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Abstract. Networks are structures that naturally capture relations
between entities in different data sources and information systems. To
establish the connections among different networks, the task of network
alignment is proposed and intensively studied in network-related research
field. Most network alignment methods are based on the representation
learning of network structure, which rely only on network topology and
are susceptible to structural noise. In addition, such methods focus on
the global features, while largely neglect local structure features and fail
to take account of the data sparsity issue in real networks. To address
these pivotal issues, we propose a novel network alignment method based
on iterative deep network learning and local feature augmentation. We
first design an iterative deep graph learning model to learn high-quality
network structural representation and reduce the structural noise. Fur-
thermore, we embed knowledge representation learning method into the
alignment process, which helps to characterize better local structure
and alleviate the data sparsity issue. Experiments on real-world network
datasets demonstrate that our proposed model achieves state-of-the-art
alignment results.

Keywords: Network alignment · Graph learning · Knowledge
representation learning

1 Introduction

Networks are natural but powerful structure that capture the relationships
between different entities in many domains, such as social networks, referral
networks, and bioinformatics networks [12,27]. Network analysis, also known as
network science, has received a lot of attention for decades and remains an attrac-
tive field [1]. While the analysis of individual network is critical for a variety of
applications (e.g., link prediction; community detection), it cannot sufficiently
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address the tasks that require considering the relationships between graphs (e.g.,
graph clustering; graph alignment). As thus, a subfield of network science is put
forward to analyze the relationships between different graphs. In this paper, we
aim to solve one of the fundamental problems in comparative graph analysis -
network alignment (NA).

The goal of network alignment is to identify the corresponding nodes in dif-
ferent networks. For example, there are a large number of users with accounts in
different social networks [23], and network alignment can help identify the same
users in different social networks, as shown in Fig. 1. The user correspondence
established by network alignment can alleviate the sparsity issue of a single
social network, benefiting applications such as link prediction [5] and cross-
domain recommendation [14]. Besides, network alignment can also help build
a more compact knowledge graph based on existing vertical or cross-language
knowledge bases, and enable better knowledge inference. In addition, in bioinfor-
matics, aligning protein-protein interaction networks from different species has
also been extensively studied to identify common functional structures [7].

Fig. 1. An example of network alignment. The black lines between two networks are
anchor links. And the dash lines are potential aligned nodes.

However, network alignment faces three primary challenges: network noise,
data sparsity, and alignment efficiency.

Alignment Efficiency. Some NA work describes network alignment as the
maximum matching problem of a binary graph, such as the largest common sub-
graph problem, but these are all NP-difficult problems [2]. Therefore, many meth-
ods employ matrix decomposition formulas such as IsoRank [18], FINAL [28],
and REGAL [8]. But the approaches cannot handle very large networks because
the computational effort required will grow rapidly as the size of the network
increases.

Network Noise. Due to the inevitable error of data measurement or collection,
real-world networks are generally noisy or even incomplete. The network noise
originates from both the topology of the network and the feature matrix of the
nodes.

Data Sparsity. Similar to other types of large-scale data, large-scale networks
all obey the long-tail distribution and have severe data sparsity problems [26].
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For long-tail nodes, only a few paths are associated with them, so their semantic
or inference representation is extremely inaccurate.

To improve alignment efficiency, methods based on the network representing
learning are proposed, such as PALE [15], and DeepLink [30]. These alignment
techniques can take advantage of the scalability of graph embedding to handle
large networks, but these methods rely only on topology information and are
susceptible to structure noise, making the models lack generalization capabilities.
To overcome the network structure noise, we generate better network structure
representation basing on iterative deep graph learning framework.

Moreover, most network alignment methods pay more attention to the global
features of the network without valuing the local structure features. Particularly
in sparse networks, such methods lead to the poor performance because of the
long-tail distribution. While knowledge representation learning methods, such
as TransE [3], TransH [24], DistMult [25], ComplEx [21], and RotatE [20] mod-
els, can well characterize the local structure of networks. In view of that, to
address the data sparsity, we use various graph representation learning methods
for network alignment to obtain high-quality local features.

