
A Social-Aware Deep Learning Approach
for Hate-Speech Detection

George C. Apostolopoulos, Panagiotis Liakos(B), and Alex Delis

University of Athens, 15703 Athens, Greece
g.c.apostolopoulos@gmail.com, {p.liakos,ad}@di.uoa.gr

Abstract. Despite considerable efforts to automatically identify hate-
speech in online social networks, users still face an uphill battle with
toxic posts that seek to sow hatred. In this paper, we initially observe
that there is a great deal of social properties transcending both hateful
passages and respective authors. We then exploit this observation by i)
developing deep learning neural networks that classify online posts as
either hate or non-hate based on their content, and ii) proposing an
architecture that may invigorate any such text-based classifier with the
use of additional social features. Our combined approach considerably
enhances the classification accuracy of previously proposed state-of-the-
art models and our evaluation reveals social attributes that are the most
helpful in our classification effort. We also contribute the first publicly-
available dataset for hate-speech detection that features social properties.

Keywords: Social features · Deep learning · Twitter · User profile

1 Introduction

With more than half of the world’s population actively using social media, much
of the communication among individuals is now taking place online [8]. Mas-
sive online interactions on social networks (SN s) have incentivized malicious
players to exploit pertinent infrastructures in pursuit of illicit actions. The well-
documented correlation between violent acts and SN s inflammatory speech have
necessitated the need for censoring such content [14]. In the past, the problem
of automatic hate speech detection has been predominantly approached as a
supervised document classification task. Such efforts mainly entail: i) traditional
approaches employing feature engineering [4], and ii)deep learning approaches
that automatically learn features from raw data using neural networks [16].

Feature engineering approaches have relied in the use of surface features
including dictionaries of insults and swear-words [10], N-grams [6], as well as
URLs, mentions, hashtags and capitalization [3]. Besides simple surface features,
existing methods have employed sentiment analysis to identify negative polar-
ity [9], part of speech (POS) to detect the role of each word in the context of a
sentence [2], and meta-information related to the author of a passage and her
past activity [7,15]. Using the above features, approaches have deployed SVM
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Li et al. (Eds.): APWeb-WAIM 2022, LNCS 13421, pp. 536–544, 2023.
https://doi.org/10.1007/978-3-031-25158-0_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25158-0_43&domain=pdf
https://doi.org/10.1007/978-3-031-25158-0_43


A Social-Aware Deep Learning Approach for Hate-Speech Detection 537

and Naive Bayes classification algorithms to train models for hate-speech detec-
tion [3,7].

In [1], the CNN and LSTM network architectures are examined along the
use of random and GloVe word embeddings [12] to obtain vector representa-
tions of terms. [1] shows that deep neural network architectures outperform
traditional classifiers such as Logistic Regression, SVM and Gradient Boosted
Decision Trees, offering greater classification accuracy. Although linear classifiers
and deep learning models have certainly helped attain noteworthy accuracy in
identifying hate-speech, these methods have strictly focused on the textual con-
tent posted by online users, without considering whether social properties can
improve the performance of the proposed models.

In this paper, we advocate that using social properties is very beneficial to
the task of identifying hate-speech in social media content. We focus on Twitter
and apply deep learning methods that use both the post content and the social
properties related to the user and the post itself. Our main contributions are:

– We propose a deep learning model that exploits the network structure, as
well as individual social reactions, e.g., likes, to help identify hate-speech.

– We generate and make publicly available an annotated dataset of Twitter
posts that do or do not feature hate-speech and is generated by the activity
of different individuals. Previous available datasets are biased as they involve
activity of a very limited number of users, and lead to training models that
may penalize a particular writing style. This is the first hate-speech related
dataset to include numerous social attributes associated with each post.

– We outperform state-of-the-art methods in terms of classification accuracy
through our combined approach and demonstrate that network relationships
and social activity do enhance the accuracy of hate-speech detection models.
Moreover, our approach is orthogonal to text-based hate-speech detection as
our architecture can complement classifiers focusing strictly on text.

The rest of the paper is organized as follows: in Sect. 2, we introduce our text-
based models and discuss how we can enhance their effectiveness with a novel
social-based deep learning approach. Section 3 describes the dataset we collected.
Next, we present our experiments in Sect. 4, followed by the conclusion in Sect. 5.

