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Abstract. In temporal networks, nodes and edges are associated with
time series. To seeking the periodic pattern in temporal networks, an
intuitive method is to searching periodic communities in them. However,
most existing studies do not exploit the periodic pattern of communities.
The only few works left do not take the sparse propriety of real-world
temporal networks into consideration, such that (i) the answers searched
for are few, (ii) the computation suffers from poor performance. In this
paper, we propose a novel periodic community model in temporal net-
works, σ-periodic k-clique, and an efficient algorithm for enumerating
all σ-periodic k-cliques in real-world sparse temporal networks. We first
design a new data structure to store temporal networks in main memory,
which can reduce the maintaining cost and support dynamic deletion of
nodes and edges. Then, we propose several efficient pruning rules to elim-
inate unpromising nodes and edges that do not belong to any σ-period
k-clique to reduce graph size. Next, we propose an algorithm that directly
enumerates σ-periodic k-cliques on temporal graph to avoid redundant
computation. Finally, extensive and comprehensive experiments show
that our algorithm runs one to three orders of magnitudes faster and
requires significantly less memory than the baseline algorithms.
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1 Introduction

Real-world networks are usually temporal networks, in which their edges are asso-
ciated with timestamps, indicating the time periods in which they exist. For exam-
ple, in an email communication network, edge (u, v, t) means that user u send a
message to user v in time t. Many real-world networks are temporal networks such
as phone-call networks, social-media interaction networks and research collabora-
tion networks. Many studies have been done to mine significant patterns in tempo-
ral networks such as finding fast-changing components [29], detecting information
flow [12], mining dense subgraphs [20,27,30] and reachability testing [28]. With
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the existence of timestamps, there are many new community models for temporal
networks [1,3,18,19,23,31]. Periodicity is a very important phenomenon in time
series analysis. Communities that occur periodically often indicate strong patterns
in real-world, such as weekly group discussion, monthly friends parties and yearly
research collaboration. Therefore, finding the periodically occurring communities
can be helpful for finding dense connections between nodes that persist over time
or predicting future events.

Mining dense subgraphs in static networks has been widely studied during
the past few decades and they are widely used in real world applications such
as finance [8], biology [10,22], search engine [11] and queries on graphs [6,15].
As shown below, periodic clique is an important community pattern in temporal
networks. However, existing studies on finding periodic communities in temporal
networks don’t dive in to the problem of how to represent temporal networks
in main memory nor take the sparse propriety of real-world temporal networks
into account [23,31]. As far as we know, there is no study on one of the most
basic periodic community, periodic k-cliques.

In this paper, we propose a new periodic dense subgraph model called σ-
period k-clique, which is a k-clique that occurs σ times with some period. The
main contributions are summarized as follows:

1. We design a new data structure, Augmented Adjacency Array, based on adja-
cency array, to represent temporal networks in memory. The new data struc-
ture has a low maintaining cost and supports dynamic deletion of vertices
and edges, which is used in the pruning algorithms.

2. We propose a new method to enumerate periodic k-clique efficiently on real-
world sparse temporal networks. We propose several efficient pruning rules
to prune the temporal network efficiently, which is much more efficient than
the baseline algorithm and performs nearly as well as the complex pruning
algorithms [23] in real-world sparse networks. Then, we propose a new algo-
rithm which directly enumerates periodic k-cliques on temporal networks.
This algorithm avoids the costly computation of most periods and it prunes
vertices and edges as enumeration to reduce unnecessary computation. It also
avoids redundant computation of overlapping periods.

3. We conduct extensive experiments on five real-world networks to show the
efficiency and effectiveness of our algorithm. The experiments show that our
algorithm is one to three orders of magnitudes faster than the baseline algo-
rithm.

2 Preliminaries

An undirected temporal graph is defined as G = (V, E), where V is the set of
vertices and E is the set of temporal edges. Each temporal edge e ∈ E is a
triplet (u, v, t), where u, v ∈ V, t is the time when this edges exists. Without
loss of generality, we assume t is an integer, because timestamps in real world
are usually represented as integer. The de-temporal graph G = (V,E) is a graph
that ignores all the timestamps, where V = V and E = {(u, v)|(u, v, t) ∈ E}. A
snapshot of G at time i is a static graph defined as Gi = (Vi, Ei) where Vi = V
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and Ei = {(u, v)|(u, v, t) ∈ E , t = i}. Nv(G) is the neighbor of v. Dv(G) is the
degree of v. Let Nu(G) or Nu(G) be the neighbors of u.

