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Abstract. Many previous studies have proposed high-performance key-
value systems based on Persistent memory (PM). However, these work
ignores the fact that the read performance of PM is also lower than
DRAM. In this paper, we propose HaCache, a well-designed hybrid cache
for PM-based KV systems to improve read performance. HaCache com-
bines key-value (KV) cache, key-pointer (KP) cache, and Block cache
to retain the advantages of the three types of cache schemes. It can
adaptively adjust the partition of cache space among the three cache
schemes to adapt to workload changing. The evaluation results show
that HaCache outperforms pure KV cache, pure KP cache, and pure
Block cache by 2.7x, 2x, and 18% respectively.
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1 Introduction

The emerging byte-addressable persistent memory (PM) [4] provides opportu-
nities to design high-performance persistent key-value (KV) systems. There are
many previous works that aim to design persistent KV systems [6,7,9,10,12]
dedicated for PM. These works mainly focus on optimizing write operations.
However, according to recent analyses of Intel Optane PM [4], the read perfor-
mance of PM is only 1/3 of DRAM [13], which implies that optimizing the read
performance of PM-based KV systems is also important. Cache technology is
suitable for read optimization of PM-based KV systems.

There are usually two types of read operations of PM-based KV systems,
point lookup (GET) and range query (SCAN). To accelerate point lookup, we can
cache Key-Value pairs (KV cache) or cache Key and Pointers to associated
values (KP cache). Compared with caching key-pointer pairs, caching key-value
pairs can improve overall read performance more significantly. However, KP
cache is space-efficient because it can save more DRAM space than KV cache.
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For ordered KV systems, range query is also an important operation, we could
cache Blocks (Block cache) to accelerate it. These three cache schemes have
their advantages and disadvantages. We aim to design a cache solution able
to combine the virtues of performance-efficient, space-efficient, and support for
range query. In this paper, we propose HaCache, Hybrid Adaptive Cache, for
PM-based KV systems. HaCache is a general cache solution to optimize the read
performance of PM-based KV systems (with hash index, B+tree index, and so
on), which contains point cache (include KV cache and KP cache) and block
cache to serve point lookups and range queries respectively.

With limited space, it is difficult to combine three caches to achieve all their
advantages. So the cache partition is important. HaCache follows a top-down
cache partition strategy. The high-level space partition is between point cache
and block cache. It determines which kind of read operation (point lookup and
range query) HaCache is more advantageous. In different scenarios, the perfor-
mance requirements for these two operations may be different. Therefore, we
allow users to set preferences for different read operations through certain met-
rics (e.g. latency) and partition cache to meet the preference. The low-level space
partition is between KV cache and KP cache. In this part, we partition cache
to achieve higher performance with smaller space. Since the workloads usually
change with time [2], the main challenge of HaCache is how to dynamically adjust
cache space to achieve the purposes under changing workloads. For the high-
level partition, HaCache leverages Proportional-Integral-Derivative (PID) con-
trol algorithm to dynamically adjust the cache space partition, so HaCache can
be stable around the metrics set by users. For the low-level partition, we proposed
KV adaptive caching (KV-AC) algorithm motivated by Adaptive Replacement
Cache (ARC) [8]. To achieve the best partition, when adjusting the capacity, we
take the size, access frequency, and benefit of cache items into consideration.

We evaluate HaCache using real PM devices. Under pure GET workload, com-
pare with KV cache and KP cache, HaCache improves the throughput by up to
2.7x and 2x respectively. Under mixed GET-SCAN workload, HaCache can satisfy
user’s preference precisely and outperforms Block cache by 18%.