In this paper, we propose Iterative Deep Graph Learning with Local Feature
Augmentation for Network Alignment (IDLFA). The model is composed of two
parts: encoder module and decoder module. The encoder module learns node
structure embedding by iterative deep graph learning model. The decoder mod-
ule integrates the knowledge representation learning method into the alignment
method to augment local feature. And in the training process, the bootstrapping
algorithm is applied to add the newly generated alignment nodes to the training
set to further alleviate the data sparsity issue. The contributions of this paper
can be summarized as follows:

1) We propose a unified network alignment framework, which combines encoder
module and decoder model for solving network structure noise and data spar-
sity.

2) At encoder module, we leverage Iterative Deep Graph Learning for Graph
Neural Networks to obtain better node structural embedding and reduce net-
works noise.

3) At decoder module, for easing data sparsity, we integrate knowledge represen-
tation methods to augment local feature and apply bootstrapping algorithm
to produce newly alignments for model training.

4) Experiments on real-world datasets demonstrate that the network alignment
method based on iterative deep graph learning outperforms state-of-the-art
models and is highly robust on alignment tasks.

2 Related Work

In our work, the network alignment techniques are divided into two categories,
the spectral method and the network representation learning method.
The goal of the spectral approach is to align the two networks based on the
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adjacency matrix operation. While, the network representation learning method
requires an intermediate step where the nodes in the network are represented as
embedding.

2.1 Spectral Method

Many spectral methods [11,17], using matrix factorization, aim to directly cal-
culate the alignment matrices. Assuming that the input graph is in the form of
an adjacency matrix, the spectral alignment technique defines the model in the
form of a loss function, which considers the adjacency matrix of the source net-
work and the target network. The node features are constants and the alignment
matrices are variables. During the alignment process, the alignment matrix is
learned by optimizing the loss function based on the structure or property con-
sistency assumptions.

IsoRank [18] is one of the popular and typical techniques in the category
which utilizes only topological information. The main idea is that two nodes in
two networks are similar if their neighbors are similar, but the technique is highly
sensitive to structural noise. BigAlign [10] uses only the attribute information to
align the nodes. FINAL [28] is different from previous methods that only used
topological or attribute information, and chooses to use both of them to better
capture the information of the network nodes. REGAL [8] models the alignment
matrix by topology and feature similarity and then employs low-rank matrix
approximation to speed up calculation.

2.2 Network Representation Learning Method

Network representation learning approaches [6,16,29] solve the network align-
ment problem by exploiting graph embedding. It includes two steps: embedding
generation and alignment matrix generation. At first, a graph embedding tech-
nique is used to represent nodes and the two embedding matrices of graphs are
obtained separately. Then, the alignment matrix is designed to map the source
network’s embeddings to the target network’s embedding space.

PALE [15] involves a pre-process step where a priori mapping between two
networks is used to populate the missing edges available in one map but not
available in the other. DeepLink [30] has the same method as the PALE to con-
struct graph embeddings, but its mapping function varies by considering the
mapping direction. DeepLink adopts unbiased random walk to generate embed-
dings and uses a linked-dual learning process to improve its quality. IONE [13]
uses the same mapping function as PALE, its embedding function is more com-
plex because it considers the neighborhood of the node. IONE aims to meet two
goals: close nodes in each graph should have similar node embedding and the
nodes with close embedding are good candidates.

3 Preliminaries

In this section, we first formally define the task of network alignment, and then
we briefly review the knowledge representation model.
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3.1 Problem Formulation

Network alignment is the task of identifying corresponding nodes between
two different networks. Given two networks: source network Gs = (Vs, Es))and
target network Gt = (Vt, Et)) , where Vs and Vt are sets of network nodes, Es

and Et are sets of network edges. Anchor links represent a node pair(v, v′) ,
wherev ∈ Vs, v′ ∈ Vt, and v and v′ are aligned. The goal of network alignment
is to predict all potential anchor links.