A graph G′ = (V ′, E ′) is called a subgraph of G if V ′ ∈ V and E ′ ∈ E . Similarly,
graph G′ = (V ′, E′) is called a subgraph of G if V ′ ∈ V and E′ ∈ E. Given a
set of vertex Vs, a subgraph Gs = (Vs, Es) is called a vertex induced subgraph
if Ss ∈ V and Es = {(u, v, t) |u, v ∈ Vs, (u, v, t) ∈ E}. We call Gi = (Vi, Ei)
a snapshot of temporal graph G where Vi = {u|(u, v, t) ∈ E , t = i} and Ei =
{(u, v)|(u, v, t) ∈ E , t = i}. Fig-1 shows an example of a temporal graph.

Fig. 1. An example of temporal graph

Definition 1 (time support set). Given a temporal graph G = (V, E) and
its de-temporal graph G. The time support set of vertex v ∈ V is TS(v) =
{t|(v, u, t) ∈ E , u ∈ V}; the time support set of edge (u, v) ∈ E is TS(u, v) =
{ti|(u, v, t) ∈ E}, we will refer to the size of TS(u, v), |TS(u, v)| as an edge’s
weight for simplicity. And the time support set of a subgraph of G, S = (Vs, Es)
is TS(S) = {t|∀(u, v) ∈ Es, t ∈ TS(u, v)}
Definition 2 (periodic time support set). Given a sorted time support set
P = {ts1, ts2, . . . , tsk}, if the difference of any two adjacent timestamp tsi −
(tsi −1) is a constant, then P is called a periodic time support. For convenience,
we will call periodic time support as period and the difference between any two
adjacent timestamps DIFF(P ). If |P | = σ, P is called a σ-periodic time support
set, also called σ-period.

Definition 3 (σ-periodic k-clique). Given a temporal graph G = (V, E) and a
subgraph of G, C = (Vc, Ec) and its de-temporal graph C is a σ-periodic k-clique
with period P if (1) The de-temporal graph of C is a k-clique and (2) for any
u, v ∈ Vc, (u, v, t) ∈ Ec and (3) for any (u, v, t) ∈ Ec, t ∈ TS(C).

Problem Statement. Given a temporal graph G and two parameters σ and k,
our goal is to find all the σ-periodic k-cliques in G. We refer this problem as the
(σ, k)-PC problem.

We simply modify the algorithm of enumerating periodic maximal clique in
[23] to find all the σ-periodic k-cliques. The algorithm is referred as PKC-B and
it involves three parts: firstly, it prunes the graph using k-core and periodicity
of vertices and edges; secondly, it translates the temporal graph into a static
graph, the details of step 1 and 2 can be found in [23]; thirdly, it enumerates
σ-periodic k-cliques on the translated static graph using the algorithm in [5].
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Challenges. The challenges of searching the σ-periodic k-cliques by PKC-B are:
1. Existing studies don’t dive into the memory representation of temporal graphs

and use trivial methods to represent temporal graphs such as a combination of
map and lists [23]. Maintaining such a data structure is costly. It is challenging
to design a new data structure which supports fast access to vertices, edges
and temporal edges and dynamic deletion of vertices and edges to satisfy the
needs of the enumeration algorithm.

Fig. 2. The data structure of augmented adjacency array

2. In the pruning algorithm of the baseline algorithm, the periods of every ver-
tices and edges in the graph are computed, which is costly. The real-world net-
works are always sparse. It is challenging to design a more efficient algorithm
with the pruning power close to the complex pruning rules in the baseline
algorithm [23].

3. The baseline algorithm first converts the pruned temporal graph to a static
graph, then it applies clique enumeration algorithm to the static graph. The
periods of all the vertices and edges is needed to do this conversion, which is
costly to compute. Besides, there are overlapping between periods, which will
lead to redundant computation. The problem is can we enumerate periodic k-
cliques directly on the temporal graph and also avoid redundant computation?