2 Methodology

Our approach commences with a preprocessing step whose objective is to normal-
ize the content of our dataset. This step first removes URLs, emojis, usernames
and numbers. Moreover, we split hashtags on upper case letters, as oftentimes
they are used to compose sentences and we need to come up with the individual
words. Also, we split words appended with slashes, and we mark punctuation
repetitions and elongated words. Finally, we transform all upper case letters to
lower case for consistency. As an example, given the tweet:

@TheLeoTerrell: Good News!!! Leo 2.0 just received message from Team Trump.
Going to be used in Campaign. Cannot wait to help



538 G. C. Apostolopoulos et al.

1 87

Input

50 87

Embedding
64 78

Convolutional

Max
Pool-
ing

24
96

Flatten

32

Dense

1

Dense

Fig. 1. Our convolutional neural network approach.

we come up with the following text which is ready for our vectorization process:

<user>: good news! leo <number> just received message from team
trump. going to be used in campaign. cannot wait to help

2.1 CNN Architecture

The first model we train is a CNN (Convolutional Neural Network), which is
known in the literature to extract features effectively [11]. Figure 1 depicts the
functional layout of the CNN in question whose components we outline below.

Input Layer: Our CNN model initially features an Input layer, to which we
feed the vectors list. The maximum vector produced after the preprocessing of
the tweets in our dataset has a length of 87 tokens.

Embedding Layer: The next layer of our architecture is an embedding layer,
which allows words with similar meaning to have a similar representation. Word
embeddings are one of the key breakthroughs for the impressive performance of
deep learning methods on challenging natural language processing problems [5].
Individual words are represented as real-valued vectors in a predefined vector
space. We use a pre-trained dimensional embedding called GloVe [12]. In our
approach, we exploit a 50 dimensional pre-trained GloVe vector that is created
using a total of 2 billion tweets, 27 billion tokens with an overall vocabulary of
1.2 million words. Our embedding layer produces a 87 × 50 representation.

Convolutional Layer: The output of the embedding layer is then fed into a
convolutional layer that learns to extract salient features from the word embed-
dings. We use a 1D convolutional layer with 64 filters and a sliding window size
of 10. These are the same initialization values used in the model of [1]. Our con-
volutional layer uses the rectified linear unit function for activation. This process
convolves the input feature space into a 78 × 64 representation.



A Social-Aware Deep Learning Approach for Hate-Speech Detection 539

1 87

Input

50 87

Embedding

20
0

LSTM

1

Dense

Fig. 2. Our LSTM network.

Pooling Layer: Next, we down-sample the incoming vectors using a pooling
layer. Here, we use maximum pooling, which calculates the maximum, or largest,
value in each patch of each feature map. This process halves the layer’s input,
producing a 39 × 64 representation.

Flatten and Dense Layers: The down-sampled vectors produced by the pool-
ing layer are then flattened to a 1D array of size 39 × 64 with a Flatten layer.
Next, follows a standard dense layer of 32 neurons. Finally, we classify the input
as hate or not-hate, with the use of the sigmoid activation function, that is
frequently used for binary classification.

2.2 LSTM Architecture

Our second model is based on an LSTM (Long Short Term Memory) network,
and is shown in Fig. 2. The input and embedding layers are identical to our CNN
approach. The vector length of our input layer is 87, defined by the length of
the longest input vector in our dataset. The embedding layer is a 50 dimensional
pre-trained GloVe vector, that produces a 87 × 50 output representation.

After the embedding layer, our model features an LSTM layer with a dropout
probability. We use a bidirectional LSTM layer of 100 units to preserve infor-
mation from both past and future, and better capture the context of sentences.
Moreover, we set the dropout probability to be equal to 0.5. This leads to ignoring
half of the input in each repetition, which is a well-known form of regularization
that prevents neural networks from overfitting [13]. The size of the LSTM layer
and the dropout probability have been selected after extensive experimentation
and in accordance to earlier findings [13].

Finally, our LSTM based model features a dense layer that classifies the input
with the use of the sigmoid activation function.