3.2 Knowledge Representation Model

In this section, we introduce TransE [3], TransH [24], DistMult [25], Com-
plEx [21], and RotatE [20] models, which are adapted to our network alignment
framework. u and v denote the node embedding; e is the edge embedding.

TransE. The idea of TransE is that the embeddings of the nodes in the source
network can be close enough to the corresponding embeddings in the target
network through the edge embedding, so that the score function of the TransE
model can be represented by the following formula:

fTransE(u + e, v) = ‖u + e − v‖ . (1)

TransH. To overcome the defects of TransE in edge modeling, the nodes have
a distributed representation when different edges are involved. For an edge, the
model positions an edge-specific translation vector de in the hyperplane we of a
specific edge rather than in the space nodes embedded:

fTransH(u, v) =
∥
∥(u − wT

e uwe) + de − (v − wT
e vwe)

∥
∥
2

2
. (2)

DistMult employs bilinear encoding, and the embeddings of nodes and edges
can be learned through a neural network. The first layer projects a pair of input
nodes onto a low-dimensional vector, and the second layer combines the two
vectors onto a scalar. With edge-specific parameters Be, the score function is:

fDistMult(u, v) = uT Bev. (3)

ComplEx. The model introduces the complex vector space into the embedding,
and its score function is:

fComplEx(e, u, v;Θ) = Re(< e, u, v >) = Re(
K∑

k=1

ekukvk), (4)

where Re(·) denotes imaginary; vk and vk are conjugate.
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RotatE. Similar to complEx model, RotatE models the nodes and edges in
the complex vector space. The difference is that the RotatE limits the modulus
of the edge vector to 1, so that it becomes the rotation vector from the source
network node to the corresponding node of the target network. Therefore, its
score function is expressed as:

fRotatE(u, v) = ‖u � e − v‖ , (5)

where � denotes Hadamard product; ‖ei‖ = 1 denotes that the modulus of the
edge vector are set to 1.

Fig. 2. Overview of IDLFA framework

4 Method

In this section, we present our approach IDLFA, which consists of encoder mod-
ule and decoder module. The framework is shown in Fig. 2. In encoder module,
the network structure is learned according to the iterative deep graph learning
framework. In decoder module, we combine the knowledge representation model
with the loss function of the IDGL model and adapt it to the network alignment,
which helps to learn better local features. To further alleviate the data sparse
problem, we use Bootstrapping algorithm [19] to add the predicted aligned node
pairs to training data.
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4.1 IDGL-Based Node Embedding

Iterative Deep Graph Learning model [4] (IDGL) is an end-to-end graph learning
framework, which can jointly and iteratively learning the graph structure and
graph embedding. In view of the advantage of obtaining better network represen-
tation, we transform it to alignment networks. Figure 3 is the overall architecture
of IDGL framework. The brief introduction to the model is following.

Similarity Metric Learning. Without loss of generality, the IDGL model
designs a weighted cosine similarity as metric function, sp

ij = cos(w�vi, w�vj),
where � denotes the Hadamard product, and w is a learnable weight vector
which has the same dimension as the input vectors vi and vj . Note that the two
input vectors could be either raw node features or computed node embeddings.

Graph Node Embeddings and Prediction. Both the learned graph struc-
ture A and the original graph topology A(0) are helpful to formulate an optimized
graph for GNNs. IDGL combines the learned graph with the initial graph,

Ã(t) = λL(0) + (1 − λ){ηf(A(t)) + (1 − η)f(A(1))}, (6)

where L(0) = D(0)−1/2
A(0)D(0)−1/2

is the normalized adjacency matrix of the
initial graph. A(t) and A(1) are the two adjacency matrices computed at the t-th
and 1-st iterations, respectively. A(1) is computed from the raw node features
X, and A(t) is computed from the previously updated node embeddings Z(t−1)

that is optimized toward the downstream prediction task. Hyperparameter η is
used to combine the advantages of both; λ is used to balance the learned graph
structure and the initial one.