3 The Proposed Algorithms

In this section, we present our algorithm in three parts. Firstly, we present
a new data structure, called augmented adjacency array, an in-memory data
structure for temporal networks which supports dynamic deletion of nodes and
edges. Then, we propose an efficient pruning algorithm to prune unpromising
vertices and edges that cannot be in any σ-periodic k-clique. Finally, we devise
a σ-periodic k-clique enumeration algorithm which directly enumerates periodic
cliques on temporal graphs.
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3.1 Augmented Adjacency Array

To implement the pruning and enumerate algorithm efficiently, a data structure
which can provide fast access of vertices and edges and support deletion of
vertices and edges is needed. So we design an efficient in-memory data structure,
called Augmented Adjacency Array, to store temporal networks in main memory
that fits the access pattern of our algorithms. All the following algorithms in this
section are based on this data structure since it provides fast access and deletion
of the network. The data structure is efficient in four aspects (1) it has a low
maintaining cost compared with previous map-based implementation [23], (2)
when the temporal graph is scanned sequentially, the data structure preserves
cache locality, (3) the deletion of edges and temporal edges can be done in
constant time with a few operations and (4) our data structure is space efficient.

The augmented adjacency is composed of four arrays: Degree, NStart, Nei,
TE. For each vertex v, Degree[v] stores the degree of vertex v. NStart[v] stores
the start position of its neighbors in edges, so NStart[v + 1] stores the position
that just after the end of its neighbors in Nei. The elements between NStart[v]
and NStart[v + 1] in Nei are the neighbors of vertex v. Each element in Nei is
composed by three parts: Id, TsIdx and REIdx. Id is the vertex id of the neighbor,
TsIdx points to the start position of the current edge’s timestamps in TE, and
REIdx (Reverse Edge Index) points to location of the reverse direction edge in
Nei, specially edge (v, u) in Nei. The REIdx is used to delete an edge in O(1)
time. The timestamps of each non-temporal edge are stored in TE (Temporal
Edge), each edge’s timestamps are arranged in three parts, L, TSize and TS. L
is the length of each edge’s TS part in memory, counted INVALID timestamps,
TSize is the size of time supports for the edge. TS is the sorted list of time
supports of that edge.

Operations. This data structure supports dynamic deletion for the pruning
procedure. We use special value, INVALID, to mark if an edge or a temporal
edge is deleted. To delete a vertex, we should traverse its neighbor and delete all
its edges, then set it’s degree to 0. To delete an edge (u, v), mark the Id of v′s
block in u′s neighbor and the Id of u′s block in v′s neighbor to be INVALID.
To delete a temporal edge, we mark the timestamp in TS to be INVALID and
decrement its TSize.

Figure 2 is an example of augmented adjacency array. (a) shows the in-
memory representation of the left graph. (b) shows when vertex v3, edge (v0, v2)
and temporal edge (v0, v1, 1) is deleted from the origin graph.

Complexity. The time complexity of constructing the data structure from un-
ordered edges is O(|E| + |E|ln |E|

|E| ) and the time complexity of deleting edges or
temporal edges is O(1), the time complexity of deleting a vertex is O(Dv(G)).
The space complexity of the data structure is O(2|V | + 8|E| + |E|). The can be
easily computed, thus it is omitted due to space limitation.
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3.2 The Proposed Pruning Techniques

Although [23] uses reverse index to avoid re-computation of periods caused by
the deletion of a vertex, it is still inefficient because it needs to compute the
periods of all vertices and edges and the cost of computing periods can not be
omitted. We notice that real-world temporal networks are always sparse, so we
proposed several pruning rules that can be efficiently implemented and perform
nearly as well as the complex pruning rules.

We first devise several lemma and the pruning rules induced from these
lemma. Then, we apply these pruning rules to our pruning algorithm.

Lemma 1. Given a temporal graph G = (V, E), its de-temporal graph G =
(V,E) and edge eu,v = (u, v) ∈ E, if eu,v belongs to some σ-periodic k-clique
then the time support set of edge eu,v, TS(u, v) must contains a σ-period.

With Lemma 1, given a temporal graph G = (V, E) and its de-temporal graph
G = (V,E). We can prune any edge eu,v = (u, v), we can have the flowing pruning
rule:

Pruning Rule 1. If |TS(u, v)| < σ, we can delete edge e without reducing the
number of σ-period k-cliques in graph G.

