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Preface

The International Workshop on Digital-Forensics and Watermarking (IWDW) is a pre-
mier forum for researchers and practitioners working on novel research, development
and application of digital watermarking, data hiding, and forensic techniques for multi-
media security. The 21st InternationalWorkshop onDigital-Forensics andWatermarking
(IWDW 2022) was held in Guilin, China, during November 18–19, 2022, organized by
Guangxi Normal University and sponsored by the Institute of Information Engineering,
Chinese Academy of Sciences. Asmany as 226 people attended the workshop physically
and 294 people attended it online.

IWDW 2022 received 30 submissions. Each of them was assigned to at least two
members of the Technical Program Committee for review. The decisions were made on
a highly competitive basis. Only 14 submissions were accepted according to the aver-
age score ranking. The accepted papers cover important topics in current research on
multimedia security, and the presentations were organized into three sessions including
“Steganology”, “Forensics andSecurityAnalysis”, and “Watermarking”. Therewere two
invited keynotes: “Towards Better Generalization Capability of Face Spoofing Detec-
tion” by Haoliang Li from City University of Hong Kong, and “Recent Advances in
Stegomalware: Development Trends and Detection Opportunities” by Wojciech Mazur-
czyk from Warsaw University of Technology and FernUniversität Hagen. In addition,
IWDW 2022 kicked off the International Comparative Evaluation of STC (Syndrome
Trellis Code) and SPSC (Sub-Polarized Steganographic Code) to promote research on
steganographic codes.

We would like to thank all of the authors, committee members, reviewers, keynote
speakers, session chairs, volunteers, and attendees, who once again made a memorable
IWDW.Andweappreciate thegenerous support from theorganizer and sponsors. Finally,
we hope that readers will enjoy this volume and find it rewarding in providing inspiration
and possibilities for future work.

December 2022 Xianfeng Zhao
Zhenjun Tang

Pedro Comesaña-Alfaro
Alessandro Piva
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High-Performance Steganographic Coding
Based on Sub-Polarized Channel

Haocheng Fu1,2 , Xianfeng Zhao1,2 , and Xiaolei He1,2(B)

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100195, China

{fuhaocheng,zhaoxianfeng,hexiaolei}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing 100195, China

Abstract. Steganographic coding is the core problem of modern
steganography under the minimizing distortion model. Syndrome-Trellis
Codes, designed with the Viterbi algorithm of convolutional codes, have
been the only coding scheme approaching the rate-distortion bound for
almost a decade. Although polar codes has shown to have the poten-
tial to construct optimal coding schemes, the low diversity of stegano-
graphic coding negatively affects the security of steganography, and the
performance of the state-of-the-art coding schemes is still unsatisfac-
tory for large-scale applications. This paper proposes a high-performance
steganographic coding scheme, named Sub-Polarized Steganographic
Codes (SPSC), with near-optimal efficiency and lower computational
complexity. By optimal embedding theory and channel polarization, we
first establish a universal model of polarized steganographic channels for
the coding of steganography. Based on this, the steganographic channels
are divided into a combination of multiple sub-polarized channels to con-
struct efficient steganographic codes by updating sequential bit-wise cod-
ing to segmented coding. The proposed coding scheme is also evaluated
under four polarized channels with typical patterns, of which correspond-
ing sub-coding schemes are also illustrated. Experimental results show
that the proposed steganographic coding scheme improves security by
increasing the embedding efficiency of steganography, and significantly
decreases the computational complexity.

Keywords: Covert communication · Steganographic coding ·
Sub-channel polarization · Successive cancellation

1 Introduction

Steganography is an important branch of information hiding. By embedding
secret messages into naturally-looking covers, it establishes covert communi-
cation while not arousing the attention of others [11]. Modern steganography

This work was supported by NSFC under 61972390, 61902391, 61872356 and 62272456,
and National Key Technology Research and Development Program under 2022QY0101.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Zhao et al. (Eds.): IWDW 2022, LNCS 13825, pp. 3–19, 2023.
https://doi.org/10.1007/978-3-031-25115-3_1
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http://orcid.org/0000-0001-9088-0571
http://orcid.org/0000-0002-5617-8399
http://orcid.org/0000-0002-5770-7192
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prefers using digital media to perform steganographic embedding for its wide-
spreading on the Internet. Based on defined distortion of modification of each
cover element, the most modern schemes achieve satisfactory undetectability by
minimizing total embedding distortion under Payload-Limited Sender (PLS) and
Distortion-Limited Sender (DLS) problems. For digital images, several heuristic-
designed cost functions, such as HUGO [25], HILL [22], UNIWARD [20], UED
[15] and UERD [16], were proposed for cover in both spatial and JPEG domain,
which achieve high security performance even the distortion is considered addi-
tive.

To minimize the total distortion, Crandall [5] first proposed the concept of
matrix embedding by introducing the parity-check matrix of the error-correction
codes. Based on this, multiple linear coding schemes, such as Hamming [30], BCH
[31,32] and LDPC [6,12] were utilized to optimize with the constant distortion
profile globally. Thereafter the wet paper codes (WPC) [13,14] were proposed
to for distortion consisting of modifiable (dry) and unmodifiable (wet) elements
since they believe the modification tends to be performed on more secure areas.

In advanced steganographic schemes, coding schemes are considered to be
adopted continuously instead of multi-level discrete distortion optimization.
Therefore, Filler et al. [9,10] proposed the first near-optimal steganographic
codes, named Syndrome-Trellis Codes (STC), by the Viterbi decoding algo-
rithm for arbitrary distortion. After that, no more practical steganographic cod-
ing scheme has been proposed for almost a decade, which might bring negative
impact on the security of steganography. Recently, since polar codes [2] is proved
to be able to achieve channel capacity for any symmetric binary input discrete
memoryless channels (B-DMC), in [8], Diouf et al. constructed the first coding
scheme of steganography with the Successive Cancellation (SC) decoding algo-
rithm of polar codes, which revealed that steganographic codes based on polar
codes have the ability to reach the rate-distortion bound of content-adaptive
steganography. Thereafter Li et al. [23] designed another near-optimal coding
scheme based on polar codes for cover with the Successive Cancellation List
(SCL) algorithm that further improves the performance.

Steganographic coding schemes incorporated with polar codes significantly
increase the diversity of steganography. Besides, the computational efficiency of
the steganographic schemes is also improved due to the low complexity of the
encoding and decoding of polar codes. However, since the polar codes-based
steganographic coding always processes bit-by-bit [2,29], the state-of-the-art
schemes [7,8,23] still cannot reach the requirements of the practical stegano-
graphic application. As the channel polarization process is recursive, the coding
procedure under the sub-polarized channels, can be simplified when the type of
which is typical [1,17,27]. Therefore, it is possible to improve the overall perfor-
mance of the coding scheme in steganography.

By establishing sub-polarized steganographic channels, this paper presents
a high-performance steganographic codes, named Sub-Polarized Steganographic
Codes (SPSC), which is close to the rate-distortion bound. In this scheme, the
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computation complexity significantly decreases while the embedding efficiency
of which is improved. The contributions of this paper are listed as follows.
– Based on the discrete binary symmetric channels, construct polarized and

sub-polarized steganographic channels. Define the relationship between the
log-likelihood ratio (LLR) and the embedding distortion of cover element.

– Propose an encoding strategy under the sub-polarized steganographic chan-
nels and implement a near-optimal steganographic coding scheme along with
the existing list decoding algorithm of polar codes.

– Present efficient listed coding schemes for four identified sub-polarized chan-
nels, which are denoted as R1, DC, SPC and R0. Construct steganographic
codes under these sub-polarized channels.

The rest of this paper is organized as follows. In Sect. 2, we first restate
the preliminaries of the optimal embedding theory and channel polarization.
The proposed steganographic coding scheme is elaborated in Sect. 3 as well as
the construction of sub-polarized steganographic channel. Section 4 gives the
experimental results and analysis in detail. Finally, a brief conclusion of this
paper is listed in Sect. 5.

2 Preliminaries

In this paper, matrices and vectors are written in boldface while sets are shown
in swash letters. Without loss of generality, let x = (x1, x2, · · · , xN ) ∈ {L}n and
y = (y1, y2, · · · , yN ) ∈ {Ii}N denote the cover and stego sequence, respectively,
where L represents the dynamic range of cover elements and Ii ⊂ L stands
for the operation of modification on xi. For instance, Ii = {xi, x̄i} is for binary
embedding where x̄i is the least significant bit (LSB) flipped element with respect
to xi and Ii = {xi − 1, xi, xi + 1} for the ternary embedding mode.

Besides, h(x) is the binary quantizer that returns 0 when x ≥ 0 while returns
1 otherwise. And P (x) = x mod 2 is defined for extracting LSB of input
element. Hq (x) is used for representing q-ary entropy function. Typically, the
binary entropy function is defined as H2(x) = − [x log2(x) + (1 − x) log2(1 − x)].

2.1 The Theory of Optimal Steganographic Embedding

For a given cover sequence x ∈ X � {L}n, the stego sequence can be denoted
as y ∈ {Ii}n ⊂ X when the modified pattern Ii ⊂ I for y is defined. In this
case, the process of steganography can be defined by modification transition
distribution π (y) � P (y | x).

Under the additive model, if the message m with length of |m| to be embed-
ded is given, to obtain the optimal distribution of π (y), it is equivalent to solving
the PLS problem which is as follows

min
π

Eπ [D] =
∑

y∈Y
π (y) D (y) (1)

subject to H(π) = −
∑

y∈Y
π (y) log2 π (y) = |m| (2)
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Fig. 1. Illustration of recursive construction of polarized channel WN .

where ρ = (ρ (y1) , ρ (y2) , · · · , ρ (yn)) denotes the pre-defined additive distortion
of each element and

D (y) =
n∑

i=1

ρ(yi) (3)

denotes the distortion under given modification pattern. This optimization prob-
lem can be solved with Lagrangian multiplier [12]. And the optimal distribution
of modification for each element is

πλ (yi) =
exp [−λρ(yi)]∑

y′∈Ii
exp [−λρ(y′)]

(4)

where λ > 0 is a scalar parameter determined by Eq. (2). The distribution above
is the best mapping from modification probability to steganographic distortion.

2.2 Channel Polarization

Channel polarization [2] is the method for constructing polar codes, the first
provable capacity-achieving channel code. For distinguishing them from the nota-
tions in steganography, use P = {0, 1} and Q to represent the input and output
alphabets, respectively. When given a B-DMC W : P → Q with transition prob-
abilities W (q | p), p ∈ P, q ∈ Q, the process of channel polarization is mainly
consists of two phases: Channel Combining and Channel Splitting.
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After which, N synthesized bit channels W
(i)
N are polarized and have sym-

metric capacity either close to 0 or close to 1 as N approaches infinity. It is
proved that the channel capacity can be achieved by transmitting information
bits using the noiseless channels [2].

Figure 1 gives the general recursive form of coding procedure of polar codes
with the length of N = 2n. Based on which the linear mapping u → p, i.e.,
the encoding procedure of polar codes, is established which can be expressed as
p = uGN where GN is the transform matrix that

GN = BNF⊗n
2 , F2 =

[
1 0
1 1

]
. (5)

BN is the bit-reversal permutation matrix consists of the operation RN and ⊗
denotes the Kronecker power.

Denote the set of indices of bit channels with smallest code rate as Ac, the
most critical step in polar codes construction is how to determine Ac, i.e., the
indices of frozen bits. As for B-DMC, Bhattacharyya parameter Z is generally
used as a measure of quality of split bit channels, which can be calculated by

Z(W (2i−1)
2N ) ≤ 2Z(W (i)

N ) −
[
Z(W (i)

N )
]2

, (6)

Z(W (2i)
2N ) =

[
Z(W (i)

N )
]2

, (7)

1 ≤ i ≤ N where the equality holds if and only if W is a binary erasure channel
(BEC). And the initial value of which is defined as

Z(W (1)
1 ) = Z(W ) =

∑

q∈Q

√
W (q | p = 0) · W (q | p = 1). (8)

Thus, the smaller the Z(W (i)
N ), the more reliable the W

(i)
N is. After which a

(N,K,Ac,uAc) polar code is specified where u = (uA,uAc) denotes the source
word and uAc represents the frozen bits of length N − K.

2.3 Decoding of Polar Codes

Since each coordinate channel W
(i)
N are successively used in polarized channels,

in the decoding procedure, the unfrozen source word ui can be calculated by
previous estimated source words and received codewords, which is

ûi = arg max
ui∈{0,1}

W
(i)
N (r, û1, û2, · · · , ûi−1 | ui). (9)

This method is SC decoding algorithm [2]. To simplify the calculation, the LLR
of each coordinate channel, which is defined as

L
(i)
N = ln

W
(i)
N (r, û1, û2, · · · , ûi−1 | 0)

W
(i)
N (r, û1, û2, · · · , ûi−1 | 1)

(10)
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is used for codeword decision [21]. Therefore, the ûi = 0 if L
(i)
N ≤ 0 otherwise

ûi = 1. The calculation of LLR can be recursively formulated by

L
(2i−1)
2N = F

(
L
(i)
N , L

(i+N)
N

)
, (11)

L
(2i)
2N = G

(
L
(i)
N , L

(i+N)
N , û2i−1

)
(12)

which further implies that the decision of current codeword strongly depends on
the previous estimated bits. F (·) and G (·) are the f and g functions defined in
[2] in logarithm domain, which is

F (a, b) = 2 tanh−1

(
tanh

(a

2

)
tanh

(
b

2

))
, (13)

G (a, b, ω) = (1 − 2ω)a + b. (14)

To overcome the errors accumulated in the successive decoding process,
in SCL decoder [29], L lists of candidate codewords, i.e., decoding paths, are
reserved when estimating each bit as well as path metrics (PM) of each path.
For unfrozen bit, each path generates two paths by decoding ûi = 0 and ûi = 1
therefore a total 2L paths are obtained. The metric of l-th path can be updated
at the i-th decoding bit by

PMl
i =

i∑

k=1

ln
(
1 + exp

(
− (1 − 2ûk) L

(k)
N

))
(15)

and only L paths with lowest PM are maintained for further decoding. The
accumulation of errors is greatly reduced with listed SC decoder and the decoding
performance is better improved.

3 Steganographic Coding on Sub-Polarized Channel

In this section, the polarized steganographic channel and its sub-channels are
established through optimal embedding theory. Besides, the steganographic cod-
ing methods under the typical sub-channels are given.

3.1 Polarized Steganographic Channel

Under the optimal embedding theory, the steganographic embedding process for
each cover element can be simulated as a communication process under a lossy
channel [23], which is shown in Fig. 2b where the cover element changes to the
stego through the decoding process under the simulated channel. This model,
named binary steganographic channel (BSteC), is obviously equivalent to BSC
where the modification probability πλ (x̄i) is equal to the crossover probability
pe of BSC. As a result, the steganographic coding is formulated by the problem
that, given the received codeword (cover) x = (x1, x2, · · · , xN ), decoding the
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pi = 0

pi = 1
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W(1)
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xN
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(c) Polarized steganographic channel

Fig. 2. Demonstration of the relationship between communication channel and embed-
ding of steganography, where W (i), 1 ≤ i ≤ N represents BSteC.

codeword before transmitting (stego) y of which syndrome (message) is m under
N independent BSCs with crossover probability πλ (x̄i).

The model of polarized steganographic channel is shown in Fig. 2c where mul-
tiple different steganographic channels instead of independent copies are com-
bined and split as the modification pattern of each cover element is independent
and different. Under which the steganographer can perform steganographic cod-
ing by constructing polar codes with non-uniform channel polarization [24].

However, some prior knowledge, such as embedding distortion, is required to
be shared with the extractor for reconstruction of polarized channels, which is
nearly impossible. As pointed out in [33], the polar codes constructed for BSC by
Eq. (6) and (7) with the equal sign holds still has good performance. Therefore,
it can be assumed that all BSteCs are identical and treated as BECs in the
construction of polarized steganographic channel. The Bhattacharyya parameter
can be used as a metric of channel quality since it is currently the best for BEC
and BSC as discussed in [23,33]. Besides, the initial value of Bhattacharyya
parameter is discussed in Sect. 4.1.

3.2 Successive Cancellation on Polarized Steganographic Channel

According to the recursive form of channel polarization, N = 2n length polar
codes can be represented by a binary tree Tn(0) of depth n [1]. As shown in
Fig. 3, each node Tt(φ) corresponds to a codeword and has a left child Tt−1(2φ)
and right child Tt−1(2φ + 1). As a result, each sub-tree with a node corresponds
to a sub-polar codes which is constructed through a sub-polarized channel.

In the decoding process, SC and SCL decoder sequentially estimates each
codeword in a depth-first order. However, partially sub-polar codes have a special
form based on the position of frozen bits in the source words, which consists of a
special form of codeword. Therefore a limited number of candidate codewords can
be directly estimated without recursively calculating all LLRs for decoding all
source words. For steganographic codes, the coding scheme under the identified
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Fig. 3. Polar codes and its tree representation with length of 8, where u1 to u5 is
assigned as frozen bits. In the binary tree, all white nodes represent frozen bits while
all black nodes denote unfrozen bits.

sub-polarized channel can not only reduce the accumulation of distortions in the
successive process but also greatly improve computational efficiency.

In this paper, denoted V as the set of nodes of sub-polar codes, 2-dim
tuple (ki, Si) ∈ V is used to denote a node of polar code with length of Si of
which source word (pki

, pki+1, · · · , pki+Si−1) = (uki
, uki+1, · · · , uki+Si−1)GSi

.
The detailed steganographic coding scheme under the sub-polarized channel is
listed in Algorithm1.

3.3 Steganographic Coding Under the Typical Sub-Channel

In this subsection, the corresponding algorithms of steganographic coding will
be given under four typical form of sub-polarized channels. The listed successive
coding scheme is adopted for better coding efficiency. Based on an important
theorem in [18, Theorem 1], the calculation of path metric defined in Eq. (15)
can be updated as

PMl
i =

i∑

k=1

ln
(
1 + exp

(
− (1 − 2p̂k) L

(k)
1

))
(16)

where (p̂1, p̂2, · · · , p̂S) = (û1, û2, · · · , ûS)GS . This equation will be adopted fur-
ther in the steganographic coding procedure. Note that any polarized channel
can be represented by the sub-channels below, since the shortest length of code-
word is 2 under these sub-channels.
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Algorithm 1: Binary Embedding of Steganography Under the Sub-
Polarized Steganographic Channel
Input: cover x, message m, costs ρ and list size L.
Output: stego y and total distortion D (y).

1 calculate Bhattacharyya parameter Z(W (i)
N ) for each bit channel by

Equation (6) and (7) with initial value Z(W (1)
1 ) by Equation (19);

2 get the set of indices Ac of bit channels with largest metric Z(W (i)
N )

where |Ac| = |m|; set the frozen bits of polarized steganographic channels
as message m, which is uAc = m;

3 calculate optimal probability of modification of each element πλ (yi) by
Equation (4); and further calculate the LLR L

(i)
1 of each cover element

with P(x) by Equation (10);
4 recursively identify the type of sub-polarized channel (ki, Si) and storage

2-dim tuples in the set V;
5 foreach sub node (ki, Si) in set V do
6 recursively calculate the LLR L

(ki)
N for ki-th source word;

7 according to the type of sub node, select the corresponding coding
scheme in Subsection 3.3 to generate the estimated codeword p̂;

8 obtain the estimated source word (ûki
, ûki+1, · · · , ûki+Si−1) by polar

encoding (5);
9 recursively update all partial sums, i.e., intermediate codewords of all

coding paths;
10 end
11 calculate P (y) with û by polar encoding (5);
12 get the stego y = x − P (x) + P (y); calculate D (y) =

∑
ρ (yi).

R1 (Rate-1) Channel. Under the Rate-1 channel denoted as (ki, Si), all coor-
dinate channels are used to transmit frozen bits which implies that the message
transmission rate is 1. For the steganographic coding, there is only one valid
codeword p0 = (uki

, uki+1, · · · , uki+Si−1)GSi
where uk ∈ Ac, ki ≤ k < ki + S

is set by the message m, thereafter no path splitting occurs. Besides, since the
coding procedure is all conducted on frozen bits, the increment of path metrics
ΔPMl are directly updated by Eq. (16).

DC (Dual Candidate) Channel. The node of polar codes based on DC chan-
nel is already discussed in [27, Section IV-B]. Under the DC channels denoted
by (ki, Si), all source words are determined as frozen bit except the last bit
uki+Si−1. As a result, there are only two candidate codewords exists, which are
p0 = (uki

, · · · , uki+Si−2, 0)GSi
and p1 = (uki

, · · · , uki+Si−2, 1)GSi
. Each path

generates two candidate paths whose PM are updated by Eq. (16).

R0 (Rate-0) Channel. In Rate-0 node, all source words are unfrozen bits. The
maximum likelihood (ML) decision of codeword pk, ki ≤ k < ki + Si discussed
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in [1, Lemma 1] are p̂k = h(L(k)
Si

). However, p̂k is not necessarily the best coding
result. The other near-ML decisions have to be obtained for better performance.
As for list coder with L paths, the near-ML codes can be obtained by only
flipping each codeword in p̂k the ascending order of corresponding LLR L

(k)
Si

.
After each flipping, twice as many near-ML codewords are generated while at
most L candidate codewords are reserved based on the path metric increment
ΔPMl. This operation is only performed on the codewords corresponding to the
first L − 1 smallest LLRs. After that, L paths of candidates will be generated.

SPC (Single Parity Check) Channel. For the node constructed by SPC
channel denoted by (ki, Si), only the first coordinate channel transmits frozen
bits, i.e., uki

∈ Ac and uki+1, uki+2, · · · , uki+Si−1 /∈ Ac. The parity of all source
word in this sub-polar codes equals to uki

.

Theorem 1. In SPC channel, the parity of codeword of sub-polar codes satisfies

P =
ki+Si−1⊕

k=ki

pk = uki

where ⊕ represents modulo 2 addition.

Proof. We proof this theorem with induction. For any polar codes with n = 1,
the codeword (p1, p2) equals to (u1, u2)G2 = (u1 ⊕ u2, u2). The theorem holds
since p1⊕p2 = u1⊕u2⊕u2 = u1. Now suppose the theorem stands for polar codes
of SPC mode with n = k. For n = k + 1, denote the source word u = (u1,u2)
where u1 = (u1, u2, · · · , u2k) and u2 = (u2k+1, · · · , u2k+1) are two separated
words. Then for p = (p1,p2) = uB2k+1F⊗k+1

2 where p1 = (p1, p3, · · · , p2k+1−1)
and p2 = (p2, p4, · · · , p2k+1), there are

p1 = (u1, u2, · · · , u2k)B2kF
⊗k
2 ⊕ (u2k+1, · · · , u2k+1)B2kF

⊗k
2

p2 = (u2k+1, · · · , u2k+1)B2kF
⊗k
2

where

B2k+1 = R2k(I2 ⊗ B2k), F⊗k+1
2 =

[
F⊗k

2 0
F⊗k

2 F⊗k
2

]
.

Since the bit-reversal permutation matrix only changes the order of codewords,
the parity of p can be obviously calculated by codeword (u1, u2, · · · , u2k)B2kF

⊗k
2

which is equivalent to the hypothesis above. Therefore, the theorem is valid for
all positive integer n.

Similar to the node under the Rate-0 channel, the ML decision of codewords
of SPC node are p̂k = h(L(k)

Si
) if the parity of codewords equals to uki

. Otherwise,
flip the codeword with the smallest LLR to satisfy the requirements of channel.
The other L − 1 near-ML decisions can still be obtained by sequentially flipping
the codewords corresponding to the 2nd to (L − 1)-th smallest LLRs. Besides,
it is also necessary to flip the codeword corresponding to the minimum LLR to
ensure the validity of the codewords.
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4 Experimental Results

In this section, experiments are mainly conducted on binary embedding by var-
ious distortion profiles with randomly generated cover elements and messages.
The embedding efficiency e = |m|/D(y) is used for comparing the performance
with the state-of-the-art steganographic coding schemes, where eπ = |m|/Eπ (D)
is the theoretical upper bound of embedding efficiency. The throughput of cod-
ing, i.e., average number of cover elements processed per seconds, is also inves-
tigated to evaluate the computational efficiency. The distortion profile denoted
by � = (�1, �2, · · · , �N ) is defined as �i = �(i/N) [9,10]. The constant, linear
and square profile are used for evaluation.

For comparison, STC [10] with sub-matrix height h = 8, 10, 12, 16 and SPC
[23] with list size l = 1, 4, 16 are introduced in simulations. All schemes are
implemented in C++ and compiled in MEX executable format1.

4.1 Construction of Polarized Steganographic Channel

As discussed above, the key point of polarized steganographic channel construc-
tion is to calculate the initial value of the Bhattacharyya parameter. In this
paper, three heuristically defined strategies are discussed, which are

Type I : Z(W (1)
1 ) =

1
n

n∑

i=1

2
√

πλ (x̄i) (1 − πλ (x̄i)), (17)

Type II : Z(W (1)
1 ) = H2

(
1
n

n∑

i=1

πλ (x̄i)

)
, (18)

Type III : Z(W (1)
1 ) =

1
n

n∑

i=1

H2 (πλ (x̄i)) =
|m|
n

. (19)

Under the linear and square distortion profile, the embedding efficiency of the
three strategies in Eq. (17), (18) and (19) with proposed scheme of list size of 8
are all evaluated for 100 times, which shown in Fig. 4. The strategy of Type I
and Type III that outperform STC both achieve near-optimal performance while
Type III performs better. In the proposed scheme, we use the strategy in Type
III for channel reliability initialization.

4.2 Security Evaluation Under Embedding Efficiency Results

The embedding efficiencies of the proposed scheme are simulated for three typical
distortion profiles, which is shown in Fig. 5a, 5b, and 5c. For the constant profile,
the polar codes-based coding schemes are worse than STC at the small payloads.
While for the other profiles, SPC and SPSC both perform closer to the theoretical

1 The complied MEX executable files of SPSC have been uploaded at https://github.
com/martin9676/Polarized-Steganographic-Codes/releases

https://github.com/martin9676/Polarized-Steganographic-Codes/releases
https://github.com/martin9676/Polarized-Steganographic-Codes/releases
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Fig. 4. Embedding performance of three different strategy for construction of polarized
channel of which list size L is set to 8. Cover elements with length of 220 are randomly
generated as well as messages.
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Fig. 5. Embedding performance of different steganographic coding schemes. (a)–(c)
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cover elements. (d) Average embedding throughput of different steganographic coding
schemes under various cover length. Evaluations above are all conducted with MEX
executable version on Intel(R) i7-4790 CPU @ 3.60 GHz.
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Table 1. The detection error rate (in %) of steganalysis tools where features are
extracted by DCTR. STC, SPC and SPSC are compared with J-UNIWARD (JUNI)
and UERD on BOSSBase with different quality factors.

Method QF = 75 QF = 90
0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

JUNI-STC-h = 8 0.4099 0.2789 0.1504 0.0618 0.4520 0.3593 0.2434 0.1300
JUNI-STC-h = 12 0.4161 0.2909 0.1663 0.0735 0.4564 0.3680 0.2589 0.1470
JUNI-SPC-l = 4 0.4147 0.2935 0.1710 0.0785 0.4564 0.3715 0.2634 0.1533
JUNI-SPC-l = 16 0.4155 0.2953 0.1719 0.0806 0.4566 0.3725 0.2656 0.1558
JUNI-SPSC-L = 4 0.4153 0.2934 0.1731 0.0786 0.4562 0.3705 0.2650 0.1538
JUNI-SPSC-L = 16 0.4158 0.2941 0.1726 0.0803 0.4553 0.3719 0.2648 0.1562
UERD-STC-h = 8 0.4009 0.2701 0.1537 0.0708 0.4425 0.3430 0.2297 0.1258
UERD-STC-h = 12 0.4069 0.2851 0.1699 0.0831 0.4462 0.3517 0.2434 0.1414
UERD-SPC-l = 4 0.4061 0.2865 0.1725 0.0874 0.4471 0.3541 0.2501 0.1487
UERD-SPC-l = 16 0.4062 0.2873 0.1754 0.0887 0.4460 0.3555 0.2504 0.1491
UERD-SPSC-L = 4 0.4064 0.2872 0.1732 0.0871 0.4461 0.3570 0.2498 0.1485
UERD-SPSC-L = 16 0.4062 0.2879 0.1744 0.0884 0.4461 0.3561 0.2503 0.1505

bound compared with STC, and SPSC slightly outperforms SPC when the list
size is the same. Under the sub-polarized steganographic channel, the proposed
coding scheme can reduce the error propagation of recursively coding process
and improve the embedding performance.

4.3 Security Evaluation Under Image Steganalysis

The anti-steganalysis performance is evaluated by JPEG image steganography
with DCTR [19] feature extractor. To conduct the evaluation efficiently, the
F function defined in Eq. (11) is approximated when |a| ≤ 10 or |b| ≤ 10 by
F (a, b) ≈ sgn(a)sgn(b)min {|a|, |b|}, where sgn(·) is the signum function [26].
Samples sized 512 × 512 with quality factor of 75 and 90 are generated from
BOSSBase [3] of RAW format. Stego counterparts are embedded by different
coding schemes with J-UNIWARD and UERD. As demonstrated in Table 1, com-
pared with classical STC, polar codes-based coding schemes perform slightly bet-
ter especially when the payload increases. This implies that the proposed scheme
has comparable security performance in JPEG image steganography despite that
some imprecise approximations are introduced.

4.4 Evaluation of the Computational Efficiency

The computational efficiency is first evaluated under the simulated embedding
by the throughput with different cover length and fixed payload of 1/4 and 1/2.
As demonstrated in Fig. 5d, the throughput of SPSC with list size of 4 is 6–8
times that of STC of h = 12 with optimizations of Single Instruction, Multiple
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Table 2. Evaluation of STC and SPSC on ALASKA2 dataset with 10,000 randomly
selected covers. The detection error rate (in %) of steganalysis tools and steganographic
coding speed (in second) are evaluated. Evaluation conducted with Intel(R) Xeon(R)
CPU E5-2620 v3 @ 2.40GHz.

Payload α h = 8 h = 12 h = 16

STC 0.2 bpnzAC 0.3466/0.07 0.3570/1.33 0.3625/21.88
0.4 bpnzAC 0.1636/0.09 0.1803/1.39 0.1844/22.62
Payload α L = 1 L = 4 L = 16

SPSC 0.2 bpnzAC 0.3591/0.32 0.3608/0.53 0.3614/1.40
0.4 bpnzAC 0.1827/0.33 0.1831/0.58 0.1851/1.57

Data (SIMD) instructions. Meanwhile, with the same list size, the throughput
of SPSC is about 1.5 times compared to the SPC. Therefore, the polar codes-
based schemes are more capable of performing steganographic coding at higher
embedding efficiency with lower computation complexity.

To further evaluate the comprehensive performance of the proposed scheme
in practical steganographic applications, stego images are regenerated on
ALASKA2 dataset [4] with 10,000 randomly selected samples. Cover images
are sized 512 × 512 with the quality factor of 85. Steganographic embedding is
performed with UERD and statistically analyzed with DCTR feature. To com-
pare the proposed scheme to STC, overall performances including anti-detection
performance and embedding speed are both evaluated, and the approximate cal-
culation of the F function is disabled. As shown in Table 2, In the case of similar
calculation speed, the steganalysis error rate of SPSC (L = 16) is nearly 0.5%
higher than that of STC (h = 12). When the security performance is equivalent,
in the current computing environment, the computing speed of SPSC (L = 1) is
at least 4 times that of STC (h = 12). Therefore, the overall performance of the
proposed steganographic coding scheme is far more higher than that of classical
STC.

4.5 Discussion

The proposed SPSC achieves near-optimal embedding performance that is much
better than classical STC by constructing the sub-polarized steganographic
channel. It slightly improves security with less consumption of computational
resources compared with SPC. As mentioned before, since the Viterbi algorithm
is a dynamic programming algorithm that obtains the most likely sequence of
hidden states, the computational complexity of STC, which is O(2hN), is directly
related to the size of the state space 2h.

However, the successive cancellation-based algorithm is a greedy algorithm
that searches the codeword in the decoding tree with pruning. As a result, its
computational complexity is less than O(N2) as the calculation of each bit esti-
mation can be completed in logarithmic time. After introducing the list coding
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strategy, SPC can perform steganographic coding with the computational com-
plexity of O(LN log N), where L is the list size.

While the introducing of the sub-polarized steganographic channel further
reduces the computational complexity by optimizing the process of bit-by-bit
coding. Due to the existence of the partial order relationship of the synthesized
channel under the channel polarization [28], multiple bits can be estimated in
batches with one or a few estimations, which further improves the coding and
computing performance of SPSC, although the theoretical computational com-
plexity is still O(LN log N). From the experimental results, SPSC has a slight
improvement in security and at least doubles the speed of encoding calculation
compared with SPC.