Fig. 3. Overall architecture of the proposed IDGL framework. Dashed lines (in data
points on left) indicate the initial noisy graph topology A.

We follow the setting of IDGL model, and adopt a two-layered GCN [9]
where the first layer (denoted as GNN1) maps the raw node features X to the
intermediate embedding space, and the second layer (denoted as GNN2) further
maps the intermediate node embeddings Z to the output space.
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Z = ReLU
(

MP(X, Ã)W1

)

, ŷ = σ
(

MP(Z, Ã)W2

)

, Lpred = �(ŷ,y),
(7)

where σ(·) and L(·) are task-dependent output function and loss function, respec-
tively. MP(·, ·) is a massage passing function.

Joint Learning with a Hybrid Loss. IDGL model proposes to jointly and
iteratively learning the graph structure and the GNN parameters by minimizing
a hybrid loss function combining both the task prediction loss and the graph
regularization loss, namely:

L = Lpred + LG , (8)

where LG is the graph regularization loss. At each iteration, a hybrid loss is
computed. After all iterations, the overall loss is back-propagated through all
previous iterations to update the model parameters.

4.2 Model Training

Lpred is a task-dependent loss function. For network alignment, the object is to
embed equivalent nodes as closely as possible in the vector space. So the model
training process is performed by minimizing the following margin-based ranking
loss function:

Lpred =
∑

(u,v)∈S

∑

(u′,v′)∈S′
(u,v)

[f (u, v) + γ − f (u′, v′)]+ , (9)

where [x]+ = max{0, x}; (u, v) ∈ S represents the set of anchor links used to
train the model; S′

(u,v) ∈ S′
(u,v) denotes the set of negative instances constructed

by corrupting (u, v), i.e., replacing u or v with a randomly chosen nodes in Gs or
Gt; γ > 0 denotes the margin hyper-parameter separating positive and negative
instances. The margin-based loss function requires that the distance between the
entities in positive pairs should be small, and the distance between the entities in
negative pairs should be large. Based on various knowledge representation meth-
ods at Sect. 3.3, we design correspond loss function. Following are the detailed
instruction.

TransE. We merge it with margin-based ranking loss function:

LTransE =
∑

(u,v)∈S

∑

(u′,v′)∈S′
(u,v)

[fTransE (u + e, v) + γ1 − fTransE (u′ + e, v′)]+ ,

(10)
where γ1 > 0 the specific boundary hyperparameter separating the positive and
negative node alignment in the TransE model.
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TransH. We merge it with margin-based ranking loss function:

LTransH =
∑

(u,v)∈S

∑

(u′,v′)∈S′
(u,v)

[fTransH (u, v) + γ2 − fTransH (u′, v′)]+ , (11)

where γ2 > 0 is the specific boundary hyperparameter.

DistMult. Based on DistMult model, the loss function Lpred can be adjusted
to:

LDistMult =
∑

(u,v)∈S

∑

(u′,v′)∈S′
(u,v)

[fDistMult (u, v) − fDistMult (u′, v′) + 1]+ . (12)

ComplEx. We minimize the negative log-likelihood of the logical model, and
train the model using small-batch stochastic gradient descent and AdaGrad.
By regularizing the parameters of the considered model, we adjust the learning
rates:

LComplEx =
∑

(u,v)∈S

log (1 + exp (−YeuvfComplEx (u, e, v;Θ))) + λ‖Θ‖22, (13)

where Yeuv = 1 when the node pairs are positive; and else Yeuv = −1. λ is a
weight parameter.