Pruning Rule 2. If (1) |TS(u, v)| = σ, and (2) TS(u, v) is not a σ-period, we
can delete edge eu,v without reducing the number of σ-period k-cliques in graph
G. Note we only check the edge (u, v) where |TS(u, v)| = σ for efficiency.

Lemma 2. Given a temporal graph G and its de-temporal graph G. For any
σ-periodic k-clique C in G, it’s de-temporal S must be a subgraph of the k-core
of G.

Pruning Rule 3. Given a temporal graph G = (V, E) and its de-temporal graph
G = (V,E). We can prune any vertex v and it associated edges where v doesn’t
belong to the k-core of G without reducing the number of σ-period k-cliques in
graph G.

Lemma 3. Given a temporal graph G, for any temporal edge e = (u, v, t), if edge
e belongs to any σ-periodic k-clique, then in snapshot Gt, we have Du(Gt) ≥ k
and Dv(Gt) ≥ k.

Pruning Rule 4. Given a temporal graph G = (V, E), we can prune all the
temporal edges (u, v, t) where Du(Gt) < k or Dv(Gt) < k without reducing the
number of σ-period k-cliques in G.

The Proof of Lemma 1, 2 and 3 is straightforward, so they are omitted due
to space limitation.

Algorithm 1 prunes the input graph with a combination of the four rules with
parameter k = 3 and σ = 3. It first computes the degrees of each vertex with
pruning rule 1 and 2 (line 5–6). And it then counts the degree with invalid edge
deleted (line 7). After that, it computes the k-core on the graph pruned by rule
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1 and 2 (lines 11–15). Then it applies pruning rule 4 (lines 16–25). Finally it
computes the degree of each vertex at each snapshot (line 19) and the edges do
not following pruning rule 4 are deleted (line 23).

Fig. 3. Illustration of the Pruning algorithms

Figure 3 shows an example of our pruning rules, (a) is the origin graph. (b)
is the graph pruned by rule 1, edge (0, 3) is deleted. (c) shows the graph pruned
by rule 2 based on (b), edge (1, 3) is deleted. (d) shows the graph pruned by
rule 3 based on (c), vertex v3 and the edges associated with it are deleted. (e)
shows the graph pruned by rule 4, temporal edges (0, 1, 5), (0, 2, 8) and (2, 4, 7)
are deleted.

Algorithm 1: AggregatedPrune
Data: temporal graph G, its de-temporal graph G, parameter σ, k
Result: pruned temporal graph G = (V, E), an array of the degree left Degree

1 Q = ∅;
2 Initialize Degree to an array of 0;
3 foreach u ∈ G do
4 foreach v ∈ u.neighbor do
5 if (u, v).ts.size() < σ then Delete edge (u, v) ;
6 else if |TS(u, v)| = σ AND |TS(u, v)| is not a σ-period then Delete edge (u, v) ;
7 else Degree[u] ← Degree[u]+1 ; // This edge is valid

8 end
9 if Degree[u] < k-1 then Q ← Q ∪ {u} ;

10 end
11 while Q �= ∅ do
12 v = Q.pop()
13 if Degree[v] == 0 then continue ;
14 Delete vertex v;

15 end
16 foreach u ∈ V do
17 SD ← ∅;
18 foreach v ∈ u.neighbor do
19 foreach t ∈ TS(u, v) do SD[t].append([u, v, t]) ;
20 end
21 foreach t ∈ SD.keys do
22 if |SD[t]| < k-1 then
23 foreach (u, v, t) ∈ SD[t] do Delete temporal edge (u, v, t) ;

24 end

25 end
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Complexity. The worst case of our pruning algorithm occurs when the time
support set of any two edges is a σ-period, then our pruning algorithm will
iterate over all the timestamps. So the worst case time complexity is O(|E|).

3.3 Enumerating Periodic k-Cliques

It is very time-consuming to computing the periods of all the vertices and edges
and constructing a new static graph using them. Besides, this procedure is also
space inefficient since it needs to save the periods of all vertices and edges. The
new graph is also need to be saved in memory. To address these problems, we
propose an algorithm that enumerates periodic cliques directly on the temporal
graph to reduce the computation of periods and induced memory cost.