2.3 Social-Aware Deep Learning Network

Our CNN and LSTM networks perform text-based classification using the con-
tent of a user’s post. Similar networks have been studied in the past and are



540 G. C. Apostolopoulos et al.

1 6

Input

12
8

Dense

12
8

Dense

12
8

Dense

1

Dense

Fig. 3. Our social features based network

1 32

CNN/LSTM

1 12
8

Social

16
0

Concatenate

12
8

Dense

12
8

Dense

1

Dense

Fig. 4. Combining text-based models with our social features based networks.

shown to outperform traditional classifiers [1]. Here, we discuss how we can addi-
tionally exploit information related to the post. In particular, we enhance our
deep learning approach with a second network that takes as an input additional
social properties about the user and the post itself. Our working hypothesis is
that this meta-information can help build more accurate models. Thus, we focus
on the following six key features: i) user followers, ii) user followees, iii) user
posts, e.g., tweets, iv) post shares, e.g., retweets, v) post likes, and vi) whether
the post is a reply. Our goal is to uncover which of the above can enhance the
performance of our text-based models. To this end, we build a neural network
that comprises a series of consecutive dense non-linear layers and takes as input
any combination of the above features; this network is depicted in Fig. 3.

The network of Fig. 3 is ultimately combined with our text-based models as
portrayed in Fig. 4. Here, we deploy another network of hidden non-linear layers
that takes as input the concatenated output of the network in Fig. 3 and any
text-based models, such as those depicted in Figs. 1 and 2. This architecture
allows for exploiting the social information through an agnostic –with regard
to text classification– approach. Consequently, our contribution is orthogonal to
previous approaches [1,16] that exclusively use the textual content of a post to
detect hate-speech.

3 Dataset

Our dataset focuses on former US president, Donald J. Trump. The collection
process took place just before the 2020 Presidential US elections, a time at



A Social-Aware Deep Learning Approach for Hate-Speech Detection 541

Fig. 5. Analysis of the social features of our dataset.

which media focused heavily on Trump, as a candidate. We followed a collection
approach similar to that of [15,16]. In particular, we initially utilized the Twitter
API through the tweepy1 Python library to collect the tweets containing the
word Trump. Naturally, most tweets did not feature hate speech. After a collection
period of one month that ended 3 days before the elections, we had collected a
total of 1,311 tweets, out of which 219 are labeled as hateful.

We also present a useful analysis of our social features in Fig. 5. We can see
that most posts exhibit a small number of retweets or likes, with the former
being more frequent than the latter. Moreover, our users include accounts who
have neither followers nor followees as they are posting their very first tweets as
well as people with significant activity and thousands of followers.

4 Experiments and Results

We implemented our models using Python Keras with the TensorFlow-backend
and the scikit-learn library. Our implementation and dataset are publicly
available.2 For all models discussed in this section, we split the dataset into 80:20
to use 80% with cross-validation to tune learning epochs. We test the optimized
model on the 20% held-out data and report average results of multiple executions
using weighted precision, recall and F1 -scores, as in [1,16]. The evaluation of our
models answers the following key questions: (i) Does the use of social features
improve the effectiveness of our models? (ii) What are the social features that
prove to be most helpful?

We begin with an investigation of the potential of social features to enhance
the performance of our models. There are a total of 63 combinations of features
1 https://www.tweepy.org/.
2 https://github.com/giorgos-apo/hate-speech-detection-using-user-attributes/.

https://www.tweepy.org/
https://github.com/giorgos-apo/hate-speech-detection-using-user-attributes/


542 G. C. Apostolopoulos et al.

Table 1. Results of our CNN model when enhanced with social features.

User features F1 Score Recall Precision

1 user followers, tweet is reply 0.8342 0.8463 0.8387

2 user followers, user total tweets 0.8327 0.8494 0.8404

3 tweet retweets, tweet likes, tweet is reply 0.8301 0.8517 0.8339

Table 2. Results of our LSTM model when enhanced with social features.

User features F1 Score Recall Precision

1 tweet likes, user followers,

user total tweets

0.8405 0.8456 0.839

2 user followers, user following 0.8383 0.8471 0.8369

3 user followers, tweet is reply 0.8318 0.841 0.8266

that we can utilize to enhance the performance of our models. We experiment
with all and report in Table 1 the ones with the most significant gains, when
combined with our CNN model. We obtain the best results when combining the
CNN model with a network that takes as input the author’s number of followers
and whether the tweet is a reply or not. This combination improves the F1 -score
by almost 2 points.

Table 2 lists the combinations of social features that are most effective when
combined with our LSTM network. We see that our combined approach manages
again to increase the classification accuracy of this network even more than the
case was with the CNN model. The most notable improvement is achieved when
combining the number of user followers with the user’s total number of tweets
and the tweet’s likes. This synthesis helps us increase the F1-score of the LSTM
network by more than 4 points.