5 Conclusion

In this paper, a near-optimal steganographic codes is proposed with constructed
polarized and steganographic channel. Four typical sub-polarized channels are
introduced which further verifies the effectiveness and the performance of the
proposed scheme. Compared with the state-of-the-art steganographic codes, the
overall experimental results show that the proposed codes performs embedding
with higher efficiency and half of the time consumption, since which it also
enables large-scale practical steganography applications. In our future works, the
proposed scheme will be further improved with the discovery of sub-polarized
channels with more specific patterns.

References

1. Alamdar-Yazdi, A., Kschischang, F.R.: A simplified successive-cancellation decoder
for polar codes. IEEE Commun. Lett. 15(12), 1378–1380 (2011)

2. Arikan, E.: Channel polarization: a method for constructing capacity-achieving
codes for symmetric binary-input memoryless channels. IEEE Trans. Inf. Theory
55(7), 3051–3073 (2009)

3. Bas, P., Filler, T., Pevný, T.: “Break our steganographic system”: the ins and outs
of organizing BOSS. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011.
LNCS, vol. 6958, pp. 59–70. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-24178-9_5

4. Cogranne, R., Giboulot, Q., Bas, P.: Alaska# 2: challenging academic research
on steganalysis with realistic images. In: 2020 IEEE International Workshop on
Information Forensics and Security (WIFS), pp. 1–5. IEEE (2020)

5. Crandall, R.: Some notes on steganography. Posted on Steganography Mailing List
1998, 1–6 (1998)

6. Diop, I., Farss, S., Tall, K., Fall, P., Diouf, M., Diop, A.: Adaptive steganography
scheme based on LDPC codes. In: 16th International Conference on Advanced
Communication Technology, pp. 162–166. IEEE (2014)

7. Diouf, B., et al.: JPEG steganography based on successive cancellation decoding
of polar codes. In: 2022 2nd International Conference on Innovative Research in
Applied Science, Engineering and Technology (IRASET), pp. 1–6. IEEE (2022)

https://doi.org/10.1007/978-3-642-24178-9_5
https://doi.org/10.1007/978-3-642-24178-9_5


18 H. Fu et al.

8. Diouf, B., et al.: Polar coding steganographic embedding using successive cancel-
lation. In: M. F. Kebe, C., Gueye, A., Ndiaye, A. (eds.) InterSol/CNRIA -2017.
LNICST, vol. 204, pp. 189–201. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-72965-7_18

9. Filler, T., Judas, J., Fridrich, J.: Minimizing embedding impact in steganography
using trellis-coded quantization. In: Media Forensics and Security II, vol. 7541, pp.
38–51. SPIE (2010)

10. Filler, T., Judas, J., Fridrich, J.: Minimizing additive distortion in steganogra-
phy using syndrome-trellis codes. IEEE Trans. Inf. Forensics Secur. 6(3), 920–935
(2011)

11. Fridrich, J.: Steganography in Digital Media: Principles, Algorithms, and Applica-
tions. Cambridge University Press, Cambridge (2009)

12. Fridrich, J., Filler, T.: Practical methods for minimizing embedding impact in
steganography. In: Security, Steganography, and Watermarking of Multimedia Con-
tents IX, vol. 6505, pp. 13–27. SPIE (2007)

13. Fridrich, J., Goljan, M., Lisonek, P., Soukal, D.: Writing on wet paper. IEEE Trans.
Signal Process. 53(10), 3923–3935 (2005)

14. Fridrich, J., Goljan, M., Soukal, D.: Efficient wet paper codes. In: Barni, M.,
Herrera-Joancomartí, J., Katzenbeisser, S., Pérez-González, F. (eds.) IH 2005.
LNCS, vol. 3727, pp. 204–218. Springer, Heidelberg (2005). https://doi.org/10.
1007/11558859_16

15. Guo, L., Ni, J., Shi, Y.Q.: An efficient JPEG steganographic scheme using uniform
embedding. In: 2012 IEEE International Workshop on Information Forensics and
Security (WIFS), pp. 169–174. IEEE (2012)

16. Guo, L., Ni, J., Su, W., Tang, C., Shi, Y.Q.: Using statistical image model for
JPEG steganography: uniform embedding revisited. IEEE Trans. Inf. Forensics
Secur. 10(12), 2669–2680 (2015)

17. Hanif, M., Ardakani, M.: Fast successive-cancellation decoding of polar codes: iden-
tification and decoding of new nodes. IEEE Commun. Lett. 21(11), 2360–2363
(2017)

18. Hashemi, S.A., Condo, C., Gross, W.J.: A fast polar code list decoder architecture
based on sphere decoding. IEEE Trans. Circuits Syst. I Regul. Pap. 63(12), 2368–
2380 (2016)

19. Holub, V., Fridrich, J.: Low-complexity features for JPEG steganalysis using
undecimated DCT. IEEE Trans. Inf. Forensics Secur. 10(2), 219–228 (2014)

20. Holub, V., Fridrich, J., Denemark, T.: Universal distortion function for steganogra-
phy in an arbitrary domain. EURASIP J. Inf. Secur. 2014(1), 1–13 (2014). https://
doi.org/10.1186/1687-417X-2014-1

21. Leroux, C., Tal, I., Vardy, A., Gross, W.J.: Hardware architectures for successive
cancellation decoding of polar codes. In: 2011 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 1665–1668. IEEE (2011)

22. Li, B., Wang, M., Huang, J., Li, X.: A new cost function for spatial image steganog-
raphy. In: 2014 IEEE International Conference on Image Processing (ICIP), pp.
4206–4210. IEEE (2014)

23. Li, W., Zhang, W., Li, L., Zhou, H., Yu, N.: Designing near-optimal steganographic
codes in practice based on polar codes. IEEE Trans. Commun. 68(7), 3948–3962
(2020)

24. Oliveira, R.M., de Lamare, R.C.: Non-uniform channel polarization and design of
rate-compatible polar codes. In: 2019 16th International Symposium on Wireless
Communication Systems (ISWCS), pp. 537–541. IEEE (2019)

https://doi.org/10.1007/978-3-319-72965-7_18
https://doi.org/10.1007/978-3-319-72965-7_18
https://doi.org/10.1007/11558859_16
https://doi.org/10.1007/11558859_16
https://doi.org/10.1186/1687-417X-2014-1
https://doi.org/10.1186/1687-417X-2014-1


High-Performance Steganographic Coding 19

25. Pevný, T., Filler, T., Bas, P.: Using high-dimensional image models to perform
highly undetectable steganography. In: Böhme, R., Fong, P.W.L., Safavi-Naini, R.
(eds.) IH 2010. LNCS, vol. 6387, pp. 161–177. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-16435-4_13

26. Ryan, W., Lin, S.: Channel Codes: Classical and Modern. Cambridge University
Press, Cambridge (2009)

27. Sarkis, G., Giard, P., Vardy, A., Thibeault, C., Gross, W.J.: Fast polar decoders:
algorithm and implementation. IEEE J. Sel. Areas Commun. 32(5), 946–957 (2014)

28. Schürch, C.: A partial order for the synthesized channels of a polar code. In: 2016
IEEE International Symposium on Information Theory (ISIT), pp. 220–224. IEEE
(2016)

29. Tal, I., Vardy, A.: List decoding of polar codes. IEEE Trans. Inf. Theory 61(5),
2213–2226 (2015)

30. Westfeld, A.: High capacity despite better steganalysis (F5—a steganographic algo-
rithm). In: Moskowitz, I.S. (ed.) IH 2001. LNCS, vol. 2137, pp. 289–302. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45496-9_21

31. Zhang, R., Sachnev, V., Botnan, M.B., Kim, H.J., Heo, J.: An efficient embedder
for bch coding for steganography. IEEE Trans. Inf. Theory 58(12), 7272–7279
(2012)

32. Zhang, R., Sachnev, V., Kim, H.J.: Fast BCH syndrome coding for steganography.
In: Katzenbeisser, S., Sadeghi, A.-R. (eds.) IH 2009. LNCS, vol. 5806, pp. 48–58.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04431-1_4

33. Zhao, S., Shi, P., Wang, B.: Designs of Bhattacharyya parameter in the construc-
tion of polar codes. In: 2011 7th International Conference on Wireless Communi-
cations, Networking and Mobile Computing, pp. 1–4. IEEE (2011)

https://doi.org/10.1007/978-3-642-16435-4_13
https://doi.org/10.1007/978-3-642-16435-4_13
https://doi.org/10.1007/3-540-45496-9_21
https://doi.org/10.1007/978-3-642-04431-1_4


High-Capacity Adaptive Steganography
Based on Transform Coefficient for HEVC

Lin Yang1, Rangding Wang1, Dawen Xu2(B), Li Dong1, Songhan He1,
and Fan Liu2

1 Faculty of Electrical Engineering and Computer Science, Ningbo University,
Ningbo, China

{2011082340,wangrangding,dongli,2111082349}@nbu.edu.cn
2 School of Cyber Science and Engineering, Ningbo University of Technology,

Ningbo, China
dawenxu@126.com

Abstract. HEVC video is one of the most popular carriers for steganog-
raphy. The existing transform coefficient-based HEVC steganography
algorithms usually modify the coefficients of the candidate blocks to
prevent distortion drift. Nevertheless, the embedding capacity is rela-
tively small due to the strict candidate block selection rule, and embed-
ding distortion is accumulated within group of pictures (GOP). In this
paper, a novel transform coefficient-based steganography for HEVC is
proposed to enlarge embedding capacity and reduce visual degradation.
First, the visual distortion and GOP distortion are analyzed to elabo-
rate the embedding influence of different cover coefficients. Next, differ-
ent cover coefficients are assigned different costs. Besides, the modifi-
cation in non-zero coefficients of 4 × 4 TUs in P-frames is explored to
enhance embedding capacity. Moreover, by introducing a new evaluation
indicator, it is verified the proposed algorithm can preserve less visual
degradation while embedding more secret messages. Experimental results
show that the proposed algorithm outperforms the competing methods
in terms of visual quality, embedding capacity and anti-steganalysis per-
formance.

Keywords: HEVC · High-capacity steganography · Transform
coefficient

1 Introduction

Steganography is one of the most important branches of data hiding, and it
aims to embed secret messages into carriers in an imperceptible way. With the
rapid development of digital devices, the transmission and service based on video
media have become extensive. HEVC is one of the mainstream video compression
standards. Due to more coding information can be modified, it is very suitable
for video steganography. As a result, HEVC steganography is one of the hot
directions of information hiding.
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Generally speaking, according to the different embedding domain, video steg-
anography can be divided into two types: the spatial domain video steganogra-
phy and the compressed domain video steganography. The first type modifies
the pixel values in the spatial domain, and the second type refers to embedding
secret messages by modifying the coding information during the video com-
pression process. Since videos are mainly stored and transmitted in compressed
format, the second type of video steganography has more practical application
value. The coding information used for steganography includes: intra predic-
tion modes (IPMs) [1–4], motion vectors (MVs) [5–8], transform coefficients
[9–15] and partition modes of prediction unit (PU) [16,17]. There are several
advantages for selecting transform coefficients as embedding covers. For exam-
ple, the signal energy of embedded messages will be dispersed to all elements
in the spatial domain during the discrete cosine transform (DCT) and inverse
DCT process, which enhances the security of steganography behavior. Moreover,
transform coefficients are a type of coding information with a large weight in
video stream, which ensures a large embedding capacity. Therefore, modifying
transform coefficients is a popular way in video steganography.

As far as selecting transform coefficients as carriers is concerned, there are
many works have been operated in H.264/AVC. In order to cope with the distor-
tion drift problem, Ma et al. [9] modified the paired-coefficients of some specific
blocks to embed secret messages. On the basis of [9], Xue et al. [10] used syn-
drome trellis codes (STCs) to reduce the intra-block distortion caused by mod-
ulating transform coefficients in I-frames. Chen et al. [11] proposed an adaptive
steganography by taking three factors, i.e., texture features, motion characteris-
tics and position of the frame, into consideration and used STCs to minimize the
total distortion. Chen et al. [12] analyzed the intra-block distortion, inter-block
distortion and inter-frame distortion, then proposed an adaptive steganography
method named DDCA (distortion-drift cost assignment) and achieved better
performance in terms of visual quality.

However, due to the difference in the transformation process between AVC
and HEVC, transform coefficient-based steganography in AVC cannot be directly
transferred into HEVC. So, the research on transform coefficient-based HEVC
steganography is still in its infancy. Liu et al. [13] proposed a transform
coefficient-based steganography scheme for HEVC. In order to prevent the distor-
tion drift, they selected the 4× 4 blocks without vertical distortion propagation
or horizontal distortion propagation as candidate blocks, and the triple coeffi-
cient group was used for distortion compensation. Chang et al. [14] proposed an
error propagation-free algorithm for HEVC. After analyzing the relationship of
IPMs in surrounding blocks, they located the transform coefficients which can
be modified without propagating errors to other blocks. On the basis of [13] and
[14], Zhou et al. [15] proposed a BLB (block-based) distortion model to minimize
the embedding distortion. They applied method [14] in small blocks with size of
4 × 4 and 8 × 8 and used STC to minimize the distortion in large blocks with
size of 16 × 16 and 32 × 32.
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Although these methods can completely eliminate the distortion drift in I-
frames, they did not fully exploit the advantages of HEVC: (1) The selection
rule for candidate blocks is very strict, resulting in a small embedding capacity,
which loses the superiority of large embedding capacity in HEVC. (2) In order
to eliminate inter-block distortion, the intra-block distortion is increased by the
distortion compensation algorithm. (3) The influence of the subsequent P-frames
is ignored, which causes the large accumulative distortion in the GOP.

In order to overcome the above problems and utilize the characteristic of large
embedding capacity in HEVC, we propose a high-capacity adaptive steganogra-
phy. The contributions of this work can be summarized as follows:

• A novel distortion function is proposed according to the analysis of visual
distortion and GOP distortion.

• Explore the modification in non-zero coefficients of 4 × 4 transform units
(TUs) in P-frames and achieve high-capacity steganography while preserving
less visual degradation.

• A new evaluation indicator is used to measure visual degradation for different
capacity.

The rest of this paper is organized as follows. The embedding distortion is
analyzed in Sect. 2. In Sect. 3, the proposed algorithm is described. Section 4
represents the extensive experiments and analysis. At last, Sect. 5 concludes this
paper.

2 Analysis of Embedding Distortion

In this section, the embedding distortion is analyzed from two perspectives of
visual distortion and GOP distortion, then the influence of modifying coefficients
in intra-frame distortion and inter-frame distortion is concluded.

2.1 Embedding Distortion of Visual Degradation

Video visual quality is often measured by the Peak Signal to Noise Ratio (PSNR)
indicator, and the visual degradation of stego video is defined by the difference
between the PSNR of un-stego video and stego video. For better understanding,
we assume the pixel depth of each frame is 8-bit, then the PSNR can be expressed
as:

PSNR = 10 · lg 2552 · MN
∑M−1

x=0

∑N−1
y=0 |fo(x, y) − fc(x, y)|2

(1)

fc(x, y) = fc
pre(x, y) + fc

res(x, y), (2)

where M and N represent the width and height of the video and fo(x, y) and
fc(x, y) represent the pixels in (x, y) position of the original video and the com-
pressed video. fc(x, y) can be obtained by the sum of prediction value fc

pre(x, y)
and residual value fc

res(x, y) as Eq. (2).
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The visual quality degradation can be expressed by the difference between
the PSNR of un-stego videos and stego videos:

ΔPSNR = PSNRu − PSNRs

= 10 · lg 2552 · MN
∑M−1

x=0

∑N−1
y=0 |fo(x, y) − fu(x, y)|2

− 10 · lg 2552 · MN
∑M−1

x=0

∑N−1
y=0 |fo(x, y) − fs(x, y)|2

= 10 · lg
∑M−1

x=0

∑N−1
y=0 |fo(x, y) − fs(x, y)|2

∑M−1
x=0

∑N−1
y=0 |fo(x, y) − fu(x, y)|2

= 10 · lg
∑M−1

x=0

∑N−1
y=0

∣
∣fo(x, y) − fs

pre(x, y) − fs
res(x, y)

∣
∣2

∑M−1
x=0

∑N−1
y=0 |fo(x, y) − fu(x, y)|2

.

(3)

Considering that the coefficient-based steganographic algorithms usually
modify coefficients after quantization, the prediction values in stego coding pro-
cess and un-stego coding process are the same, i.e., fs

pre(x, y) = fu
pre(x, y). As a

result, Eq. (3) can be simplified as:

ΔPSNR = 10 · lg
∑M−1

x=0

∑N−1
y=0

∣
∣fo(x, y) − fu

pre(x, y) − fs
res(x, y)

∣
∣2

∑M−1
x=0

∑N−1
y=0 |fo(x, y) − fu(x, y)|2

= 10 · lg
∑M−1

x=0

∑N−1
y=0 |fu

res(x, y) − fs
res(x, y)|2

∑M−1
x=0

∑N−1
y=0 |fo(x, y) − fu(x, y)|2

.

(4)

It can be seen from Eq. (4) that the value of ΔPSNR is proportional to the
square sum of the difference between the un-stego residual and stego residual. As
for the mainstream distortion compensation algorithms [13–15], it is required to
modify three coefficients at most to embed 1-bit binary secret message to prevent
the distortion drift, which leads to the large change of stego residual, increases
the ΔPSNR and reduces the visual quality.

Take the distortion compensation method in I-frames and Least Significant
Bit (LSB) method in P-frames as an example, and each method is used to
modify the coefficient q(0,0) in (0, 0) position with +1 disturbance. In order to
eliminate the inter-block distortion, the distortion compensation method needs
to compensate the corresponding coefficient group, so the coefficients q(0,2) and
q(0,3) in (2, 0) and (3, 0) positions are modulated as well. The modified pixels are
represented as residual values, which are the difference between pixel values and
predicted values as Eq. (2).

It can be seen from Fig. 1 that the residual variation of distortion compen-
sation method is concentrated in the third column, while the residual variation
of LSB method is distributed throughout the block. It can be calculated from
subgraphs (b)(d) and subgraphs (f)(h) that the sum of squares of the differences
between the original residual and stego residual are 309 and 104 respectively.
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Fig. 1. The influence of pixels in the spatial domain after using distortion compensation
method and LSB method. Subgraphs in the first row are the original coefficient matrix,
original residual matrix, stego coefficient matrix and stego residual matrix of distortion
compensation method in I-frame. Subgraphs in the second row are the matrices of LSB
method in P-frame.

Fig. 2. The illustration for GOP.

Since the distortion compensation algorithm eliminates the inter-block distor-
tion in I-frames and there is no inter-block distortion in P-frames, the former
algorithm will reduce the visual quality more than the parity-mapping modifi-
cation in P-frames when embedding 1-bit binary message.

2.2 Embedding Distortion of GOP

In this part, the inter-frame distortion propagation will be analyzed from the
perspective of GOP. In HEVC coding standard, video sequences are usually
divided into several small GOP to enhance the compression efficiency, as shown
in Fig. 2. Every GOP is composed of one I-frame as the starting frame and several
P-frames. The first I-frame is encoded independently while the rest P-frames are
predicted by the former frame, moreover, the GOP coding is independent and
does not affect each other.
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Fig. 3. Framework of the proposed steganography algorithm.

Assume there are n frames in a GOP and the first frame is I-frame and
the rest frames are P-frames. So, the embedding influence of each frame can be
indicated as: ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

E(0) = De(0) · (1 + IDPR)n−1

E(1) = De(1) · (1 + IDPR)n−2

...
E(n − 1) = De(n − 1)

, (5)

where E(i) represents the embedding influence of i-th frame, De(i) represents
the embedding distortion of i-th frame and IDPR represents the inter-frame
distortion propagation rate.

Since IDPR is in the range of [0, 1], it can be seen from Eq. (5) that the
embedding influence of each frame not only includes the embedding distortion
but also includes the influence on the inter-frame distortion of the subsequent
frames in the GOP. The embedding influence decreases with the increase of
the position of video frame in the GOP, and the influence of the inter-frame
distortion is smaller for the later video frames. For the distortion compensation
algorithm, since it modifies the coefficients in I-frames, the distortion will be
accumulated in the whole GOP during the inter-frame prediction process, thus
reducing the video visual quality.

3 Proposed HEVC Steganography

In this section, according to the analysis in Sect. 2, a high-capacity adaptive
steganography for HEVC is proposed. By modeling the GOP distortion, all non-
zero coefficients in the blocks without vertical distortion propagation and hori-
zontal distortion propagation in I-frames and non-zero coefficients in 4× 4 TUs
in P-frames are chosen as covers. The cost of each cover is calculated through
the proposed cost function and STC is utilized for the minimization distortion
embedding. The framework of the proposed algorithm is shown in Fig. 3.
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Fig. 4. Selection rule of candidate blocks in I-frames. Subgraph (a) represents the
selection rule for vertical error propagation-free blocks, whose IPMs of left-lower block
and lower block are in the range of [2, 26] and [2, 10]. Subgraph (b) represents the
selection rule of horizontal error propagation-free blocks.

3.1 Selection of Cover Coefficients

In order to make better use of the characteristics of large embedding capacity
in HEVC, we explore the modification of non-zero coefficients in P-frames. Con-
sidering the human visual system (HVS) is sensitive to the slight distortion in
large flat areas, the 4× 4 TUs within 8× 8 CUs are selected as candidate blocks
in P-frames. As for I-frames, the blocks without vertical distortion propagation
and horizontal distortion propagation are selected as candidate blocks, which is
shown in Fig. 4 and detailed principles and proofs of these two kinds of candi-
date blocks can refer to work [13]. Since the modification in all zero coefficients
will bring large visual distortion, thus the non-zero coefficients in each candidate
blocks are selected as cover coefficients in this paper.

As for the candidate blocks in P-frames, all the non-zero coefficients from
q(0,0) to q(3,3) are extracted to form the cover sequence. However, for the can-
didate blocks in I-frames, only the non-zero coefficients in the first column
of vertical error propagation-free blocks and the first row of horizontal error
propagation-free blocks are extracted as the cover sequence, which are colored
as red in the background.

3.2 Proposed Cost Function

According to the analysis in Sect. 2, it is known that the visual degradation
caused by modifying transform coefficients is proportional to the square sum
of the difference between the un-stego residual and stego residual, and it is
transferred to the subsequent frames in GOP resulting in cumulative distortion.
As a result, the cost of each cover coefficient not only includes the intra-frame
distortion but also the influence of inter-frame distortion propagation. Therefore,
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the cost of each cover ρ(xi, yi) is defined as:

ρ(xi, yi) =

(
3∑

m=0

3∑

n=0

|resu(m,n) − ress(m,n)|2
)

·(1 + IDPR)fG−1−f%fG , (6)

where resu(m,n) and ress(m,n) represents the un-stego residual and simulated
stego residual in (m,n) position of the corresponding 4 × 4 TU block, fG is the
number of total frames in the GOP. f is the index of current frame, which starts
from 0. The symbol % indicates modulo operation. Take the coding structure of
IPPP as an example, when embedding in the third P-frame, that is f = 3, thus
fG − 1 − f%fG = 0, which means the embedding influence in this frame only
includes intra-frame distortion and no influence of inter-frame distortion.

In addition, assume the cover sequences obtained from each frame are:
XI = {xI

0, x
I
1, ..., x

I
n0
}, XP1 = {xP1

0 , xP1
1 , ..., xP1

n1
}, XP2 = {xP2

0 , xP2
1 , ..., xP2

n2
}

and XP3 = {xP3
0 , xP3

1 , ..., xP3
n3
} where n0, n1, n2 and n3 are the number of total

covers extracted from each frame. Then, the original cover sequence X and stego
sequence Y can be expressed as:

X = XI + XP1 + XP2 + XP3

= {xI
0, ..., x

I
n0

, xP1
0 , ..., xP1

n1
, xP2

0 , ..., xP2
n2

, xP3
0 , ..., xP3

n3
} (7)

Y = {yI
0 , ..., y

I
n0

, yP1
0 , ..., yP1

n1
, yP2

0 , ..., yP2
n2

, yP3
0 , ..., yP3

n3
}. (8)

Let D(X,Y ) represents the total distortion of sequence X changed into
sequence Y after embedding secret messages m, then D(X,Y ) can be expressed
as:

D(X,Y ) =
n0+n1+n2+n3∑

i=0

ρ(xi, yi). (9)

Then, STC is used to embed secret messages m and calculate the minimization
embedding distortion. Detailed introduction and implementation of STC can be
found in [18].

Finally, the secret messages m will be embedded into the cover sequence
X under limited payload channel, while maintaining small GOP distortion and
preserving high visual quality.

3.3 The Practical Implementation

The process of the proposed algorithm is shown in Fig. 3 and the practical imple-
mentation of the proposed algorithm is introduced as follows:

Embedding Process. Firstly, the original YUV sequence is encoded to obtain
the optimal coding information of each block, such as IPMs and transform coef-
ficients. Secondly, all non-zero coefficients are extracted based on the candidate
block selection in Sect. 3.1, and all extracted coefficients in the same GOP are
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spliced into a cover sequence. Thirdly, cost of each cover is calculated by Eq. (6)
and STC is used for embedding binary secret messages. Next, distortion com-
pensation algorithm is used for the coefficients extracted from I-frames. At last,
the original YUV sequence is encoded again using the stego coefficients to obtain
the stego video.

Extraction Process. As for extraction, the receiver needs to decode the stego
video to get the coding information of each block and extract the non-zero coef-
ficients based on the candidate block selection rule in I-frames and P-frames.
Finally, all the extracted coefficients in the same GOP are combined into stego
sequence and decoded with STC to get secret messages.

4 Experimental Results

In this section, the coding configuration is introduced, and the comparison in
visual quality, embedding capacity, bit rate increase and anti-steganalysis perfor-
mance are represented to demonstrate the superiority of the proposed algorithm.

4.1 Experimental Setup

The Configuration of Video Coding. The proposed steganographic algo-
rithm is implemented in HEVC reference software HM 16.15, and the origi-
nal configuration encoder lowdelay P main.cfg is used in this paper. The coding
structure is IPPP and the quantization parameter (QP) is set to 24, and the rest
of configuration is as same as the original one. The limited payload in this paper
is 0.5 bpc (bit per cover) and IDPR is 0.5. All the experiments and comparisons
are tested under the above configuration.

In order to demonstrate the superior compression capability of HEVC for
high-definition (HD) videos, 5 HD HEVC standard test sequences (Basketball-
Drive.yuv, BQTerrace.yuv, Cactus.yuv, ParkScene.yuv, Kimono.yuv) are used in
this paper, each sequence is encoded with 200 frames. Besides, all video sequences
are un-compressed and stored in 4:2:0 YUV color space.

The Comparison Algorithms. In this paper, the proposed algorithm is com-
pared with the transform coefficient-based HEVC steganography [13,14] and
PU-based HEVC steganography [17]. The candidate block selection rule in [13]
is as same as the proposed algorithm in I-frames, and the non-zero coefficients are
selected as cover coefficients as well. As for method [14], the non-zero coefficients
of 8×8 TUs, which have no inter-block distortion drift, are also modified. So, the
embedding capacity is improved. For comparison, all the cover coefficients are
embedded in method [13] and [14]. Due to a large number of PU partition modes
in HEVC videos, the latest PU-based steganography [17] is used for comparison
as well. For method [17], all the cover PU partition modes in the first layer are
embedded and the limited payload in the second layer is set to 0.5 bpc as well.
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(a) original (b) Liu [13]

(c) Chang [14] (d) proposed

Fig. 5. The comparison results of subjective visual quality with different steganogra-
phy.

The Evaluation Indicators. In this paper, we will compare the proposed algo-
rithm with other HEVC steganography in terms of PSNR, embedding capacity,
bit rate increase and steganalysis accuracy. In general, the comparison between
different steganography is carried out with the same embedding capacity. How-
ever, this cannot demonstrate the capacity advantage of the proposed algorithm.
As a result, two indicators, ΔPSNR-NC(ΔPSNR normalized with 100K bit)
and CPF , are used to demonstrate the performance of proposed algorithm in
terms of visual quality degradation and embedding capacity. These two indica-
tors are defined as:

ΔPSNR-NC =
PSNRun-stego − PSNRstego

capacity
× 105(dB/100K bit) (10)

CPF =
capacity

frames
(bit/frame), (11)

where PSNRun-stego and PSNRstego represent the PSNR of the un-stego video
and stego video, capacity represents the embedding capacity, frames represents
the total frame number of the video. It can be observed that the physical meaning
of ΔPSNR-NC and CPF represent the PSNR loss per embedded 100K bit and
embedding capacity in per frame respectively, which are reasonable and realistic.

4.2 Performance of Visual Quality

In this part, the performance of visual quality is measured by subjective visual
quality and objective visual quality. For subjective visual quality, the first I-
frames of the sequence BasketballDrive are displayed to represent the imper-
ceptibility from HVS. Since method [17] embeds messages into P-frames rather
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than I-frames, only method [13] and method [14] are used for comparison. As
for objective visual quality, PSNR and ΔPSNR-NC are used for measuring.

Table 1. The comparison of objective visual quality with method [13,14,17] and the
proposed method.

Video sequence Method ΔPSNR (dB) Capacity(bit) ΔPSNR−NC
(dB/100K bit)

BasketballDrive Liu [13] 0.0647 97116 0.0666

Chang [14] 0.1382 157023 0.0880

He [17] 0.0977 433853 0.0225

proposed 0.0610 656626 0.0093

BQTerrace Liu [13] 0.1544 260777 0.0592

Chang [14] 0.4529 448790 0.1009

He [17] 0.1333 1896985 0.0070

proposed 0.1633 2774924 0.0059

Cactus Liu [13] 0.0839 173410 0.0484

Chang [14] 0.1383 216057 0.0640

He [17] 0.1109 1255098 0.0088

proposed 0.0885 1686885 0.0052

Kimono Liu [13] 0.1246 198840 0.0627

Chang [14] 0.1931 239527 0.0806

He [17] 0.0917 899871 0.0083

proposed 0.1029 1293749 0.0080

ParkScene Liu [13] 0.0394 17787 0.2215

Chang [14] 0.0455 27858 0.1633

He [17] 0.0868 857575 0.0101

proposed 0.1086 104784 0.1036

The comparison results of subjective visual quality are shown in Fig. 5. It
can be seen that the distortion is hardly detectable from HVS. As a result,
the proposed algorithm does not cause a large visual quality degradation in
subjective evaluation.

As for objective visual quality, the results are shown in Table 1, and the
best results are marked in bold. It can be seen from Table 1 that compared
with method [13,14] and [17], the proposed algorithm embeds more messages
while preserving less PSNR loss in most test sequences. Take the BasketballDrive
sequence as example, although the proposed method embeds 559510, 499603 and
222773 bits more messages compared with method [13,14] and [17], the PSNR
loss is 0.0037, 0.0772 and 0.0367 dB less than them. Considering the differ-
ent embedding capacity of each algorithm, we calculate ΔPSNR-NC for them.
In the first four sequences, the ΔPSNR-NC of the proposed method is less
than method [13,14] and [17], which means the proposed method can preserve
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less average visual quality degradation. Nevertheless, the ΔPSNR-NC of the
proposed method is larger than the ΔPSNR-NC of method [17] in the last
sequence. Theoretically, this is because the ParkScene sequence has a flatter
frame with less variation in video motion, resulting in fewer 4 × 4 TUs in P-
frames and reducing the embedding capacity. Moreover, as mentioned in [17], the
stego videos generated by PU-based steganography will not be affected signifi-
cantly. Therefore, the ΔPSNR-NC of method [17] is less than the ΔPSNR-NC
of the proposed method in the ParkScene sequence.

4.3 Performance of Embedding Capacity

In this part, the embedding capacities of each algorithm are compared. Consid-
ering method [13] and [14] extract cover coefficients from I-frames, method [17]
extracts cover PU partition modes from P-frames, while the proposed method
extracts cover coefficients from I-frames and P-frames, so in order to compare
fairly, the indicator CPF is used to measure the average capacity, and the capac-
ity of the proposed method refers to the embedding capacity under the limited
payload. The compared results are shown in Fig. 6.

Fig. 6. The comparison results of dif-
ferent steganography in CPF .

Fig. 7. The comparison results of dif-
ferent steganography in BIR-NC.

As shown in Fig. 6, CPF of method [13] is the lowest, which indicates method
[13] has the smallest embedding capacity among these methods. This is because
method [13] only selects the coefficients of some 4×4 blocks in I-frames as covers,
and in order to cope with distortion drift, the selection rule of candidate blocks
is very strict, which sacrifices a large amount of embedding capacity. Compared
with method [13], method [14] adds the error propagation-free algorithm for
8 × 8 blocks, so the average CPF increases by 1365.30 (bit/frame). As for
method [17], since all the PU partition modes except 2N× 2N are selected as
covers, the CPF of method [17] is larger than method [13] and [14]. When it
comes to the proposed method, the improvement of CPF is significant compared
with method [13] and [14], and in the most sequences, the CPF of the proposed
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Table 2. The classification accuracy results (%) of different steganography.