Our enumeration algorithm improves the performance in several ways.
Firstly, it directly enumerates periodic k-cliques on the temporal graph, reduc-
ing memory cost. Secondly, we adopt a new way to process the periods to avoid

Algorithm 2: ComputeMaximalPeriod(TS, σ)
Data: An array of timestamps TS, parameter σ
Output: An array of σ-maximal periods in TS

1 P ← ∅, MP ← ∅, S ← ∅;
2 foreach t ∈ TS do
3 ED ← ∅;
4 foreach p ∈ P do
5 if t − p.s = p.l ∗ p.d then
6 p.l ← p.l + 1, ED ← ED ∪ {p.d};
7 else if (t − p.s) > p.l ∗ p.d then
8 if p.l ≥ σ then
9 MP ← MP ∪ {[s ← p.s, d ← p.d, l ← p.l]};

10 P ← P\{p};
11 end
12 foreach s ∈ S do
13 if (t − s)(σ − 2) ≤ max(TS) − t AND (t − s) /∈ ED then
14 P ← P ∪ {[s ← s, d ← t − s, l ← 1]};
15 end
16 S ← S ∪ {t};
17 end
18 foreach p ∈ P do
19 if p.l ≥ σ then
20 MP ← P ∪ {[s ← p.s, d ← p.d, l← p.l]};
21 end
22 return MP ;

23 Procedure UnionPeriod(MP , TS)
24 CMP ← ∅;
25 foreach p ∈ MP do
26 s ← p.s, l ← 0, next ← p.s;
27 foreach i ∈[0, p.l-1] do
28 if next /∈ TS then
29 if l ≥ σ then CMP ← CMP ∪ {[s ← s, d ← p.d, l ← l]} ;
30 s ← next + p.d, l ← 0;

31 else l ← l + 1 ;
32 next ← next + p.d;

33 end
34 if l ≥ σ then CMP ← CMP ∪ {[s ← s, d ← p.d, l ← l]} ;

35 end
36 return CMP;
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most computation of periods. Thirdly, we introduce a “prune while enumera-
tion” strategy. During enumeration of periodic cliques, the processed vertices
and edges are deleted to avoid re-enumeration. We push this deletion on step
forward. The deletion of vertices and edges might cause the left graph violates
the pruning rules presented in the previous subsection. So, we also delete the
vertices that violate the pruning rules due to a deletion of a processed vertex or
edge. At last, the overlaps between periods can cause redundant computation.
We use “maximal period” in enumeration to prevent the redundant computation
caused by overlapping periods.

Definition 4 (σ-maximal period). Given a time support set TS, a σ-maximal
period of TS, σ − MP , is a period of TS where (1) |σ − MP | ≥ σ and (2) there
exist no period P such that DIFF (P ) = DIFF (σ − MP ) and P ⊂ σ − MP .

Definition 5 (σ-maximal support period). Given a temporal graph G =
(V, E) and a subgraph S = (Vc, Ec). The (σ, k)-maximal support period of S,
denoted as MSPσ,k(S), is a set of σ-maximal period of S where (1) for any
P ∈ MPSσ,k(S), P is a σ-maximal period and (2) for any σ-maximal period,
P , of subgraph S, P ∈ MPSσ,k(S).

Algorithm 2 computes the maximal periods of the given sorted timestamps.
A period is represented by three parts, s, d, l. s is the smallest timestamp in the

Algorithm 3: KPC-A
Data: temporal graph G, parameter k and σ
Result: a vector of σ-periodic k-cliques

1 Prune the graph using the algorithm in 3.2 ;
2 cliques ← ∅;
3 foreach u ∈ V do
4 if Degree[u] < k then Delete vertex u, continue ;
5 foreach v ∈ u.neighbors do
6 PS = ComputeMaximalPeriod(TS(u, v));
7 if |PS| �= 0 then
8 PC ← {u, v};
9 CV ← u.neighbor ∩ v.neighbor;

10 if |CV | ≥ k − 2 then kcliqueRec(PS, PC, CV ) ;
11 Delete edge (u, v);
12 if Degree[u] < k then Delete vertex u; ;
13 if Degree[v] < k then Delete vertex v; ;

14 end
15 Delete vertex v;