RotatE. Different from above models, RotatE adopts self-adversarial loss func-
tion basing on negative sampling for training:

LRotatE = − log σ (γ3 − fRotatE (u,v)) −
n∑

i=1

p
(
u

′
i, e, v

′
i

)
log σ

(
fRotatE

(
u

′
i,v

′
i

) − γ3
)

, (14)

where γ3 is the specific boundary hyperparameter; σ is the sigmoid function;
(u′

i, e, v
′
i) is the i-th negative alignment nodes; p(u′

i,e,v′
i) can be defined as:

p
(

u′
j , e, v

′
j | {(ui, ei, vi)}

)

=
expαfRotatE

(

u′
j ,v

′
j

)

∑

i expαfRotatE (u′
i,v

′
i)

, (15)

where α denotes the sample weight.
The loss function of the above models will learn a better network structure

representation. At the same time, the model further adds the new alignment
nodes into the training set through the Bootstrapping algorithm, which helps to
alleviate the data sparse problem and further improve the performance.

4.3 Alignment Prediction

We predict the alignment results based on the distance between learned nodes
representations from two networks.
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The Euclidean distance and Manhattan distance are commonly used distance
measures in the Euclidean space. For entities ui in Gs and vj in Gt, the distance
is defined as:

D (ui, vj) =
f (ui,vj)

d
, (16)

where f(x, y) = ‖x − y‖1, ‖ · ‖1 is the L1 norm; d denotes the dimension of
embedding. The distance is expected to be small for equivalent entities and large
for non-equivalent ones. For a specific entity ui in Gs, our approach computes
the distances between ui and all the entities in Gt, and returns a list of ranked
entities as candidate alignments.

5 Experiment

In the section, we conduct extensive experiments to verify the effectiveness of
the model. First, we introduce the experimental settings and then evaluate the
performance of our method. For further analysis, ablation study and parameter
analysis are performed.

5.1 Experiment Setup

Datasets. This section conducts experiments on 2 real-world datasets (4 real-
world networks). The detailed information is shown in Table 1.

Flickr and Myspace datasets: The two subnetworks of Flickr and Myspace
are collected in the paper [27] and then processed according to the method in the
paper [28]. Flickr’s subnet contains 6714 nodes, and Myspace’s subnet contains
10,733 nodes. The gender of the user is used to represent node attributes, and
only part of the ground truth is available for alignment.

Allmovie and Imdb datasets: The Allmovie network is constructed from Rot-
ten Tomatoes website1. Two films have an edge connecting them if they have
at least one common actors. Imdb network is constructed in a similar way from
Imdb website2. The alignment output is constructed by the identity of the film,
containing 5176 anchor links.

Evaluation Metrics. We use both Success@q [28] and MAP (Mean Average
Precision) [15] to evaluate the effectiveness of our proposed model. Success@q
denotes whether a true positive match appears in the previous q candidate. For
ranking perspective, MAP is also known as Mean Reciprocal Rank under pair-
wise setting. Considering that the network alignment is a bidirectional task, we
use the average value of Gs → Gt and Gt → Gs to present the experimental
results.

1 https://www.kaggle.com/ayushkalla1/rotten-tomatoes-movie-database.
2 https://www.kaggle.com/jyoti1706/imdbmoviesdataset.

https://www.kaggle.com/ayushkalla1/rotten-tomatoes-movie-database
https://www.kaggle.com/jyoti1706/imdbmoviesdataset
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Table 1. Statistics of 4 real-world networks.

Network Nodes Edge Attribute

Flickr 6714 7333 3
Myspace 10733 11081 3
Allmovie 6011 124709 14
Imdb 5731 119073 14

Comparison Methods. Our proposed model IDLFA with its variants and the
state-of-the-art baseline methods for comparison are listed as following:

PALE [15]: is a network representation technique that learns node embedding
by maximizing the co-occurrence likelihood of edge nodes, and then applies a
linear or multi-layer perceptron as a mapping function.

