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Abstract. Graph is a natural way to model interactions between
objects, such as in the field of biology and social science. Over the past
decades, modeling and generating graphs have been a popular research
topic, largely inspired by observed properties of real-world graphs. Since
traditional approaches relying on hand-crafted mechanisms are only
capable of capturing some specific graph properties, recent focus has
been shifted to deep neural methods. However, the task is still chal-
lenging in terms of efficiency. To address this issue, we observe that
the connectivity (i.e., degree) of nodes follows scale-free distribution for
most real-world graphs, which can be utilized to accelerate the genera-
tion process. We propose ForGen, a Forest-based Generation model that
contains a graph-level and an edge-level autoregressive generator. Specif-
ically, for the edge-level model, motivated by the skewed distribution of
node degree and the Huffman tree, we design a forest-like data structure
to accelerate edge connection via shallow tree searches and better par-
allelism. Experiments on both synthetic and real-world graph datasets
show that ForGen is two times faster than the current state-of-the-art
method for graph generation, and guarantees better generated graph
quality.
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1 Introduction

Graphs are ubiquitous in the real world, which can represent relational infor-
mation such as social networks, traffic networks, knowledge bases and molecule
structures. To tap the underlying value of complicated structures in these graphs
[2], there are mainly two types of approaches [9]: 1) predicting and analyzing
patterns on given graphs. 2) modeling and generating graphs, while we focus on
the second one.

Since the early work by Erdos and Rényi in 1960 [5], many graph generative
models have been proposed due to its wide range of applications which includes
mining patterns in social networks [1,8,14], drug design [16,20,29], knowledge
graph completion [26], and architecture search [27]. Traditional generative mod-
els for graphs (e.g. Barabási-Albert model [1], Kronecker graphs [14], small-world
networks [25], and stochastic block models [21]) are based on prior assumptions
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and random graph theory, which usually have clear mathematical properties and
computational efficiency but lack the ability to model complex dependencies due
to their hand-crafted nature. Also, prior assumptions limit the generalization
ability and versatility of the model.

To tackle these limitations, recent studies have turned to deep generative
models using neural networks. Instead of making prior assumptions, deep graph
generators directly learn the distribution from given data to capture latent struc-
tural information. Despite the great progress achieved in the molecular area
(graph size is small), modeling graphs in the general domain has specific chal-
lenges. As a graph with n nodes has an n2 sized adjacency matrix, most non-
autoregressive models [20,29] trying to generate the full matrix fail to scale up to
graphs with hundreds of nodes. Moreover, methods like autoencoder-based graph
generators [20] treat a graph as a combination of independent components or
structures with weak dependency to speed up the generation process. However,
this assumption ignores the complex structure dependencies in real-world graphs
which can sacrifice the quality of the generated graphs [17].

For the reasons mentioned above, autoregressive models have gained special
attention for modeling general real-world graphs (not just molecules) [4,7,17,30],
whose basic idea is to sequentially add nodes and edges or small motifs into the
graph. Thus new decisions are made based on previous information and complex
dependencies can be introduced into the model. Generally, there are two types of
methods according to the generation framework they choose. The first way is to
use hierarchical architectures, for instance, GraphRNN [30] adopts a graph level
RNN combined with an edge level RNN. Another type of approaches leverages
massage passing mechanism to bring more neighborhood information into the
process [17]. However, the lack of features (semantic information) in the problem
setting may hinder GNN’s performance and the scalability of GNN and simple
sequential models can also be a bottleneck of efficiency.

So far, BiGG [4] is the most scalable autoregressive graph generator and can
achieve state-of-the-art sample quality in both synthetic and real-world datasets.
Based on the observation that most real graphs are sparse, BiGG attempts
to generate the non-zero entries in the adjacency matrix instead of the whole
matrix. As GraphRNN does, BiGG adopts a two-level (node and edge) archi-
tecture but it reduces the time complexity from O(n2) to O((n + m) log n) for
a graph with n nodes and m edges. More specifically, BiGG uses a binary tree
data structure as the edge level to reduce the time complexity of generating an
edge from O(n) to O(log n), which is the key to efficiency improvement.