Steganalysis Liu [13] Chang [14] Proposed

Zhai [19] 50.02 50.06 49.07

Wang [20] 62.89 69.18 55.37

method is larger than method [17]. However, in the ParkScene sequence, the
CPF of method [17] exceeds that of the proposed method. In theory, due to
the flat frame and low texture complexity in the ParkScene sequence, coding
blocks with large size, e.g., 16 × 16 and 32 × 32, are used for compression in I-
frames and P-frames. Therefore, the embedding capacity of method [13,14] and
the proposed is relatively small, i.e., the CPF is relatively small.

In addition, the steganographic influence for coding efficiency is tested as
well, and the indicator BIR-NC (BIR normalized with 100K bit) is used for
measuring the influence of coding efficiency. The indicators BIR and BIR-NC
are defined as:

BIR =
bitstego − bitun-stego

bitun-stego
× 100% (12)

BIR-NC =
BIR

capacity
× 105(%/100K bit), (13)

where bitun-stego and bitstego represent the total coding bits of un-stego video
and stego video, the BIR-NC of each method is shown in Fig. 7. It can be
seen from Fig. 7 that the proposed method has smaller BIR-NC compared with
method [13,14] and [17], so it can be inferred that the proposed algorithm has
less impact on the video coding efficiency when embedding capacity is the same.

4.4 Performance of Anti-steganalysis

In this part, method [19] and [20] are used to analyze the anti-steganalysis per-
formance of each algorithm. Method [19] proposed a universal feature to capture
the steganography traces from multiple feature domain, and method [20] used
the spatial domain variation caused by the distortion compensation method for
analysis, which is transplanted from H.264/AVC detection to HEVC detection
in this paper. In order to compare the performance of anti-steganalysis fairly,
only the transform coefficient-based HEVC steganography [13,14] are used for
comparison.

All sequences are used to generate the dataset, each sequence is divided into
small sub-sequences with 8 frames, and 125 sub-sequences are obtained. LibSVM
toolbox is used to classify the extracted features. The proportion of training set
and testing set is 1:1, all the data are the average results of 100 repetitions after
randomly segmenting dataset. The final results are shown in Table 2.

As for method [19], the classification accuracy of each method is nearly 50%,
which means all three steganographic methods can resist this kind of detec-
tion. It is because method [19] uses the variation of PU partition mode and
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MVs to extract features, however, all three methods do not modify them. As for
method [20], method [13] and [14] modify the transform coefficients in I-frames
heavily, which leaves obvious traces for detection. Nevertheless, the proposed
method regards the coefficients in the same GOP as a cover sequence, and mod-
els the GOP distortion for minimization embedding with STC. So, compared
with method [13] and [14], the modification in I-frames is much fewer, which
diminishes the steganographic traces in I-frames.

5 Conclusion

In this paper, a novel high-capacity adaptive steganography scheme for HEVC
is proposed. First, the visual distortion and GOP distortion are analyzed to
explain the embedding influence of modifying transform coefficients in I-frames
and P-frames, and based on the above analyzation, a novel cost function is
proposed. Next, we explore the modification of non-zero coefficients of 4 × 4
TUs in P-frames, which improves embedding capacity significantly while main-
taining relatively low visual degradation. Last, a new indicator is introduced
to measure the visual degradation under different embedding capacity. Exten-
sive experimental results show that the proposed method outperforms in visual
quality, embedding capacity and anti-steganalysis performance, compared with
the existing transform coefficient-based and PU-based HEVC steganography. In
future work, the non-additive cost or asymmetric cost will be further explored
to improve the performance of video steganography.
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Abstract. In recent years, high quality deepfake face images generated by Gen-
erative Adversarial Networks (GAN) technology have caused serious negative
impacts in many fields. Traditional image forensics methods are unable to deal
with deepfake that relies on powerful artificial intelligence technology. Most of
the emerging deep learning-based deepfake detection methods have the problems
of complex models and weak robustness. In this study, to reduce the number
of network parameters, improve the detection accuracy and solve the problem of
weak robustness of the detection algorithm,we propose a new lightweight network
model SE-ResNet56 to detect fake face images generated by GAN. The proposed
algorithm has high detection accuracy, strong robustness to content-preserving
operations and geometric distortions, and strong generalization ability to different
types of deepfake images generated by the same GAN.

Keywords: Deepfake · GAN · Lightweight network · Strong robustness

1 Introduction

As a product of the artificial intelligence technology, deepfake has emerged and devel-
oped rapidly in recent years. The emergence of deepfake has brought confusion to many
industries, for example, criminals use deepfake to commit economic crimes through
fraud, maliciously tamper video or image content to damage the appearance of public
figures, and so on. Once deepfake technology is abused, its negative impact will be
very serious. How to develop powerful technologies to deal with the challenges caused
by deepfake has become the focus issue that is concerned by academic and industrial
community.

Relying on powerful functions such as GAN [1], deepfake can generate imagerywith
the same distribution as the real one, so that not only human vision cannot distinguish
the authenticity, also, existing detection algorithms are unable to do so. At present, the
main types of face imagery deepfake include entire face synthesis, faceswap, expres-
sion transfer and attribute manipulation, etc. Among them, entire face synthesis is the
most common deep forgery method. It refers to take noise as the input and uses GAN
to generate high-resolution face images that do not exist in real world, as shown in
Fig. 1. In fact, since the emergence of deepfake, scholars have conducted research on
deepfake detection methods, and many excellent detection methods have emerged. The
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early methods are mainly based on the face physiological features and specific forgery
effects introduced by deepfake. These methods have achieved high detection accuracy
on some deepfake datasets. However, with the development of GAN technology, such
methods cannot detect new types of deepfake, as a result, the detection performance is
unsatisfactory.

Fig. 1. Real face and entire face synthesis

In recent years, with the development of deepfake technology, many high quality
deepfake image/video datasets have emerged, which promote the rapid development of
data-driven deepfake detection methods. This type of approach does not rely on any arti-
facts and directly trains the network model on deepfake datasets. Although data-driven
detectionmethods have high detection accuracy, suchmethods have huge parameters and
weak robustness. Therefore, how to construct effective network models that are tailored
to suit the task of deepfake detection has become a research focus in recent years.

In this study, we aim to reduce the number of network parameters, improve the
detection accuracy, and solve the problem of weak robustness of the detection algo-
rithm, and propose a new network model to detect entire face synthesis images. The
main contributions are as follows: (1) we propose a lightweight network model SE-
Resnet56, this model can be used to detect high-resolution deepfake face images. (2) The
proposed algorithm is provided with higher detection accuracy and strong robustness
to against content-preserving manipulations and geometric distortion, and has strong
generalization to different types of deepfake generated by the same GAN.

2 Related Works

In recent years, face images generated by GAN are so realistic that they are indistin-
guishable from the real images. To prevent the adverse effects caused by this technology,
the detection technology against deepfake has become one of the research hotspots in the
field of digital forensics and artificial intelligence. In this section, we discuss and analyze
existing classical detection methods from three aspects, physiological features-based
methods, specific artifact-based methods and data-driven methods.

2.1 Physiological Features Based Deepfake Detection Method

This type of methods are mainly aimed at deepfake videos. Since fake videos gener-
ated by AI cannot completely simulate human physiological performance, the incon-
sistency of physiological features can be used as important evidence for identifying
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deepfake videos. Y. Yang [2] observed that the 3D head posture errors would be intro-
duced inevitably in the process of stitching fake faces into face regions in source video.
The authors used the head posture difference as feature vector to train an SVM classi-
fier to detect deepfake videos. Li [3] extracted the eye sequence of the face image and
input it into the LRCN (Long-term Recurrent Convolutional Network) to obtain the state
probability of the eye being open or closed, and used the state information to identify
the authenticity of the video. Korshunov et al. [4] extracted the inconsistency between
lip movement and speech when people speak in videos, then used feature processing
classifiers and LSTM (Long Short-Term Memory) to detect fake videos. The authors
of the literature [5] believed that human facial expressions and head movements would
show unique patterns during speech, which is called a soft biometric model. They used
Pearson correlation coefficient to measure the similarity of feature vectors, and used
SVM to distinguish the true and false videos. Deepfake detection methods based on
physiological features are all using the imperfection of deepfake technology. With the
development of AI technology, the deepfake technology is becoming more and more
sophisticated, and this type of detection methods is not persistent and universal.

2.2 Specific Artifact Based Deepfake Detection Method

The researchers found that visual deepfake products carry specific artifacts introduced by
GAN.Although human eyes cannot perception these artifacts,machine learningmethods
can expose them.Mo [6] proposed a CNN-based method that detect the specific artifacts
introduced by deepfake via using the residual image after high-pass filter, and achieved
remarkable results.

Nirkin [7] believed that the feature information of themanipulated region in the image
is different from that of the external environment, and take the consistency of two type of
features as the evidence to distinguish deepfake images from real images. Li [8] proposed
a newdeepfake detection evidence: FaceX-ray,which uses the image differences existing
in the mixed boundaries of deepfake face as features to identify the authenticity of the
image.Materm [9] used a series of artifacts such as inconsistent eye colors and inaccurate
facial features, and used the KNN algorithm to classify deepfake images from real
images.Guo [10] proposed an image preprocessingmethodwith residual networkAREN
to deepen the detection of image artifacts. Chen [11] proposed a two-step framework
that contains a mask-based detector and reconstructor. The detection module defines
some criteria for determining anomalies, and then uses them to guide the reconstruction
module to perform a learnable reconstruction process. This method has higher detection
accuracy. The images generated by GAN contain specific GAN fingerprints [12], such
fingerprints can be regard as the effective evidence for deepfake detection. Zhang et al.
[13] proposed a spectrum-based classifier model that can achieve better detection for
deepfake images generated by popular GAN models such as CycleGAN. Wang et al.
[14] proposed a deepfake image detection algorithm based on monitoring the behavior
of neurons. McCloskey [15] found that the images generated by GAN are similar to real
images, but the spectral sensitivity is different from that of the real images. They proved
that this clue is effective evidence for deepfake detection.
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Although above deepfake detection methods are simple and efficient, they are only
suitable for the case where the forged images contain specific GAN fingerprint arti-
facts. With the continuous progress of GAN technology, recent deepfake image gener-
ation models can circumvent such detection models by using fingerprint-free GANs.
Therefore, these methods will be invalid. Moreover, generally, the robustness and
generalization of these methods are not strong.

2.3 Data-Driven Deepfake Detection Method

With the development of deepfake technology, many high-quality deepfake image/video
datasets have emerged, which promote the development of data-driven based deepfake
detection technology. This kind of methods train the neural network as a universal
classifier, and detect deepfake images through feature extraction and classification.

Zhang et al. [16] utilized SURF and bag-of-words model to extract a compact set of
image features and fed them into classifiers such as SVM for detecting face-swapped
images. Do et al. [17] used the fake images generated by GAN to train the classical con-
volutional neural network model VGG-Net to achieve the purpose of distinguishing fake
images from real images. Afchar et al. [18] proposed two network architectures, Meso-4
and MesoInception-4, which showed excellent performance in detecting Face2Face and
deepfake images. Zhou et al. [19] proposed a deepfake detection method that is based on
a two-stream network, in which, authors used tampering artifacts and residual noise as
the features for judging the authenticity of images. Hsu et al. [20] proposed a deepfake
discriminator, in which, authors used a contrastive loss function to search the common
features of images generated by different GANs and detected deepfake images by cas-
cading classifiers. Zhao [21] proposed a network structure based on spatial attention
mechanism, and introduced a new region independence loss to solve the problems such
as network learning difficulties. The above methods have achieved high detection accu-
racy in deepfake datasets. However, the detection efficiency is not satisfactory because
most of network models have huge amount of parameters.

3 The Proposed Method

In this section, we describe the proposed method in detail. The proposed method
including improved residual block, network constructing and deepfake detection.

3.1 Improved Residual Block SE-Res-Block

Considering that the inter-class gapbetweendeepfake images anddigital photos is far less
than that of the image classification tasks of the pattern recognition field, therefore, data-
driven-based deepfake detection method requires that the network model have excellent
feature extraction abilities, so that the subtle and specific features introduced by deepfake
can be extracted. To this end, we improve the resnet18 [22] and design a new network
model SE-Resnet56. Our improvement aims at two aspects.
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(1) To extract high-level semantic features, the depth of the network model must be
concerned. However, for standard CNN, with the deepening of network layers,
some problems such as gradient disappearance and performance degradation will
occur, these problems will cause that network model is increasingly difficult to
train. Simultaneously, the deepening of network layers will lead to a sharp increase
in the number of parameters, which will increase the complexity of the network
model and cause the problemof overfitting. To solve these problems,we improve the
residual structure of resnet18 [22].We introduce a bottleneck structure to establish a
lightweight residual network called Resnet56. The bottleneck structure can reduce
the number of the network parameters without sacrificing the feature extraction
ability of the network model, thus it can accelerate the training process of the
network model.

(2) The deepfake detection task is very different from the image classification task in
the field of pattern recognition. The latter focuses on the difference of the global
features, while the former focuses on the local features of the facial region. To
strengthen the local region attention capability of the network model, we introduce
SE-Net [23] into our network framework to construct a lightweight attention resid-
ual network SE-Resnet56. Our improvement process is shown in Fig. 2. Figure 2(a)

Fig. 2. Improved residual block
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is the residual structure of the original Resnet18. Figure 2(b) is the improved resid-
ual structure via introducing the bottleneck structure. Figure 2(c) is the SE-Resnet56
constructed via introducing the attention module.

The proposed SE-Resnet56 can extract subtle specific features introduced by deep-
fake. This is because the original residual structure (as shown in Fig. 2(a)) pays more
attention to the global feature, however, the global feature does not play the key role in
the detection task of the deepfake since the images generated by GAN have the same
statistical distribution as the camera photos, while the proposed SE-Resnet56 pays more
attention to the local features of the facial region.

We compared the heat map of the network output, as shown in Fig. 3. In Fig. 3, the
first row represents the heat map obtained using the structure of Fig. 2(c), and the second
row represents the heat map obtained using the structure of Fig. 2(b). As can be seen
from Fig. 3, SE-Block pays more attention to the facial features of the face image, this
is the main reason why SE-Resnet56 has higher detection accuracy.

Fig. 3. Face image heat map

3.2 Network Framework

The proposed SE-Resnet56 networkmodel includes 37 convolutional layers and 19 fully
connected layers, and the core network is composed of 9 SE-Res-Blocks. The diagram
of the SE-Resnet56 network model is shown in Fig. 4.

SE-Resnet56 can achieve excellent results on the task of deepfake face image detec-
tion. The detection process is described as follows. For the input image X , X is resized
into 224 × 224, and is input into a 3 × 3 conv layer and 2 × 2 maxpooling layer, and the
feature map XMP is obtained. Then the feature map XMP goes through 9 SE-Res-Blocks
to obtain the intermediate feature map XSRB with shape of 14 × 14 × 512. Then the
average-pooling layer is used to down sample XSRB to get XAVG . Finally, the probability
values that represent whether the testing image is a deepfake image are output by the
fully-connected layer and the softmax layer.



SE-ResNet56: Robust Network Model for Deepfake Detection 43

9 SE-RES-Blocks

Conv
(k=3,s=1)

1CX MPX SRBX AVGX FCX

Max 
pooling
k=2,s=2

SE-Res-Block
Avg 

pooling
(k=2,s=2)

FC

X

Softmax

T

F
Test Image

224×224

Fig. 4. The diagram of the SE-Resnet56 network model

3.3 Deepfake Face Image Detection Algorithm Based on SE-RESNET56

IN this section, we establish a deepfake image detection algorithm based on SE-
RESNET56, which includes three main phases: image preprocessing, deepfake saliency
feature extraction and deepfake detection.

3.3.1 Image Preprocessing

To strengthen the robustness of the algorithm,we adopted geometric enhancement strate-
gies such as random cropping, random horizontal flipping, and random offset in verti-
cal and horizontal directions for the input image. At the same time, to speed up the
convergence speed of the network model, the pixel values of the image are normalized.

3.3.2 Deepfake Saliency Feature Extraction

To extract deepfake saliency feature, the input image is fed into the backbone network.
The core component of the backbone network is the SE-Res-block, as shown in the
Fig. 2(c), it is mainly composed of three parts: residual structure, bottleneck structure
and channel attention module.

Different from the residual structure of Resnet18, we introduce an average-pooling
layer and a 1 × 1 convolutional layer into the short connection to adjust the size of the
feature map so that the output of the short connection can match the subsequent linear
superposition, as shown in Eq. (1). Meanwhile, we introduce a bottleneck structure, in
which, a 1 × 1 convolution layer is used to reduce the dimension of the input feature
map, and the channel number of the feature map is compressed to 1/4. Then we use a 3
× 3 convolutional layer for feature extraction, and finally, we use a 1 × 1 convolutional
layer to output the feature map with the specified number of channels according to the
needs of the network, as shown in Eq. (2).

c(X ) = Cov1×1(Avg(X )) (1)



44 X. Wang et al.

F1(X ) = Cov1×1(Cov3×3(Cov1×1(X ))) (2)

Here, Covk×k(·) represents the convolutional layer with kernal size of k × k, and Avg(·)
represents the average pooling layer. Finally, the output of the residual block in Fig. 2(b)
as shown in Eq. (3). Compared with the original residual structure, as shown in the
Fig. 2(a), the residual structure that is improved by adding average pooling layer on
short connections and introducing a bottleneck structure can greatly reduce the amount
of network parameters without decreasing the detection accuracy of the network model.

H1(X ) = F1(X ) + c(X ) (3)

To further improve the detection accuracy of the network model proposed in this
study, we introduce the SE-block into our model as shown in Fig. 5.

Fig. 5. SE-Block

SE-Block (Squeeze-and-Excitation Block) is a kind of channel attentionmechanism.
In order to recalibrate the features of each channel, SE-Blockmakes use of the dependent
relationship between different channels in the feature map to assign different weights
to each channel. SE-block mainly consists of two stages, the squeeze stage and the
excitation stage. To fully extract the global information of the image, the global average-
pooling process is performed on each channel of the feature map in the squeeze stage,
as shown in Eq. (4).

X1 = SAVG (X) =
C

Contact
a=1

(
1

H × W

W∑

i=1

H∑

j=1

xa(i, j)) (4)

Here,C represents the number of channel of the feature map, xa(i, j) represents the value
at (i, j) of a-th channel, H and W represent the width and height of the feature map,
respectively.
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In the excitation stage, the fully-connected layer is used to obtain the information
dependency between channels, and then reasoned out different weights of the feature
information in each channel. The calculation process is shown in Eq. (5) and Eq. (6).

X2 = σR(f (X1)) (5)

X3 = σS(f (X2)) (6)

f (·) represents the fully connected layer, σR and σs represent the Relu and Sigmoid
activation functions, respectively. By multiplying the weight vector X3 and the original
inputs X channel by channel, the final output Y can be obtained, as shown in Eq. (7).

Y = SE(X ) = X1 ⊗ X3 (7)

Finally, as shown in Fig. 2c, the output of SE-RES-Blcok is H2(X ).

H2(X ) = SE(F1(X )) + c(X ) (8)

Here, c(X ) represents the output of the improved short connection.

3.3.3 Deepfake Detection

The detection stage consists of a fully connected layer and a softmax layer. The function
of the fully-connected layer is to map the distributed features to the sample label space,
and the softmax function maps the output of the fully connected layer to probability
values, the computing process is shown in Eqs. (9) and (10).

Zi = eri , i = 1, 2 (9)

Pi = zi
Z1 + Z2

, i = 1, 2 (10)

Here, ri and Pi represent the output of the fully connected layer and the output of the
softmax layer, respectively.

The loss function is used to measure the gap between the predicted data and the
real data. In the training process of our network model, we use the cross-entropy loss
function as the model training feedback signal. The mathematical expression is shown
in Eq. (11), where yi represent the label values.

L = −
∑2

i=1
yi logPi (11)

4 Experimental Results and Performance Analysis

In this section, we evaluate the performance of the proposed SE-Resnet56 through
experiments. The experiments are carried out on a computer with Win10 system, i7-
6800K CPU GTX 1080Ti GPU, 32.00 GB RAM. The training process and detection
process are implemented on the Keras deep learning platform, using version 1.13. The
hyperparameters used in the experiments are shown in Table 1.
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Table 1. Hyperparameters

Imagesize Channels Learning rate Epoch Batch size Step

224 × 224 3 0.001 100 32 600

4.1 Evaluation Indicators and Dataset Settings

In the experiment, we assume real face images as positive samples and forged face
images as negative samples. TP represents the number of practical positive samples
that are classified as positive samples; TN represents the number of practical negative
samples that are classified as negative samples; FN: represents the number of practical
positive samples that are classified as negative samples; FP represents the number of
practical negative samples that are classified as positive samples. We used the following
evaluation indicators: Accuracy, Precision, Recall, F1-measure and Params. They are
defined as follows:

Accuracy = TP + TN

TP + TN + FN + FP
(12)

Precision = TP

TP + FP
(13)

Recall = TP

TP + FN
(14)

F1 = (1 + β2) · Recall · Precision
β2 · Recall + Precision

, β = 1 (15)

To test the learning ability of the SE-Resnet56 network model, we generate experi-
mental datasets by sampling partial deepfake images from StyleGAN and StyleGAN2
in the deepfake database and CelebA. We randomly sample 4500 fake face images from
StyleGAN2’s star face dataset, Internet celebrity face dataset, and yellow face dataset,
respectively. We randomly sample 4500 fake face images from StyleGAN’s adult face
dataset, randomly sample 4500 fake face images from the CelebA dataset, as well as
the real face dataset corresponding to each category. Then we build our experimental
dataset that contains 45000 images.We construct the training set, test set and validation
set with a ratio of 4:4:1, and there are no cross-used images in each dataset.

4.2 Ablation Experiment

To illustrate the importance of bottleneck structures and attention mechanisms for deep
forgery detection, we perform the ablation experiments. In the experiments, model-
NB represents the network model that remove bottleneck structure from SE-Resnet56,
model-NS represents the network model that remove SE-Block from SE-Resnet56. The
experimental results are shown in Table 2.

As can be seen from Table 2, the introduction of the bottleneck structure in the
residual block reduces the amount of model parameters, which effectively reduces the
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Table 2. The result of the ablation experiment

Accuracy Precision F1-measure Params

Model-NB 0.9670 0.9499 0.9676 8237246

Model-NS 0.9265 0.8662 0.9197 1292962

SE-Resnet56 0.9851 0.9778 0.9853 1382622

computational complexity of the model, and alleviates the risk of overfitting. Further-
more, the introduction of SE-block improves the detection accuracy of the network
model. The reason is that the SE-Block can use the correlation between channels to
extract more detailed features, so as to force our network model to pay more attention
to the local features of the facial region. To visually illustrate that SE-block has a strong
ability to extract detailed features, we visualize the output feature map of the deepfake
image through three residual blocks of SE-Resnet56 and Model-NS, respectively. The
results are shown in Fig. 6.

Fig. 6. Feature layer visualization. (a) The output of model-NS; (b) The output of SE-Resnet56

As can be seen from Fig. 6, the number of the activated feature maps of SE-Resnet56
is more than that of model-NS. This illustrates that the SE-Block can use the correlation
between channels to extract more effective features for deepfake detection, so as to
improve the detection performance of network models.

To further demonstrate the importance of SE-Block for deepfake detection, we com-
pare the visual effect of the same channel feature maps that are extracted by the first
residual block of SE-Resnet56 and model-NS, respectively, as shown in Fig. 7.

As can be seen from Fig. 7(a), the feature maps generated by the model-NS mainly
contain texture and color information rather than content information, and it is difficult
to distinguish the content of the face and the edge from the background. However, the
featuremaps extracted by the SE-Resnet56 clearly show the outline and edge of the facial
regions, and the detailed features of the facial information that are of great significance
for deepfake detection.
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Fig. 7. The visual effect of the feature maps. (a) Feature maps for the 8th, 16th, 24th channels
extracted by the SE-Resnet56, (b) Feature maps for the 8th, 16th, 24th channels extracted by the
model-NS.

4.3 The Performance Analysis

In this section, we train the SE-Resnet56 network model by using mini-batch gradient
descent and optimize the network by using the Adam optimizer. Figure 8 shows the loss
and accuracy on the training set and validation set during the training process. At the
same time, in the case that the detection accuracy does not increase after 15 consecutive
epochs in the validation set, we drop the learning rate to one-tenth of the original learning
rate.

Ideally, the loss value of the detectionmodel should decrease slowlywith the increase
of the number of training epochs. As can be seen from the Fig. 8, the loss value fluctuates
greatly at the initial stage of model training, however, with the increase of epochs, the
loss value fluctuates within a small range in both training set and validation set. Also,
the detection accuracy gradually increases on both the training set and validation set.
Additionally, we adopt the “Save best only” strategy in model training to keep the best
performance during the iteration process, and avoid the influence of loss shock on model
training.

Fig. 8. The loss and accuracy on the training dataset and validation dataset during the training
process, (a) The detection accuracy, (b) The loss value

We compare the detection performance of the SE-Resnet56 with other algorithms,
the results are shown in the Table 3.

As can be seen from Table 3, Accuracy, Recall, F1 and AUC of the proposed SE-
Resnet56 are all superior to the comparative models. This means that the proposed
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Table 3. The comparison of the detection performance

Accuracy Recall F1-measure AUC Params

Meso4 [18] 0.7157 0.4350 0.6047 0.9702 24250

Inception [24] 0.9344 0.9263 0.9204 0.9901 6739730

Resnet-18 [22] 0.9667 0.9905 0.9675 0.9964 12568194

Resnet-50 [22] 0.9125 0.9815 0.9179 0.9839 23565250

SE-Resnet56 0.9851 0.9925 0.9853 0.9987 1382622

SE-Resnet56 is provided with excellent performance for deepfake detection. Moreover,
the network model is lightweight, and the number of parameters is relatively small.
Although the parameter quantity of our model is slightly more than that of the Meso4,
the detection accuracy is improved more than 25% over the Meso4 model. The index
value is significantly reduced, down by an order of magnitude.

To further analyze the reason why our model is superior to Meso4, we visualize the
class activation map of Meso4 versus SE-Resnet56, as shown in Fig. 9. In Fig. 9, the
first row represents the class activation heatmap of SE-Resnet56, and the second row
represents the class activation heatmap of Meso4.

Fig. 9. Heatmap of Meso4 and SE-RESNET56 models

It can be seen from Fig. 9 that for deepfake face images, Meso4 cannot extract high-
level semantic features, such as facial features, while the SE-Resnet56model customized
for deepfake detection tasks has a strong ability to extract the detailed information of
the facial features that are very beneficial for deepfake detection.

4.4 Robustness Analysis

Robustness is an important indicator for evaluating the performance of a detection algo-
rithm. To test the robustness of the proposed model, we perform content-preserving
manipulations such as adding salt-pepper noise (noise factor = 0.0005), gamma correc-
tion and Gaussian blurring on the images in the test set, and use ResNet18, Inception
and SE-Resnet56 to detect these manipulated images. The test results of the detection
accuracy are shown in Table 4.
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Table 4. The detection accuracy under gamma correction, Gaussian blurring and histogram
equalization

Operation No-ops GB GC SP-Noise HE

Resnet18 [22] 0.9667 0.9414 0.9278 0.9380 0.9337

Inception [24] 0.9344 0.8920 0.9022 0.9177 0.8940

Resnet50 [22] 0.9125 0.8937 0.9003 0.8763 0.8874

SE-Resnet56 0.9850 0.9736 0.9682 0.9774 0.9652

In the experiments shown in Table 4, the images in test set are manipulated by Gaus-
sian Blur (GB), Gamma Correction (GC), Salt-Pepper noise (SP-Noise) and Histogram
Equalization (HE), respectively. It can be seen from the experimental results that the
detection accuracy of the proposed model is satisfactory. The detection performance
of the proposed method consistently outperforms that of the contrastive models. This
indicates that SE-Resnet56 is provided with satisfactory robustness.

4.5 Generalization Analysis

To investigate the generalization of theSE-Resnet56, our test datasets uses images (Entire
face synthesis, Efs) generated by StyleGAN, StyleGAN2 and PG-GAN, and images
(Attribute manipulation, Amp) generated by StyleGAN. The test results are shown in
Table 5.

Table 5. Model generalization

Testdata StyleGAN PGGAN StyleGAN2

Efs Amp Efs Efs

Accuracy 0.9832 0.9795 0.9845 0.9865

Recall 0.9930 0.9943 0.9925 0.9885

Precision 0.9803 0.9793 0.9836 0.9855

Here, when we test with the new data generated by the original GAN (The training
set include forged face images generated by this kind of GAN), the detection accuracy
of SE-Resnet56 does not drop significantly, and for another deepfake type (Attribute
manipulation), the detection performance is still satisfactory.

5 Conclusion

In this study, we introduce SE-Block and bottleneck structure into resnet18 and present
a lightweight network model SE-ResNet56. The proposed method can be used to detect
high-resolution deepfake face images. Compared with other advanced network models,
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SE-ResNet56 shows better detection performance and stronger robustness for deepfake
images, and it can also show excellent detection performance for another deepfake type
(attribute manipulation) generated by the same GAN.
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Abstract. Voice conversion (VC) is an important voice forgery method
that poses a serious threat to personal privacy protection, especially
with remarkable achievements in timbre modification. To support foren-
sic research on converted speech and further enrich the sources of fake
speech, it is imperative to investigate new robust VC methods. VC is also
considered a typical style transfer task, where style refers to speaker iden-
tity, suggesting that achieving sufficient feature decoupling is the key to
obtaining robust performance. However, mainstream decoupling methods
based on information-constrained bottlenecks still fail to obtain robust
content-style trade-offs. In this paper, we propose a learnable similarity-
guided mask (LSGM) algorithm to address the robustness problem. First,
to make feature decoupling independent of specific language constructs
and more applicable to diverse content, LSGM performs inter-frame fea-
ture compression only relying on the similarity of adjacent frames instead
of complex inter-frame content correlation. Second, we implement fea-
ture compression by masking instead of dimensionality reduction, so no
additional modules are needed to convey the speech frame length infor-
mation. Moreover, we propose MAE-VC by using LSGM, which is an
end-to-end masked autoencoder (MAE) with self-supervised represen-
tation learning. Experimental results indicate that MAE-VC performs
comparable to state-of-the-art methods on speaker similarity and signif-
icantly improves the performance on content consistency.

Keywords: Voice conversion · Feature decoupling · Style transfer ·
Learnable similarity-guided mask · Masked autoencoder

1 Introduction

Voice conversion (VC) is a style transfer technology that converts the speaker
style of the source speech to that of the target speech while maintaining the con-
sistency of the content information. As an important speech forgery technique,
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common VC methods are not as advanced as text-to-speech (TTS) [22] or voice
clone [12], but the potential challenges to social security cannot be ignored.
Unfortunately, there are few detection methods dedicated to converted speech.
To support the development of corresponding detection techniques, research on
robust VC methods is imperative.

With the remarkable development of deep feature representation, voice con-
version patterns have also undergone profound changes. To meet the training
needs of deep learning, the database to support research has gradually shifted
from a small amount of parallel corpus [25] to abundant non-parallel corpus [10],
thereby, related research hotspots have become more colorful and interesting:
from one-shot [14] to zero-shot [21]; from a single language to cross languages,
etc. From an information-theoretic perspective, speech can be divided into two
independent and complementary parts: speaker-dependent information (SDI)
and speaker-independent information (SII). The common framework is to build
an encoder-decoder model to decouple speech into SDI and SII via a speaker
encoder and a content encoder, respectively, and then both are coupled into the
decoder to predict the transformed acoustic features. To transfer arbitrary voice
styles, significant efforts have been devoted to feature disentanglement. How-
ever, how to achieve sufficient decoupling of SDI and SII remains a challenge for
robust conversion performance.

In terms of speech feature disentanglement, a common yet effective approach
is to use information-constrained bottlenecks for compression coding. Compared
with images, the 2D mel-spectrogram of speech used for conversion has a unique
physical meaning, where the horizontal axis represents the frame dimension
and the vertical axis represents the frequency dimension. According to whether
the frame dimension is compressed, feature decoupling can be divided into two
categories: utterance-level decoupling and frame-level decoupling. However, for
utterance-level decoupling, frame-dimensional compression relies on inter-frame
content correlation, which makes feature representation limited to specific lan-
guage structures and cannot adapt to diverse content. In terms of frame-level
decoupling, although it relies less on content information, it only compresses in
the single frequency dimension, which is not flexible enough in feature decou-
pling. In addition, frame-level methods struggle to deal with redundant frames,
such as noisy and silent segments, ultimately leading to undesired performance.
Therefore, how to realize the complementarity of the two schemes becomes the
focus of feature decoupling research.