Overall, our combined approach shows significant improvement with regards
to all precision, recall and accuracy for both our text-based deep-learning models.
We note here that our architecture allows for any text-based classifier to be plugged
into our model. We have experimented using a CNN and an LSTM network that
are trained using the content of user posts. However, our contribution is orthogonal
to text-based hate-speech detection and can be exploited by any such approach.
More importantly, we show here that the use of meta-information regarding social
properties of posts and their respective authors is very beneficial for the task of
hate-speech detection. The results of Tables 1 and 2 quantify the importance of
various contributing social features as they clearly point out that the number of
user followers is very helpful when it comes to identify hate-speech content.

5 Conclusion

We present a novel approach that enhances classification accuracy of hate-speech
detection models through the use of social properties related to content posted



A Social-Aware Deep Learning Approach for Hate-Speech Detection 543

online. Our model exploits meta-information for each post we want to have
classified as hate or non-hate, in addition to the actual text of the post. Our
experimentation ascertains the importance of social properties in significantly
improving the effectiveness of all text-based models we have deployed. Moreover,
we investigate and quantify the importance of various social features with regard
to detecting hate-speech. Our findings point out that the number of followers a
user has is a very helpful property to consider when building hate-speech detec-
tion classification models. Combinations of social properties that include this
feature improve our text-based classifiers significantly with regards to F1 -score.
Last but not least, we make available a new dataset, complementing existing ones
by considering social features instead of exclusively focusing on text content.

References

1. Badjatiya, P., Gupta, S., Gupta, M., Varma, V.: Deep learning for hate speech
detection in tweets. In: WWW 2017 (Companion), pp. 759–760. Perth, Australia
(2017)

2. Burnap, P., Williams, M.L.: Cyber hate speech on twitter: an application of
machine classification and statistical modeling for policy and decision making.
Policy Internet 7(2), 223–242 (2015)

3. Davidson, T., Warmsley, D., Macy, M.W., Weber, I.: Automated hate speech detec-
tion and the problem of offensive language. In: ICWSM 2017, pp. 512–515 (2017)

4. Fortuna, P., Nunes, S.: A survey on automatic detection of hate speech in text.
ACM Comput. Surv. 51(4), 1–30 (2018)

5. Deep Learning for Natural Language Processing. Apress, Berkeley (2018). https://
doi.org/10.1007/978-1-4842-3685-7 5

6. Greevy, E., Smeaton, A.F.: Classifying racist texts using a support vector machine.
In: SIGIR 2004, pp. 468–469. Sheffield, United Kingdom (2004)

7. He, J., Liu, H.: Bi-labeled LDA: inferring interest tags for non-famous users in
social network. 5, 27–47 (2020)

8. Liakos, P., Papakonstantinopoulou, K.: On the impact of social cost in opinion
dynamics. In: Proceeding of the Tenth International Conference on Web and Social
Media, Cologne, Germany, pp. 631–634 (2016)

9. Liu, S., Forss, T.: Combining N-gram based similarity analysis with sentiment
analysis in web content classification. In: IC3K 2014, p. 530–537. Rome, Italy
(2014)

10. Liu, S., Forss, T.: New classification models for detecting hate and violence web
content. In: IC3K 2015, pp. 487–495 (2015)

11. Ordóñez, F.J., Roggen, D.: Deep convolutional and LSTM recurrent neural net-
works for multimodal wearable activity recognition. Sensors 16(1), 115 (2016)

12. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. In: EMNLP 2014. pp. 1532–1543. Doha, Qatar (2014)

13. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

14. Vosoughi, S., Roy, D., Aral, S.: The spread of true and false news online. Science
359(6380), 1146–1151 (2018)

https://doi.org/10.1007/978-1-4842-3685-7_5
https://doi.org/10.1007/978-1-4842-3685-7_5


544 G. C. Apostolopoulos et al.

15. Waseem, Z., Hovy, D.: Hateful symbols or hateful people? Predictive features for
hate speech detection on Twitter. In: Proceedings of the NAACL Student Research
Workshop, pp. 88–93. ACL, San Diego, CA, June 2016

16. Zhang, Z., Robinson, D., Tepper, J.: Detecting hate speech on Twitter using a
convolution-GRU based deep neural network. In: ESWC 2018, pp. 745–760 (2018)


	A Social-Aware Deep Learning Approach for Hate-Speech Detection
	1 Introduction
	2 Methodology
	2.1 CNN Architecture
	2.2 LSTM Architecture
	2.3 Social-Aware Deep Learning Network

	3 Dataset
	4 Experiments and Results
	5 Conclusion
	References