It is well studied that the vertex connectivities commonly follow a scale-
free distribution in complex real networks [3,19,23]. However, we observed that
existing studies have not paid close attention to this characteristic in both exper-
imental setup and model design. As a matter of fact, the degree distributions of
graph datasets used in previous work (such as grid graphs and protein graphs
[4,17]) are more close to the normal distribution rather than the scale-free dis-
tribution, which does not match most real-world application scenarios. Through
experiments, we found that it is harder for deep models to learn from scale-free
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networks than other graph datasets under the same settings, which indicates
their complex latent patterns.

When it comes to model design, BiGG treats all the nodes in the same way
during the edge generation process. Nevertheless, it is well-known that node
degree of numerous real-world graphs (approximately) follows heavy tailed (e.g.,
scale-free) distribution, and exhibits interesting phenomenons such as ”rich-get-
richer”. This indicates that one should treats nodes differently in generating
graphs. To make a further improvement on the two-level autoregressive frame-
work, we propose ForGen (Forest-based Generation Model) to model these prop-
erties explicitly. Instead of a balanced tree, ForGen conducts the edge level as
a hierarchical forest-like data structure inspired by the Huffman tree [10] and
the “rich-get-richer” phenomenon, which enables shallow tree search. Also, we
improve the traversal-based learning algorithm used in the edge level for better
scalability and quality. Thereby, we can generate an edge in O(1) time for the
best case which has a higher frequency, and O(log n) time for the worst case.

To summarize, we have made the following contributions:

• To the best of our knowledge, it is the first time that the skewed distribution
of node degree in real-world graphs has been considered in graph generation
with deep neural network.

• We propose a two-level deep autoregressive model ForGen with an imbalanced
forest-like structure for graph generation, which exploits the “rich-get-richer”
phenomenon in scale-free networks.

• Empirical evaluation on both scale-free and non-scale-free networks estab-
lishes that compared with the state-of-the-art technique, ForGen can achieve
better quality on four datasets and a twice faster sample speed.

2 Related Work

In this section, we will briefly introduce the existing methods in three parts.
Table 1 summarizes several notable deep graph generators and their character-
istics.

Traditional Graph Models. In the Erdos Rényi random graph model [5],
each edge is included with a fixed probability p independently and the degree
distribution is proved to be Poisson for large n and p = c/n, where c is a constant.
However, Barabási et al. [3] find that the degree distribution is commonly a
scale-free distribution for realistic networks and propose the Barabási-Albert
(BA) model based on the preferential attachment assumption. Though there is
various work following the preferential attachment model [1,15,28], they only
focus on the degree distribution while neglecting other structural features.

Autoregressive Deep Graph Generators. Li et al. [16] propose a node-
by-node method that includes two variants, namely MolMP and MolRNN, to
model the probabilities for adding nodes and termination. Similarly, You et al.
[30] propose GraphRNN based on two RNNs (one for graph level and one for
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Table 1. Existing deep graph generators. n and m denote the number of nodes and
edges respectively. M is calculated from the data.

Method Technology roadmap Complexity

GraphVAE [20] Auto-encoder (GNN + MLP) O(n4)

GCPN [29] Reinforcement Learning O(m2)

Graphite [8] Auto-encoder + GNN O(n2)

GraphRNN [30] Autoregressive-based + Two level O(nM)

GRAN [17] Autoregressive-based + GNN O((m + n)n)

BiGG [4] Autoregressive-based + Two level O((m + n) log n)

ForGen (ours) Autoregressive-based + Two level O((m + n) log n)

edge level). Subsequently, Liu et al. [18] combine GraphRNN with a vanilla
Transformer decoder. Liao et al. [17] propose a GNN-based approach that uses
graph neural network with attentive massages to generate one block of nodes
and associated edges at each step. Apart from node-based methods, Goyal et al.
[7] adopt LSTM to generate edge sequences which are converted from a graph
using the minimum DFS code. Recently, Dai et al. [4] propose BiGG, a two-level
model with tree-based architecture which achieves the best performance in both
quality and scalability.