In this paper, we propose a learnable similarity-guided mask (LSGM) algo-
rithm to solve the fundamental robustness-flexibility dilemma. LSGM is inspired
by masked autoencoder (MAE) [7], which shows that for natural signals, masked
points can be inferred from surrounding similar points. Compared with common
feature decoupling methods, LSGM employs a learnable network to measure
the similarity of adjacent frames and then masks the most redundant frames.
LSGM is considered a self-referential strategy without considering inter-frame
content dependencies. Due to the short-term stationarity of speech, LSGM can
significantly improve the efficiency of inter-frame compression by masking repeti-
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tive and interfering information. Furthermore, compared with artificial similarity
threshold division, we use the frame mask ratio to control the number of frames
to be masked, avoiding over-masking in extreme conditions. In addition, the
masking strategy does not reduce the number of frames, which means that no
additional module is needed to save the speech duration information. Based on
LSGM, we further propose MAE-VC, an end-to-end self-supervised model based
on masked autoencoder (MAE). Compared to the random masks in MAE, the
model with LSGM takes full advantage of speech intrinsic characteristics and per-
forms a more effective masking strategy. To the best of our knowledge, MAE-VC
is the first method to apply learnable similarity-guided masks to speech feature
decoupling in the VC domain. Results indicate the method outperforms state-
of-the-art methods on content consistency while performing closely towards the
best on speaker similarity.

2 Related Work

In the early days, due to the limitation of feature representation capability,
research on VC is mainly based on a small amount of parallel corpus. Tradi-
tional statistical methods such as Gaussian mixture models (GMM) [26], fre-
quency warping [5], and Dynamic Kernel Partial Least Squares (DKPLS) [8]
are introduced to establish phonetic unit mappings between source and target
speakers. There are also some non-parametric techniques such as vector quanti-
zation [30] and non-negative matrix factorization (NMF) [19]. With the devel-
opment of deep learning, speech representation technology has made significant
progress. To support the training of large-scale neural networks, the database has
gradually shifted from parallel corpus to rich and readily available non-parallel
data. According to the generative model, these methods can be divided into two
categories: encoder-decoder-based models and generative adversarial network-
based (GAN-based) models. The GAN-based approaches are inspired by the
image style transfer framework [3,32], and then further develop the CycleGAN-
VC series [15] and STARGAN-VC series [14]. In particular, VoiceMixer [17] can
effectively decompose and transfer speech styles through similarity-based infor-
mation bottlenecks and adversarial feedback.

Feature Decoupling. In terms of encoder-decoder-based models, the key to
achieving robust performance lies in achieving sufficient feature decoupling.
Based on variational autoencoders (VAE) [16], VAE-VC [9] employs a well-
designed encoder to learn speaker-independent representations and a specifi-
cal decoder to reconstruct the target style. ACVAE-VC [13] proposes an auxil-
iary VAE-based classifier VAE to perform many-to-many VC, which facilitates
the correct prediction of attribute classes of converted speeches. Inspired by
AdaIN [11], ADAINVC [4] first applies instance normalization (IN) [27] into the
VC domain, which suggests that cascaded INs in the content encoder can effec-
tively improve the decoupling of content information. MediumVC [6] splits the
conversion into a two-step process, where the source speech is first transferred
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Fig. 1. Four feature decoupling methods based on information-constrained bottlenecks.
Matches “r”, “e” and “d” for frame with different content. The arc represents the frame
range within a single process. The arrow points to single processing results.

into a preset middleman speech and then the middle speech combines the tar-
get speaker style into converted speech. Moreover, AutoVC [21] introduces the
speaker verification system (SV) [29] to characterize speaker identities. Frag-
mentVC [18] introduces Wav2Vec2 [1] to represent content information, and
uses attention mechanism to model the mapping of mel-spectrums. Based on
Unet [23], AGAINVC [2] applies activation guidance and adaptive instance nor-
malization (AGAIN) to improve content-style trade-offs and appropriate activa-
tions are used as informative bottlenecks for content embeddings.

3 Backgroud

3.1 Feature Decoupling for SII

For time-invariant SDI (style), it is relatively stable to decouple because it is
considered to be evenly distributed across frames. Therefore, in this section,
present mainstream decoupling methods for SII are investigated, which are also
the core of content encoders.

These methods can be further divided into 4 categories: ratio-based decou-
pling [4], similarity-based decoupling [17], frame-level decoupling [2,6], and
learnable-based decoupling [17]. We use X to represent the input feature map
with the frequency dimension D and frame dimension L. As shown in Fig. 1,
the first two belong to utterance-level decoupling, compressing X ∈ R

D×L into
Xc ∈ R

Dc×Lc , where Lc < L. For ratio-based decoupling, where Lc = L ∗ α and
α is the preset ratio, inter-frame semantic associations are deeply explored and
compressed. However, an ideal robust model should be content-agnostic, which
means over-reliance on semantics will weaken the adaptability of the decou-
pling modules to diverse content. Instead of it, the similarity-based method,
employing a self-referential decoupling strategy, only focus on inter-frame simi-
larity rather than semantic information, where consecutive redundant or near-
duplicate frames are aggregated into a single frame. However, the similarity
division threshold based on traditional statistical experience makes Lc unpre-
dictable and difficult to adapt to changing speech. Often too small a threshold
can lead to over-compression, and a too large one will greatly reduce the effi-
ciency of decoupling. Also, since Lc is uncontrollable, an extra module is needed
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Fig. 2. The workflow of LSGM. In the similarity measurement stage, the similarity
matrix Xd of adjacent frames is calculated. During the quantization stage, Xd is con-
verted to a mask vector Xq containing only 0s and 1s. In the masking stage, input
frames corresponding to 0 values in Xq are masked.

to deliver the number of frames. In contrast, the frame-level method accom-
plishes the independent decoupling of each frame by sharing parameter units
without considering inter-frame relationships, while maintaining speech dura-
tion (Lc = L). However, the method relies only on inter-frequency compression,
which is inflexible for dealing with noise and silent segments, preventing the
realization of sufficient feature decoupling.

Is it possible to combine the advantages of frame-level decoupling and
utterance-level decoupling to be independent of content and flexible to handle
redundant information? Based on the above analysis, we propose the learnable-
based decoupling, also called the learnable similarity-guided mask (LSGM)
method. There are three advantages. First, similar to the similarity-based
method [17], LSGM does not rely on content correlation but performs inter-
frame compression based on the similarity of limited adjacent frames. Second,
the method is the first to use a learnable neural network to measure inter-frame
similarity instead of traditional statistical methods such as cosine similarity.
Third, inter-frame compression is achieved by masking redundant frames rather
than reducing the number of frames, thus maintaining the consistency of speech
duration.

4 Method

4.1 LSGM

To improve the efficiency of feature compression, LSGM is used to mask redun-
dant and noisy information. As shown in Fig. 2, the workflow of LSGM can
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be divided into 3 steps: similarity measurement, quantization, and masking.
X ∈ R

D×L is used as input. In the similarity measurement stage, to measure
more accurately, we focus on computing the similarity of limited adjacent frames,
instead of dealing with dynamic consecutive frames like VoiceMixer [17]. Specif-
ically, X is first cyclically offset by one frame, forming X1. Then X and X1 are
respectively fed into the shared parameter encoder (En) to perform compression
on the frequency dimension and output embeddings Xh,X1

h ∈ R
1×L. Since sim-

ilar features produce similar representations, the matrix of
∣
∣Xh − X1

h

∣
∣ activated

by Sigmoid(·) (γ(·)) is used to represent the similarity relationship, where the
smaller the value, the greater the similarity. In the quantization stage, the mask
rate θ is used to control the proportion of masked frames. In practice, θ is a
percentile, which means that when θ = 30, the minimum value of the first 30%
of Xd will be set to 0, and the others will be set to 1. In the masking stage, the
corresponding frames in X are masked by performing the multiplication of X
and masking matrix Xq. We use Qu for the quantization operation. The main
three-stage process can be described as follows.

Xd = γ(
∣
∣En(X) − En(X1)

∣
∣) (1)

Xq = Qu(Xd, θ) (2)
Xm = X ∗ Xq (3)

Backward Propagation of LSGM. To make LSGM learnable, we must
obtain the gradients of the weights that yield Xd. However, as the quantization
operation (Qu) is non-differentiable and prevents the propagation of gradients,
the relevant parameters cannot be optimized. Therefore, the approximate gradi-
ent of Xd should be designed in an alternative way, where forward and backward
propagation are described in detail.

In forward propagation, quantization is denoted as Eq. (2), where Xd ∈ [0, 1];
θ is a constant, Xq contains only 0 and 1. For optimization, we first introduce X̂q

as the substitution for Xq. It can be obtained by Eq. (4), where M(·) represents
the MinMax normalization function that scales the value to [0, 1], and � repre-
sents for element-wise multiplication. Due to Xq ∈ [0, 1], after the processing of
Eq. (4), the high value in X̂q will be biased towards 1 and the low value will be
close to 0, making X̂q close to Xq.

X̂q = M(
1
2
Xd � Xd) (4)

In backward propagation, as M(·) does not affect the magnitude relationship
of the values, the partial derivative of Xq can be approximated by Eq. (5).
We use ∇·L to denote the tensor’s gradient with respect to the loss function.
Equation (6) is exactly the backpropagation approximation of Eq. (2), which is
more conducive to optimization.

∂X̂q

∂Xd
= Xd (5)

∇Xd
L = ∇Xq

L � Xd (6)
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Fig. 3. The architecture of MAE-VC. Com, IB, and De follow the basic architecture
of Basic Block except that the channel (frequency) dimension and the number of com-
ponents are different. The processing of μt and σt by Linear are simplified in (c). WN
in (d) means weight normalization.

4.2 MAE-VC

In this section, we propose MAE-VC applying LSGM to transformation practice.
The architecture shown in Fig. 3 consists of a shared encoder (Com), a speaker
encoder (SE), N cascaded units (CUs), and a decoder (De), where CU is com-
prised of an information bottleneck (IB), an LSGM and a feature fusion (Fu)
module. There are 3 main improvements compared to other VC methods. First,
LSGM is used for robust feature decoupling. Second, CU is used to enhance
speaker style injection instead of the common explicit content encoder. Third,
inter-frame feature statistics are fed forward by the feature-statistic connection
(FSC, dashed line in Fig. 3) to supplement inter-frame relative position informa-
tion.

SE. SE is derived from ADAINVC [4] and consists of cascaded Conv1ds for
frame-level decoupling and AvgPool1ds for inter-frame compression. It accepts
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mel-spectrogram(R80×L) to generate the embedding R
256×1, which is then

divided to represent frequency-wise feature statistics (μt,σt ∈ R
128×1).

CU. CU is employed for time-variant content decoupling, which mainly under-
takes 3 functions. First, IB compresses the latent feature map A ∈ R

D×L into
Ah ∈ R

bot×L for frame-level decoupling, where bot ≤ D(bot represents bot-
tleneck dimension). Second, Ah is fed into LSGM to generate masked Xm by
masking adjacent similar frames while maintaining frame number consistency. θ
is used to control the mask ratio. To make up for the loss of relative position
information between frames caused by masking, the inter-frame feature statistics
μs, σs ∈ R

1×L are computed and fed forward by FSC. According to statistical
rules, μs and σs are denoted as Eq. (7). Instead of it, we use the Linear modules
to learn the statistics for smoother optimization, as shown by the dotted line in
Fig. 3(c).

μs(A) =
1
D

D∑

d=1

AdL

σs(A) =

√
√
√
√ 1

D

D∑

d=1

(AdL − μs(A))2 + ε

(7)

Third, Fu is used for feature coupling. Specifically, adaptive instance normaliza-
tion (AdaIN) is used to align the frequency-wise mean and standard deviation
(std) of Ah to match target speaker embeddings μt and σt. Later, to maintain
the inter-frame distribution(relative position information), the output of AdaIN
is normalized by TIN, and then multiplied by σs and shifted by μs. TIN rep-
resents transpose instance normalization. y is the generic parameter. The main
process can be denoted as Eq. (8).

TIN(y) = IN(yT )T

IN (Ah) =
Ah − μs (Ah)

σs (Ah)
AdaIN(Ah, μt, σt) = IN(Ah) ∗ σt + μt

Fu(Ah, μt, σt, μs, σs) = TIN(AdaIN(Ah, μt, σt)) ∗ σT
s + μT

s

(8)

Training and Inferring. Due to the lack of parallel data, MAE-VC performs
the self-supervised reconstruction task for training, where source speech is the
same as target speech(Xs = Xt), shown in Eq. (9). F represents the VC function.
Only L1 loss is required. In inferring phase, Xs �= Xt. Converted speech X̂c is
generated as Eq. (11).

X̂s = F(Xs,Xs) (9)

Lrec = E

∥
∥
∥Xs − X̂s

∥
∥
∥
1

(10)

X̂c = F(Xs,Xt) (11)
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5 Experiments and Results

5.1 Experiment Conditions

Preprocess. For each utterance, the silent segments at the beginning and end
are trimmed. The waveform samples are uniformly scaled to 0∼0.95 to normalize
volume. We extract 80-bin mel-spectrograms via STFT with FFT, window size,
and hop size set to 1024, 1024, and 256. The mel-spectrograms are normalized
to 0∼1. The segments with length L = 128 are randomly selected for training.

Implementation Details. The training is performed on the VCTK corpus [28]
with 58 speakers. The batch size is set to 100. We use AdamW for optimiza-
tion, where β1 = 0.8, β2 = 0.99, and weight decay λ = 0.00015. CosineAn-
nealingLR with initial learning rate (lr = 0.0001) and learning rate decay fac-
tor (lr d = 0.995) is used to update the learning rate. Each model is trained
for 400k steps. For inference, models are evaluated on four datasets: VCTK,
VCC2020 [31], LibriSpeech [20], and Aishell-3 [24], each providing 1000 source-
target pairs, except 280 for VCC2020. Aishell-3 is a Chinese dataset for cross-
lingual evaluation. We use Base Nc botb θr to represent the MAE-VC series
where N represents cascaded number, bot stands for bottleneck dimension and
θ represents mask ratio. The hidden dimension in CU is uniformly set to 36.
Further details may be found in our implementation code:1.

5.2 Metrics

Object Metrics. 1) Speaker similarity accuracy(SAC). To evaluate the style
similarity of the converted speech, we introduce the speaker verification system
Dvector2 to measure the speaker consistency between target speeches and con-
verted speeches. SAC can be described as Eq. (12), where Np stands for the
total number of sample pairs and A represents the number of measured samples
belonging to the same timbre.

SAC =
A

Np
(12)

2) Word error rate (WER). To measure content consistency, two automatic
speech recognition systems (wav2vec23 [1] for English; ASRT4 for Chinese) are
used to calculate WER based on the transcribed texts from source speeches
and converted speeches. WER can be described as Eq. (13). We use Ts and Tc

to denote the transcribe text from source speech and converted speech respec-
tively. Ns represents the total number of words in Ts. When converting Tc to

1 https://github.com/BrightGu/MAE-VC.
2 https://github.com/yistLin/dvector.
3 https://huggingface.co/docs/transformers/model doc/wav2vec2.
4 https://github.com/nl8590687/ASRT SpeechRecognition.

https://github.com/BrightGu/MAE-VC
https://github.com/yistLin/dvector
https://huggingface.co/docs/transformers/model_doc/wav2vec2
https://github.com/nl8590687/ASRT_SpeechRecognition
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Ts, S, D and I represent the number of substitutions, deletions and insertions
respectively.

WER =
S + D + I

Ns
(13)

Subject Metrics. The mean opinion score(MOS) test is performed on natu-
ralness and similarity. For each dataset, the converted speeches are divided into
4 groups: F2F, F2M, M2F, and M2M(F for female and M for male, e.g., F2M
represents female voice is converted to male voice). The samples are evaluated by
12 raters who are asked to assign a score of 1 5. The higher the score, the better
the speaker similarity and naturalness. Statistical results are reported with 95%
confidence intervals(CI). Our audio samples are available on the demo page5.

5.3 Results and Discussions

Evaluation on Mask Ratio and FSC. The effects of mask ratio θ and FSC
are investigated. The experiments are conducted on Base 4c 16b θr with θ =
0, 30, 50, 70, 90, applying FSC or not. As shown in Fig. 4, MAE-VC is robust to
multiple English datasets and maintains high style similarity even on the Chinese
dataset (Aishell-3). It can be inferred that adaptation to multiple datasets stems
from self-supervised representation learning and robust feature decoupling in
MAE-VC.

In terms of θ, the impacts of θ on four datasets have maintained a consistent
trend. Compared with θ = 0, θ = 30 can significantly improve the performance
on style consistency with high SAC, which suggests that proper masking does
help to remove source style information and extract robust content informa-
tion. It can be further considered that LSGM effectively compresses redundant
information between frames. However, as θ increases, the SAC exhibits a steady
state, while the WER of the model without FSC consistently increases. In partic-
ular, the WER on Aishell-3 (Fig. 4(d)) even exceeds 1, which happens when the
model performs poorly that the number of transcribed words exceeds the num-
ber of source words. The continued increase in WER illustrates that excessive
compression caused by growing θ corrupts content information.

In fact, similarity-based masks can damage relative position information
between frames, such as prosodic information. To compensate for the loss, the
inter-frame statistical features are fed forward through FSC, which effectively
reconstructs the inter-frame frequency energy distribution. Especially when
θ = 90, FSC reduces WER by about 50% on Aishell-3 without even affect-
ing SAC. In conclusion, the combination of LSGM and FSC is pretty beneficial
to the content-style trade-offs.

Evaluation on Bottleneck. The influence of bot in IB under the masking con-
dition is investigated. Experiments are conducted on Base 4c botb 50r, where
5 https://brightgu.github.io/MAE-VC/.

https://brightgu.github.io/MAE-VC/
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Fig. 4. Evaluations on four datasets using different mask rates, employing FSC or not.
The histogram represents WER (right), and the line chart represents SAC (left).

bot = 2, 4, 8, 16, 36. The results in Fig. 5 indicate that bot = 8 almost achieves
the highest SAC, although WER lags behind. In contrast, the widest bot = 36
achieves the best WER. However, the fluctuation of the metrics is almost less
than 5% for each dataset, even though bot is reduced by 18 times from 36 to 2.
Compared with frame-level methods more sensitive to bot (the performance of
AGAINVC [2] can be significantly affected when bot changed from 4 to 3), MAE-
VC is highly adaptable to bot. The adaptation may originate from 2 aspects.
First, since speech is a short-term stationary signal, the frequency energy distri-
bution in a single frame has a unique periodic pattern that resonant frequencies
are mostly derived from the fundamental frequency. Regardless of inter-frame
compression, for each frame, the close inter-frequency correlation means redun-
dant high-dimensional information can be compressed into a low-dimensional
representation through a narrow bottleneck without information loss. There-
fore, in the case of FSC, bot = 2 is highly likely to be acceptable. Second, we
can infer that for content decoupling, the effect of inter-frame compression is
more significant than that of inter-frequency compression. As the time-invariant
style information in the source speech is important redundant information, the
LSGM-based inter-frame compression method can more effectively remove the
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Fig. 5. Performance of MAE-VC with
different bottlenecks.
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Fig. 6. Performance of MAE-VC with dif-
ferent cascaded number.

Table 1. Objective evaluation results compared with other methods.

Methods SAC WER

VCTK VCC LibriSpeech Aishell-3 VCTK VCC LibriSpeech Aishell-3

ADAINVC (9.04M) 0.972 0.996 0.966 0.925 0.717 0.497 0.568 0.874

AGAINVC (7.93M) 0.878 0.865 0.828 0.478 0.551 0.376 0.344 0.769

MediumVC (26.41M) 0.976 0.946 0.876 0.698 0.535 0.626 0.578 0.816

FragmentVC (48.01M) 0.958 0.935 0.902 0.874 0.624 0.641 0.671 0.845

MAE-VC (7.94M) 0.985 0.975 0.977 0.904 0.365 0.327 0.308 0.584

source style information even without additional inter-frequency compression.
For example, ADAINVC [4] achieves competitive style consistency with 16x
inter-frame compression and only 4x inter-frequency compression.

Evaluation on Cascaded Number. We use Base Nc 16b 50r to conduct the
evaluation, where N = 1, 2, 4, 6, 8, and the parameters are 6.68–8.37M. Results
in Fig. 6 show that when N ≤ 4, SAC grows with increasing N , meanwhile
WER also increases gradually. It suggests that increasing CU is beneficial to the
injection of target style information, though damages some content information.
When N ≥ 4, the performances tend to be stable, which suggests that MAE-
VC based on LSGM does not suffer from over-compression caused by excessive
cascaded processing. It can be inferred that when N is small, the similarity-
based masking strategy can effectively remove redundant information, and when
N is large, it can also dynamically protect the core content information from
being destroyed. Furthermore, we note that the performance of the models is
not significantly correlated with the number of parameters in the case of similar
structures, which also motivates our future exploration of lightweight models.

Compared with Other Methods. We adopt base 6c 16b 50r to compare
with the present four models: ADAINVC [4], AGAINVC [2], MediumVC [6]
and FragmentVC [18]. Table 1 and Table 2 show the objective and subjective
results on four datasets, respectively. ADAINVC is a VAE-based model, which



Voice Conversion Using Learnable Similarity-Guided Masked Autoencoder 65

Table 2. Subjective evaluation results compared with other methods. MOS stands for
the metrics on naturalness and SMOS for style similarity. ± represents the fluctuation
of the value with 95% confidence intervals.

Methods SMOS MOS

VCTK VCC LibriSpeech Aishell-3 VCTK VCC LibriSpeech Aishell-3

ADAINVC 3.57± 0.03 3.58± 0.03 3.52± 0.02 3.33± 0.02 3.47± 0.03 3.46± 0.02 3.47± 0.03 2.97± 0.03

AGAINVC 3.40± 0.02 3.52± 0.03 3.38± 0.03 3.11± 0.03 3.52± 0.02 3.54± 0.03 3.51± 0.04 3.15± 0.03

MediumVC 3.54± 0.02 3.57± 0.02 3.47± 0.03 3.27± 0.03 3.51± 0.03 3.53± 0.03 3.41± 0.03 3.12± 0.02

FragmentVC 3.46± 0.03 3.54± 0.03 3.45± 0.03 3.24± 0.03 3.46± 0.04 3.42± 0.03 3.40± 0.03 2.85± 0.03

MAE-VC 3.71±0.03 3.61±0.03 3.56±0.03 3.42±0.04 3.64±0.04 3.62±0.02 3.54±0.03 3.30±0.03

adopts a ratio-based method for content decoupling, where the frame dimen-
sion is compressed 16 times and the frequency dimension is compressed 4 times.
The high SAC and SMOS indicate ADAINVC based on ratio-based decoupling
achieves excellent style expression. However, competitive style consistency may
be achieved by sacrificing content consistency. Likewise, MAE-VC uses a sim-
ilar compression ratio, masking half of the frames each time in four successive
compressions. In contrast, MAE-VC achieves close style consistency and signifi-
cantly improves content consistency. AGAINVC is an Unet-based model, which
employs the frame-level decoupling (bot = 4). Compared with MAE-VC and
ADAINVC, results show that although frame-level decoupling is advanced in
preserving content, it is not robust or flexible in removing source style informa-
tion. It can be inferred for content decoupling, the frame-level method is indeed
not as efficient as the utterance-level method. MediumVC adopts pre-trained
Dvector to represent speaker embeddings, while FragmentVC uses pre-trained
Wav2Vec2 to represent content structures. However, both fail to achieve compet-
itive content-style trade-offs. In conclusion, MAE-VC uses LSGM to process the
inter-frame redundant information to obtain a competitive style expression and
introduces FSC to compensate for the disordered inter-frame statistical features
caused by the mask, achieving significant content-style trade-offs.

6 Conclusion

In this work, we deeply explore and analyze the strengths and weaknesses of
feature decoupling methods in common VC methods. On this basis, we propose
LSGM, which is considered a self-referential method that measures the similarity
between adjacent frames through neural networks and removes redundant infor-
mation between frames by masking similar frames. MAE-VC is designed based
on LSGM, where FSC is further introduced to compensate for the disordered
inter-frame relative position information. The superiority of LSGM prompts us
to rethink the kernel of feature decoupling that robust performance should come
from the in-depth exploration of intrinsic correlations of speech features, rather
than unexplained deep features. Furthermore, we find that robust performance
is not parameter-sensitive, but more structure-dependent. In future work, we
will continue to explore lightweight methods to facilitate the application of VC.
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Abstract. In recent years, the rapid development of Deepfake has
aroused public concerns. Existing Deepfake detection methods mainly
focus on improving the accuracy. However, when real-world victims
require additional interpretable results to refute, the accuracy of these
methods is certainly insufficient. To mitigate this issue, we delve into
forgery traces and propose a novel framework, named Find-X, that
presents additional visual information as an explanation of the results.
Specifically, we design a new module named Separation Potential Incon-
sistency (SPI) which aims to visually explain the forgery traces of fake
videos. Find-x detection of Deepfake consists of three stages: (1) A
frequency-aware module and a spatial-aware module to enhance the
features. (2) A multi-scale feature extraction module to extract richer
features. (3) A classification module and a SPI module to output the
visual explanations. Our method outperforms state-of-the-art competi-
tors on three popular benchmark datasets: FaceForensics++, Celeb-DF,
and DeepFakeDetection. In addition, extensive visualization experiments
on FaceForensics++ demonstrate that SPI can effectively separate the
potentially inconsistent features of videos generated by five different
Deepfake methods.

Keywords: Deepfake detection · Visual explanations · Interpretability
study

1 Introduction

Since Deepfake has become a popular forgery generation tool, a large number of
malicious fake videos have caused great loss of personal reputation and property.
As the quality of generated Deepfake videos improves, the difficulty of Deepfake
detection increases [9,14,31,38]. The focus of the research has been changed
from the improvement of accuracy to the improvement of detection robustness
[3,17,34,35,39].

Currently, most of the research focuses on improving the generality on
unknown datasets. However, although these methods improve the robustness
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Fig. 1. Visual explanations for exposing potential inconsistencies in Deepfake, evalu-
ated on FaceForensics++ of multi classification. The marked region in the SPI figure
corresponds to the region of face forgery. SPI-R, SPI-G and SPI-B explain the poten-
tial inconsistencies from different perspectives (edges, pixels, areas). The edges, pixels
and regions of the SPI of the real face are smooth and the facial features are sharp.
Conversely, the edges of the fake face do not coincide with the edges of the original
face, the pixel continuity is inconsistent, and the distribution of statistical features in
the region is not uniform. The facial features of SPI (R, G, B) have obvious defects,
especially the mouth and nose parts.

of the detection, they are not sufficient to provide a powerful countermeasure
for the victim. Victims generally need clues from fake videos to give evidence.
Synthetic videos typically have significantly inconsistent information between
the statistics of the forgery region and the original region. Based on this obser-
vation, we propose a new vision transformer (ViT) based framework named
Find-X. Find-X is designed as a multi-stage structure that extracts both coarse-
grained features and fine-grained features to fully detect such forgery traces.
Find-X contains an innovatively designed module named separation potentially
inconsistency (SPI). As shown in Fig. 1, the SPI generates an additional visual
explanations including edges, pixels, and areas that explain the inconsistency
between the forgery and the original regions. SPI provides the victims with a
alternative way to proof their innocence. Meanwhile, the inconsistency features
can effectively improve the robustness of detection [11,39].
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It is a challenging task to efficiently separate the potential inconsistencies in
the forgery region of Deepfake and express the learned inconsistencies in terms
of visual information. The difficulty lies in the fact that we do not have a known
function that can feed back SPI by learning from the dataset. Because we do
not have the priori knowledge about the visualization results of the inconsis-
tent features. Our idea is to share the feature extraction parameters with the
SPI and classification modules. We strive to make SPI faithfully express the
learned multi-scale features and accurately correlate the classification results.
Continuous optimization of the classification module can potentially affect the
results of the SPI module. In other words, the better the classification module
performs, the better results of the SPI module would have. Our contributions
can be concluded as follows:

1. We propose a novel multi-scale, multi-stage framework named Find-X. Find-
X uses a frequency-aware module and a spatial-aware module to enhance the
features of fake videos that can be used to efficiently detect Deepfake.

2. We propose a novel module named SPI to separate potentially inconsistent
features of Deepfake videos. The visual explanations of SPI can provides
additional evidence to expose the essence of Deepfake better.

3. We carry out extensive experiments to verify the effectiveness and robustness
of our method, and achieve state-of-the-art detection performance.

2 Related Works

2.1 Deepfake Detection

In recent years, numerous Deepfake detection methods have been proposed. Some
detection methods focus on optimizing network structure to improve Deepfake
detection accuracy [13,17,28,38]. The others use the inconsistencies of forgery
faces to detect videos [7,11,18,39]. The researchers of the former approaches used
some simple CNN structures. With the development of deep learning technol-
ogy, advanced network structures such as Xception, Long Short-Term Memory
(LSTM) and ViT have been applied to Deepfake detection and achieved better
performance. The methods are data-driven [3,20,35], and do not rely on any
specific artifact. Some later methods use faked video inconsistencies in visual,
audio or frames continuity to detect fake videos, such as the LipForensics [11]
make use of high-level semantic irregularities in mouth movements, which are
common in numerous generated videos. Moreover, those videos with such low
visual qualities can be definitely distinguished by the human eyes. At present,
the focus of research has been shifted from improving the accuracy to providing
interpretable evidenced [18,24,31].

2.2 Vision Transformer

At present, the ViT-based networks have shown great success in a wide range
of domains including image and video tasks [1,4,15,21,36]. ViT is an effective
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Fig. 2. The framework of Find-X has three stages that play an essential role in our
framework. Stage1: the frequency-aware module and the spatial-aware module to
enhance the features of the fake videos. Stage2: the ViT-based multi-scale feature
extractor to learn richer characteristics. Stage3: the classification module and the SPI
module that can explain the result visually.

feature extraction structure for video, especially for sequence-to-sequence mod-
eling [30,32,33]. ViViT [1] presents pure-transformer based models for video
classification that use tokens to extract spatio-temporal features of videos more
efficiently. ViT provides an alternative besides 3D CNN and mixed 2D CNN for
video understanding tasks. In early studies, the ViT-based models are known
to be effective only when large training datasets are available. The parameters
and calculation cost of ViT structure increase exponentially with the increase
of image pixels (same patch size). To solve this problem, researchers proposed
various improved ViT architectures. Swin Transformer [22] shifted windowing
scheme brings greater efficiency by limiting self-attention computation to non-
overlapping local windows while also allowing cross-window connection. This
hierarchical architecture has the flexibility to model at various scales and has
linear computational complexity with respect to image size. HRFormer [36] take
advantage of the multi-resolution parallel design introduced in high-resolution
convolutional networks, along with local-window self-attention that performs
self-attention over tiny non-overlapping image windows, for improving the mem-
ory and computation efficiency. Recent studies have combined CNN and ViT
and achieved better performance [4,10].

3 Method

Find-X is a frame-level detection method. As shown in Fig. 2, Find-X consists of
three stages: (1) Feature enhancement, we design a frequency-aware module and
a spatial-aware module to enhance the inconsistent features of videos, which is
conducive to improving the result of detection. (2) Multi-Scale feature extraction,
we design a multi-scale feature extractor to learn richer features. (3) Judgement,
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Fig. 3. The module of the classification and the SPI.

Table 1. Memory and computational complexity of widely used classification models.
We use Metrics Multiply Accumulate Operations (MACs) and Floating-Point Opera-
tions (FLOPs) to evaluate Computational Complexity.

Model Image size FLOPs (G) MACs (G) Params (M)

PoolingVisionTransformer 224 × 224 21.1 10.55 73.76

HRNet (w44) 224 × 224 29.94 14.97 67.06

Twins-PVT (base) 224 × 224 12.9 6.45 43.83

SwinTransformer 224 × 224 30.28 15.14 87.77

Xcepetion 224 × 224 9.18 4.59 20.81

resnet50 224 × 224 8.24 4.12 25.56

Find-X (Ours) 224 × 224 43.78 21.89 119.45

we design a classification module to output the result and a SPI module to
explain the result. As shown in Table 1, Find-X is a larger model than the
commonly used classification model to improve the accuracy of detection. The
details of our approach will be demonstrated below.

3.1 Feature Enhancement

Face Preprocessing. The main goal of face preprocessing is to extract faces
from each frame in the video and then improve the accuracy of Deepfake detec-
tion. Face preprocessing consists of face detection and face selection. As a result,
the detection accuracy can be effectively improved by performing the proposed
preprocessing method.

