
baseline methods.
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Table 3. The results of ablation experiment

Methods Cora Citeseer Pubmed

ACC NMI ARI ACC NMI ARI ACC NMI ARI

CDDGA/clu 0.680 0.532 0.442 0.669 0.410 0.404 0.652 0.295 0.270

CDDGA/adj 0.683 0.539 0.464 0.657 0.383 0.401 0.649 0.279 0.262

CDDGA/path 0.608 0.438 0.368 0.582 0.300 0.302 0.603 0.176 0.173

CDDGA 0.714 0.540 0.492 0.689 0.429 0.437 0.686 0.292 0.305

5.3 Ablation Study

In this section, in order to analyze the effectiveness of different modules in our model,
we conduct ablation experiments, The experimental results are summarized in Table 3.
The comparison experiments are described as follows.

CDDGA/clu: the clustering layer module is removed.
CDDGA/adj: the graph structure reconstruction decoder is removed.
CDDGA/path: the extension path is removed.
CDDGA: complete model.
Among the three ablation experiments, CDDGA/path performed worst, because of

the problem of over-smoothing. CDDGA/clu achieves great results, but it is worse than
the complete model because it does not learn the features related to community structure.
CDDGA/adj also lower than the complete model, because the model will focus more
on the content information of nodes. According to the results, every part in the model is
important.

6 Conclusion and Further Work

In this paper, we propose a novel deep dual graph autoencoder framework for community
detection task. A comparison of the experimental results with several state-of-the-art
algorithms validate CDDGA’s community detection performance. In the future, we will
try to study community detection in heterogeneous graph.
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