Non-autoregressive Deep Graph Generators. There exist various work
that focuses on generating graphs in a non-autoregressive way. For example,
GraphVAE [20] constructs its encoder and decoder based on GCN and MLP
respectively, which needs a costly graph matching algorithm to train. Graphite [8]
parameterizes variational autoencoders with a GNN, and uses an iterative graph
refinement strategy inspired by low-rank approximations for decoding, which
can only learn from one input graph. You et al. [29] formulate the molecular
graph generation as a Markov Decision Process and adopt PPO to train an RL
agent. However, these non-autoregressive graph generators are mainly designed
for molecular generation which may suffer from the scalability issue and lack the
ability to model complex dependencies.

3 Methodology

3.1 Preliminaries

Graph Generation. A graph is defined by the tuple G = (V,E), where V =
{v1, ..., vn} is the graph’s node set and E = {(vi, vj)|vi, vj ∈ V } denotes its edge
set, with |V | = n and |E| = m. We represent a graph with an adjacency matrix
A ∈ {0, 1}n×n, while a graph has up to n! different matrix representations with
an ordering set Π over the nodes. More precisely, given an ordering π ∈ Π,
(π(v1), ..., π(vn)) is a permutation of (v1, ..., vn) and a graph is mapped to a
matrix Aπ. Here, we focus on undirected graphs with no self-loops or attributes.

Our goal is to learn the distribution pmodel(G) from a given graph set
G = {G1, ..., GN}. Assuming that the observed graphs G are sampled from an
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underlying data distribution pdata(G), an effective model should be capable of
sampling graphs from the learned distribution which are similar to the real ones,
i.e., pmodel(G) ≈ pdata(G). Therefore, we maximize the log-likelihood of observed
graphs. Following GRAN [17], we use a single canonical ordering π(G) to get a
valid lower bound of log p(G) and significantly improve training efficiency:

log p(G) =
∑

π∈Π

log p(Aπ) �
∑

π∈Θ⊂Π

log p(Aπ) � log p(Aπ(G)) (1)

Table 2. Main notations used in the paper.

Notation Description

G, V , E A graph, its node set, its edge set

n, m The number of nodes and edges respectively

π A node ordering for a graph G

Aπ The adjacency matrix under π

Sπ
t The t-th row of Aπ’s lower triangle part

L(t) The number of trees for node vt

b The depth of the first tree

x A learnable vector ∈ Rd

g , h A tuple of embedding vectors ∈ Rd

Important Characteristics of Real-World Graphs. The heavy-tailed
degree distribution in real networks is first found by [19], i.e., the number of
nodes of degree k being in inverse proportion to kγ (γ ∈ (1,∞)). The class of
networks exhibiting a scale-free degree distribution (at least asymptotically) is
called “scale-free network”. Moreover, in real-world graphs, there is a higher
probability that more and more nodes will link themselves to those with large
degrees. In another word, some nodes (called hubs) can have much more connec-
tions than others and the existence of this mechanism (denoted as “Preferential
Attachment” [3]) has been proved in many real-world graphs [11,13].

3.2 Overview

As shown in Fig 1, ForGen is a two-level autoregressive model based on tree
structures. The iterative generation process consists of a top-down decoding
stage and a bottom-up encoding stage. The decoding stage starts from the graph
level which provides the initial embedding for a new node. To leverage the skewed
degree distribution of real graphs, inspired by the preferential attachment, an
imbalanced forest-like structure is used as the edge level. After the non-zero
entries of Aπ are decoded from the embedding, new edges are generated. Then
the bottom-up stage encodes the edges into a vector within the edge level, which
is utilized to update the graph level information. As shown in Table 2, we use h
to represent the embeddings in the decoding stage and g in the encoding stage.
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Formally, We represent the t-th row of Aπ’s lower triangle part as Sπ
t and

the graph level can be factorized in an autoregressive way as

p(Aπ) =
n∏

t=1

p(Sπ
t |Sπ

1 , ..., Sπ
t−1) (2)

For edge level, instead of generating edges sequentially [4,30] or all at once
[17], we divide Sπ

t into L(t) groups Sπ
t,j and organize them in a forest-like way:

p(Sπ
t |Sπ

1 , ..., Sπ
t−1) =

L(t)∏

j=1

p(Sπ
t,j |Sπ

t,1, ..., S
π
t,j−1, S

π
1 , ..., Sπ

t−1) (3)

Based on this assumption, we generate the non-zero entries inside each group
which can introduce more dependencies between groups into the model and take
advantage of node diversity in real-world graphs to improve efficiency.