16 end

17 Procedure KcliqueRec(PS, PC, CV )
18 if |PC| = k then cliques ← cliques ∪ PC, return ;
19 if |PC| + |CV | < k then return ;
20 for u ∈ CV do
21 CV ← CV \{u};
22 nCV ← CV ∩ u.neighbor;
23 nPS ← PS;
24 foreach v ∈ PC do
25 nPS ← UnionPeriod(nPS, TS(u, v));
26 if |nPS| = 0 then continue ;

27 end
28 KcliqueRec(nPS, CV ∪ u, nCV );

29 end
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period, d is the difference between two adjacent timestamps and l is the size of
the period. The algorithm first initializes some data structures (line 1): P is the
set of periods that might be extended, MP is maximal periods that can not be
extended and S is the set of timestamps that has been traveled, which used to
add new periods. It then travels through the sorted timestamps (line 2). ED is
used to avoid adding a non-maximal period (line 3). Then, for each candidate
period that might be extended, extend it if the new timestamp t can be used to
extend the candidate period (line 5–6). If the new timestamp t cannot be used to
extend the candidate period and it is larger than the next expected timestamp
for it, which means that the current period cannot be extended, so it is added
to the result (line 8, 9) and the candidate is erased (line 10). After that, the
algorithm will add new maximal period candidates where the current processing
timestamp is the second timestamp in the period (line 12 to 14). Note the new
candidates’ difference cannot be in ED or it can’t be the start of a maximal
period. After all the timestamps are processed, the left candidates are checked,
periods with size not smaller than σ are added to the final result (line 18–21).

Given a σ-maximal support period MP and a time support set TS, UnionPe-
riod will find the σ-maximal support period of TS′ = {t|t ∈ p, p ∈ MP} ∪ {t|t ∈
TS}. It travels through each maximal period (line 25). For each maximal period
P, it checks the overlapping part of TS and P (line 27–32).

Fig. 4. Example of the Enumeration algorithm

We propose a σ-periodic k-clique enumeration algorithm based on Chiba and
Nishizeki’s algorithm for listing k-cliques [5]. For each vertex in u, it forms a 1-
clique, called a partial clique, then the algorithm finds the vertex that can be
added to the partial clique and compute the maximal support recursively. The
support period set for the new partial clique can be computed incrementally
with the algorithms in algorithm 4 efficiently.

The details of periodic clique enumeration is shown in Algorithm3. The
cliques are enumerated in a recursive manner. For each vertex at the root of
the recursive tree, select a vertex in its neighbor (line 5). If the new vertex can
be added to the partial clique (line 7), compute the new common neighbor of
the partial clique (line 9) and try to add new vertex in the common neighbor
to the partial clique recursively. After all the cliques start from a root vertex u
and its neighbor v are checked, edge (u, v) is deleted to avoid replicate enumera-
tion (line 11) and vertex u, v is checked if it can be deleted recursively. After all
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the cliques start with v have been enumerated, vertex v is deleted. The recursive
algorithm will first check if it has found a σ-periodic k-clique, if it has found one,
return (line 18). And then it selects a vertex u from u’s neighbors, compute the
new common neighbor (line 22), the new maximal support period is computed
when u is added (line 24–27) and then a new vertex is added from the common
neighbor of the new partial clique recursively.

Figure 4 shows the enumeration of 3-periodic 3-clique on the pruned graph in
Fig. 2. (a) is the pruned graph, (b) is the recursive tree with root v0, after root
v0 and edge (v0, v1) is processed, edge (v0, v1) is deleted, causing v0 deleted. The
graph is shown in (c). Then we select v1 as root, the recursive tree is shown in
(d). After that, the enumeration is finished.

Complexity. The worst case complexity of ComputeMaximalPeriod is O(l3t ) for
a time support of length lt. And the complexity of UnionPeriod is O(lp) where lp
is the total length of periods in parameter MP. We assume that the degrees and
temporal edges are distributed evenly in the graph, the time complexity of the
enumeration procedure is O(2|V |taCσ

da
), where da is the average degree |V |/|E|

and ta is the average time support |E/E|.