2 Background and Motivation

2.1 PM-Based KV Systems

Similar to DRAM, persistent memory device is attached to the memory bus and
can be accessed in byte granularity. Meanwhile, it can guarantee data persis-
tence after the power is off. The emergence of PM provides an opportunity to
make traditional in-memory KV systems [2] persistent while maintaining high
performance. In the past few years, dozens of works are proposed to optimize
PM oriented KV systems [6,7,9,10,12]. However, these works mainly optimize
the write performance but ignore the fact that the read performance of PM is
slow than DRAM. We measure the read latency of two PM-based KV systems
(CCEH [9] and FAST&FAIR [7]). For GET operation, the latency of KV systems
in PM is about 3x of DRAM alternatives. For SCAN operation, the performance
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gap is widened to 5 times. These observations imply the necessity of optimizing
the read performance of PM-based KV systems.

2.2 KV, KP and Block Cache

To figure out the impact on KV systems of different cache schemes, we evaluated
KV, KP and, block cache in a B+tree (i.e. FAST&FAIR) based KV system. The
results of GET are shown in Table 1. With a large cache, the performance of KV
cache is better than KP cache because no extra PM accesses are needed. With
a small cache, KP cache has a higher hit ratio than KV cache because of the
smaller cache item. A very low hit ratio leads to the poor performance of KV
cache, even though every KV cache hit has no further overhead. Motivation 1:
Combining KV cache and KP cache to maximum GET performance.

Table 1. GET throughput and hit ratio under different cache sizes. The key size is 8B
and the value size is 100B. We use YCSB [3] workload with 50M key-value pairs.

Throughput (M ops/s) Hit ratio

Cache size KV KP Block KV KP Block

200MB 1.04 2.48 0.6 58.2% 92.7% 84.8%

500MB 1.33 3.75 0.63 69.1% 100% 88.5%

1GB 2.03 3.75 0.65 82.4% 100% 90.6%

2GB 7.48 3.75 0.7 100% 100% 93.1%

Table 2. The performance under mixed GET -SCAN workload. The cache size is 1GB
and we allocate the space to KV cache and Block cache in different proportions.

KV/Block cache ratio 0/1 1/7 1/1 7/1 1/0

Throughput (K ops/s) 201 218 213 217 189

GET latency (ns) 1798 1241 889 641 541

SCAN latency (ns) 12210 12270 13448 13811 16640

Latency ratio (SCAN/GET) 6.79 9.88 15.12 21.54 30.75

SCAN is another important read operation. We measured the performance of
a simple hybrid cache that contains KV cache and block cache under mixed GET-
SCAN workload. The number of SCAN is 30% of total operations. Table 2 shows
the results. With block cache, the SCAN latency is significantly reduced compared
to using KV cache only. Another observation is the performance gap (latency
ratio) between GET and SCAN changes drastically varying different KV/Block
cache ratios. Different application scenarios may favor different read operations.
For example, users could require the GET to be processed as soon as possible,
but relax the requirements for SCAN. Therefore, the respective performance of
different read operations should be considered. Motivation 2: Balancing the
performance of GET and SCAN when handling mixed GET-SCAN workloads.
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3 Related Work

Optimizing Read for PM-Based KV Systems. The representative work
of using cache is Bullet [6]. It maintains a KV cache in DRAM to accelerate
GET. Some studies store partial of indexes into DRAM to reduce the overhead
of lookup. FPtree [10] stores the leaf nodes of B+tree into PM while placing the
internals into DRAM. HiKV [12] uses a hybrid index composed of hash table and
B+tree. The hash table is placed at PM and the B+tree is placed at DRAM.

Hybrid Cache. SwapKV [5] is a hotness aware KV caches that places the
metadata and hot data to DRAM and stores cold data to PM. Cassandra [1] is
an LSM-tree-based system. It uses KP cache and KV cache to replace the block
cache. The users can configure the size of different cache statically.