Fig. 1. An example of ForGen’s generation process. The generation starts from the
graph level computation (block on the top left) and goes to edge level (right part)
following the dotted line. Edge level’s Preferential forest is modeled in an inorder
traversal way, while the subtrees of the forest (the blue part) are built from top to
bottom and summarize the generated edges from leaves to the root. (Color figure
online)

3.3 A Hierarchical Tree Structure for Edge Generation

The edge level of ForGen is responsible for generating all the edges between node
vt and nodes already generated at timestamp t in an autoregressive way, which is
equivalent to finding vt’s neighbors N (vt) from a subset of nodes {v1, ..., vt−1}.
Compared with the graph level, this stage is more critical to improving model
efficiency. In this section, we will describe ForGen’s edge generation strategy.

Generating with a Standard Binary Tree. BiGG [4] modeled the edge
level as an edge binary tree. The binary tree is balanced for the reason that the
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maximum height difference between the left and right subtrees of each node is
one. As illustrated in Fig 2(a), each leaf node represents a candidate for vt’s
neighbors and the selection process is decomposed into a series of left/right
decisions until reaching the bottom. However, in such a model structure, all the
nodes are treated equally which contradicts the nature of real networks.

Step 1

Step 2

V1 V2V2V4

V[1,2]V[1,2]

V[1,4]

V3 V4V1

V[3,4]

Binary Tree

(a)

Step 1

Step 2

V2

V[2,4]

V[1,4]

V1

V3 V4

Huffman Tree

V[3,4]

(b)

Fig. 2. Simplified edge generation process for node v5.

Edge Generation Considering Preferential Attachment. Instead of a
balanced binary tree, a tree structure that takes nodes’ access frequencies into
account, will provide a better fit to the scale-free nature of real-world networks.
Inspired by the Huffman tree [10], a frequency-sorted binary tree, we organized
the tree in almost a sequential way. As Fig. 2(b) shows, all the right children
are leaf nodes and represent the candidates. Thereby, the distance between hubs
(nodes with large degrees) and the root will be O(1) instead of O(log2 n). Since
hubs will be chosen frequently, it can significantly improve efficiency. We call it
Preferential Tree since nodes closer to the root are preferentially treated.

However, there are many nodes far from the root. Though they may have
much lower visiting frequency than the hubs, the structure can be optimized to
avoid the O(n) tree depth. Here, we introduce Preferential Forest, which replaces
the leaf nodes with binary trees and all the trees make up a forest.

More specifically, the whole Preferential Forest built for node vt represents
the corresponding row Sπ

t , and each tree in the forest (denoted as Sπ
t,j) further

separates Sπ
t into different parts. Noted that nodes with higher degrees are fewer

and there exists communities of distinct sizes in real graphs, we should keep tree
sizes different. We define the j-th tree as the one whose root node is in the j-
th level of the whole preferential forest, and its depth is b + j − 1, where b is
a hyperparameter and j ∈ {1, 2, ..., L(t)}. Therefore, the size of the j-th group
|Sπ

t,j | = 2b+j−1, which means the number of hub nodes are small and there exists
many nodes with small degrees.

Lemma 1. Considering the generation of node t’s neighbors, the number of trees
in the preferential forest L(t) = �log2 (t + 2b − 1) − b� = O(log n).