REGAL: is a spectral method that models the alignment matrix by topology
and feature similarity of nodes, and then accelerates with a low-rank matrix [8].

IsoRank: is a spectral approach and a global alignment method initially with
application to protein interaction networks [18].

FINAL: is a spectral method designed for attributed networks, which considers
graph structure, node feature, and edge feature [28].

GAlign: is the state-of-the-art alignment mode and proposes a completely unsu-
pervised network alignment framework based on a multi-order GCN embedding
model [22].

Hyperparameter Tuning. The margin hyper-parameters γ, γ1, γ2 and γ3 in
the relevant loss function are set to 1. And the value of λ is validated in set
{0.1, 0.03, 0.01, 0.003, 0.001}. The embedding dimension is set to 100 and will be
further evaluated in the later. We optimize the model with Stochastic Gradient
Descent algorithm.

Machines and Repeatability. The results are averaged over 10 runs to miti-
gate randomness. All experiments are conducted on 8 3.6GHz Intel Cores with
64GB RAM and 1 GeForce RTX2080Ti graphic cards. Our proposed algorithm
is programmed in Python.

5.2 Experiment Result

To verify the effectiveness of our proposed model, we compares the models with
several state-of-the-art models on two real-world datasets, and the experimental
results are shown in Table 2. Bold numbers indicate optimal results, and under-
lined numbers indicate sub-optimal results. The results are obtained with 80%
of the anchor nodes as training set and the rest for testing.
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Table 2. The performance of network alignment on real-world datasets.

Dataset Metrics Ours GAlign PALE REGAL IsoRank FINAL

Allmovie-Imdb MAP 0.9320 0.8496 0.7601 0.1888 0.5271 0.8459
Success@1 0.9068 0.8214 0.6947 0.0953 0.4653 0.7647
Success@10 0.9710 0.9003 0.7159 0.3869 0.6427 0.9609

Flickr-Myspace MAP 0.1245 0.1608 0.0059 0.0090 0.0085 0.0429
Success@1 0.0556 0.0774 0.0000 0.0464 0.0000 0.0206
Success@10 0.2615 0.3127 0.0206 0.1950 0.0275 0.0722

In general, our proposed IDLFA model outperforms all the baselines on
datasets Allmovie-Imdb in terms of MAP , Success@1 and Success@10. In
terms of Success@1, IDLFA achieves more than 90%, exceeds GAlign by 8%
and exceeds FINAL by nearly 15%. In terms of MAP , IDLFA outperforms the
second over 8%. In addition, the Success@10 of IDLFA is about 97%.

In Flickr-Myspace, our proposed model achieves the sub-optimal alignment
accuracy. Compared with FINAL, MAP of IDLFA increases by more than 0.07,
and Success@10 is about 15% higher. Compared with the SOTA model GAlign,
our proposed method is nearly 2% lower in Success@1 and about 0.04 lower in
terms of MAP . Although our model IDLFA does not exceed GAlign, we only
use structural information, while GAlign uses additional attribute information.

Weakly Supervised Condition. Table 3 further gives the detailed model com-
parison when the ratio of training set to test set is 0.2:0.8. Our proposed model is
compared with the previous SOTA GAlign in Allmovie-Imdb and Flickr-Myspace
datasets. Our method IDLFA still has Success@1 ≈ 78% better than GAlign in
Allmovie-Imdb dataset. In Flickr-Myspace dataset, IDLFA outperforms GAlign
by a large margin. The results show that the model is still robust and well-
performed in a weakly supervised manner. And our proposed model performs
better in Allmovie-Imdb than Flickr-Myspace, which indicates that the model
has more prominent performance on datasets with abundant structure informa-
tion in a weakly supervised manner.

Table 3. The performance of our proposed model IDLFA on 20% anchor links.