4 Experiments

Algorithms. We implement four algorithms in our experiments. KPC-B is the
baseline algorithm shown in Sect. 4.1. KPC-O1 is the implementation of our basic
enumeration algorithm without any optimizations. KPC-O2 is the implementa-
tion of our enumeration algorithm which uses the pruning algorithm to prune
the graph. KPC-A is the implementation of our enumeration algorithm with all
the optimizations. All the algorithms are implemented with C++ and compiled

Table 1. Datasets

Dataset |V | |E| |E| dmax dtempmax Time scale

PS 242 8,317 32,079 134 503 Hour

LKML 26,885 159,996 328,092 2,989 14,172 Month

Enron 86,978 297,456 499,983 1,726 4,311 Month

DBLP 1,729,816 8,546,306 12,007,380 3,815 5,980 Year

WikiTalk 2,863,439 8,146,544 10,268,684 146,311 277,833 Month

Table 2. Running time(s) on different datasets

σ, k= 3,3 σ, k= 4,4 σ, k= 5,5

KPC-B KPC-A Speedup KPC-B KPC-A Speedup KPC-B KPC-A Speedup

PS 0.36 0.04 9.41 0.32 0.02 15.43 0.24 0.01 19.97

LKML 34.32 1.02 31.91 18.27 0.07 27.48 10.31 0.34 30.08

Enron 16.120 0.360 44.21 6.54 0.20 33.43 3.01 0.09 32.20

DBLP 1071.14 2.82 379.53 151.77 0.77 197.90 53.17 0.31 172.00

WikiTalk 9609.68 12.46 771.32 5047.87 4.41 1145.20 2752.41 1.88 1465.06
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using GCC version 11.1.0 with optimization level set to O3. All the experiments
are carried out on a PC with Linux kernel 5.12.14 running on an Intel i5-9400
with 32 GB memory. The source code can be found in https://www.dropbox.
com/s/1xcf8fh7srt0n2b/periodic k clique.zip?dl=0.

Datasets. We use 5 real-life temporal networks in our experiments, which are
PS, LKML, ENRON, DBLP, WikiTalk. PS is a graph of face-to-face contacts
between students and teachers in a French primary school. An temporal edge (u,
v, t) in PS means there is face-to-face communication between u and v in time
period t. Both LKML and Enron are email communication networks. A temporal
edge (u, v, t) in LKML and Enron means u sent an email to v in time period
t. Their timescale is rescaled to month. DBLP is a scientific collaboration graph
generated from the DBLP dataset. An temporal edge (u, v, t) in DBLP means u
and v published a paper together in year t. WikiTalk is a communication network
between English wiki users. It’s time is also rescaled to month. The time scale
represents the time length of each timestamp. Their sizes are shown in Table 1.

Exp-1: Running Time of Different Datasets. Table 2 shows the running
time of different datasets with three parameter settings, (σ, k) = (3, 3), (σ,
k) = (4, 4) and (σ, k) =(5, 5). We can see that our algorithm outperforms the
baseline algorithm in all five datasets and three parameter settings. The speedup
grows as the graph size grows. Our algorithm can finish enumeration in DBLP
and WikiTalk in a few seconds using a single thread. And it shows a maximum
2822 times speed up in DBLP where σ=3 and k = 3. For each dataset, the
running time and speedup grow as parameter σ and k grow, mainly because the
effectiveness of pruning algorithm grows as σ and k grows, we can see that in
later experiments.

Exp-2: Running Time on Varies Parameters. Figure 5 shows the running
time of DBLP with different parameters where both σ and k varies from 3 to

Fig. 5. Running time(s) on different parameters (on DBLP)

https://www.dropbox.com/s/1xcf8fh7srt0n2b/periodic_k_clique.zip?dl=0
https://www.dropbox.com/s/1xcf8fh7srt0n2b/periodic_k_clique.zip?dl=0
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6. From the figure we can see that our algorithm outperforms the three baseline
algorithms in all the parameter settings. The running time decreases with σ
increases consistently, due to the effectiveness of our pruning algorithm. The
running time of KPC-O1 and KPC-O2 are close since the enumeration procedure
will also prune the graph as it enumerates. With the addition of elimination of
overlapping periods, there is a significant improvement in KPC-A.

Exp-3: Pruning Power on Different Datasets. Table 3 shows the pruning
power of our pruning algorithm with different datasets when σ = 5 and k = 5.
It doesn’t performs well in PS since PS is a small dense face-to-face communi-
cation graph and there tend to be no obvious large central vertex. The pruning
algorithm is very effective in the four real-world large sparse networks and the
pruning power grows with the size of graph grows. It can prune out over 97%
vertices in four graphs and it even prune 99.79% vertices in DBLP. Despite the
simplicity of our pruning algorithm, it performs pretty well in sparse networks.