Proof. The number of nodes in L(t) trees is
∑L(t)

j=1 2b+j−1 = 2b+L(t)−2b. Since the

last tree may be filled with some virtual nodes, we have
∑L(t)−1

j=1 2b+j−1<t−1 ≤
∑L(t)−1

j=1 2b+j−1. Therefore, L(t) = �log2 (t + 2b − 1) − b� = O(log n).
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The groups are generated sequentially based on Eq. 3 and the tree of each
group is generated recursively until reaching the leaf node.

Theorem 1. In a graph with n nodes, the time complexity of generating one
edge with ForGen is O(1) in the best case and O(log n) in the worst case.

Proof. The process consists of two parts, i.e., reaching a tree in the preferential
forest and traveling from the tree root to a leaf node. In the best case, the first
stage costs only one step regardless of n and the tree depth is a constant b. So the
time complexity is O(1 + b) = O(1). In the worst scenario, we will go to the last
tree, which is the largest one, with L(n) steps and the corresponding tree depth
is b+L(n)−1. Accordingly, the time complexity is O(2L(n)+b−1) = O(log2 n).

Generating N (vt) Simultaneously. As the generating process of an edge can
be represented as a path from the root node to a leaf node, we can merge all the
paths belonging to vt to utilize their overlapping parts for overhead reduction.
In other words, we convert the generation of N (vt) into pruning vt’s preferential
forest so that only the path to its neighbors’ leaves are retained.

3.4 Two-Level Autoregressive Model

In this section, we will present the full version of ForGen in detail (see Fig. 1).
First, we will discuss how to embed a new node vt at graph level. Then we will
decode its embedding into N (vt) via massage passing on the preferential forest.

Generating Initial Embedding ht for vt. Following BiGG, we adopt the
Fenwick tree [6], a data structure that maintains the prefix sum efficiently, as
the graph level. The i-th leaf node of the tree g0

i is the embedding of Si generated
before. With a Binary TreeLSTM cell [22], the tree is built from bottom to top
and the i-th node in the j-th level

gj
i = TreeLSTMfen(gj−1

i∗2−1, g
j−1
i∗2 ) (4)

Thus, we can obtain vt’s initial embedding ht by computing the prefix sum of
{g0

1, ..., g
0
t−1} with LSTM (go to the top left part of Fig. 1 for an example):

hfen
t = LSTMfen([gk

� t−1
2k �,where (t − 1)& 2k = 2k]) (5)

Note that & is bitwise AND, the sequence length will be O(log n) and so is the
time complexity of a graph level update.

Generating Preferential Forest. For this part, we need to generate edges
between vt and {v1, ..., vt−1} based on the prefix sum result of the Fenwick tree
and then encode the edges into a new embedding g0

t to update the graph level.
As previously described in 3.3, the preferential forest consists of several binary

subtrees which are always the left children (yellow part in Fig. 1), and the right
children maintain the information of the generated graph. The root node hdec

t,0 is
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the sum of hfen
t and a positional encoding which is the same as [24] to identify

different steps and improve generation quality:

hdec
t,0 =

{
hfen

t + sin((n − t)/10000i/d), i mod 2 = 0

hfen
t + cos((n − t)/10000(i−1)/d), i mod 2 = 1

(6)

where the dimension i ∈ {0, 1, ..., d − 1}.
Then we decode the information by inorder traversal using TreeLSTM and

LSTM. First, we need to obtain the root embedding for the subtree in the next
level and predict if it has children via a Bernoulli distribution:

hsub
t,i = LSTMcelltoSub(hdec

t,i−1,xsub) (7)

p(has subtree|hsub
t,i ) = σ(MLPsub(hsub

t,i )) (8)

where xsub is a learnable vector to integrate direction information and σ is the
sigmoid function.

Based on the ht,i, we need to generate the binary subtree before going back
to the parent node. However, instead of a traversal way, we build the tree with a
bisection method to significantly reduce the sequence length. For the reason that
the forest can introduce more complex interactions between node groups, such
a partial autoregressive way will not influence the effectiveness but can improve
the LSTM-based model’s scalability. The process can be represented as follows:

p(has pos|hsub
u ) = σ(MLPpos(hsub

u )) (9)

hsub
τ(u,pos) = LSTMcellsub(hsub

u ,xpos) (10)

where pos ∈ {left, right} and τ(u, pos) means the pos child of u in the subtree.
We will decide whether a child is an empty node based on the probability This
process will continue recursively until no non-empty children or reaching the leaf
node where we will add an edge between vt and the corresponding node.