Adaptive Cache Algorithms. Some previous studies use multiple caching
schemes and adaptively adjust the capacity of different caches. The Adaptive
Replacement Cache (ARC) [8] is the most representative. ARC is designed for
page cache. It partitions the cache into a frequency cache and a recency cache.
A page that is first accessed will be placed into the recency cache. If the pages
in the recency cache are accessed again, they are promoted into the frequency
cache. ARC uses two ghost cache regions to help space partition of the recency
cache and the frequency cache adaptively. The ghost recency cache and the
ghost frequency cache keep the metadata of recently evicted pages from the
two real caches respectively. A ghost cache hit implies that the hit item should
not be evicted, therefore, the corresponding real cache should be expanded to
accommodate more cache items.

Fig. 1. Overview of HaCache.

4 Design and Implementation

Figure 1 shows the structure of HaCache. Following motivation 1, we design
a KV-AC algorithm inspired by ARC, to adjust the cache capacity between
KV and KP cache. The two ghost cache is used to guide the movement of the
dynamic boundary. Following motivation 2, a dynamic boundary adjusted by
PID algorithm is responsible for capacity partition between point and block
cache.
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4.1 Basic Operations of HaCache

Cache Replacement. HaCache uses CLOCK rather than LRU as the cache
replacement algorithm, which uses less space (1-bit metadata for each cache
item). To make the hit ratio of CLOCK close to LRU, we develop Frequency-
based CLOCK for real cache. It selects several cache items (default 2 items)
as the candidate evicted items at a time. The candidate with minimal access
frequency is evicted.

Conversion Between KV and KP Caches. The items fetched from PM
will be inserted into KP cache first. When an item in the KP cache is accessed
and the corresponding CLOCK bit is active (implying that the item has been
accessed recently), the KP item is converted into a KV item. Note that for the
same key, only one cache item is stored in the KP cache or the KV cache. An
item evicted from the KV cache is considered cold and converted to a KP item.
To guide the adjustment of cache capacity, HaCache inserts the metadata of
evicted items to ghost cache. For an evicted item that has been converted to a
KV item, the corresponding metadata will be inserted into the ghost KV cache.
Otherwise, the metadata of it will be inserted into the ghost KP cache.

Processing of Commands. When processing GET operation, The real KV
cache and the real KP cache are searched first. If KEY (denote the requested
key) does not exist in both of them, HaCache will examine the ghost KV cache
and the ghost KP cache. If KEY exists in the ghost region, the corresponding real
region will be expanded according to the KV-AC algorithm (Sect. 4.2). Then the
persistent KV system will search KEY and return the associated value directly.
Meanwhile, KEY and the associated pointer to value will be inserted into the real
KP cache and the metadata of KEY will be deleted from the ghost cache. If KEY
is found in real region, HaCache will check whether a KP-KV conversion should
be performed. When processing SET operation, HaCache first writes KV pair to
the PM device. If the corresponding item is found in the real cache, HaCache
updates it to ensure the correctness of the subsequent GET. HaCache does not
lookup KEY in ghost region when processing SET. When the SET operation is
applied to an existing KV pair (i.e. update operation), the value is modified but
the key is not. The items in the ghost region do not contain values or pointers,
so there is no need to update the items in the ghost region when processing SET.

4.2 Adaptive Adjustment Within Point Cache

The purpose of point cache is to combine the performance efficiency of KV cache
with the space efficiency of KP cache. HaCache comprehensively consider the
space and performance of different cache items. HaCache uses the adjustment
factor F to weigh the performance and space. Every cache item has its factor.
The variable k denotes the access count of the cache item, b presents the benefit
if it is cached and s is its size.

F = (log(k) + 1)(b/s) (1)
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Among these parameters, the benefit of caching is difficult to determine. We
define the benefit to be reduced latency (i.e. latency difference between DRAM
cache and PM for the same item). However, for different sizes of cache items,
the saved latency is different. To address these issues, we develop a sampling
method to estimate benefits for specific KV systems. For KV cache items, we
sample the average latency of acquiring KV pairs from PM and HaCache under
different value sizes. Then we use piecewise linear regression (PLR) to estimate
the relation between value size and latency reduction. In this way, the saved
latency can be estimated for each size. We measure the latency reduction in a
B+tree-based KV system is roughly linearly related to the value size. For KP
cache items, the benefit is independent of value size. We measure the latency of
accessing pointers from PM and HaCache respectively.