Face Detection. We use the open-source face detection tool MTCNN [37].
MTCNN is a widely used face detection method with high accuracy, fast running
speed and smaller memory occupation. We use MTCNN to extract the face of
each frame in the video. Before training, we extract faces from the video in the
dataset and save them as pictures in lossless format. During the testing, each
video also requires face extraction in advance.
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Face Selection. Given a fake video, the fake faces to be detected is defined as
F = γ × t, where γ is the frame rate and t is the video duration (seconds).
Detecting whether the video is fake is equivalent to calculating the average
forgery probability x ∈ F. The cost of calculating all F is huge, and the low
quality face also reduces the accuracy of detection. Therefore, it is necessary to
select the helpful x. We select faces from two perspectives: face quality q and face
pixel size s. The face quality q (0–1) is the probability value of MTCNN while
judging whether the image contains a face. In general, large q indicates superior
facial quality. The s is the pixel width of the face in the image. According to the
traditional experimental experience of face detection and the face resolution in
the video of the datasets, we set face pixel size s > 80 and face quality q > 0.85
in the experiments.

Spatial-Aware Enhancement. We observe that the fake video has distinct
traces on the edges of the forgery object. Therefore, we use Sobel operator [16]
to detect edges of fake videos more effectively. We then additionally use the
Laplacian operator to detect edges, since the Laplacian operator [27] is robust
to rotation. We represent the x and y operators as two CNN 3 × 3 convolution
kernels that extract features from horizontal and vertical directions of videos.

We also observe that the forgery region has different statistical characteristics
from the original region. Based on these observations, we find that some artifi-
cially designed spatial operators can considerably enhance these forgery traces.
We use the Spatial Rich Model (SRM) [6] operator to enhance region detection
of fake videos because the SRM operator is sensitive to continuous statistical
features of pixels. We use three 5× 5 operators to respectively filter the R, G, B
channels of the videos, which can better characterize the damage of forgery to
the multi-correlation of neighborhood pixels.

All operators are implemented by CNN based filters, which replace the kernels
of CNN filters with these operators. We also normalize the operators to 0–1 to
help better extract features.

Frequency-Aware Enhancement. We use PyTorch to implement DCT based
CNN filters to extract frequency features of videos. We use the DCT filters of
three different sizes: high, middle and low to learn the local DCT features of
the video, and a full-size DCT filter to learn the overall features of the video.
Mostly, DCT is used in data or image compression to convert spatial signals
into frequency domain. In particular, DCT has excellent correlation properties,
which makes it easier to detect forgery traces that are undetectable in the spatial
domain.

The multi-size frequency-aware module decomposes the image into different
frequency domain features. Moreover, the corresponding features are learned
with learnable CNNs. These frequency domain features are learned from different
receptive fields of different sizes. The learned traces on the frequency domain
features reveal the irrelevance of the forged region. This will provide an important
basis for SPI and classification results.
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3.2 Multi-scale Feature Extraction

We implement a multi-stage and multi-scale feature extraction network based on
PoolFormer [4]. PoolFormer uses a pooling module instead of an attention mod-
ule, which combines the advantages of Convolutional Neural Networks (CNN)
with less parameters and the ViT sequence-friendly. The PoolFormer can effec-
tively use various meta-information to improve the performance of fine-grained
recognition. The two types of Spatial-Aware and Frequency-Aware features are
gradually learned from coarse to fine in a pyramid structure. The multi-level
feature extraction network guarantees the effectiveness of features.

3.3 Classification

As shown in Fig. 3, we designed a classification module that combines CNNs
and attention mechanism. First, multi-scale features are fused with residual CNN
blocks. Then an attention module is used to help learning of the features. Finally,
the probability value is outputted through a softmax function.

3.4 SPI

Component Design. While the classification module can use the Binary Cross
Entropy Loss as a feedback, the SPI module can only be evaluated subjectively.
The classification module feeds back the learning results to the shared feature
extraction parameters. A shallower network is conducive to the SPI module
to associate with the feature extraction parameters. Therefore, we designed a
shallower SPI module to fewer interfere with the results of visual inconsistent
information. As shown in Fig. 3, the SPI consists of multiple layers of CNN
blocks with different structures and GELU functions. Finally, the RGB image is
outputted through a sigmoid function. The SPI module is used to represent the
forgery edges, pixels and areas.

Visual Explanations. We learn the inconsistent feature through the spatial-
aware module to find out the inconsistencies between forgery region and the
original region in terms of edge and pixel continuity. At the same time, we learn
the uncorrelation of the forgery region through the frequency-aware module. The
inconsistent information in the spatial and frequency domain is fully learned
through the multi-scale feature extraction module. As a result, SPI visually
expresses potentially inconsistent information from edges, pixels and regions.
The training feedback process of SPI is associated with the classification module,
therefore better classification result leads to better visual expression.

4 Experiments

In this section, we evaluate our method in two aspects. In the first aspect, we
compare the performance of our method with recent methods. In the second
aspect, we evaluate the visualization performance of SPI on several widely used
datasets.
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Table 2. Comparison with related methods on FaceForensics++ dataset with High-
Quality (HQ) and Low-Quality (LQ) by training on FaceForensics++ raw.

Method LQ HQ

ACC AUC ACC AUC

Face X-ray [18] – 0.616 – 0.874

Xception [2] 0.868 0.893 0.957 0.963

F3-Net [25] 0.904 0.933 0.975 0.981

EfficientNet-B4 [29] 0.866 0.882 0.966 0.991

MA(Xception) [38] 0.869 0.872 0.963 0.989

MA(Efficient-B4) [38] 0.886 0.904 0.976 0.992

Ours 0.991 1.0 0.998 1.0

Table 3. Comparison with state-of-the-art methods on three public datasets: Celeb-
DF, DeepFakeDetection and Deepfakes of FaceForensics++.

Method Celeb-DF DeepFakeDetection FaceForensics++
(Deepfakes)

Xception [2] 0.994 – 0.955

DILNet [9] 0.996 – 0.981

Grad-CAM [23] 0.794 0.919 0.992

DIANet [14] – – 0.904

STIL [8] 0.996 – 0.971

FInter [12] 0.905 – 0.957

ViTHash [24] 0.994 0.963 0.999

Ours 0.999 1.0 1.0

4.1 Experiment Setting

Datasets. We evaluate Find-X on several widely used datasets: FaceForen-
sics++, DeepFakeDetection and Celeb-DF. The details of datasets are described
as follows:

1. FaceForensics++. The FaceForensics++ [26] dataset contains 1000 real
videos from YouTube with over 500,000 frames. As well as the same number
of manipulated videos generated by various of the state-of-the-art Deepfake
methods. Moreover, the ratio of tampered videos and original videos is 1:1.

2. DeepFakeDetection. The Google/Jigsaw Deepfake detection (Deep-
FakeDetection) dataset has [5] over 363 original videos from 28 consented
actors of various genders, ages and ethnic groups. The DeepFakeDetection
dataset contains 3,068 fake videos generated by four basic Deepfake methods.
The ratio of original videos and fake videos is 0.12:1.

3. Celeb-DF. The Full Facebook DeepFake detection challenge [19] dataset is
part of the DeepFake detection challenge, composed of 590 real videos and
5,639 fake videos. The ratio of synthetic clips and real clips is 1:0.23.
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Table 4. Evaluation on FaceForensics++ with five different forgery methods by train-
ing on FaceForensics++ raw for multi classification.

Compression Training/Test set (ACC)

Real Deepfakes Face2Face FaceSwap NeuralTextures FaceShifter

Raw 0.994 0.993 0.990 0.994 0.991 0.993

C23 0.978 0.995 0.988 0.995 0.990 0.995

C40 0.318 0.998 0.967 0.991 0.990 0.998

Table 5. Evaluation on FaceForensics++ with five different forgery methods by train-
ing on FaceForensics++ raw for binary classification.

Compression Training/Test set (ACC)

Deepfakes Face2Face FaceSwap NeuralTextures FaceShifter

Raw 1.0 0.998 1.0 1.0 1.0

C23 1.0 0.998 1.0 0.994 1.0

C40 1.0 0.999 1.0 0.957 1.0

Implementation Details. Our models are implemented by PyTorch, and the
code has been released to GitHub. We use ffmpeg to segment the video into
frames, and train models with a single NVIDIA RTX 3090 24 GB GPU card.
Each model of the dataset is trained for 2–5 epochs. Additionally, we use the
Adaptive Moment Estimation (ADAM) optimizer with a learning rate of 1e− 5.
Being computationally efficient, ADAM requires less memory and outperforms
on large datasets.

Baseline Methods. To verify the performance of our approach, we compare it
with six recent works: the Face X-ray [18], Xception [2], F3-Net [25], EfficientNet-
B4 [29], MA(Xception) [38] and MA(Efficient-B4) [38] on FaceForensics++. We
also compare our method with six state-of-the-art methods: Xception [26], DIL-
Net [9], Grad-CAM [23], DIANet [14], STIL [8], FInter [12] and ViTHash [24]
on Celeb-DF, DeepFakeDetection and FaceForensics++ (Deepfakes).

4.2 Comparison Results

We first compare the performance of the videos with state-of-the-art methods on
the FaceForensics++ dataset with different video quality. To avoid any unneces-
sary misunderstanding, the results of the comparative methods are directly cited
from [38]. As shown in Table 2, experimental results show that our method is
superior to related methods, especially in the LQ setting our method has obvi-
ous advantages. This is mainly due to the significant loss of textural information
caused by high compression, but the proposed Find-X effectively reduces the
effect of video compression by enhancing spatial and frequency features.
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Fig. 4. Visual evaluation of our approach on FaceForensics++ with binary classifica-
tion.

We then conduct comparison experiments with several recent works on the
widely used datasets Celeb-DF, DeepFakeDetection and FaceForensics++. On
DeepFakeDetection we train on c23 and test on c40. On FaceForensics++ we
train on raw and test on c23. As shown in Table 3, we achieve state-of-the-art
performance on Celeb-DF. We also achieve 100% accuracy on DeepFakeDetec-
tion and FaceForensics++, which is a significant advantage over comparable
methods.

4.3 Distinguish Different Forgeries

We conduct extensive experiments on FaceForensics++ to distinguish different
forgeries. It is more challenging to detect different forgery methods than the
binary classification task of judging whether the forgery is real. As shown in
Table 4, the average accuracy of our method for distinguishing different types of
video is 95.3%, and the maximum performance is 99.8%. It demonstrates that
our method can accurately distinguish the subtle differences between different
types of forged videos.

4.4 Robustness to Video Compression

In this part, we primarily verify the robustness of Find-X with video compression.
We evaluate the accuracy of three different compression ratios (raw, c23 and c40)
on five subsets of FaceForensics++. As shown in Table 4 and Table 5, with the
increase of compression rate, the accuracy of our method decreases a little. As
shown in Table 2, our method significantly outperforms the existing methods on
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Fig. 5. Visual evaluation of our approach on DeepFakeDetection.

low compression videos. These experiments demonstrate that Find-X has good
robustness to the video compression.

4.5 Visualization Analysis

In this part, we aim to separate the potentially inconsistent features of the
forgery region by an additional designed module SPI, and interpret them with
visual information. The results of the SPI module is shown in Fig. 5 and 6.
Highlights of the image in the SPI that localizes the suspected area: (1) The SPI
in the picture is a visual explanation of Deepfakes detection. (2) The SPI-R is
most likely to detect the edge of the fake region. (3) The SPI-G is most likely to
detect the continuous of pixels of the all picture. (4) The SPI-B is most likely to
detect the region of the fake region. As shown in Fig. 4, the visual inconsistency
of different forgery methods is significantly different. Experimental results show
that our designed module SPI can effectively separate inconsistencies in fake
videos.
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Fig. 6. Visual evaluation of our approach on Celeb-DF.

5 Conclusions

In this paper, we propose a novel framework named Find-X that aims to sepa-
rate potentially inconsistent features of Deepfake videos. Unlike most traditional
Deepfake detection methods that can only provide a probability value, Find-X
attempts to visually explain the rationality of the detection results with a novel
module SPI. SPI gives us another angle to analyze the authenticity of the video.
In contrast to previous works, this is a new attempt to expose the nature of
forgery. Extensive experiments demonstrate the efficiency and robustness of our
method. Our method is useful for industrial applications and provides auxiliary
evidence for victims.
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Abstract. Deep Neural Networks (DNNs) are vulnerable to adversarial
attacks, which makes adversarial attacks serve as a method to evaluate
the robustness of DNNs. However, adversarial attacks have the disad-
vantage of high white-box attack success rates but low transferability.
Therefore, many methods were proposed to improve the transferability
of adversarial attacks, one of which is the momentum-based method.
To improve the transferability of the existing adversarial attacks, we
propose Previous-gradient as Neighborhood NI-FGSM (PN-NI-FGSM)
and Momentum as Neighborhood NI-FGSM (MN-NI-FGSM), both of
which are the momentum-based attacks. The results show that momen-
tum describes the neighborhood more preciselfy than the previous gra-
dient. Additionally, we define the front vector and the rear vector. Then,
we classify momentum-based attacks into front vector attacks and rear
vector attacks. Finally, we propose Both Front and Rear Vector Method
(BFRVM), which combines the front vector attacks and the rear vec-
tor attacks. The experiments show that our BFRVM attacks achieve the
best transferability against normally trained models and adversarially
trained models under the single-model setting and ensemble-model set-
ting, respectively.

Keywords: Adversarial attacks · Transferability · Momentum

1 Introduction

Deep Neural Networks (DNNs) [11,13,14,24,31] have been widely applied in
computer vision, such as autonomous driving [3,6,10], and facial recogni-
tion [2,7]. However, Szegedy [26] found that applying certain imperceptible
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perturbations to images can make DNNs misclassify, and they refer to such
perturbed images as adversarial examples. Adversarial examples raise security
concerns for DNNs.

Gradient-based attacks [8,16,19] are widely studied because they have low
time cost. Gradient-based attacks can be classified into one-step attacks [8] and
iterative attacks [4,16]. Generally, iterative attacks have higher white-box attack
success rates but lower transferability than one-step attacks, which makes itera-
tive attacks difficult in black-box settings. Therefore, improving the transferabil-
ity of gradient-based iterative attacks [1,4,16] has become a research hotspot.

Many methods [4,5,16,18,28,30] have been proposed to improve the transfer-
ability of gradient-based iterative attacks. Dong [4] proposed MI-FGSM, which
integrates momentum into I-FGSM. NI-FGSM [18] integrates Nesterov Acceler-
ated Gradient (NAG) [20] into I-FGSM. Input transformations (e.g., DIM [30],
TIM [5] and SIM [18]), which transform inputs before they are fed into DNNs,
were proposed to improve transferability. EMI-FGSM and ENI-FGSM [28],
which use the previous gradient and momentum to describe the neighborhood,
respectively, replace the gradient at the current data point with the average gra-
dient within the neighborhood of the current data point to improve MI-FGSM.
Wang [28] argued that momentum cannot be used as a precise description of
the neighborhood because results show that the transferability of ENI-FGSM
is lower than EMI-FGSM. However, we consider momentum as the accumula-
tion of previous gradients to be more robust than the previous gradient and
demonstrate that momentum can more accurately describe the neighborhood.

We also use the same methods as EMI-FGSM and ENI-FGSM to improve the
transferability of NI-FGSM. Specifically, we propose Previous-gradient as Neigh-
borhood NI-FGSM (PN-NI-FGSM) and Momentum as Neighborhood NI-FGSM
(MN-NI-FGSM) that use the previous gradient and momentum to describe the
neighborhood of the pre-update point, respectively.

In this paper, we define the front vector and the rear vector (Definition 1
in Sect. 3), and then we classify existing gradient-based momentum iterative
attacks into front vector attacks and rear vector attacks. During each iteration,
front vector attacks (e.g., MI-FGSM, EMI-FGSM, and ENI-FGSM) update along
a certain gradient before updating along momentum. Such gradient is the front
vector, and the rear vector is the zero vector. Similarly, rear vector attacks (e.g.,
NI-FGSM, PN-NI-FGSM, and MN-NI-FGSM) modify the pre-update along a
certain gradient after pre-updating along momentum. Such gradient is the rear
vector, and the front vector is the zero vector. However, the rear vector attacks
pre-update along momentum, which is simple and rough. Therefore, we refine
the pre-update by adding the front vector into each pre-update, which we call
Both Front and Rear Vector Method (BFRVM). Since we can combine a certain
front vector attack and a certain rear vector attack to obtain a BFRVM attack,
we call the BFRVM attack child attack, and attacks that derive the BFRVM
attack are called parent attacks. Some parent attacks and BFRVM child attacks
are shown in Table 1. Overall, we make the following contributions:
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Table 1. Parent attacks and BFRVM
child attacks

Parent attacks Child attacks

Front vector attacks Rear vector attacks

MI-FGSM NI-FGSM BI-FGSM (Ours)

EMI-FGSM PN-NI-FGSM (Ours) PN-BI-FGSM (Ours)

ENI-FGSM MN-NI-FGSM (Ours) MN-BI-FGSM (Ours)

Fig. 1. Illustration of BFRVM: gfront
t is

the front vector, grear
t is the rear vector,

γgt−1 is the momentum term, gt is the
updated momentum, and x̃adv

t is the pre-
update point

– We demonstrate that momentum describes the neighborhood more precisely
and robustly than the previous gradient.

– We propose PN-NI-FGSM and MN-NI-FGSM, which use the previous gra-
dient and momentum to describe the neighborhood of the pre-update point,
respectively, to improve the transferability of NI-FGSM.

– We define the front vector and the rear vector, and we classify existing
gradient-based momentum iterative attacks into front vector attacks and rear
vector attacks. Additionally, we propose BFRVM attacks to improve trans-
ferability by combining front vector attacks and rear vector attacks.

2 Related Work

In this section, we introduce gradient-based iterative attacks, input transfor-
mations, ensemble in logits, and adversarial training. Given a classifier f(x;θ),
where x is an input, and θ is parameters of f . Let J(·, y) is a loss function,
where y is the true label of the input x. An adversarial example xadv satis-
fies f(x;θ) �= f(xadv;θ) under the constraint of

∥
∥xadv − x

∥
∥

p
≤ ε, where ‖·‖p

denotes the Lp norm, and p is generally 0, 1, 2, ∞. We focus on p = ∞.

2.1 Adversarial Attack Methods

We introduce three methods to improve the transferability of gradient-based iter-
ative attacks: momentum-based methods, input transformations, and ensemble
in logits.

Momentum-Based Methods. Momentum dampens gradient oscillation to
accelerate gradient ascent. We introduce the gradient-based momentum itera-
tive attacks here. Momentum I-FGSM (MI-FGSM) [4] integrates the momentum
method [21] into I-FGSM [16] to accelerate gradient ascent:

gt = μ · gt−1 +
∇xadv

t
J(f(xadv

t ;θ), y))
∥
∥
∥∇xadv

t
J(f(xadv

t ;θ), y))
∥
∥
∥
1

, (1)
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xadv
t+1 = Clip(x,ε){xadv

t + α · sign(gt)}, (2)

where sign(·) is the sign function, Clip(x,ε){x′} denotes min(max(x′,x−ε),x+ε),
α is the step size for each iteration, xadv

1 = x, t = 1, 2, · · · , T , gt denotes momen-
tum after the t-th iteration, g0 = 0 and μ is the decay factor. Similarly, Nesterov
I-FGSM (NI-FGSM) [18] integrates Nesterov Accelerated Gradient (NAG) [20]
into I-FGSM. Unlike MI-FGSM, NI-FGSM provides the pre-update by replacing
xadv

t with xadv
t + α · μ · gt−1 in Eq. 1. Enhanced MI-FGSM (EMI-FGSM) [28]

replaces the gradient of the current data point with the average gradient within
the neighborhood of the current data point to improve the transferability of MI-
FGSM. EMI-FGSM uses the previous gradient to describe the neighborhood:

x̄adv
t [i] = xadv

t + ci · ḡt−1, (3)

ḡt =
1
N

N∑

i=1

∇x̄adv
t [i]J(f(x̄adv

t [i];θ), y)), (4)

gt = μ · gt−1 +
ḡt

‖ḡt‖1
, (5)

xadv
t+1 = Clip(x,ε){xadv

t + α · sign(gt)}, (6)

where ḡ0 = 0, ci ∈ [−η, η] denotes the i-th sampling coefficient, and N denotes
the number of sampling examples. Unlike EMI-FGSM, Enhanced NI-FGSM
(ENI-FGSM) [28] uses momentum to describe the neighborhood of the current
data point to improve the transferability of MI-FGSM. ḡt−1 is replaced by the
momentum gt−1 in Eq. 3.

Input Transformations. Input transformations transform the input before it
is fed into the DNN to improve transferability. Diverse Input Method (DIM) [30]
performs random resizing and padding on the input with probability p before
feeding the input into the DNN. Translation-Invariant Method (TIM) [5] con-
volves the gradient to approximate the translation of the input. TIM espe-
cially shows better transferability against models with defense [9,17,29]. Scale-
Invariant Method (SIM) [18] scales the input with the scale factor 1/2i to derive
an ensemble of models. SIM is an approximate method of ensemble in logits [4].

Ensemble in Logits. Ensemble in logits [4] generates adversarial examples
on an ensemble of models whose logit activations are fused together. Specifi-
cally, the logits of K models are fused as l(x) =

∑K
k=1 wklk(x), where lk(x)

denotes the logits of the k-th model, wk is the ensemble weight with wk ≥ 0
and

∑K
k=1 wk = 1. Adversarial examples generated on the ensemble model have

higher transferability.
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2.2 Adversarial Training

Adversarial training increases robustness by adding adversarial examples to the
training data. Goodfellow [8] showed that adversarially trained models are more
robust. However, Kurakin [16] pointed out that adversarial training is not robust
to iterative attacks. What’s more, Tramèr [27] showed that adversarially trained
models are still vulnerable to simple white-box and black-box attacks. Therefore,
they proposed ensemble adversarial training, which adds adversarial examples
generated from other models to the training data, to increase robustness.

3 Methodology

In this section, we focus on improving the transferability of gradient-based
momentum iterative attacks. We first propose PN-NI-FGSM and MN-NI-FGSM
to improve NI-FGSM. What’s more, we propose a gradient-based momentum
iterative method involving the front vector and the rear vector, called Both Front
and Rear Vector Method (BFRVM). Finally, we propose BFRVM I-FGSM (BI-
FGSM), Previous-Gradient as Neighborhood BFRVM I-FGSM (PN-BI-FGSM)
and Momentum as Neighborhood BFRVM I-FGSM (MN-BI-FGSM) by inte-
grating BFRVM into concrete attacks. We define the front vector and the rear
vector here:

Definition 1. The front vector and the rear vector. Given a C × H × W
dimensional vector space X = {x|x = (xijk)C×H×W ∈ R

C×H×W , i =
1, 2, · · · , C, j = 1, 2, · · · ,H, k = 1, 2, · · · ,W} on R, and a momentum iteration
in the vector space X:

{
g0 = 0 ∈ X,

gt = a · gfront
t + b · gt−1 + c · grear

t ,
(7)

where α, a, b, c ∈ R, gfront
t , gt−1, g

rear
t , gt ∈ X, t = 1, 2, · · · , T , and b · gt−1 is

the momentum term. If there is a logical relation that vectors gfront
t , gt−1, and

grear
t connected end to end, we call gfront

t the front vector and grear
t the rear

vector.

3.1 Previous-Gradient and Momentum as Neighborhood NI-FGSM

As shown in Fig. 2b, 2c, EMI-FGSM and ENI-FGSM use the average gradient
within the neighborhood of the current data point instead of the gradient at
the current data point as in MI-FGSM (see Fig. 2a). Specifically, EMI-FGSM
and ENI-FGSM use the previous gradient and momentum to describe the neigh-
borhood of the current data point, respectively. Then they sample along the
direction of the previous gradient and momentum near the current data point,
respectively, and use the average gradient of the sampled examples as the aver-
age gradient within the neighborhood approximately. Similarly, as shown in
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Fig. 2. Illustration of front vector attacks and rear vector attacks: g(·) denotes the
function for calculating the gradient, (a), (b), (c) belong to front vector attacks, (d),
(e), (f) belong to rear vector attacks.

Fig. 2e, 2f, we also can use the average gradient within the neighborhood of the
pre-update point instead of the gradient at the pre-update point as in NI-FGSM
(see Fig. 2d). Therefore, we propose PN-NI-FGSM which uses the previous gra-
dient to describe the neighborhood of the pre-update point and MN-NI-FGSM
which uses momentum to describe the neighborhood of the pre-update point.
The following is the specific description of PN-NI-FGSM and MN-NI-FGSM:

PN-NI-FGSM. As shown in Fig. 2e, during each iteration, PN-NI-FGSM first
pre-updates along the direction of momentum gt−1 to obtain the pre-update
point x̃adv

t :
x̃adv

t = xadv
t + α · μ · gt−1, (8)

where α is the step size for each iteration, and μ is the decay factor. Next,
PN-NI-FGSM uses the previous gradient to describe the neighborhood of the
pre-update point, and samples along the direction of the previous gradient near
the pre-update point. Then PN-NI-FGSM calculates the average gradient of the
sampled examples:

x̄adv
t [i] = x̃adv

t + ci · ḡt−1, (9)

ḡt =
1
N

N∑

i=1

∇x̄adv
t [i]J(f(x̄adv

t [i];θ), y)), (10)

where ḡt denotes the average gradient during the t-th iteration, ḡ0 = 0,
ci ∈ [−η, η] denotes the i-th sampling coefficient, and N denotes the number
of sampling examples. Finally, PN-NI-FGSM updates along the direction of the
average gradient to modify the pre-update:

gt = μ · gt−1 +
ḡt

‖ḡt‖1
, (11)

xadv
t+1 = Clip(x,ε){xadv

t + α · sign(gt)}. (12)
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Algorithm 1: MN-BI-FGSM
Input : A classifier f and a loss function J . A clean example x and its real

label y.
Input : The maximum perturbation ε, number of iteration T and decay factor

μ.
Input : The sampling interval bound η and the sampling number N .
Output: An adversarial example xadv.

1 α ← ε/T ; g0 ← 0; xadv
1 ← x;

2 for t ← 1 to T do

3 x̄adv
t [i] ← xadv

t + ci · gt−1, ci ∈ [−η, η] ; // Sampling

4 ḡt ← 1
N

∑N
i=1 ∇x̄adv

t [i]J(f(x̄adv
t [i]; θ), y)) ; // The average gradient

serves as the front vector

5 x̃adv
t ← xadv

t + ḡt
‖ḡt‖1

+ α · μ · gt−1 ; // Pre-update

6 x̂adv
t [i] ← x̃adv

t + ci · gt−1, ci ∈ [−η, η] ; // Sampling

7 ĝt ← 1
N

∑N
i=1 ∇x̂adv

t [i]J(f(x̂adv
t [i]; θ), y)) ; // The average gradient

serves as the rear vector

8 gt ← ḡt
‖ḡt‖1

+ μ · gt−1 + ĝt
‖ĝt‖1

; // Update momentum

9 xadv
t+1 ← Clip(x ,ε){xadv

t + α · sign(gt)} ; // Update adversarial example

10 end

11 return xadv ← xadv
T+1.

MN-NI-FGSM. As shown in Fig. 2f, during each iteration, MN-NI-FGSM dif-
fers from PN-NI-FGSM in that MN-NI-FGSM uses momentum to describe the
neighborhood of the pre-update point, not the previous gradient. Therefore, Eq. 9
is replaced with the following equation:

x̄adv
t [i] = xadv

t + ci · gt−1. (13)

We study the hyperparameters η and N of MN-NI-FGSM in Sect. 4.4, and we
compare the transferability of PN-NI-FGSM and MN-NI-FGSM in Sect. 4.2. The
results show that momentum is more robust than the previous gradient and
describes the neighborhood more precisely.

3.2 Both Front and Rear Vector Method

As shown in Fig. 2, we classify existing gradient-based momentum iterative
attacks into front vector attacks and rear vector attacks. During each itera-
tion, Front vector attacks (e.g., MI-FGSM, EMI-FGSM, and ENI-FGSM) update
along the front vector before updating along momentum. Rear vector attacks
(e.g., NI-FGSM, PN-NI-FGSM, and MN-NI-FGSM) pre-update along momen-
tum and then modify the pre-update along the rear vector. However, pre-
updating only along momentum is rough. Therefore, We add the front vector
into the pre-update to refine the pre-update. We call the momentum iterative
method with the front vector and the rear vector BFRVM.
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As shown in Fig. 1, during each iteration, the pre-update of BFRVM is per-
formed successively along the direction of the front vector gfront

t and momentum
gt−1, and then the pre-update is modified along the rear vector grear

t . Therefore,
as shown in Table 1, we can get the BFRVM attack (i.e., child attack) by com-
bining one front vector attack and one rear vector attack (i.e., parent attack).
The algorithm of MN-BI-FGSM is summarized in Algorithm 1. The algorithms
of BI-FGSM and PN-BI-FGSM are similar to Algorithm 1.

4 Experiments

4.1 Setup

Models: Four normal trained models, i.e., Inception-v3 (Inc-v3) [25], Inception-
v4 (Inc-v4) [23], Inception-Resnet-v2 (IncRes-v2) [23] and Resnet-152 (Res-
152) [12], one normal adversarially trained model, i.e., adv-Inception-v3 (Inc-
v3adv) [15], and one ensemble adversarially trained model, i.e., ens-adv-
Inception-Resnet-v2 (IncRes-v2ens) [27].

Dataset: We randomly select 1000 images from the ILSVRC 2012 validation
set [22], all of which can be correctly classified by the above models. To ensure
that all images are the same size, we first scale these images to a height of 256
while maintaining the aspect ratio, and then crop the images to 224×224 at the
center.

Baselines: We compare our methods with FGSM [8], I-FGSM, MI-FGSM, NI-
FGSM, EMI-FGSM, and ENI-FGSM. In addition, we integrate input transfor-
mations (e.g., DIM, TIM, SIM, and DTS, which is the integration of the former
three) into MN-BI-FGSM, which is our best method, and compare them with
input transformations.

Hyperparameters: We set the maximum perturbation ε = 16/255 for all attacks.
For iterative attacks, we set the number of iterations T = 10, and the iterative
step size α = ε/T . For momentum-based iterative attacks, we set the decay factor
μ = 1.0 as in [4,18]. For DIM, we set the transformation probability p = 0.5.
For TIM, we set the size of the Gaussian kernel to 15 × 15. For SIM, we set
the number of scale copies m = 5. For EMI-FGSM and PN-NI-FGSM, we set
the sampling interval bound η = 7. For ENI-FGSM and MN-NI-FGSM, we set
the sampling interval bound η = 0.02. For all attacks with sampling, we set the
number of sampling examples N = 11. We adopt the linear sampling, which is
the same as [28]. For the hyperparameters of all BFRVM child attacks, we set
the same values as their parent attacks. For attacking ensemble of models, the
ensemble weight of all ensembled models is the same, i.e., wk = 1/5.