After all leaves of the subtree are generated, we need to summarize the neigh-
borhood information from bottom to top. Thus, we represent leaf nodes and
empty nodes with learnable parameters gleaf and gempty respectively and the
bottom-top merging follows the rule:

gsub
u = TreeLSTMcellsub(gsub

τ(u,left), g
sub
τ(u,right)) (11)

Given gsub
t,i , we can complete the traversal of the preferential forest:

htmp
t,i = TreeLSTMcelldec(hsub

t,i , gsub
t,i ) (12)

hdec
t,i = LSTMcelldec(htmp

t,i ,xdec) (13)

When it goes to the empty node hdec
t,L(t), all subtrees St,j are generated which

means St is available. To encode St, we adopt a bottom-top method:

gdec
t,i = TreeLSTMcellforest(gsub

t,i+1, g
dec
t,i+1) (14)

where gdec
t,L(t) = gempty and i ∈ {0, 1, ..., L(t) − 1}.

The final result g0
t = gdec

t,0 will be added to the Fenwick tree so as to generate
the next node vt+1 starting from the graph level.
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Training Optimization. In previous sections, we describe the inference stage
of ForGen. However, if we train the model based on the full O(n log n) steps as
the inference stage does, it will be too time-consuming. Since we have complete
adjacency matrix data, we can prepare the training targets concurrently rather
than step-by-step. The overall flow path is bottom-top-bottom. First, we gather
all subtrees of graphs in the batch and align them from leaf nodes so that sub-
trees can be built synchronously. Then we present every preferential forest as a
sequence and process them together starting from the empty node. After that,
all node embeddings based on ground truth are ready with O(log n) steps and
the top-bottom part can be done in a reverse procedure.

4 Experiments

In this section, we compare ForGen to state-of-the-art baselines on both synthetic
and real graph datasets. The empirical results demonstrate the effectiveness and
efficiency of ForGen.

4.1 Datasets

To make a more comprehensive comparison, we experiment on both scale-free
and non-scale-free networks, and part of the benchmark is obtained from [4]. The
description of the four datasets is as follows: (1) Grid: standard 2D grid graphs
with 100 ≤ |V | ≤ 400. (2) BA: random graphs using Barabási-Albert preferential
attachment [3] which exhibit a clear scale-free distribution, with 50 ≤ |V | ≤
150. We experiment with different graph densities for further verification. (3)
Youtube: 2-hop ego graphs extracted from the social network of YouTube users
and their friendship connections [12] with 305 ≤ |V | ≤ 477 and 684 ≤ |E| ≤
5674. (4) Amazon: 2-hop ego graphs extracted from the co-purchase network of
Amazon [12] with 304 ≤ |V | ≤ 476 and 510 ≤ |E| ≤ 1377. Each dataset consists
of 100 graphs of which 80 for training and 20 for test.

4.2 Settings

Baselines. Following previous work, we adopt the Erdos-Renyi random graph
model [5] for traditional approaches and its parameter of graph density is esti-
mated from the training set. For deep graph generators, we compare with
GraphRNN1, GRAN2 and BiGG3. GraphRNN uses a two-level LSTM model
while GRAN incorporates GNN with attention mechanism. BiGG is the state-
of-the-art model which is designed for sparse graphs. For all the baselines, we
use the original code released by their authors.

1 https://github.com/snap-stanford/GraphRNN.
2 https://github.com/lrjconan/GRAN.
3 https://github.com/google-research/google-research/tree/master/bigg.

https://github.com/snap-stanford/GraphRNN
https://github.com/lrjconan/GRAN
https://github.com/google-research/google-research/tree/master/bigg
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Evaluation Metrics. We use the same metric as proposed by [30], which is also
used in [4,7,17]. Specifically, we use three graph statistics to describe the graph in
different levels, i.e., node degree distribution, clustering coefficient distribution of
nodes, and orbit count distribution (the number of occurrences of all orbits with
4 nodes). To compare the distribution between the graph statistics of generated
graphs and test graphs, we use the Maximum Mean Discrepancy (MMD) with
total variation (TV) distance.