Dataset Metrics Ours GAlign

Allmovie-Imdb MAP 0.8185 0.7925
Success@1 0.7785 0.7399
Success@10 0.9023 0.8667

Flickr-Myspace MAP 0.0395 0.0177
Success@1 0.0140 0.0044
Success@10 0.0514 0.0327
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Ablation Study. The local feature argument mechanism is based on knowledge
representation model, which is designed for sparse datasets. Although the IDGL
model can learn better structure representation, the premise is that the nodes
have rich topology information. It can be seen from Table 2 that the alignment
accuracy of the same model on different datasets varies greatly. What is the
reason for this phenomenon? It can be seen from Table 1 that the network Flickr
and Myspace are relative sparse, whose average edges of nodes is about 2. That’s
to say, these networks have a large number of long-tail nodes. For long-tail nodes,
GNN-based models are limited to learn their structure features [26]. So, to verify
the effectiveness of our proposed method on sparse datasets, we conduct ablation
study on Flickr-Myspace.

IDNA represents our proposed model without local feature augmentation
module. IDNA+TransE, IDNA+TransH, IDNA+DistMult, IDNA+ComplEx
and IDNA+RotatE denote fusing IDNA with various knowledge representation
method to learn better local feature. Table 4 presents the result with 4 met-
rics. From the table, we can clearly see that local feature augmentation mod-
ule obtains better performance in terms of MAP , Success@1, Success@3 and
Success@10, which indicates the local feature augmentation module works well
and learns better structure representation. When the percentage of anchor links
is 0.8, IDNA+RotatE outperforms other method and Success@1 improves by 2%
compared to IDNA. When the percentage of anchor links is 0.2, IDNA+ComplEx
performs better and has 1.2% improvement in terms of MAP .

Table 4. The result of ablation study on Flickr-Myspace.

Model Success@1 Success@3 Success@10 MAP

Anchor links = 0.8 IDNA 0.0371 0.1111 0.2408 0.1165
IDNA+TransE 0.0185 0.0556 0.1760 0.0800
IDNA+TransH 0.0370 0.0370 0.1760 0.0875
IDNA+DistMult 0.0370 0.0926 0.1945 0.1050
IDNA+ComplEx 0.0185 0.0278 0.1667 0.0735
IDNA+RotatE 0.0556 0.1311 0.2615 0.1245

Anchor links = 0.2 IDNA 0.0047 0.0140 0.0421 0.0270
IDNA+TransE 0.0047 0.0094 0.0538 0.0270
IDNA+TransH 0.0070 0.0280 0.0631 0.0355
IDNA+DistMult 0.0070 0.0210 0.0561 0.0340
IDNA+ComplEx 0.0140 0.0304 0.0514 0.0395
IDNA+RotatE 0.0047 0.0140 0.0584 0.0285
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Fig. 4. The relationship between alignment results and embedding dimension.

5.3 Hyperparameter Sensitivity

Figure 4 studies the sensitivity of the embedding dimension. In general, users
should not choose a high number of dimensions as it does not increase the per-
formance (Success@1) significantly while the time and space complexity defi-
nitely become larger. In Flickr-Myspace dataset, as the embedding dimension
increases, the model performance will fluctuate to a certain extent, but in gen-
eral, the effect is better when the embedding dimension is 100. In Allmovie-Imdb,
the initial performance increases rapidly over dimension and remains stable when
dimension reaches about 100.

6 Conclusion

In this paper, we propose a novel network alignment framework IDLFA, which
learns better network structure representation and further solves the networks
data sparsity. Comprehensive empirical studies on two pairs of popular real-
world datasets show that IDLFA can significantly improve the performance
for social network alignment tasks in comparison with existing solutions. On
part datasets, such as Allmovie-Imdb, our model shows the superiority, whose
Success@1 comes to 90%, and can be adopt to practical applications. Our model
doesn’t take attribute information into consideration. In the future works, we will
study relative framework for attributed networks and the proposed framework
can be applied to other tasks, e.g., cross-lingual knowledge graph task.
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