4.2 Attack Single Models

We generate adversarial examples on single-models and compare attack success
rates. We also integrate input transformations into our best BFRVM attacks to
test attack success rates. All attacks are untargeted attacks based on L∞ norm
bound, and the hyperparameters are set as in Sect. 4.1 and Sect. 4.4.
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Table 2. The attack success rates (%) of adversarial attacks generated on Inc-v3,
Inc-v4, IncRes-v3, and Res-152, respectively, against the six baseline models under the
single-model setting, “*” indicates the model being white-box attacked

Models Attacks Inc-v3 Inc-v4 IncRes-v2 Res-152 Inc-v3adv IncRes-v2ens

Inc-v3 MI-FGSM 98.9* 42.7 37.0 27.6 29.2 12.7

NI-FGSM 99.3* 53.8 46.4 37.9 29.6 14.5

BI-FGSM (Ours) 99.2* 56.4 49.7 40.1 34.4 14.7

EMI-FGSM 98.8* 53.1 48.2 37.7 30.6 15.0

PN-NI-FGSM (Ours) 99.2* 57.9 51.1 40.5 31.0 14.8

PN-BI-FGSM (Ours) 98.8* 61.9 55.8 44.2 36.0 14.9

ENI-FGSM 99.8* 62.9 56.2 46.2 34.1 17.5

MN-NI-FGSM (Ours) 99.9* 65.9 56.9 48.1 34.0 16.7

MN-BI-FGSM (Ours) 99.9* 66.1 58.6 48.9 36.2 18.7

Inc-v4 MI-FGSM 42.0 98.1* 36.1 25.6 28.4 12.7

NI-FGSM 45.4 99.1* 39.2 28.1 28.9 13.0

BI-FGSM (Ours) 50.5 99.0* 44.6 32.4 35.3 14.3

EMI-FGSM 48.6 98.1* 43.4 29.7 31.3 14.9

PN-NI-FGSM (Ours) 48.4 99.1* 41.6 29.7 29.9 13.6

PN-BI-FGSM (Ours) 55.6 98.8* 47.8 35.5 36.4 14.5

ENI-FGSM 53.2 99.8* 48.4 34.3 32.8 15.3

MN-NI-FGSM (Ours) 55.7 100.0* 51.1 34.2 34.1 15.9

MN-BI-FGSM (Ours) 58.6 100.0* 52.5 36.2 34.9 16.2

IncRes-v2 MI-FGSM 44.1 47.1 98.5* 27.3 33.2 20.0

NI-FGSM 45.3 48.6 99.0* 30.3 33.5 19.6

BI-FGSM (Ours) 53.5 55.5 98.1* 35.0 37.8 21.1

EMI-FGSM 51.1 52.1 98.5* 32.9 36.5 22.3

PN-NI-FGSM (Ours) 49.0 50.8 99.3* 31.3 34.1 21.7

PN-BI-FGSM (Ours) 57.7 59.3 98.1* 37.0 39.9 22.5

ENI-FGSM 56.1 56.8 99.7* 37.4 38.3 24.7

MN-NI-FGSM (Ours) 59.0 60.7 100.0* 38.2 38.5 25.8

MN-BI-FGSM (Ours) 60.5 62.8 100.0* 38.9 39.3 27.4

Res-152 MI-FGSM 48.2 41.5 34.0 99.9* 29.0 14.4

NI-FGSM 51.4 45.9 37.4 99.9* 28.5 15.1

BI-FGSM (Ours) 58.2 52.2 45.0 99.9* 34.2 15.6

EMI-FGSM 53.8 48.2 40.2 99.9* 30.0 15.3

PN-NI-FGSM (Ours) 55.2 47.9 40.1 100.0* 29.0 16.5

PN-BI-FGSM (Ours) 62.0 54.7 46.9 99.9* 35.2 16.6

ENI-FGSM 62.8 55.9 46.1 100.0* 33.2 17.9

MN-NI-FGSM (Ours) 63.2 58.5 47.4 100.0* 32.7 17.8

MN-BI-FGSM (Ours) 67.8 61.5 51.8 100.0* 32.8 19.5

Parent Attacks vs. Child Attacks. We compare the attack success rates
of BFRVM child attacks (i.e., BI-FGSM, PN-BI-FGSM, and MN-BI-FGSM)
and their parent attacks against the six baseline models under the single-model
setting. The attack success rates of adversarial examples generated on Inc-v3,
Inc-v4, IncRes-v3, and Res-152, respectively, are shown in Table 2. Next, we
take the adversarial samples generated on Inc-v3 as an example for specific
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Table 3. The attack success rates (%) of adversarial attacks integrated with input
transformations against the six baseline models under the single-model setting, The
adversarial examples are generated on Inc-v3, Inc-v4, IncRes-v3, and Res-152, respec-
tively. “*” indicates the model being white-box attacked

Models Attacks Inc-v3 Inc-v4 IncRes-v2 Res-152 Inc-v3adv IncRes-v2ens

Inc-v3 MN-BI-FGSM (Ours) 99.9* 66.1 58.6 48.9 36.2 18.7

MN-BI-DIM (Ours) 99.9* 78.2 73.8 61.9 46.2 28.8

MN-BI-FGSM (Ours) 99.9* 66.1 58.6 48.9 36.2 18.7

MN-BI-TIM (Ours) 99.9* 68.2 59.9 54.3 41.8 28.8

MN-BI-FGSM (Ours) 99.9* 66.1 58.6 48.9 36.2 18.7

MN-BI-SIM (Ours) 100.0* 80.6 76.1 64.5 50.9 32.3

MN-BI-FGSM (Ours) 99.9* 66.1 58.6 48.9 36.2 18.7

MN-BI-DTS (Ours) 100.0* 86.3 84.0 64.0 67.8 57.9

Inc-v4 MN-BI-FGSM (Ours) 58.6 100.0* 52.5 36.2 34.9 16.2

MN-BI-DIM (Ours) 75.4 99.8* 70.5 52.2 42.9 24.7

MN-BI-FGSM (Ours) 58.6 100.0* 52.5 36.2 34.9 16.2

MN-BI-TIM (Ours) 61.5 99.9* 55.6 39.5 41.0 27.5

MN-BI-FGSM (Ours) 58.6 100.0* 52.5 36.2 34.9 16.2

MN-BI-SIM (Ours) 80.7 100.0* 73.8 53.2 43.1 23.2

MN-BI-FGSM (Ours) 58.6 100.0* 52.5 36.2 34.9 16.2

MN-BI-DTS (Ours) 90.3 100.0* 87.0 63.1 61.0 51.9

IncRes-v2 MN-BI-FGSM (Ours) 60.5 62.8 100.0* 38.9 39.3 27.4

MN-BI-DIM (Ours) 75.9 76.0 99.9* 53.8 49.3 39.0

MN-BI-FGSM (Ours) 60.5 62.8 100.0* 38.9 39.3 27.4

MN-BI-TIM (Ours) 65.2 65.3 100.0* 43.6 48.3 40.7

MN-BI-FGSM (Ours) 60.5 62.8 100.0* 38.9 39.3 27.4

MN-BI-SIM (Ours) 71.8 68.2 99.9* 44.2 48.1 32.3

MN-BI-FGSM (Ours) 60.5 62.8 100.0* 38.9 39.3 27.4

MN-BI-DTS (Ours) 83.6 81.5 99.8* 55.6 66.1 60.5

Res-152 MN-BI-FGSM (Ours) 67.8 61.5 51.8 100.0* 32.8 19.5

MN-BI-DIM (Ours) 87.5 83.7 75.1 100.0* 43.8 30.2

MN-BI-FGSM (Ours) 67.8 61.5 51.8 100.0* 32.8 19.5

MN-BI-TIM (Ours) 69.1 63.3 57.5 100.0* 43.1 31.4

MN-BI-FGSM (Ours) 67.8 61.5 51.8 100.0* 32.8 19.5

MN-BI-SIM (Ours) 83.6 76.9 69.9 100.0* 43.9 30.1

MN-BI-FGSM (Ours) 67.8 61.5 51.8 100.0 32.8 19.5

MN-BI-DTS (Ours) 93.0 89.1 87.1 100.0* 68.5 66.3

analysis. For front vector attacks, the black-box attack success rates of EMI-
FGSM and ENI-FGSM are ∼7.1% and ∼13.5% higher than MI-FGSM on aver-
age, respectively, which indicates that the average gradient of the neighborhood
is more precise than the current gradient. Meanwhile, the black-box attack suc-
cess rates of ENI-FGSM are ∼6.5% higher than EMI-FGSM on average, which
indicates that momentum describes the neighborhood more precisely than the
previous gradient. Similar conclusions can be drawn for rear vector attacks (i.e.,
NI-FGSM, PN-NI-FGSM, and MN-NI-FGSM) and BFRVM attacks (i.e., BI-
FGSM, PN-BI-FGSM, and MN-BI-FGSM). Additionally, the black-box attack
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Table 4. The attack success rates (%) of adversarial attacks against the six baseline
models under the ensemble-model setting. The ensemble models test white-box attack
success rates and the hold-out models test black-box attack success rates, “-” indicates
the hold-out model

Model Attacks -Inc-v3 -Inc-v4 -IncRes-v2 -Res-152 -Inc-v3adv -IncRes-v2ens

Ensemble FGSM 40.8 40.8 38.7 43.4 52.7 53.3

I-FGSM 99.5 99.4 99.5 99.5 99.9 99.8

ENI-FGSM 99.9 99.9 99.9 99.9 99.9 99.9

MN-NI-FGSM (Ours) 99.9 99.9 99.9 99.9 99.9 99.9

MN-BI-FGSM (Ours) 100.0 99.9 99.9 99.9 99.9 99.9

Hold-out FGSM 40.2 39.5 37.8 29.5 39.1 16.5

I-FGSM 26.7 32.9 26.6 13.8 25.9 11.1

ENI-FGSM 70.5 72.7 66.3 53.1 46.2 23.7

MN-NI-FGSM (Ours) 70.3 74.9 67.6 54.5 47.0 25.0

MN-BI-FGSM (Ours) 73.4 77.6 71.1 55.8 47.2 25.5

success rates of three BFRVM attacks (i.e., BI-FGSM, PN-BI-FGSM, and MN-
BI-FGSM) are ∼5.9%, ∼4.6%, and ∼1.9% higher than their parent attacks on
average, respectively. However, our methods have a limitation, which is that
when improving transferability, may reduce the white-box attacks success rate.
Our MN-BI-FGSM shows the best performance. The white-box attack success
rate of MN-BI-FGSM is 99.9% and the black-box attack success rates are ∼4.9%
higher than other BFRVM attacks (i.e., BI-FGSM and PN-BI-FGSM) on aver-
age.

Integrated with Input Transformations. Since our MN-BI-FGSM shows
the best attack success rates, we integrate input transformations (i.e., DIM,
TIM, SIM, and DTS) into MN-BI-FGSM to further improve transferability.
We compare the attack success rates of MN-BI-FGSM and MN-BI-FGSM inte-
grated with input transformations in Table 3. Adversarial examples are gener-
ated on Inc-v3, Inc-v4, IncRes-v3, and Res-152, respectively. Next, we take the
adversarial samples generated on Inc-v3 as an example for specific analysis. The
white-box attack success rates of MN-BI-FGSM integrated with input transfor-
mations are not lower than MN-BI-FGSM. The black-box attack success rates
of MN-BI-FGSM integrated with input transformations (i.e., DIM, TIM, SIM,
and DTS) are ∼12.1%, ∼4.9%, ∼15.2%, and ∼26.3% higher than MN-BI-FGSM
on average, respectively. The results indicate that integrating input transforma-
tions into MN-BI-FGSM further improves transferability. MN-BI-DTS, which is
a combination of MN-BI-FGSM and DTS, shows the best attack success rates.
Its white-box attack success rate reaches 100%, and its average black-box attack
success rate is ∼72.0%.

4.3 Attack Ensemble Models

In this experiment, we use Inc-v3, Inc-v4, IncRes-v2, Res-152, Inc-v3adv and
IncRes-v2ens as the hold-out model, respectively. The ensemble model is the
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(a) MN-NI-FGSM
for various sampling
intervals

(b) MN-NI-FGSM
for various sampling
numbers

(c) ENI-FGSM for
various sampling in-
tervals

(d) ENI-FGSM for
various sampling
numbers

Fig. 3. The attack success rates (%) of the adversarial examples generated on Inc-v3
against Inc-v4, IncRes-v2, Res-152, Inc-v3adv and IncRes-v2ens (black-box) for various
sampling intervals and various sampling numbers

ensemble of the other five models by ensemble in logits (see Sect. 2.1), and the
ensemble weights are all set to 1/5. We use MN-BI-FGSM to generate adversarial
examples on the ensemble models because MN-BI-FGSM shows the best attack
success rates on single models. Baselines include FGSM, I-FGSM, and parent
attacks of MN-BI-FGSM (i.e., ENI-FGSM and our MN-NI-FGSM). We use our
MN-BI-FGSM and baselines to white-box attack the ensemble models and black-
box attack the hold-out models. Table 4 shows the success attack rates. The
white-box attack success rates of our MN-BI-FGSM are not lower than baselines
and not lower than 99.9%. In addition, the black-box attack success rates of our
MN-BI-FGSM are ∼24.7%, ∼35.6%, ∼3.0% and ∼1.9% higher than one-step
attack (i.e., FGSM), basic iterative attack (i.e., I-FGSM) and its parent attacks
(i.e., ENI-FGSM and our MN-NI-FGSM) on average.

4.4 Ablation Study

We conduct an ablation study here for MN-NI-FGSM. For the sampling distri-
bution, we adopt the linear sampling as in [28].

On Sampling Interval: We pre-set N = 11 and set η from 0 to 0.1 with a
step size of 0.01. The results are shown in Fig. 3a. When η ≤ 0.02, the attack
success rates show an upward trend in general, and when η ≥ 0.02, the attack
success rates show a downward trend in general. Therefore, we set η = 0.02 for
MN-NI-FGSM to achieve the best attack success rate.

On Sampling Number: According to the above results, we pre-set η = 0.02
and set N from 1 to 21 with a step size of 2. The results are shown in Fig. 3b.
When N ≤ 11, the attack success rates show an upward trend in general, and
when N ≥ 11, the attack success rates rise slowly and gradually stabilize. Since
the larger N , the higher the computational cost, we set N = 11 for MN-NI-
FGSM.
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In summary, we set the sampling interval η = 0.02 and the sampling number
N = 11 for MN-NI-FGSM. As shown in Fig. 3c and 3d, we conduct an abla-
tion study for ENI-FGSM, since the values of the sampling interval η and the
sampling number N of ENI-FGSM are not given in [28]. We can draw the same
conclusion as MN-NI-FGSM for ENI-FGSM, i.e., the sampling interval η = 0.02
and the sampling number N = 11. For PN-NI-FGSM, We set the same hyper-
parameters as EMI-FGSM as in [28] because EMI-FGSM and PN-NI-FGSM all
use the previous gradient to describe the neighborhood. Similarly, we set the
same hyperparameters for PN-NI-FGSM as ENI-FGSM, and we set the same
hyperparameters for BFRVM attacks as their parent attacks.

5 Conclusion

In this study, we first propose two methods to improve the transferability of NI-
FGSM, i.e., PN-NI-FGSM and MN-NI-FGSM. Both of the above methods show
higher black-box attack success rates than NI-FGSM. Then we define the front
vector and the rear vector, and we classify existing gradient-based momentum
iterative attacks into front vector attacks and rear vector attacks. Since the
front vector can refine the pre-update, and the rear vector can modify the pre-
update, we propose a method called BFRVM that combines front vector attacks
and rear vector attacks. To further improve transferability, we integrate input
transformations into the BFRVM attacks and generate adversarial examples on
the ensemble models through the BFRVM attacks. The results show that the
best white-box attack success rate of our BFRVM attacks reaches 100.0% and
the black box attack success rates are higher than the state-of-the-art attacks.
Our work also indicates that existing models still need to be more robust to
defend against adversarial attacks.
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Abstract. In this paper, we propose a novel manipulated face detection
and localization approach, which simultaneously detect manipulated face
images and videos and locate the manipulated regions at semantic-level.
To do this, we design a multi-branch autoencoder composed of four types
of modules, including feature encoder, shared decoder, semantic decoder,
and classification network. The feature encoder extracts latent feature
from the input face image. The shared decoder obtains structure feature
from the latent feature. The four semantic decoders decode structure
feature into four different semantic prediction masks, respectively. The
classification network outputs the semantic prediction labels based on
the latent feature. Finally, the manipulation prediction label and manip-
ulation prediction mask of the input face image can be generated with
the semantic prediction labels and semantic prediction masks. Extensive
experiments show that our approach can effectively detect and locate
manipulated face images and videos at semantic-level, even under cross-
manipulation, cross-dataset, and cross-compression scenarios.

Keywords: Manipulated face detection · Manipulated face
localization · Semantic segmentation

1 Introduction

The proliferation of artificial intelligence has given rise to various face image
and video tampering methods, especially generative models [1,2]. Since these
techniques can synthesize more and more realistic face images and videos that
are hardly distinguishable by humans [3,4]. Abuse of manipulated face images
and videos can easily trigger severe societal problems or political threats over
the world. Therefore, it is important to develop effective methods for exposing
face manipulation.

The two major concerns in the field of manipulated face forensics are manip-
ulated face detection and manipulated face localization. Manipulated face detec-
tion methods can classify face images and videos into fake face images and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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videos or real face images and videos. As the release of large-scale face manipu-
lation datasets [5–7], it enables the training of Deep Neural Networks (DNN) to
identify manipulated face images and videos with various deep features [8–13].
Manipulated face localization methods with the goal to locate the manipulated
regions. Early works focus on three commonly used means of tampering, includ-
ing removal, copy-move, and splicing [14–16]. They are not well suited for locat-
ing advanced face manipulations. So far, only several works have been proposed
in the field of manipulated face localization [17–20]. However, all the existing
manipulated face localization methods can only locate manipulated regions at
pixel-level. None of them considers locating manipulated regions at semantic-
level, which is more significant and valuable in the field of manipulated face
forensics.

In this paper, we propose a novel approach for simultaneously performing
detection and localization of manipulated face images and videos at semantic-
level. Our designed multi-branch autoencoder comprises a feature encoder, a
shared decoder, four semantic decoders, and a classification network. For an
input face image, firstly, we encode it into the latent feature by the feature
encoder. Second, we decode the latent feature into structure feature by the shared
decoder. Third, we feed the structure feature into four semantic decoders for
generating four semantic prediction masks, respectively. Meanwhile, we feed the
latent feature into the classification network for obtaining the semantic predic-
tion labels. Lastly, the manipulation prediction label and manipulation predic-
tion mask of the input face image can be generated with the semantic prediction
labels and semantic prediction masks.

To the best of our knowledge, this is the first solution to deal with the problem
of manipulated face detection and localization at semantic-level. We experimen-
tally evaluate the effectiveness of our proposed approach on five widely used face
manipulation datasets. The experimental results show that our approach can
accurately detect and locate manipulated face images and videos at semantic-
level. Moreover, the performance of inter-dataset evaluation demonstrates that
our approach is effective even under cross-manipulation, cross-dataset, and cross-
compression scenarios.

The rest of the paper is organized as follows. Section 2 provides an overview
about our work. Section 3 describes the overall pipeline of our proposed approach
and the details of all parts. The experimental results are presented in Sect. 4.
Lastly, Sect. 5 concludes our work.

2 Related Works

2.1 Face Manipulation

Face Manipulation has been studied for a long period. The methods can be
mainly divided into four types regarding the level of manipulation. They are
entire face synthesis, attribution manipulation, expression swap, and identity
swap. Entire face synthesis creates entire non-existent face images, usually
through powerful Generative Adversarial Networks (GAN), such as ProGAN,
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StyleGAN, and CycleGAN [21–23]. Attribution manipulation, also known as
face editing or face retouching, consists of modifying some attributes of the face
such as the color of the hair, the gender, the age, and adding glasses. This manip-
ulation process is usually carried out through IcGAN, StarGAN, AttGAN, and
STGAN [24–26]. Expression swap, also known as face reenactment, consists of
modifying the facial expression of the person. Face2Face and NeuralTextures
are two representative techniques [3,4]. Identity swap is the most popular face
manipulation type, which consists of replacing the face of one person in an image
or a video with the face of another person. Classical computer graphics technique
and deep learning based techniques known DeepFake are usually considered in
this field [27,28]. Based on the different face manipulation types, the manip-
ulated face images and videos contain fake information in the different facial
regions.

2.2 Manipulated Face Detection

Manipulated face detection is normally deemed a binary classification problem.
In general, the methods can be divided into three categories based on the par-
tition of feature space. They are spatial feature based methods, temporal fea-
ture based methods, and multi-domain feature based methods. Spatial feature
based methods exploit the artifacts, such as visual artifacts, inconsistent head
pose, missing symmetry, warping artifacts, and convolutional traces, to expose
manipulated face images [13,29–32]. Various types of DNN, such as capsule net-
work, residual network, and attention mechanism, were also applied to automat-
ically learn salient and discriminative features to detect manipulated face images
[11,33]. Temporal feature based methods exploit the anomalies between consecu-
tive frames, such as optical flow motion, eye blinking pattern, facial action units,
and prediction error, to expose manipulated face videos [12,34]. Multi-domain
feature based methods exploit multi-stream neural networks to combine spatial
feature, temporal feature, and frequency feature for exposing manipulated face
videos [35]. The impressive progress has been made in the performance of detec-
tion of manipulated face images and videos under the proposed countermeasures.

2.3 Manipulated Face Localization

Manipulated face localization aims to locate the manipulated regions of face
images and videos. A multi-task learning approach is designed for simultane-
ously detecting manipulated face images and videos and locating the manipu-
lated regions [17]. The network includes an encoder and a Y-shaped decoder.
The encoder is used for the binary classification. One branch of the decoder
is used for segmenting the manipulated regions while the other branch is used
for reconstructing the input. Some researchers introduced the attention mecha-
nism into encoder-decoder for capturing the fake textures of manipulated face
images [1,19]. Another method called face X-ray only assumes the existence of a
blending step in the face image synthesis process [18]. The face X-ray shows the
blending boundary for a manipulated face image and the absence of blending
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Fig. 1. The overall pipeline of our proposed approach.

for a real face image. Besides, adding the information of facial landmarks into
the input face images can also improve the performance of manipulation mask
prediction [20]. All the existing manipulated face localization methods focus on
locating the manipulated regions at pixel-level. However, none of them consid-
ers locating the manipulated regions at semantic-level which is the focus of our
work.

3 Methodology

In this section, we describe our proposed approach from three main parts in
detail, including labeled data generation, multi-branch autoencoder, and loss
function. Figure 1 graphically shows the overall pipeline of our approach.

3.1 Labeled Data Generation

In order to generate labeled data, including face images, semantic masks, seman-
tic labels, and manipulation masks, we carry out three data processing steps
of facial landmarks extraction, facial semantic segmentation, and facial regions
fusion. Figure 2 shows the overview of generating labeled data.

Facial Landmarks Extraction. Facial landmarks are locations on the face
carrying important structural information of facial features. In our method, we
extract 68 facial landmarks, from number 0 to 67, for each face image through
the toolbox dlib. An example of facial landmarks is shown in Fig. 2(a). For each
face image, the facial region is cropped and resized to the uniform size with 256
× 256 pixels in RGB channels.
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Fig. 2. The overview of generating labeled data, including facial landmarks extraction,
facial semantic segmentation, and facial regions fusion.

Facial Semantic Segmentation. According to the location of facial features,
in our method, we segment each face image into four different semantic regions,
including eyes, nose, mouth, and rest. An example of semantic regions is shown
in Fig. 2(b). The specific facial landmarks considered in the segmentation process
of semantic regions are

– Eyes: facial landmarks from number 17 to 26, and number 36 to 47.
– Nose: facial landmarks from number 27 to 35, and number 39, 42.
– Mouth: facial landmarks from number 31 to 35, and number 48 to 67.
– Rest: facial landmarks from number 0 to 16, and number 17 to 26.

Then, the semantic masks of eyes Me, nose Mn, mouth Mm, and rest Mr are
defined as ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

Me = fCH (Je)
Mn = fCH (Jn)
Mm = fCH (Jm)
Mr = fCH (Jr) − (Me + Mn + Mm)

, (1)

where each pixel value in the semantic masks has binary value of 0 or 1. fCH

denotes the operation of Convex Hull. Je, Jn, Jm, and Jr are the sets of facial
landmarks of eyes, nose, mouth, and rest. Therefore, the semantic regions of eyes
Re, nose Rn, mouth Rm, and rest Rr can be obtained through

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Re = I � Me

Rn = I � Mn

Rm = I � Mm

Rr = I � Mr

, (2)

where I is the input face image. � denotes the operation of element-wise multi-
plication.
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Facial Regions Fusion. In order to generate manipulated face images with dif-
ferent manipulation regions, we obtain manipulation masks through combining
four semantic masks with each other. The manipulation mask MM is defined as

MM = le · Me + ln · Mn + lm · Mm + lr · Mr, (3)

where le, ln, lm, and lr are the semantic labels of eyes, nose, mouth, and rest.
They have binary value of 0 or 1. When the value of semantic label is equal to
1, the corresponding semantic mask is activated and vice versa.

Then, the manipulated face image IM can be generated through

IM = IF � fGB (MM ) + IR � fGB (1 − MM ), (4)

where IF and IR are paired fake face image and real face image. It should be
noted that the paired fake face image and real face image share the same back-
ground and facial landmarks. These data can be collected from the public face
manipulation datasets. fGB denotes the operation of Gaussion Blur for turning
a binary mask into a soft mask, which is helpful to weaken the artifacts of image
fusion boundary. According to the value of semantic labels, the manipulation
label lM of the manipulated face image IM is defined as

lM = fMAX (le, ln, lm, lr), (5)

where fMAX denotes the operation of Maximizing. Exceptionally, the manipu-
lation mask MM is a trivial blank image with all pixel values equal to 0 when
all semantic labels are set to 0. In this case, the manipulated face image IM will
be transformed into the pristine face image.

As described above, we are able to produce a huge number of labeled data
step by step. In practice, we generate the labeled data dynamically along with
the training process.

3.2 Multi-branch Autoencoder

In order to detect and locate manipulated face images and videos at semantic-
level, we designed a multi-branch autoencoder to predict manipulation proba-
bility and locate manipulation mask of the input face image. The multi-branch
autoencoder consists of four types of modules, feature encoder, shared decoder,
semantic decoder, and classification network.

Feature Encoder. The function of feature encoder EF is encoding the input
face image I into the latent feature Fl, which can be formally described as

Fl = EF (I), (6)

where Fl contains the category information and structure information of the
input face image. The sizes of I and Fl are 256 × 256 × 3 and 16 × 16 × 128.
EF consists of nine convolutional (Conv) layers. Following each Conv layer is a
batch normalization (BatchNorm) layer and a rectified linear unit (ReLU).
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Shared Decoder. The function of shared decoder DSH is decoding the latent
feature Fl into the structure feature Fs, which can be formally described as

Fs = DSH (Fl), (7)

where Fs contains the semantic information of the input face image. The sizes
of Fs is 64 × 64 × 32. DSH consists of four trans convolutional (TransConv)
layers. Following each TransConv layer is a BatchNorm layer and a ReLU.

Semantic Decoder. In order to generate semantic prediction masks of eyes
M̂e, nose M̂n, mouth M̂m, and rest M̂r, we constructed four identical semantic
decoders DSEe, DSEn, DSEm, and DSEr for decoding the structure feature Fs

respectively. The generation process of the semantic prediction masks can be
formally described as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Fe = [Fe0, Fe1] = DSEe (Fs)
Fn = [Fn0, Fn1] = DSEn (Fs)
Fm = [Fm0, Fm1] = DSEm (Fs)
Fr = [Fr0, Fr1] = DSEr (Fs)

, (8)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

M̂e = fRO (Fe1)

M̂n = fRO (Fn1)

M̂m = fRO (Fm1)

M̂r = fRO (Fr1)

, (9)

where Fe, Fn, Fm, and Fr are activation features of M̂e, M̂n, M̂m, and M̂r. They
have the same size of 256 × 256 × 2. fRO denotes the operation of Rounding Off.
M̂e, M̂n, M̂m, and M̂r have the same size of 256 × 256 × 1. All pixel values in
the semantic prediction masks are either 0 or 1. Each semantic decoder consists
of five TransConv layers and end up with a softmax activation function. The
first four TransConv layers are followed by a BatchNorm layer and a ReLU.

Classification Network. In order to obtain semantic prediction labels of eyes
l̂e, nose l̂n, mouth l̂m, and rest l̂r, we constructed a classification network NC

for extracting category information of semantic regions from the latent feature
Fl. The classification process of semantic regions can be formally described as

[pe, pn, pm, pr] = NC (Fl), (10)
[
l̂e, l̂n, l̂m, l̂r

]
= fRO ([pe, pn, pm, pr]), (11)

where pe, pn, pm, and pr are manipulation probabilities of eyes, nose, mouth, and
rest. They are within the range of [0, 1]. l̂e, l̂n, l̂m, and l̂r have binary value of 0
or 1. When the value of semantic prediction label is equal to 1, the corresponding
semantic region is classified as manipulation region and vice versa. NC consists
of six Conv layers and end up with a sigmoid activation function. The first five
Conv layers are followed by a BatchNorm layer and a ReLU.
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According to the semantic prediction labels and semantic prediction masks,
the manipulation prediction label l̂M and manipulation prediction mask M̂M of
the input image I can be obtained by

l̂M = fMAX

(
l̂e, l̂n, l̂m, l̂r

)
, (12)

M̂M = l̂e · M̂e + l̂n · M̂n + l̂m · M̂m + l̂r · M̂r. (13)

Therefore, for each input face image, we can predict the manipulation probability
and locate the manipulated regions at semantic-level through our designed multi-
branch autoencoder.

From the view of the overall structure of multi-branch autoencoder, the infor-
mation extracted from the modules of feature encoder and shared decoder are
shared between the tasks of manipulated face detection and localization, which
is helpful to improve the overall performance of the network.

3.3 Loss Function

During the training process of multi-branch autoencoder, we adopt three types
of loss function to optimize the model. They are segmentation loss, activation
loss and location loss.

Segmentation Loss. The segmentation loss Lseg is used to measure the agree-
ment between the semantic prediction mask and the ground truth semantic mask,
which is defined as

Lseg = − 1
N

N∑

k=1

1
H × W

(H,W )∑

(i,j)=(0,0)

�k(i,j), (14)

where N is the number of samples. k is the sample index. H × W is the size of
semantic mask. (i, j) is the index denoting the metadata location. �k(i,j) denotes
the agreement between the pixel bk(i,j) in the ground truth semantic mask and

the element b̂k(i,j) in the activation feature of semantic prediction mask, which is
defined as

�k(i,j) = bk(i,j) log b̂k(i,j) +
(
1 − bk(i,j)

)
log

(
1 − b̂k(i,j)

)
, (15)

where bk(i,j) and b̂k(i,j) can be obtained through Eq. (1) and Eq. (8).

Activation Loss. The activation loss Lact is used to measure the bias between
the manipulation probability pk and the ground truth semantic label lk, which
is defined as

Lact =
1
N

N∑

k=1

∣
∣lk − pk

∣
∣, (16)

where pk can be obtained through Eq. (10).
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Location Loss. The location loss Lloc is used to measure the agreement between
the manipulation prediction mask and the ground truth manipulation mask,
which is defined as

Lloc =
1
N

N∑

k=1

1
H × W

(H,W )∑

(i,j)=(0,0)

∣
∣
∣ck(i,j) − ĉk(i,j)

∣
∣
∣, (17)

where ck(i,j) and ĉk(i,j) are pixel values in the ground truth manipulation mask
and manipulation prediction mask, which can be obtained through Eq. (3) and
Eq. (13).

The total loss is the weighted sum of the three losses, which is defined as

L =
α

4

∑

v∈{e,n,m,r}
Lv
seg +

β

4

∑

v∈{e,n,m,r}
Lv
act + γLloc, (18)

where v denotes the semantic index. α, β, and γ are the weights balancing the
three losses. In our method, we set the three weights equal to 1 for the reason
that the classification task and the localization task are equally important.

4 Experiments

4.1 Experimental Setup

Datasets. In our experiments, we evaluate our method on five widely used
face manipulation datasets, including FaceForensics++ [5], Celeb-DF [6], DFD
[5], DFDC [7], and UADFV [29]. FaceForensics++ contains 1,000 real videos
and each one corresponds to four fake videos. The fake videos are generated
using four different face manipulation methods, including DeepFake (FF++DF),
Face2Face (FF++F2F), FaceSwap (FF++FS), and NeuralTextures (FF++NT).
Each subdataset contains three video compression quality, including high quality
with Constant Rate Factor (CRF) equal to 0, middle quality with CRF equal to
23, and low quality with CRF equal to 40. Celeb-DF contains 590 real videos and
5,639 fake videos. DFD contains 363 real videos and 3,068 fake videos. DFDC
contains more than 10,000 real videos and 100,000 fake videos. UADFV contains
49 real videos and 49 fake videos.

We randomly sample equal number of pristine videos and manipulated video
from each dataset. Three fourth of videos are taken as training data and the rest
of videos as testing data.