4.3 Model Effectiveness

Generation Quality. The first experiment compares the sample quality
between ForGen and other baselines across three different metrics on the four
datasets. Table 3 shows the experiment results and the best performance under
each metric-dataset pair is highlighted in bold font. On the whole, our method,
ForGen, outperforms other methods over 3 metrics except for the clustering
coefficient of BA dataset which is still the second-best. Also, the result of grid
graphs shows that our method can be extended to non-scale-free graphs and
achieve good performance.

Table 3. Performance comparison of different methods on the two synthetic datasets
and two real-world datasets. For all MMD metrics, the smaller the better.

Datasets Methods

Erdos-Renyi GraphRNN GRAN BiGG ForGen (ours)

Grid Degree 0.79 1.12e−2 8.23e−4 4.00e−4 1.74e−4

Clustering 2.00 7.73e−5 3.79e−3 7.00e−5 0

Orbit 1.08 1.03e−3 1.59e−3 5.00e−4 2.23e−4

BA Degree 0.17 9.33e−2 1.73e−2 1.42e−3 1.25e−3

Clustering 0.53 0.31 0.39 0.14 0.15

Orbit 1.16 0.70 0.30 0.36 0.20

Youtube Degree 0.39 1.60e−2 4.40e−2 1.30e−2 5.84e−3

Clustering 0.75 0.33 0.15 0.12 0.11

Orbit 0.22 0.11 0.10 0.10 0.10

Amazon Degree 8.61e−2 1.13e−2 1.18e−2 1.09e−2 1.01e−3

Clustering 1.00 0.48 0.18 0.37 0.11

Orbit 0.93 0.13 0.11 9.83e−2 9.57e−2

Sample Quality vs. Graph Scale. As shown in Table 3, BiGG (better than
other baselines in most cases) performs close to our method in some instances.
For further comparison, we test the sample quality from another aspect. Note
that it is quite difficult to train on datasets of large graphs due to the limita-
tion of GPU memory, model’s ability of expansion is important. To be specific,
we will sample graphs of increasing sizes with models trained on the previously
mentioned datasets. As such, model performance may diverge and different char-
acteristics of models are amplified. What’s more, it offers us an efficient way to
get larger graphs with structural information maintained.
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However, GraphRNN stops the generation process based on its output which
cannot be intervened manually and GRAN can only generate graphs no larger
than their training graphs. So, only Erdos-Renyi model, BiGG and ForGen are
included in the test based on the Amazon dataset. Figure 3 shows the log-log
plot of the MMD results on three graph statistics with graph sizes ranging from
0.5k to 10k. Notably, BiGG’s performance on degree distribution declines con-
tinuously as the graph size grows while the other two methods are more stable.
For clustering coefficient and orbit count, ForGen has consistently lower MMD
than BiGG, and ER model is the worst.

Fig. 3. The log-log plot of sample quality. The vertical axis represents MMD on dif-
ferent graph statistics, while the horizontal axis represents the size of sampled graphs.

Varying Graph Density. The four datasets mentioned in Sect. 4.1 are sparse
graphs with an average connection of less than 6 (usually 2). To see what will
happen when the graphs become denser, we experiment on BA graphs which can
set the number of edges to attach from a new node to existing nodes (denoted as
τ). While we have already tested on τ = 2, we adopt τ ∈ {10, 20} to generate new
datasets. We choose the best baseline BiGG and our model ForGen to be trained
and tested on the denser graphs. Also, we report the ground truth BA model.
Table 4 shows that even though denser graphs may contain more noises which
can hinder learning-based methods, ForGen can still achieve the best results
across three metrics.