Table 3. Pruning power with on different datasets (σ = 5 and k = 5)

Vertices Edges Temporal edges

Origin Left Percent Origin Left Percent Origin Left Percent

PS 242 232 95.86% 8,317 1,822 21.91% 32,079 15988 49.8%

LKML 26,885 649 2.41% 159,996 7745 4.84% 328,092 77185 23.5%

Enron 86,978 1,003 1.51% 297,456 6601 2.21% 499,983 39639 7.9%

DBLP 1,729,816 3,678 0.21% 8,546,306 10,475 0.12 12,007,380 50438 0.4%

WikiTalk 2,863,439 7,015 0.24% 8,146,544 63,303 0.77% 10,268,684 394728 3.84%

Exp-4: Pruning Power on Different Parameters. Figure 6 shows the prun-
ing power of our pruning algorithm on DBLP with different parameters where
both σ and k varies from 3 to 7. We can see that our algorithm is very efficient
even σ = 3 and k = 3. And the size of the pruned graph decreases dramatically
as σ or k increases. With each increment σ or k, the size of left vertices, edges
and temporal edges are nearly halved. And the increment of pruning power are
directly reflected of total execution time presented in Experiment 1 and Exper-
iment 2.

Exp-5: Memory Overhead. Figure 7 shows the memory usage of KPC-B and
KPC-A. We can see that our algorithm costs significantly less memory than
KPC-B. Our algorithm achieves high space-efficiency by using the augmented
adjacency array and avoiding store the periods of all edges and vertices in
memory.



474 Z. Ren et al.

Fig. 6. Pruning power on different parameters on DBLP

Fig. 7. Memory usage

5 Related Work

k-Clique Listing and Counting. Enumerating k-clique in static graph has
been studied for decades [26]. The first practical algorithm of enumerating
k-cliques is the algorithm of Chiba and Nishizeki [5]. Danisch et al. [7] give
an edge-parallel algorithm to enumerate k-clique and use DAG to avoid re-
enumeration. [13] propose an approximately k-clique counting algorithm based
on Turan Shadow. Li et al. [17] propose a k-clique listing algorithm based on
graph coloring. Jain and Seshadhri [14] propose a k-clique counting algorithm
based on the pivot technology and it is much faster than enumeration-based
algorithms.

Maximal Clique Enumeration. Many techniques in enumerating maximal
cliques can also be used in listing k-cliques with minor change [25]. The best
known algorithm in listing maximal cliques is the Bron-Kerbosch algorithm [2].
There are many variants of the Bron-Kerbosch algorithm [4,9,21,25].

Temporal Graph Data Mining. Most previous studies on temporal graph
data mining focus on finding dense subgraphs that persist over time or analyzing
the evolve of communities. Li et al. [16] propose an algorithm to detect dense
subgraphs which persist over a threshold. Ma et al. [20] give an algorithm to find
dense subgraphs where edge weights vary with timestamps. Lin et al. [18] propose
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an algorithm to analyze the evolution of communities through a unified process.
Yang et al. [29] propose a method to evaluate the change speed of subgraphs
and give an algorithm to detect the fast-changing subgraphs. Rossetti et al. [24]
propose a method to extract and track the evolution of overlapping communities
using an online iterative procedure. Qin et al. [23] address the problem of finding
periodic maximal cliques in temporal cliques. And Zhang et al. [31] propose a
new periodic subgraph model called seasonal-periodic subgraph.

6 Conclusion

In this paper, we study the problem of how to find dense subgraphs that peri-
odically occurs in temporal networks, and then propose σ-periodic k-clique to
model it. Firstly, we design a new data structure to store temporal networks in
main memory as well as support dynamic deletion for the pruning algorithms.
Secondly, we propose several effective and efficient rules to prune the graph to
reduce search space. Thirdly, we design a search algorithm to enumerate all
the σ-periodic k-clique based on the Bron-Kerbosch algorithm for static graphs.
Finally, we conduct extensive experiments on five real-world temporal networks
to show that our algorithm works efficiently in practice.
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