HaCache uses KV adaptive caching (KV-AC) algorithm to manage the capac-
ity partition of point cache. It uses adjustment factor as the granularity of
capacity adjustment. Cpoint presents the overall point cache capacity. [KVreal]
and [KPreal] represent The maximum size of the real KV cache and KP cache.
[KVghost] and [KPghost] represent the maximum size of the ghost KV cache and
KP cache, assumed that all of the items were converted to real KV/KP items.
KV-AC always maintains Eq. 2. Same with ARC, the ghost cache size in KV-AC
is the difference between overall size and corresponding real cache size.

[KVreal]+ [KPreal] = [KVreal]+ [KVghost] = [KPreal]+ [KPghost] = Cpoint (2)

If the requests miss in the real cache but hit in the corresponding ghost cache,
the cache capacity will be adjusted. For example, if a key is found in the ghost
KV cache, the real KV cache will be expanded. Then the new size of the real
KV cache should be [KVreal] + nF , where F is the adjustment factor and n
is an adjustable coefficient. Correspondingly, the new size of the real KP cache
should be [KPreal] − nF . The value of n determines the magnitude of capacity
adjustment. After the new real KV cache size is determined, the subsequent
requested items will be brought to KV cache without evicting until [KVreal]
reaches the new size. Meanwhile, some items will be evicted from the real KP
cache until [KPreal] is smaller than or equal to its new size. After the real cache
size is updated, [KVghost] and [KPghost] are also adjusted according to Eq. 2.
The processing is similar when a key is found in the ghost KP cache.

4.3 Adaptive Adjustment Between Point Cache and Block Cache

In HaCache, the capacity partition between block cache and point cache will
affect the performance of GET and SCAN directly. To balance the optimization
of GET and SCAN, HaCache allows users to set preferences for different read
operations to adapt to different application scenarios. In our implementation,
the metric of preference is the average latency ratio of SCAN and GET, that is,
Ratio = LatencySCAN/LatencyGET. The larger the Ratio, the more conducive to
GET, otherwise it is conducive to SCAN. To meet an expected ratio from users,
HaCache uses PID to adjust the cache partition. Eq. 3 shows the PID algorithm,
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E(Tk) presents the error at time Tk. PID algorithm contains proportional, inte-
gral and derivative terms. Kp, Ki, and Kd are tuning factors for the three terms
respectively. When using PID, we need to set a target stable state. Then we
measure the error (E(Tk)) between the current state and the target state. By
bringing E(Tk) into the equation, we get the output value U(Tk) to adjust the
controlled system to approach and stabilize at the target state.

U(Tk) = KpE(Tk) + Ki

Tk∑

n=0

E(n) + Kd(E(Tk) − E(Tk−1)) (3)

We use the user’s expected latency ratio (Ratiosetting) as the target stable
state. We measure the average latency of GET and SCAN over a period of time
(default every 100k operations) and calculate the real Ratio. Then Ek is calcu-
lated (Ek = Ratiosetting − Ratioreal). We try different values and finally decide
to set Kp to 100k, Ki to 5k, and Kd to 10k. Putting the above parameters
into Eq. 3, we can get U(Tk). If U(Tk) is positive, the real Ratio is usually less
than the user’s setting. In this case, the latency of GET is too large. Therefore,
HaCache allocate more space for point cache and the new size of it should be
Cpoint + U(Tk). On the contrary, if U(Tk) is negative, HaCache allocates more
space for block cache and shrinks KP and KP cache. By using PID, the Ratio
will be stable on the user’s setting latency ratio.

Fig. 2. Throughput under different cache sizes (Byte).