4.4 Model Efficiency

Since BiGG is the most efficient deep autoregressive model and its lower time
complexity has been proved, we compare ForGen with it in both training speed
and inference speed. Table 5 reports the results of all five scale-free graph datasets
we have. The first number of each item is the seconds model takes to finish a
training iteration under the same batch size and the latter number is the infer-
ence time to generate 1k edges in a graph. Compared with BiGG’s, the training
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Table 4. Quality test with increasing graph density.

Datasets Methods Degree Clustering Orbit

BA (τ=2) BiGG 1.42e−3 0.14 0.36

ForGen (ours) 1.25e−3 0.15 0.20

Ground Truth 1.13e−3 0.18 0.29

BA (τ=10) BiGG 7.45e−3 0.14 0.13

ForGen (ours) 5.50e−3 0.11 0.10

Ground Truth 4.72e−3 8.07e−2 6.31e−2

BA (τ=20) BiGG 1.48e−2 0.17 0.11

ForGen (ours) 1.40e−2 0.16 0.10

Ground Truth 1.54e−2 0.12 6.25e−2

Table 5. Training/Inference speed on scale-free graphs.

BA (τ = 2) BA (τ = 10) BA (τ = 20) Youtube Amazon

BiGG 0.79/90.72 0.99/55.03 1.3/40.29 1.11/83.96 0.66/113.6

ForGen (ours) 1.07/41.44 0.97/30.8 1.19/23.88 1.07/39.21 0.76/57.42

speed of ForGen is faster when the graph is denser since more computation can
be synchronized. When it comes to graph generation, ForGen can achieve about
twice BiGG’s speed on scale-free networks owing to its preferential forest design.

4.5 Ablation Study

Different Node Orderings. We choose four canonical node orderings mainly
based on graph properties: the node degree descending ordering, BFS/DFS
ordering (nodes with larger degree first), and the default ordering of the data.
Also, we test the combination of BFS and DFS. Table 6 shows the results of
the Amazon dataset. We can see that both BFS and DFS can achieve good
performance since they combine the topological information with preferential
information (degree). However, node orderings lacking either information can
hinder the learning process and the combination of different orderings with the
same training strategy cannot help to improve the performance either. In sum-
mary, BFS or DFS ordering is recommended.

Table 6. Performance of models trained with different node orderings.

Node ordering Degree Clustering Orbit

BFS 1.08e−3 0.11 0.11

DFS 1.01e−3 0.11 9.57e−2

Degree descent 1.51e−2 0.24 0.11

DFS+BFS 2.08e−3 0.12 0.10

Default 0.23 0.35 0.11
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Tree Size b. We next evaluate how the size of the first tree in the preferential
forest (denoted as b) affects the quality. Since too small b will pay too much
attention to noise and large b will lead to groups with fewer dependencies, we
suggest b ∈ {5, 6, 7}. The experiment is conducted on the Youtube dataset. The
results in Table 7 suggest that the selection of b within a reasonable range will
not influence the effectiveness.

Table 7. Ablation study on tree size.

Tree size Degree Clustering Orbit

b = 5 5.83e−3 0.11 0.10

b = 6 8.06e−3 0.12 9.90e−2

b = 7 6.34e−3 0.12 0.11

5 Conclusion

In this paper, we propose a forest-based graph generation model ForGen. First,
we verify the wide existence of scale-free networks and skewed degree distri-
butions on graphs of different sizes. To incorporate this important topological
feature of real-world graphs, we design a multilevel data structure, which we call
Preferential Forest, for the edge generation. We prove that the time complexity of
generating an edge is O(1) in the best case (which occurs frequently in scale-free
networks) and O(log n) in the worst case. Together with a graph-level Fenwick
tree, an autoregressive generation model that can generate graphs of any size is
completed. By synchronization and an optimized tree traversal procedure, model
scalability is further improved. We conduct extensive experiments on both syn-
thetic and real graphs and prove ForGen’s state-of-the-art sample quality from
three different aspects. Furthermore, the generation speed of ForGen is two times
faster than the most scalable model. In summary, the two-level tree-based model
ForGen outperforms other autoregressive graph generators (like GraphRNN and
BiGG) in both quality and efficiency.
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