Implementation Details. In the training process, the batch size is set to 150
and the total number of epochs is set to 100. The learning rate is set as 10−3 using
Adam optimizer at first and then is linearly decayed to 10−6 every 25 epochs.
All training and testing experiments are conducted on one NVIDIA Tesla-P100
12G GPU.
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Table 1. Manipulated face localization error (%) at pixel-level and semantic-level.

lelnlmlr 1000 0100 0010 0001 1100 1010 1001 0110 0101 0011 1110 1101 1011 0111 1111 0000

Dataset ERRpix

FF++DF 00.71 00.38 00.42 02.32 00.94 01.08 02.54 00.65 02.34 02.15 01.22 02.43 02.36 02.07 02.19 00.06

FF++F2F 01.21 00.92 01.02 03.04 01.50 01.77 03.38 01.36 03.33 03.00 01.97 03.49 03.34 03.16 03.29 00.56

FF++FS 00.89 00.67 00.74 02.47 01.20 01.32 02.61 00.98 02.56 02.27 01.52 02.55 02.42 02.20 02.21 00.35

FF++NT 00.86 00.56 00.62 02.48 01.10 01.32 02.72 00.88 02.58 02.33 01.44 02.64 02.59 02.31 02.41 00.25

Celeb-DF 06.42 06.78 06.85 06.59 05.76 05.31 06.31 05.82 06.36 04.94 05.05 06.63 04.82 05.14 05.48 08.62

DFD 03.62 03.68 03.56 06.30 03.92 03.30 06.70 02.97 05.57 05.58 03.80 06.52 06.12 04.97 06.03 06.91

DFDC 08.02 07.32 07.86 11.60 08.40 07.90 10.87 07.02 10.37 11.21 08.31 11.16 10.59 10.35 11.58 08.80

UADFV 01.48 01.28 01.12 02.91 02.09 02.15 03.20 01.97 03.17 02.78 02.84 03.33 03.06 03.32 03.25 00.47

Dataset ERRsem

FF++DF 00.39 00.34 00.36 00.38 00.66 00.59 00.61 00.60 00.58 00.62 00.89 00.87 00.84 00.86 01.19 00.18

FF++F2F 01.83 02.19 02.34 01.70 02.73 02.81 02.33 03.15 03.00 02.97 03.82 03.67 03.54 04.27 05.03 01.69

FF++FS 00.84 00.96 01.24 01.02 01.26 01.13 01.16 01.24 01.28 01.30 01.59 01.55 01.42 01.60 01.93 01.01

FF++NT 00.82 00.88 00.90 00.72 01.21 01.21 01.07 01.29 01.15 01.14 01.74 01.50 01.52 01.72 02.19 00.73

Celeb-DF 09.38 13.30 08.75 09.78 11.22 04.69 06.77 09.56 10.14 04.44 08.49 09.90 02.61 07.21 08.23 14.92

DFD 05.48 04.54 05.39 04.94 06.44 05.27 05.80 03.98 04.20 04.94 06.43 07.73 06.24 04.94 09.36 09.77

DFDC 14.04 13.55 15.89 17.20 17.74 14.07 14.81 14.64 13.91 16.61 19.29 17.96 15.06 15.52 20.93 18.51

UADFV 02.83 04.71 03.18 00.70 06.76 04.75 01.15 07.37 02.71 01.74 09.65 03.81 01.93 05.57 05.83 01.21
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Fig. 3. The examples of manipulated face localization.

Evaluation Metrics. We report the experimental results of manipulated face
detection and localization with the metrics of accuracy ACC, pixel-level error
ERRpix and semantic-level error ERRsem. For each input face image, the two
localization errors can be calculated by

ERRpix =
1

H × W

(H,W )∑

(i,j)=(0,0)

∣
∣c(i,j) − ĉ(i,j)

∣
∣, (19)

ERRsem =
1
4

∑

v∈{e,n,m,r}

∣
∣
∣lv − l̂v

∣
∣
∣, (20)

where the symbols of H, W , (i, j), c(i,j), ĉ(i,j), v, lv and l̂v have been mentioned
in Eq. (3), Eq. (11), Eq. (14), Eq. (17) and Eq. (20).
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Table 2. Manipulated face detection accuracy (%) at semantic-level.

Dataset ACCe ACCn ACCm ACCr ACCM

FF++DF 99.37 99.35 99.36 99.39 99.22

FF++F2F 97.21 96.67 95.88 98.43 95.75

FF++FS 98.93 98.27 98.68 98.96 97.71

FF++NT 98.54 98.70 98.53 99.24 98.08

Celeb-DF 85.65 79.91 80.21 82.33 77.36

DFD 93.56 90.79 94.76 88.98 82.29

DFDC 79.45 77.13 73.13 77.31 70.30

UADFV 96.92 91.63 95.99 99.52 95.91

4.2 Intra-dataset Evaluation

In the experiments of intra-dataset evaluation, our model is trained on the train-
ing data, and performance is evaluated with the corresponding testing data.

The results of localization error are shown in Table 1, where we divide test-
ing data into 16 categories according to the semantic labels. As can be seen,
our approach achieves well localization performance on all face manipulation
datasets used in our experiments. Taking FF++DF dataset as an example, the
localization errors are 0.65% at pixel-level and 0.60% at semantic-level when the
manipulation semantic regions are nose and mouth. The localization errors are
2.19% at pixel-level and 1.19% at semantic-level when the whole facial region are
manipulated. Overall, the average localization errors are 1.49%, 2.27%, 1.68%,
1.69%, 6.06%, 4.97%, 9.46%, 2.40% at pixel-level and 0.62%, 2.94%, 1.28%,
1.24%, 8.71%, 5.96%, 16.23%, 3.99% at semantic-level on FF++DF, FF++F2F,
FF++FS, FF++NT, Celeb-DF, DFD, DFDC, and UADFV, respectively. There-
fore, our approach can precisely locate the manipulated facial regions at pixel-
level and semantic-level. Figure 3 shows the examples of manipulated face local-
ization.

The results of detection accuracy are shown in Table 2, where ACCe, ACCn,
ACCm, ACCr, and ACCM denote the accuracy of semantic prediction labels
l̂e, l̂n, l̂m, l̂r and manipulation prediction label l̂M . Taking UADFV dataset as
an example, the detection accuracy is 96.92% when the manipulation semantic
regions contain eyes. The detection accuracy is 95.91% when the face images
contain at last one manipulation semantic region. Therefore, our approach can
differentiate pristine face images and manipulated face images effectively. Note
that the results reported for Celeb-DF dataset and DFDC dataset are compara-
bly lower, due to the fact that these datasets contain more realistic face images
generated through the advanced face manipulation methods.

In order to compare the performance of our approach with the existing manip-
ulated face localization methods, we present the experimental results of two
other representative methods based on FF++FS dataset in Table 3. We can see
that, our approach reduces the localization error from 1.54% to 1.32% at pixel-
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level when the manipulation semantic regions are eyes and mouth. Overall, our
approach reduces the average localization error from 1.99% to 1.68% at pixel-
level on all testing data. Thus, our approach outperforms the state-of-the-art
manipulated face localization methods. All the existing manipulated face local-
ization methods can locate the manipulated regions only at pixel-level and not
at semantic-level.

4.3 Inter-dataset Evaluation

In the experiments of inter-dataset evaluation, we perform cross-manipulation,
cross-dataset, and cross-compression tests in verification of model generalization.

Cross-Manipulation Evaluation. In order to evaluate the generalization abil-
ity of our approach under cross-manipulation scenario, we train the model on
FF++F2F dataset and test it on three other datasets, including FF++DF,
FF++FS, and FF++NT, generated using three different face manipulation

Table 3. Manipulated face localization error (%) comparison with the existing methods
at pixel-level based on FF++FS dataset.

lelnlmlr 1000 0100 0010 0001 1100 1010 1001 0110 0101 0011 1110 1101 1011 0111 1111 0000

Method ERRpix

Y.S. [17] 01.68 01.24 01.40 03.38 01.97 02.13 03.34 01.71 03.33 03.15 02.45 03.35 03.23 03.09 03.71 00.43

F.L. [19] 01.14 00.86 00.90 02.78 01.39 01.54 02.98 01.12 02.90 02.71 01.65 02.99 02.91 02.73 02.84 00.40

Ours 00.89 00.67 00.74 02.47 01.20 01.32 02.61 00.98 02.56 02.27 01.52 02.55 02.42 02.20 02.21 00.35

Table 4. Performance (%) of inter-dataset evaluation.

Training set Testing set ERRpix ERRsem ACCM

FF++F2F FF++DF 05.03 05.91 95.53

FF++FS 14.61 27.86 73.70

FF++NT 04.87 07.75 93.16

Celeb-DF DFD 11.83 21.56 71.25

DFDC 13.40 24.20 65.34

UADFV 09.41 15.92 81.55

FF++FS-HQ FF++FS-HQ 01.68 01.28 98.65

FF++FS-MQ 10.74 17.29 83.12

FF++FS-LQ 14.81 24.02 72.18

FF++FS-MQ FF++FS-HQ 06.37 09.20 95.45

FF++FS-MQ 07.11 10.70 95.03

FF++FS-LQ 10.43 17.40 91.38

FF++FS-LQ FF++FS-HQ 06.77 11.79 95.63

FF++FS-MQ 06.53 11.35 95.49

FF++FS-LQ 04.00 06.56 97.22
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methods. The experimental results are shown in Table 4. Compared with the
intra-dataset evaluation, the average localization errors on FF++DF dataset
and FF++NT dataset are 5.91% and 7.75% at semantic-level, which only rise
by 5.29% and 6.51% respectively. The detection accuracy on FF++DF dataset
and FF++NT dataset are 95.53% and 93.16%, which only fall by 3.69% and
4.92% respectively. The experimental results demonstrate that our approach
can effectively generalize across different face manipulation methods.

Cross-Dataset Evaluation. In order to evaluate the generalization ability of
our approach under cross-dataset scenario, we train the model on Celeb-DF
dataset and test it on three other face swapping datasets, including DFD, DFDC,
and UADFV. The experimental results are shown in Table 4. Compared with
the intra-dataset evaluation, the average localization errors on DFD dataset and
UADFV dataset are 21.56% and 15.92% at semantic-level, which rise by 15.60%
and 11.93% respectively, The detection accuracy on DFD dataset and UADFV
dataset are 71.25% and 81.55%, which fall by 11.04% and 14.36% respectively.
The performance degradation under cross-dataset scenario is likely due to the
large difference between training data and testing data.

Cross-Compression Evaluation. In order to evaluate the generalization abil-
ity of our approach under cross-compression scenario, we train three mod-
els on FF++FS high quality (FF++FS-HQ) dataset, FF++FS middle qual-
ity (FF++FS-MQ) dataset, and FF++FS low quality (FF++FS-LQ) dataset,
respectively. Then, we test them on all three datasets with different video com-
pression quality. The experimental results are shown in Table 4. Taking the model
trained on FF++FS-MQ dataset as an example, compared with the intra-dataset
evaluation, the average localization error on FF++FS-LQ dataset is 17.40% at
semantic-level, which only rise by 6.7%. The detection accuracy on FF++FS-LQ
dataset is 91.38%, which only fall by 3.65%. From the results of the model trained
on FF++FS-LQ dataset, we can see that our approach can also extract effective
feature to detect and locate manipulated face images based on the low quality
videos. In general, our approach is robust to the operation of video compression.

5 Conclusion

In this paper, we proposed a novel approach for simultaneously detecting manip-
ulated face images and videos and locating manipulated regions at semantic-
level. Our designed multi-branch autoencoder comprises a feature encoder, a
shared decoder, four semantic decoders, and a classification network. The output
of the feature encoder contains the category information and structure informa-
tion of the input face image. The structure information is feed into the shared
decoder and the four semantic decoders for constructing four different semantic
prediction masks. Meanwhile, the category information is feed into the classifi-
cation network for obtaining semantic prediction labels. Then, the manipulation
prediction label and manipulation prediction mask of the input face image can
be generated with the semantic prediction masks and semantic prediction labels.
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Extensive experiments have been performed to demonstrate the effectiveness of
our approach, showing that our approach is capable of accurately detecting and
locating manipulated face images and videos, even under cross-manipulation,
cross-dataset, and cross-compression scenarios.

Acknowledgements. This work was supported by National Key Technology
Research and Development Program under 2020AAA0140000.
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Abstract. The field of temporal image forensics is the science of approx-
imating the age of a digital image relative to images from the same
device. For this purpose, classical methods exist that exploit handcrafted
features based on hidden age traces (i.e., in-field sensor defects). In con-
trast to these classical methods, a Convolutional Neural Network (CNN)
learns the features used independently. This has the benefit that other
(unknown) age traces can be exploited. However, this also carries the
risk of learning non-age-related features to predict the age class. In this
work, we analyze the features learned by a standard CNN trained in
the context of image age approximation on regular scene images. To
analyze whether the model learned to exploit hidden age traces or just
other general, non-age-related intra-class properties (e.g., common scene
properties or lighting conditions), we applied methods from the field
of Explainable Artificial Intelligence (XAI). This analysis is performed
with 14 models trained with images from 14 different devices from two
datasets.

Keywords: Image age approximation · Age features · Image content ·
Deep learning · Image forensics

1 Introduction

The main objective in temporal image forensics is to establish a chronological
sequence among pieces of evidence. Since the time-stamp stored in the EXIF
header is easy to manipulate, this chronological order must be determined using
time-dependent traces hidden in a digital image, like in-field sensor defects. In-
field sensor defects are single pixel defects that develop in-field (i.e., after the
manufacturing process). Since these defects accumulate over time, the age of a
digital image can be approximated based on the detected defects. In principle,
these defects affect a single pixel only. However, because of preprocessing like
demosaicing (interpolation), the defect spreads to neighbouring pixels. Further
characteristics of in-field sensor defects have been studied in multiple publica-
tions (e.g., [8,9,26–28,34,35]).
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In temporal image forensics, it is assumed that a forensics analyst is provided
with a set of chronologically ordered trusted images and a second not trustworthy
set (from the same device). The goal is to approximate the age of images from
the not trustworthy set relative to the trusted set. For this purpose, Fridrich
and Goljan proposed a maximum likelihood approach based on median filter
residuals in [14]. Since the median filter is a denoising filter and in-field sensor
defects appear as image noise, the median filter residuals contain the defect
magnitude.

We consider image age approximation as a multi-class classification problem
(i.e., where the classes are defined by the different defect onset times and the
available trusted images). For this reason, in [21] we propose to utilize traditional
machine learning techniques (i.e., a ‘Naive Bayes Classifier’ and a ‘Support Vec-
tor Machine’) for approximating the image age. Since the age approximation
is also based on the presence of in-field sensor defects, a limitation of both
approaches [14,21] is that the defect locations must be known beforehand. For
this purpose, several methods exist that detect sensor defects based on regular
scene images (e.g., [7,11–13,15,27,33]). A defect detection method specifically
proposed in the context of image approximation was introduced in [20]. Ahmed et
al. proposed another machine learning approach based on in-field sensor defects
in [3]. In their work, the defect identification and age approximation are com-
bined in one method.

Unlike these traditional techniques, a Convolutional Neural Network (CNN)
learns the classification features used. In this context, Ahmed et al. utilized two
well-known CNN architectures for image age approximation (i.e., the AlexNet
[24] and GoogLeNet [32]) in [1]. The authors reported an accuracy of over 85%
for a five-class classification problem achieved by AlexNet with transfer learning
mode. In [19], we systematically investigated the influence of the presence of
strong in-field sensor defects when training a CNN for image age approximation.
Considering the investigated ‘five-crop-fusion’ scenario (where five networks are
trained on different fixed image patches each) the presence of a strong in-field
sensor defect is irrelevant for improving the age classification accuracy. For this
reason, we suggested that other ‘age’ traces are exploited by the network.

The advantage of a CNN learning features independently also carries the risk
of learning features that are unrelated to temporal difference between the classes.
Deep neural networks can be considered as a ‘black box’. For example, in the
context of deep learning age approximation, it is not evident that the age class
prediction is based solely on detected age traces. In principle, it is likely that
images taken in close temporal proximity (e.g., belonging to the same age class)
share some common features. For example: (i) common scene properties (e.g.,
urban or nature scenes); (ii) common weather conditions (e.g., cloudy or blue
sky); (iii) seasonal commonalities (e.g., light conditions and vegetation). Such
non-age related features can be exploited by the CNN to discriminate between
the age classes. An indication that non-age related features are learned was
given in [22]. In this work, we investigated if the learned ‘age’ features are device
(in)dependent. However, based on the results obtained, this question could not
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be answered. In contrast, the results suggest that not solely age related features
are learned.

In this work, the main contribution is to analyze the features learned by a
standard CNN trained in the context of image age approximation on regular
scene images. For this purpose, methods from the field of Explainable Artifi-
cial Intelligence (XAI) are applied to investigate whether age features or other
non-age-related features (e.g. common scene properties or lighting conditions)
are learned. The field of XAI is focused on a better understanding and interpre-
tation of the features learned. A relatively recent survey of methods developed
in this field is provided in [29]. We utilize two different Class Activation Maps
(CAM) techniques to analyse the features learned. In particular, GradCAM++
and ScoreCAM are applied to the same trained models that are also used in [22]
to evaluate the device independence. Each model was trained on images from a
specific device. In total, images from 14 different devices were available. 10 of
these 14 devices are from the publicly available ‘Northumbria Temporal Image
Forensics’ [2] dataset.

The remainder of this paper is organized as follows: the utilized network
architecture is described in Sect. 2. In Sect. 3, we give an overview of the used
dataset and training settings. The applied CAM techniques (i.e., GradCAM++
and ScoreCAM) are described in Sect. 4 and the results of the CAM analysis
are presented in Sect. 5. Potential solutions are outlined in Sect. 6 and the key
insights are summarized in the last Sect. 7.

2 Steganalysis Residual Network (SRNet)

In [19,22], the idea is that the age traces can be interpreted as a signal that
is hidden in a digital image. The field of image steganalysis is the science of
detecting whether there is a secret message (signal) hidden in an image. For this
reason, methods proposed in the field of image steganalysis may also be suitable
for detecting existing age traces. In [19,22], the Steganalysis Residual Network
(SRNet), introduced by Boroumand et al. in [6], was used to approximate the
age of an image. The SRNet is based on the residual learning principle [18] and
depicted in Fig. 1.

The key part of the SRNet is the first seven layers, where no pooling oper-
ation is involved. Since pooling act as a low-pass filter, omitting it does not
suppress the noise-like stego (age) signal. In [19], the SRNet was trained based
on several learning scenarios to investigate the influence of the presence of strong
in-field sensor defects and to evaluate if the learned ‘age’ features are position-
ally invariant. The ‘five-crop-fusion’ learning scenario was the most position
dependent scenario. This scenario was also utilized in [22] to evaluate the device
(in)dependence of the learned features and is again used in this work. In par-
ticular, five different SRNets are trained on five different fixed image patches
(256×256). Each image patch is always extracted from the same location. These
locations are at the top left (‘tl’), the top right (‘tr’), the bottom left (‘bl’), the
bottom right (‘br’) corners and in the center of the image (‘ce’). The final class
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Fig. 1. Overview of the SRNet [6].

prediction is obtained by fusing together the different outputs of the individual
models.

3 Dataset and Training Settings

The SRNet is trained with images of a specific device. In total, images of 14 dif-
ferent devices from two different datasets are available. For each device, a binary
classification problem is considered (with a reasonable time interval between the
acquisition times of the two classes). Supervised learning is performed based
on the binary cross entropy loss. ‘AdaMax’ [23] is utilized as optimizer with
an initial learning rate of 0.001, which is reduced to 0.0001 after 60 epochs. In
total, the SRNet is trained over 80 epochs with a batch size of 4. The class with
fewer samples is oversampled during training. For each device, the training is
performed 10 times, randomly drawing 90% of the available images per class
(i.e., stratified). The remaining 10% of the images are used to evaluate the age
approximation performance according to the classification accuracy, i.e.,

acc =
1
N

N∑

i

I[ŷ = y]. (1)

I denotes the indicator function that returns a 1 only if the argument is true
(i.e., only if the predicted class label ŷ is equal to the true class label), and N
represents the total amount of test samples. Hence, the classification accuracy
is the ratio of correctly predicted test samples.
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3.1 PLUS Aging Dataset

The Paris Lodron University Salzburg (PLUS) aging dataset is our own
dataset where we have images from 4 different devices (i.e., Nikon E7600
(PLUS-nikon01), Canon PowerShotA720IS (PLUS-canon01), Pentax K5 (PLUS-
pentax01) and Pentax K5II (PLUS-pentax02)). The time difference between the
classes ranges from 7 to 13 years. In particular, the first PLUS-canon01 class
consists of 642 images captured between June 2008 and December 2008, and
the second class comprises 353 images taken between January 2020 and October
2020. The 995 PLUS-nikon01 images have a time difference of about 14 years;
382 belong to the first class (October 2005 - February 2006) and 350 to the
second class (July 2019 - October 2020). For PLUS-pentax01, 316 images taken
between October 2013 and December 2013 belong to the first class, and 343
images taken between April 2020 and February 2021 are in the second class.
The PLUS-pentax02 images are divided into 598 and 227 for class one and two,
respectively. The images of these two classes were taken between October 2014
and December 2014, and April 2020 and February 2021.

(a) PLUS-canon01 (b) PLUS-nikon01

(c) PLUS-pentax01 (d) PLUS-pentax02

Fig. 2. Samples of the PLUS aging dataset, the red rectangles represent the five crop-
ping regions and the red crosses the strong in-field sensor defects locations [19] (Color
figure online).

All images from all four devices are JPEG compressed RGB color images
containing regular scenes (e.g., vacation scenes). Samples of the captured scenes
are illustrated in Fig. 2. The PLUS-pentax01 and PLUS-pentax02 were originally
available in raw format and JPEG compression was performed with the same
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fixed settings. Additionally, we are not aware of any changes between the two
classes that affect the image acquisition pipeline.

The red rectangles in Fig. 2 represent the five cropping regions, and the defect
locations (of all strong in-field sensor defects that have developed between the
age classes considered) are illustrated by red crosses. In summary, one out of five
image patches contains a defect with the PLUS-nikon01 and PLUS-pentax01,
three out of five contain a defect with the PLUS-canon01, and with the PLUS-
pentax02, no image patch contains a defect. We remind that, as reported in [19],
the presence of strong in-field sensor defects in an image patch is irrelevant for
improving classification accuracy in the ‘five-crop-fusion’ learning scenario.

3.2 Northumbria Temporal Image Forensics Database

The Northumbria Temporal Image Forensics (NTIF) [2] database is a publicly
available dataset for temporal image forensics. The NTIF dataset comprises
images from 10 different cameras (from 5 different models). For each device,
approximately 71 time-slots ranging over 94 weeks (between 2014 and 2016)
are available. Overall, this results in 41,684 natural color images of indoor and
outdoor scenes along with 980 blue-sky scenes. Further details about the dataset
can be found in [2]. Images from this database are also used in other image
forensics related publications, i.e., [4,25].

In the context of image age approximation, the NTIF database is used in
[1,3]. The authors in [1] divided the first 25 time-slots into five age classes. As
already mentioned in the introduction (Sect. 1), an overall classification accuracy
of over 85% is reported for these five classes (by AlexNet with transfer learning
mode). In [3] the first 40 time-slots are grouped into five classes. The authors
proposed a machine learning approach based on defective pixels and achieved
an overall classification accuracy of up to 93%. In this work, the same class
definitions as in [1] are used. However, we consider only the first and last classes
(i.e., time-slot 1–5 and 21–25, respectively). Overall, there is a time difference
of about 4 months between the two classes.

4 Explainable Artificial Intelligence (XAI)

Deep neural networks independently learn the features used and are often supe-
rior to classical methods based on handcrafted features. However, such networks
usually consist of millions of parameters, which turn such models into a ‘black
box’. The field of XAI focuses on understanding and interpreting the decisions
of such deep neural networks. A comprehensive survey of methods in the field
of XAI is given in [29].

One group of XAI methods are the so-called Class Activation Maps (CAMs).
The original CAM approach was introduced in [38] and indicates the discrimi-
native region used by a CNN to identify a certain class. In principle, the weights
of the final output (classification) layer are projected back on the feature maps
of the last convolutional layer. The resulting CAM is then upsampled to the size
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of the input image. CAMs are saliency maps (i.e., topographical representations
that highlight the impact of different image regions) and usually visualized as
heatmaps.

In this work, two different CAM versions (i.e., the GradCAM++ and Score-
CAM) are used. We consider two different CAM versions because the results are
not always unambiguous. When analyzing the CAM results in Sect. 5, only those
saliency maps are considered where both outputs are similar.

4.1 GradCAM++

GradCAM++ was introduced by Chattopadhay et al. in [10] and is an enhanced
version of GradCAM [30]. GradCAM is a generalization of CAM, since Grad-
CAM has no limitations in the CNN architecture. As the name suggests, Grad-
CAM is based on the class-specific gradient information. In particular, an input
image is forward propagated through the model. Except for the gradients of the
target class, all other gradients are set to zero. These class-specific gradients are
backpropagated to the convolutional layer of interest, and the feature maps are
weighted according to the obtained gradients. To get a high resolution saliency
map (i.e., with the resolution of the input image), the obtained saliency map is
combined with guided backpropagation [31].

GradCAM cannot localize multiple occurrences of an object of the same class,
or the localization corresponds only to bits and parts of an object. One reason
for this is that GradCAM divides the weights (which capture the importance of
a particular feature map) by the size of the feature map, i.e., if the response is
small or the area of the response is small, the weights decrease. To solve this
problem, GradCAM++ uses a more sophisticated backpropagation. To generate
the saliency maps for this work, the GradCAM++ implementation provided in
[16] is used.

4.2 ScoreCAM

In contrast to GradCAM++, ScoreCAM [37] does not rely on gradient infor-
mation. The authors suggest that the propagating gradients are unstable and
generate random noise. To obtain the saliency map, first an image is propa-
gated through the network and the k feature maps from the last convolutional
layer are extracted. The obtained feature maps are upsampled (using bilinear-
interpolation) to the input image size. After the upsampling, the feature map
values are normalized in the range [0, 1]. Then, each normalized feature map is
multiplied by the input image. This results in k masked input images. All the
masked input images are forward propagated through the CNN and the SoftMax
class scores (weights) are computed. The final saliency map is the rectified sum
of a linear combination between the target class score and each feature map.

In other words, the obtained scores (weights) from forward propagating the
masked input images reflect the importance of the feature map. To generate the
saliency maps for this work, the ScoreCAM implementation provided in [16] is
used.
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5 CAM Analysis

Image age approximation is a multi-class classification problem, where a class is
defined by the temporal resolution of the exploited age traces and the available
trusted images. For this purpose, let θ be the sum of age traces at a certain
point in time that are embedded in an image I (e.g., I + θ). Furthermore, we
assume that θ is constant across all images of a given age class y and differs
between the other age classes. To approximate the age of an image, the goal of
a classifier is to predict the age class y with θy having the highest probability of
being embedded in an input image I.

Fig. 3. Boxplot of the resulting age approximation accuracy for all 10 runs.

Based on this definition, we assume that if the model can successfully dis-
criminate between age classes, it will learn to detect the age signal θy for a given
age class y. In Fig. 3, the achieved age classification accuracy for each device and
all 10 runs is visualized by a boxplot. We can observe that the learned models
can successfully discriminate between the age classes. This would imply that the
models learned to detect θ. Based on this assumption, we expect the obtained
saliency maps to highlight regions that:

1. are independent of the image content (e.g., captured objects and scene prop-
erties),

2. are constant across the different runs (i.e., since all images per class y share
the same θy, the overall activations should be similar across all different test
sets).

Due to space constraints, only some examples of the 35000 generated saliency
maps can be shown. However, all generated saliency maps are available under
https://wavelab.at/sources/Joechl22b/.

https://wavelab.at/sources/Joechl22b/.
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5.1 Activation on Objects

Examples of generated saliency maps where the activation is connected to objects
are illustrated in Fig. 4. In particular, we can observe an activation on the head
of a swan (Fig. 4(a)), on the blossoms of multiple flowers (Fig. 4(b)), on a house
(Fig. 4(c)), on two sticks lying on the ground (Fig. 4(d)) and on a rain gutter
(Fig. 4(e)). As already described, the embedded age signal θ should be invariant
to the presence of objects. An activation solely on objects suggests image content
is likely to be more relevant than the hidden age signal θ in predicting the age
class. However, one could argue that possibly the color range of an object benefits
the detection of the hidden age signal in this image region. This is contradicted
because: (i) the activation in Fig. 4(b) & (e) extends over the entire objects, (ii)
the objects, in Fig. 4(a) & (c), have a more complex structure with several colors,
(iii) that the entire image patch, in Fig. 4(d), is in the same color range.

Fig. 4. Example of activations directly on objects, the color indicates the importance
of a region, red being very important. (Color figure online)

Another indication that image content is likely to be more important than
the hidden age signal for predicting the age class is shown in Fig. 5. In Fig. 5,
examples of activations on shrub-, tree-like structures are illustrated. Activations
on such structures could be caused when images of one age class contain more
nature scenes than those of the other class. All five examples (Fig. 5(a)–(e)) were
based on images from different NTIF devices, and the respective model predicted
the second age class for all of them.

5.2 Activation on Areas

The analysis of the CAMs also revealed that many activations are found in
large homogeneous areas (e.g., sky regions). Examples of such activations are
illustrated in Fig. 6. For example, depending on the weather conditions, the sky
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Fig. 5. Examples of activations on shrub-, tree-like structures, the color indicates the
importance of a region, red being very important. (Color figure online)

can be cloudy (i.e., very bright) or naturally blue. If the sky was cloudy when
images of the first age class were taken, and blue when the second age class
images were captured, it would be easy for a CNN to discriminate such images
based on the sky regions.

To show that some models learned to discriminate between colors, we gen-
erated six very bright image patches (i.e., with different shades of white, RGB
values from [250, 250, 250] to [255, 255, 255]) and six images with different shades
of blue (i.e., RGB values from [0, 0, 250] to [0, 0, 255]). Since these images are
generated, there is no age signal embedded. If the model has indeed learned to
detect only the embedded age signals (of the different age classes), we would
expect the model to select one age class for all generated images. What we do
not expect, however, is that the model will assign all images 100% correctly (sep-
arate bright and blue images). On average across all 14 devices, these images
can be assigned 100% correctly in 51% of the 10 runs when the model is trained
with image patches from ‘tl’, and in 46% of the runs when image patches from
‘tr’ are used for training. The other results are 37%, 39% and 37% when the
model is trained on patches from ‘bl’, ‘br’ and ‘ce’, respectively. The signifi-
cantly higher results when the model is trained on images patches of both top
cropping positions are reasonable, since sky regions are often located in these
image regions.

5.3 No Constant Activation Pattern

As defined above, we assume that the age signal θ is constant across all images of
a given age class (independent of the train and test set sampling). If the model
has learned to detect θ, one would expect to observe a common activation pattern
(for correctly predicted samples) across the runs (different train and test sets).
To analyze this, the activations for each correctly predicted image of a given
run and class are superimposed. In Fig. 7, the superimposed activations of all
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Fig. 6. Examples of activations on image areas, the color indicates the importance of
a region, red being very important. (Color figure online)

four analyzed runs and the second age class of image patches ‘br’ of the PLUS-
nikon01 images are illustrated. As can be seen, there is no constant activation
pattern visible. This is an example, however, for all other image patches and
devices, similar results can be observed.

Fig. 7. Examples of superimposed activations of correctly predicted image patches of a
given run. In this example, the superimposed activations of test images from the PLUS-
nikon01, image patch ‘br’ and the second age class are shown. SubFig. (a) represents
the activations of the first run and SubFigs. (b)–(d) the runs 2–4, respectively.

Since instead of the age signal, the image content varies across the different
runs, this observation is again an indication that the image content is more
relevant for classification than the existing age signal.

6 Potential Solutions

Based on the conducted analysis, it is most likely that image content is more
important for age classification than the embedded age signal. This is reasonable
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because the embedded age signal is usually a very weak signal and can easily
be overlaid by other, non-age-related inter-class differences (i.e., image content).
One potential solution would, therefore, be suppressing the influence of the image
content.

This could be achieved by focusing the network on in-field sensor defect loca-
tions. In [19], this is done by training the network on small image patches (i.e.,
32×32) extra around each strong in-field sensor defect. However, a disadvantage
of this method is that the defect positions must be known in advance. Another
approach to suppress the image content could be to apply preprocessing steps,
such as median filtering, and train the network with the obtained residuals. The
median filter is a denoising filter. Since in-field sensor defects appear as image
noise, their presence is preserved in the median filter residuals while most of
the image content is suppressed. A further approach could be the utilization
of special network architectures. For example, Bayar and Stamm proposed a
content suppression layer, called constrained convolutional layer, in [5]. Such
a constrained CNN is used in [36] for video camera identification from sensor
pattern noise.

Applying the above mentioned constraints (i.e., to the attention region, input
data, or network architecture) restricts the feature space. This is intentional, but
results in limiting the ability to learn other (unknown) age features as well. For
this reason, another approach could be to apply constraints on the acquisition of
training data (i.e., to avoid the distraction of common, non-age-related, intra-
class properties like common light conditions or scene properties). This could be
achieved by capturing standardized scenes, as was done for creating the Dres-
den DB [17]. However, in the context of image age approximation, the same
standardized scenes should be captured for each time-slot. In fact, we are cur-
rently creating such a dataset. Potential scene or environmental dependencies
are eliminated by capturing different fixed backgrounds and foreground objects
in a controlled environment.

7 Conclusion

Image age approximation is a multi-class classification problem. Training a CNN
in this context has the benefit of independently learning the features used and
thus potentially exploiting age features other than the known ones (i.e., in-field
sensor defects). However, this also carries the risk of learning other, non-age
related features.