5 Evaluation

The evaluation was conducted on an x86-64 server that has two Intel Xeon Gold
5220 processors, 128 GB of DRAM and 512GB of Intel Optane DC PM. The
size of key is 8B and value is 100B. The total number of KV pairs is 50M. We
use YCSB [3] to generate the skewed workloads (0.99 skewness). We conduct
pure GET workload and mixed GET-SCAN workload (30% SCAN and 70% GET, the
range of SCAN is a random number less than 100.). We select CCEH (a persistent
hashing) [9] and FAST&FAIR (a persistent B+tree) [7] as the underlying KV
systems. The adjustable coefficient n is set to 500. The default latency ratio
between SCAN and GET is set to 15:1. We compare HaCache with pure PM, KV
cache, KP cache, and Block cache. We also compare AC-key [11], which uses a
hierarchical ARC algorithm to adjust capacity among KV, KP, and block cache.
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5.1 Impact of Cache Size

Figure 2 (a) and (b) show the GET throughput under 8 threads. We first com-
pare HaCache and KP cache. When the cache size is small, HaCache tends to
allocate most of the cache size to store KP items to guarantee a high hit ratio.
When cache size is large, the effectiveness of caching KV items becomes obvi-
ous. In CCEH, HaCache outperforms KP cache by 1.1x to 2x. We then turn to
the comparison between HaCache and KV cache. When the cache size is large,
HaCache tends to store more KV items because it can bring more benefits. When
cache size becomes small, HaCache can maintain a high hit ratio by adjusting
the partition between KV items and KP items. In FAST&FAIR, the throughput
of HaCache is 2.1x to 3x of KV cache. HaCache also outperforms AC-key signif-
icantly. This mainly because HaCache takes the access frequency into account
to decide capacity partition and cache replacement, which can keep frequently
accessed items in cache to improve the overall performance. Figure 2(c) shows the
throughput of mixed GET-SCAN workload. Under different cache sizes, HaCache
outperforms KV cache by 11% ∼ 54% and KP cache by 12% ∼ 62%. HaCache
perform better than Block cache because it leverages point cache to serve GET.
The throughput gap between HaCache and Block cache is 7% ∼ 18%. Mean-
while, HaCache can control the real latency ratio close to the setting ratio. The
measured real latency ratio is 15.13:1.

5.2 Adaptive Adjustment

We conduct two changed workload to verify the effectiveness of HaCache’s adap-
tive adjustment strategy. The first is a two-phase skewness-changed workload on
CCEH-based HaCache. We first execute the workload with 0.99 skewness, then
change the skewness to 0.88. The total cache size is 1GB. We plot the changes
of the KV cache size and the KP cache size in Fig. 3(a). When the skewness
is 0.99, most of the accesses are concentrated on a small amount of KV pairs.
Therefore, HaCache keeps the frequently accessed KV items to get high perfor-
mance. When the skewness decreases (100Mops in Fig. 3(a)), HaCache allocates
more capacity to keep KP items (KP items are space-efficient) to maintain the
high hit ratio. When the capacity partition becomes stable, the throughput of
HaCache achieves 28.95 Mops/s, which is almost the same as the throughput of
the workload that initially uses 0.88 skewness.

The second evaluation is a GET-SCAN ratio changed workload. We conduct it
on FAST&FAIR-based HaCache. In the beginning, the number of SCAN is 30%
of total operations. Then we turn to conduct a pure GET workload. As shown
in Fig. 3(b), after workload changing, the block cache shrinks quickly. When the
cache partition becomes stable (after 150Mops), the cache capacity distribution
is almost the same as it that initially conducts pure GET workload. The above
results confirm that HaCache could adapt to the workload’s changes.
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Fig. 3. Adaptive adjustment when workload changes.

6 Conclusion

In this paper, we propose HaCache, which incorporates key-value, key-pointer,
and block cache schemes, to optimize the read performance for PM-based KV
systems. HaCache employs PID algorithm and KV-AC algorithm to dynamically
adjust the capacity allocation among KV, KP, and block parts. Our HaCache
outperforms other single cache schemes in different read operations.
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