In this work, we analyzed the features learned by a standard CNN trained in
the context of image age approximation on regular scene images. Based on the
investigated CAMs (i.e., GradCAM++ and ScoreCAM) we showed that most
likely the image content (e.g., scene properties and light conditions) is more
important for classification than the embedded age signal. Because of this obser-
vation, it is unlikely that a standard CNN trained on regular scene images would
exploit solely age-related features to determine the age class. In particular, in
the field of image forensics, it is important that the decision is based on compre-
hensible evidence (e.g., by methods that rely explicitly on the presence of age
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traces, such as [14,21]). Thus, when using a CNN for image age approximation,
it is important to design the setup carefully.
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Abstract. Recently, QR code has been applied in anti-counterfeiting
scenarios, where a unique QR code is attached for a specific item. How-
ever, such a QR code-based anti-counterfeiting solution cannot resolve
the physical illegal copying issue. The genuine QR code can be physically
replicated by scanning and printing. In this work, we propose a physical
anti-copying semi-robust randomly watermarking system for QR code.
Specifically, the authentic and counterfeit channels a QR code experi-
ences are investigated first. By exploiting the distortion characteristics
between two channels, we devise a randomly watermark embedding sys-
tem, where the watermark bit is embedded via modulating the relation-
ship between two carefully selected transformed coefficients. Finally, to
obtain a valid and recognizable binary QR code image, a random bina-
rization procedure is applied, and the regions originally belonging to
the white module are erased. The final resultant watermark appears as
white-dot pattern resides the black module of QR code, which is robust
to the authentic print-scan but fragile to the physically illegal copy-
ing. Experimental results demonstrate the effectiveness of the proposed
watermarking system. This work makes the first step towards exploring
semi-robust watermarking for combating physically illegal copying.

Keywords: QR code · Semi-robust watermark · Physical anti-copying

1 Introduction

Counterfeiting is a criminal offense that involves the fraudulent production and
distribution of an item similar to a genuine product. The production, distribu-
tion, and sale of counterfeit items not only defrauds those buying the items but
also steals profits from the owners and distributors of the genuine articles. To com-
bat the widespread counterfeiting issue, anti-counterfeiting marks can be attached
to the genuine product as accessories or printing on the package surface. Tradi-
tional anti-counterfeiting countermeasures including micro-text [2], special color
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Zhao et al. (Eds.): IWDW 2022, LNCS 13825, pp. 131–146, 2023.
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bar printing [15], thermal ink [8], RFID tags [17] or NFC tags [1]. However, in prac-
tice, for common consumers, such countermeasures are still far behind satisfactory
due to the lack of professional anti-counterfeiting detection tools or operations.

Recently, QR code has been widely adopted in anti-counterfeiting because
it is cheap and easy to use. One popular QR code anti-counterfeiting scheme
is the One Item, One QR code solution [7]. As shown in Fig. 1, this solution
generates a unique QR code and then prints or pastes it on the authentic prod-
uct. End-user can use mobile devices to scan and decode the QR code, and then
verify the authenticity of products by through an online anti-counterfeiting sys-
tem. However, there is a flaw for One Item, One QR code solution. Considering
that the authentic QR code is printed and published, malicious counterfeiter can
scan, restore and the print a counterfeit QR code, which can pass the authen-
tication as well. This physically illegal copying (IC) attack violates the unique
QR code for one item principle, and poses great threat to the QR code based
anti-counterfeiting. One approach to mitigate this issue is covering up part or
the entire QR code. Consumers can uncover the QR code for verification after
purchase. Unfortunately, this remedy is also flawed because consumers cannot
verify the authenticity before purchase.

Paste

Authentic Commodity

Authentic QR  code

Counterfeit QR  code

Authentic Manufactory

Counterfeiter Factory

Counterfeit Commodity

Malicious 
Counterfeiter

Successful Authentication

Successful Authentication

Scan

Print

Fig. 1. The widely-deployed One Item, One QR code anti-counterfeiting solution can-
not resist physically illegal copying. The end-user will wrongly authenticate the coun-
terfeiting commodity when the malicious counterfeiter replicates the authentic code by
scanning and printing.

In this work, we propose a semi-robust random QR code watermarking
scheme for solving the physical illegal copying issue. Specifically, the authen-
tic and counterfeit channels a QR code experiences are analyzed, based on
which the watermarking-based physical anti-copying solution is formally for-
mulated. A random embedding is devised, where the watermark bit is embedded
via modulating the relationship of a paired transformed coefficient. We then
apply a random image binarization procedure to obtain a valid binary QR code
image. Finally, the regions originally belonging to the white module are erased,
maintaining the QR code recognition. The final resultant watermark appears
as white-dot pattern resides the black module of the QR code, which is robust
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over the authentic channel while fragile to the counterfeit channel. Experimen-
tal results validate the effectiveness of the proposed watermarking system. The
contributions of this work can be summarized as follows,

• We propose a physical anti-copying semi-robust random watermarking scheme
for QR codes. For the first time, the semi-robust watermarking technique is
introduced for solving the physical illegal copying of QR codes.

• We suggest a transform-domain watermark embedding algorithm and explore
its applicability in the semi-robust watermarking context for a discrete binary
image.

• A prototype mobile application is developed. Experimental results demon-
strate that the proposed watermarking system could achieve authenticity veri-
fication of a physical QR code and watermark communication simultaneously.

The rest of this work is organized as follows. Section 2 briefly reviews the
related work. In Sect. 3, we analyze and characterize the authentic and coun-
terfeit channels that QR code experiences, based on which Section presents the
physical anti-copying semi-robust watermarking system. Experimental results
are provided in Sect. 4, and finally, Sect. 5 concludes this work.

2 Related Work

2.1 Physical Anti-copying

Physical anti-copying (PAC) methods attempt to extract discriminate features
that will deviate significantly when a QR code undergoes different communica-
tion channels. Pichard et al. [12] proposed a dense and random noise pattern,
termed Copy Detection Pattern (CDP), for document copying authentication.
They then applied CDP to the QR code for product certification [13]. CDP is gen-
erated according to the maximum entropy principle, and its high-density random-
ness ensures its irreversibility. The physically illegal copying makes CDP blurred,
which can be easily distinguished from the original CDP. Nguyen et al. [11] pro-
posed a reliable performance index of the certification system based on the Ney-
man Pearson hypothesis test. Recently, Chen et al. [4] 2020 proposed a binary
classifier-based scheme. The features from both spatial and frequency domains are
extracted to train a two-class classifier, which can be used for distinguishing coun-
terfeit barcodes from authentic ones. However, all the aforementioned schemes
lack the capability to carry additional watermark bits. To embed data into a QR
code, Tkachenko et al. [16] proposed a Two-Level QR code. This method replaces
the black module of the QR code with a specially designed texture module that
encodes data. Thus, the generated QR code can be divided into public and private
levels. The standard QR code decoder can be used for the public level to decode
it. The private data decodes by maximizing the correlation between the texture
module and the candidate template texture modules. Although this scheme carries
additional data, its texture module, which is sensitive to the printing and scanning
process, is empirically designed and has poor transparency.
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Fig. 2. Application scenario for the proposed physical anti-copying semi-robust water-
marking system.

2.2 Watermarking for QR Code

Image watermarking aims at embedding data (i.e., watermark) into the cover
image. It has been successfully applied in many fields, such as copyright pro-
tection. Conventionally, image watermarking is vastly discussed in the digital
world. However, QR code is often printed and entered into the physical world,
then captured and decoded. Thus, when the image watermarking meets the QR
codes, one has to consider the robustness of the watermark against printing and
capture. There are some robust watermarking schemes developed for resisting
printing distortion, e.g., [5,6,10,14]. In addition, some semi-fragile watermarking
is only robust to certain types of distortion. Bao et al. [3] proposed a watermark-
ing scheme that operates in the transform wavelet domain, which is robust to
JPEG compression but sensitive to malicious filtering and random noise. This
scheme can be used for image authentication but can not resist printing distor-
tion. Xie et al. [19] proposed an anti-counterfeiting watermarking algorithm for
QR codes. Still, the watermark can only resist print-and-capture distortion and
cannot be against physically illegal copying. In 2021, Xie et al. [18] devised an
anti-copying 2D barcode by exploiting channel noise characteristics, where the
authentication data were stored by exploiting the QR code error-tolerance limit.
An authentication decision is made by checking whether the 2D barcode can
be correctly decoded. Applying watermarking to physically Illegal Copying (IC)
QR codes is quite challenging. As stated in [18], “... to the best of our knowledge,
there is no public report in which a digital watermarking technique has been used
against IC attacks.”

In this work, we make the first step towards applying semi-robust randomly
watermarking to physically illegal copying. The application scenario is shown in
Fig. 2. The watermark bits are embedded into the authentic QR code image and
then attached to the package for distribution. This watermark can be correctly
extracted when it undergoes an authentic print-and-capture channel, and at the
same time, it can not be extracted when the QR code is physically copied. In
this next section, we dive into the proposed watermarking system.
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Capture
QR Code Genuine Printing

Authentic

QR Code Genuine Printing Scanning Counterfeit Printing CaptureRestoration

Physical Copying 

Counterfeit

Fig. 3. Comparison of the authentic channel and counterfeit channel. Top: The authen-
tic channel (i.e., Print-Capture channel) a QR code experiences. Bottom: The counter-
feit channel (i.e., Print-Scan-Print-Capture channel). The key difference lies in addi-
tional physical copying action in the counterfeit channel.

3 Proposed Physical Anti-copying Watermarking System

In this section, we first investigate the authentic and counterfeit channels that a
QR code would undergo, and then model the distortion for these two channels.
By exploiting the distortion characteristics between two channels, we propose a
physical anti-copying watermarking system.

3.1 Model for Authentic and Counterfeit Channels

Remind that this work aims to design an effective semi-robust watermark, which
could survive when communicating for the print-then-capture channel (i.e., the
authentic channel) while degrading or even invalid for the physical-copying-then-
capture (i.e., the counterfeit channel). Therefore, we shall first investigate these
two channels and carefully identify and exploit their differences. Based on sev-
eral previous non-watermark anti-copying schemes [4,9,20], the authentic and
counterfeit channels can be modeled as follows.

Authentic Channel: As shown in Fig. 3, the authentic channel consists of two
critical operations, i.e., printing and scanning, which can be formally expressed
as

Ig = AutCh(I) � C (Pg (I)) , (1)

where AutCh(·) represents the authentic channel, and I and Ig are the original
digital QR code image, and the captured image by the end-user, respectively.
Pg(·) denotes the genuine printing performed by authentic manufacturer, and
C(·) is the capture process for QR code image. As noted in [9,20], the printing
process can be modeled as a linear function, and the capture process can be
modeled as low-pass filtering and then re-sampling.

Counterfeit Channel: As shown in Fig. 3, a counterfeiter first obtains the
printed authentic QR code, and then physically replicate it for fooling consumers.
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Thus, the counterfeit channel CtfCh(·) can be expressed as

Ic = CtfCh(I) � C (F (Pg (I))) , (2)

where F(·) denotes the physical replication operation for the printed authentic
QR code by a counterfeiter. Clearly, the counterfeit channel shares the printing
and capture process of the authentic channel. With a thorough examination,
the physical replication F(·) can be further decomposed into three successive
operations, i.e., QR code scanning S(·), restoration R(·)1, and printing Pc(·),
which can formally written by

F(I) = Pc (R (S(I))) . (3)

The goal of a counterfeiter is to make the counterfeiting physical QR code
Ic as same as possible to the authentic one Ig, i.e., Ic ≈ Ig. From (1) and (2),
one can notice the key difference between authentic and counterfeit channels lies
in F(·). We next analyze the distortion difference between these two channels.
First, for a smart counterfeiter, the counterfeiting printing Pc(·) can be similar
to that of the authentic one Pg(·), by employing similar printing equipment.
Second, the aim of the restoration process R(·) is to mitigate the difference
between the captured QR image and the authentic one, using certain restoration
techniques such as image binarization. Finally, the scanning operation S(·) uses
a high-resolution scanner (if possible) to scan the physical QR code. Essentially,
scanning is a low-pass filtering and re-sampling process similar to the capture
process C(·).

In summary, the dominating distortion over the counterfeit channel stems
from the additional scanning operation, suggesting that the distortion of the
counterfeit channel suffers additional low-pass filtering and re-sampling distor-
tion. It is worth noting that the distortion of the capture process also incurs
low-pass filtering and re-sampling distortion. This requires that an effective
physical anti-copying watermarking be semi-robust to low-pass filtering and re-
sampling distortion. More specifically, the distortion incurred by an authentic
channel requires the anti-copying watermark to be robust. In contrast, the dis-
tortion introduced by counterfeit channels requires the anti-copying watermark
to be fragile. Thus, we shall carefully design a semi-robust watermarking system,
striking the sweet point between fragility and robustness.

Before diving into the proposed watermarking system, we define the physical
anti-copying semi-robust watermarking problem formally. Let w be the water-
mark bitstream, the watermark embedding process can be expressed as

Iw = Emb (I,w) , (4)

where Emb(·, ·) is the watermarking function, embedding watermark w into the
cover QR image I; Iw is the resultant watermarked image. Upon receiving Iw,

1 The restoration aims at restoring the captured QR code, including denoising, his-
togram equalization, and binarization etc.. This operation is often optional.
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the watermark extraction procedure Ext(·) is performed as follows

w = Ext (Iw) . (5)

Then, when the watermarked image Iw communicates over authentic or coun-
terfeit channel, we have

wg = Ext (AutCh (Iw)) , wc = Ext (CtfCh (Iw)) , (6)

where wg and wc are the extracted watermark bitstream under authentic or
counterfeit channel, respectively. Note that some of the extracted watermark
bits would be incorrect. To measure the extraction accuracy, the number of
correctly extracted bits can be evaluated by

eg =
∑

i

I (wg
i = wi) , ec =

∑

i

I (wc
i = wi) . (7)

where eg and ec are the number of correctly extracted bits for wg and wc,
respectively. I(·) denotes the indicator function. The goal of the proposed physi-
cal anti-copying semi-robust watermarking system are two-fold. First, when the
QR code communicates over authentic channel, the extracted watermark shall
be correctly extracted; and when the QR code communicates over counterfeit
channel, the extracted watermark shall be wrongly extracted. Thus, the phys-
ical anti-copying semi-robust watermarking, consisting of Emb(·, ·) and Ext(·),
should maximize eg and minimize ec simultaneously, i.e.,

argmaxEmb(·,·),Ext(·)(e
g − ec). (8)

In the next, we present the proposed physical anti-copying semi-robust random
watermarking system, attempting to maximize (8).

Fig. 4. Workflow of the proposed physical anti-copying semi-robust watermarking sys-
tem.
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3.2 Watermark Embedding

As shown in Fig. 4, the proposed watermark embedding consists of two steps.
First, the authentication checksum data used for error detection is generated and
appended to the watermark bitstream. Then, the watermark is embedded into
the cover QR code image. Let us first discuss the crucial watermark embedding
procedure.

The key idea of the proposed embedding scheme is to design a robustness-
controllable embedding algorithm. Note that here the robustness refers to
the robustness against low-pass filtering and re-sampling. To implement a
robustness-controllable embedding algorithm, we in this work suggest embedding
one watermark bit by modulating the relationship between paired transformed
coefficients.

More specifically, the original QR code is first divided into overlapping blocks
of size N × N . For each image block, the 2D discrete cosine transform (DCT)
is then applied, and one can obtain N × N DCT coefficient matrix M. A pair
of coefficients c1, c2 are selected from the low or middle frequency bands, e.g.,
c1 = M(12, 19) and c2 = M(19, 12). Then, the embedding procedure can be
formulated as {

ĉ1 = max(c1, c2) + Δ, ĉ2 = min(c1, c2) − Δ, if w = 0
ĉ1 = min(c1, c2) − Δ, ĉ2 = max(c1, c2) + Δ, if w = 1

(9)

where ĉ1 and ĉ2 are the resultant embedded coefficients. w ∈ {0, 1} is the
watermark bit to be embedded, and Δ is the embedding strength parameter,
aiming to enlarge the differences between ĉ1 and ĉ2. More importantly, Δ controls
the strength of the modification, and thus in fact is the critical parameter to
control the robustness. One can obtain the intermediate embedded image Ĩw by
Inverse-DCT, where each pixel of Ĩw is a real value. That is, Ĩw(i, j) ∈ R, where
(i, j) are the indices for the i-th row and j-th column pixel. Considering that a
valid QR code shall be a binary-valued image, we need to randomly binarize the
real-value image Ĩw into a binary image.

Specifically, suppose the discrete dynamic set for binary QR code is {0, 255},
where pixel values for the black and white are 0 and 255, respectively. After
performing the watermark embedding (9), the pixel value of the intermediate
embedded image could be larger, equal, or smaller than that of the original
image pixel value. We discuss these three types of relationships, based on which
to design a binarization rule. First, for these pixels that enjoy no changes after
embedding, we can safely leave them alone, without further action. Second, the
pixel value of the intermediate embedded image may overflow or underflow the
valid set {0, 255}. For this case, we shall clip the pixel value into the valid set
{0, 255}. For instance, for pixel I(i, j) = 255, it may become Ĩw(i, j) = 256 after
embedding. Thus, one shall clip this value to 255. Similarly, for these pixels
Ĩw(i, j) < 0 whose original pixel values are zeros, one has to clip them to 0.
Third, the pixel value of the intermediate embedded image may slightly change,
but still, escape the valid set {0, 255}. For this case, we would like to pull the
pixel value to 0 or 255. As a concrete example, suppose the pixel I(i, j) = 0, it
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(a) I (b) Ĩw (c) Iwb (d) Iw

Fig. 5. An example of the embedding process is the randomly embedding strength
p = 0.5. (a) Original QR code image I. (b) Intermediate embedded QR code image
Ĩw. Note that the Ĩw is a real-value watermarked image (normalized in [0, 255] for
better visualization), which is quite similar to the original image; zoom in for better
comparison. (c) Binarized image Iwb according to (10). (d) The final watermarked binary
QR image Iw, by erasing the regions that originally belongs to the white module of I.

may become Ĩw(i, j) = 3 after embedding. Thus, we propose to lift this value to
255 with probability p. Similarly, for these pixels Ĩw(i, j) < 255, whose original
pixel values are 255, we suggest downgrading it as 0 with probability p. We called
p randomly embedding strength. Mathematically, let Iwb = I, we summarize the
aforementioned binarization operation on the intermediate embedded image Ĩw

as follows

Iwb (i, j) =

{
255 if Ĩw(i, j) > 0, I(i, j) = 0, pij ≤ p

0 if Ĩw(i, j) < 255, I(i, j) = 255, pij ≤ p
(10)

where pij ∼ U [0, 1] and Iwb denotes the binarized watermarked image. Finally,
to maintain a valid QR code recognition, we propose to erase these regions that
are originally belonging to white. This erasion can be expressed by

Iw(i, j) =

{
Iwb (i, j) if I(i, j) = 0
255 if I(i, j) = 255.

(11)

In the experiment, we also found that, when the entire QR code image is used
for embedding, the QR recognition effectiveness will degrade. This is because
the proposed watermark embedding scheme injects specific white-dots into the
black module, which could deteriorate the recognition effectiveness of the posi-
tion detection pattern. To resolve this issue, we suggest excluding the position
detection pattern (i.e., the three black squares) and the boundary.

Until now, we obtain the final watermarked QR code image Iw. To intuitively
illustrate the proposed embedding procedure, we in Fig. 5 provide an exemplar
watermarking process, where the algorithmic parameters are set the same as
Sect. 4.1. One can see from Fig. 5-(d) that the semi-robust watermark is rendered
as the white-dots in the black module of the QR code. As will be demonstrated
shortly, such a white-dot pattern could survive over the authentic channel, while
it will be significantly eroded under the counterfeit channel.
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Let us go back to the authentication data generation procedure. The goal of
this work is to use a watermark to verify the authenticity of the QR code. Thus,
we shall verify the correctness of the extracted watermark bits. In this work,
we employ the widely-used Cyclic Redundancy Check (CRC) code for checking.
Before embedding the watermark into the QR code image, the bitstream encoded
with CRC is first obtained as the checksum for the given watermark.

Remarks: It is worth noting that the embedding strategy (9) was successfully
practiced in several robust watermarking schemes, e.g., [5]. However, none of
these works explored the applicability of (9) in the semi-robust watermarking
context for a binary image such as QR code.

3.3 Watermark Extraction and Authentication

As illustrated in Fig. 4, the general watermark extraction and authentication pro-
cedure contains three steps. First, the captured QR code image is prescriptively-
corrected, and then the watermark is extracted. Finally, the extracted data is
verified through CRC checking.

First, QR code recognition is performed. The standard QR code recognition
algorithm includes scanning, image binarization, perspective, geometric correc-
tion, and decoding et al.. Due to the error-tolerance design of the QR code,
the incurred distortion by the embedded watermark does not interfere with
the decoding procedure. However, one shall successfully locate and perspective-
correct the captured QR code image to facilitate the watermark extraction.
Luckily, many off-the-shelf QR codecs are equipped with an efficient automatic
positioning and correction algorithm. Thus, in experiments, we employ the QR
code localization procedure QRCodeDetector provided by OpenCV for locating
and perspective correction.

After perspective correction, the perspective-corrected QR code image is
divided into non-overlapping blocks, similar to the block division of the embed-
ding procedure. Then for each image block, the DCT transform is applied. The
DCT coefficient pairs c̃1 and c̃2 extracted from the same coefficient bands used
in the embedding procedure. The watermark bit can be extracted by

ŵ =

{
1 if c̃1 ≥ c̃2

0 if c̃1 < c̃2
. (12)

Upon extracting the watermark bitstream, CRC checking is conducted. If
CRC checking passes, the decision for an authentic QR code is made. Oth-
erwise, excessive erroneous watermark bits are extracted, making the decision
counterfeit.

4 Experimental Result

4.1 Experimental Setup

The size of the QR code image is 246 × 246 of version 6, and the image block
size for embedding one bit is 30 × 30. The length of the randomly-generated



Physical Anti-copying Semi-robust Random Watermarking for QR Code 141

(a) Counterfeit QR code (b) Authentic QR code

Fig. 6. Handheld authentication using prototype mobile app. (a) and (b) are the
authentication for the physical counterfeiting QR code, and the authentic QR code,
respectively. The authentication results notify on the screen.

Table 1. Experimental settings for three constructed datasets. Note that it is unnec-
essary for an authentic manufacturer to use a scanner to replicate QR code; thus, the
cell is noted as NaN.

Producer Authentic manufacturer Counterfeiter I Counterfeiter II

Printer Brother
MFC-T4500DW
(all with 1200 dpi)

Brother
MFC-T4500DW
(all with 1200 dpi)

RICOH
Aficio MP 7500 PCL
(all with 1200 dpi)

Scanner NaN Brother
MFC-T4500DW
(all with 1200 ppi)

Brother
MFC-T4500DW
(all with 1200 ppi)

Camera HUAWEI Nova 8 Pro HUAWEI Nova 8 Pro One Plus 8 Pro
Dataset size 770 770 770

Print size (cm) 1.5 1.5 1.5

watermark bitstream is 59 bits. The embedding coefficient pairs used in this
experiment are M(19, 12) and M(12, 19). Δ = 50 and random embedding
strength p = 1.0. Considering that no publicly available physical anti-copying
watermarking datasets. This work constructed three datasets, including one
authentic QR code dataset and its two counterfeiting QR code counterparts.
The printing size of the QR code image is 1.5 cm × 1.5 cm. The detailed exper-
imental equipment settings for these three datasets are tabulated in Table 1,
where each dataset contains 770 samples. The printing resolution is 1200 dpi,
and the scanning resolution is 1200 PPI, which is the maximum-available setting
provided by the tested equipment. In addition, to verify the practical usage of
the proposed method, we have developed a prototype mobile application (see
Fig. 6). The size of each captured frame is fixed as 786×672 for all tested mobile
phones.
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Fig. 7. Comparison of the authentic QR code with counterfeited QR code. (a) The dig-
ital watermarked QR code image Iw, (b) Captured authentic QR code image that expe-
riences authentic PC channel Iwg = AutCh(Iw). (c) The counterfeited QR code image
is obtained by restoring the scanned physical authentic QR code, Iwr = R (S (Pg (Iw))).
(d) Capture the counterfeit QR code image printed by a counterfeiter Iwc = CtfCh(Iw).

4.2 Comparison of the Authentic and Counterfeited QR Code

As shown in Fig. 7-(a)(b), for the authentic channel, the watermarked QR code
image Iw is authentically printed by the Printer Brother MFC-T4500DW and
then captured by the mobile camera of the Huawei Nova 8 PRO. For the coun-
terfeit channel, the authentic QR code image is first scanned by Brother MFC-
T4500DW under 1200 dpi, and then the counterfeit QR code image is obtained
by printing the scanned QR code image with Brother MFC-T4500DW. Note
that we here deliberately use the same printing equipment for both authentic
manufacturers and counterfeiters. The reason for this setting is to push the coun-
terfeiting ability to the limit,i.e., the counterfeiter could replicate the QR code
using the same equipment as the authentic manufacturer.

By carefully observing the four QR code images from Fig. 7 (a) to (b), one can
notice that the number of white-dots in the black module of QR code (i.e., the
watermark) is decreasing. This suggests that the embedded watermark erodes
gradually. Quantitatively, we test the watermark extraction under 10 trials. For
the captured authentic QR code image that experiences PC channel, i.e., Iwg =
AutCh(Iw), the watermark can still be extracted in a low erroneous bit level.
The average number of erroneous bits is 0.9, meaning that less than 1 bit goes
wrong out of a total of 59 watermark bits. In contrast, for the capture of the
counterfeit QR code image printed by a counterfeiter, i.e., Iwc = CtfCh(Iw), the
average erroneous bit is 28.9, closing to the 29.5 erroneous bits of the random-
guessing watermark extraction.

4.3 Printing Size v.s. Erroneous Bits

In general, the printing size of the anti-copying QR code depends on the printing
equipment. Considering that the printing resolution of a printer is limited, a QR
code can hardly be printed faithfully as its digital version. Thus the watermark
cannot be extracted correctly when the printing size is too small. Therefore,
finding the relationship between the printing size and the number of erroneous
bits is important. To this end, we print different QR codes of various sizes,
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Fig. 8. The printing size (cm) versus the number of erroneous bits.

ranging from 0.5 cm × 0.5 cm to 2.5 cm × 2.5 cm, and then record the number
of erroneous bits. Each QR code is recognized for 30 attempts. The minimum
number of erroneous bits among these attempts is recorded as the final result.
As shown in Fig. 8, the number of watermark erroneous bits decreases w.r.t. the
increment of the printing size. The printing size of the QR code is negatively
correlated with the number of error bits. In this light, one can observe the lower
bound of the printing size, where the watermark cannot be correctly extracted
for the printing size when smaller than this lower bound.

Table 2. The range of test printing size for authentic manufacturer and counterfeiter.

Printer Authentic Counterfeit I Counterfeit II

Upper bound (cm) +∞ 1.8 2.3

Lower bound (cm) 1.2 0.0 0.0

4.4 Printing Size v.s. Anti-copying Capability

In practice, physical anti-copying watermarking supports smaller printing size is
preferred, which can be attributed to two reasons. First, smaller printed QR code
can find more application scenarios, e.g., delicate package. Second, acquiring
a high-resolution image for smaller printed QR code is costly, and thus small
printing size barriers the counterfeiting; when the QR code printed large enough,
it can be forged counterfeited even using a low-resolution scanner or printer.
We in this section aim to empirically find the feasible printing size for support
reasonably good anti-copying capability of QR code.

To find a feasible range of the printing size, we have printed QR codes of dif-
ferent sizes at an interval of 0.1 cm, and counterfeit them with different printers.
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As aforementioned in Sect. 4.3, larger(smaller) printed QR code often leads to
fewer(more) the erroneous bits. In other words, when the printing size greater
than a threshold, the extracted watermark is error-free; and when the printing
size is less than a threshold for counterfeit QR code, errors would occur dur-
ing watermark extraction. Therefore, we can take the minimum printing size of
authentic QR codes that can be extracted correctly as the lower bound for the
anti-copying printing size range. The maximum printing size of counterfeit that
cannot be extracted correctly as the upper bound for the anti-copying printing
size range.

The results are provided in Table 2. It can be seen that, for authentic man-
ufacturer, when the printing size of the authentic QR code exceeds 1.2 cm ×
1.2 cm, the watermark can be extracted correctly, i.e., the printing size range
of which the watermark can be extracted correctly is A = [1.2,+∞). For Coun-
terfeiter I, when the printing size of the counterfeit QR code is less than 1.8
cm × 1.8 cm, the watermark cannot be extracted correctly, i.e., the printing
size range the watermark cannot be extracted is F1 = (0, 1.8]. Similarly, for
Counterfeiter II, the printing size range the watermark cannot be extracted is
F2 = (0, 2.3]. Therefore, a feasible printing size range of anti-copying should be
A

⋂
F1

⋂
F2 = [1.2, 1.8].

Table 3. Performance Comparison with Chen et al. [4]. The best results highlighted
in bold.

Method FAR FRR NACC AUC

Chen et al. [4] 0.00% 2.50% 98.75% 0.9958

Proposed 0.00% 0.52% 99.74% 0.9974

4.5 Comparison of Authentication Performance

To the best of our knowledge, few works realize the physical anti-copying func-
tion from the watermarking perspective. To this end, we compare the most recent
and relevant work Chen et al. [4]. They employed spatial and frequency features
to train a two-class classier to distinguish the authentic QR from the counterfeit
ones. Instead, we report the authenticity of QR based on the success or failure
of semi-robust watermark extraction. False Acceptance Rate (FAR, the percent-
age of counterfeit samples that have been falsely accepted as authentic), False
Rejection Rate (FRR, the percentage of genuine samples that have been falsely
accepted as counterfeit), and Normalized ACCuracy (NACC) are employed as
performance metrics. The NACC is defined as follows,

NACC = 1 − (FAR + FRR)/2 (13)

Experiments were conducted on the datasets shown in Table 1. Experimental
results are given in Table 3. Compared with Chen et al. [4]. The proposed method
always achieves superior performance under all the metrics. Specifically, our



Physical Anti-copying Semi-robust Random Watermarking for QR Code 145

proposed semi-robust watermarking solution shows advantages in anti-copying
performance, with a higher accuracy rate of 99.74% and lower FRR of 0.52%.
Despite the superior performance, our method provides an additional communi-
cation channel via semi-robust watermarking, while Chen et al. [4] merely made
a binary decision without the capability of carrying additional information.

5 Conclusion

In this work, we made the first step toward implementing a physical anti-
copying semi-robust watermarking for QR codes. We devised a random water-
mark embedding procedure by exploiting the distortion characteristics between
the authentic and counterfeit channels. The resultant semi-watermark appears
as irregular white-dot pattern resides the black module of QR code, which is
robust to the authentic print-scan but fragile to the physically illegal copying.
Compared with existing physical anti-copying approaches, the proposed scheme
requires no training data to train classifiers. More importantly, the proposed
method provides the verification of authenticity for a QR code and additional
communication capability for transmitting watermarks simultaneously. Experi-
mental results demonstrate the effectiveness of the proposed watermarking sys-
tem. We also developed a prototype mobile app to verify the practical usage of
the proposed method. We would like to extend the proposed scheme to color
barcode cases for future work.
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Abstract. This paper proposes the first robust watermarking method of out-
sourced or shared genomic data in the context of genome-wide association studies
(GWAS) with the primary purpose of identifying the individual or entity at the
origin of an illegal information redistribution or disclosure. Our scheme’s first
unique feature is that it employs a database watermarking strategy to take advan-
tage of the fact that GWAS data are stored in variant call format (VCF) files,
which have a database-like structure. Second, it proposes a quantization index
modulation based on watermarking modulation for GWAS data under the con-
straint of not interfering with identifying candidate variants or genes involved in
the pathology. We evaluate the theoretical performance of our method in terms
of watermarking insertion capacity, distortion, and robustness against different
attacks. Experimental results conducted on real data and the weighted-sum statis-
tic (WSS) GWAS study demonstrate the efficiency of the proposed scheme and
that it can be used for identifying the cloud service providers (geneticists) at the
origin of an information disclosure even if the genotype data has been modified.

Keywords: Information security · Genome-wide association studies (GWAS) ·
Traceability · Watermarking · Genomic data

1 Introduction

Nowadays, genomic data are widely collected, stored, processed, and shared for various
genomic applications. They can be used in legal and forensics, where a DNA (Deoxyri-
boNucleic Acid) sample found on a victim or at a crime scene may be exploited as a
shred of evidence by law enforcement to track down suspected criminals. In healthcare,
genomic data are guiding medical decisions. For instance, it has been demonstrated that
women with specific genetic variants in the BRCA (BReast CAncer) genes have about
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an 80% chance of developing breast cancer [1]. Therefore, identification of some indi-
viduals who carry these variants can help them to opt for preventive mastectomies [2].
In research, genomic data are being used to discover new associations between traits
and some diseases. In this case, association tests are conducted through GWAS, the
objective of which is to detect genetic variants that are associated with some complex
disorders or diseases [3–6].

In general, a GWAS corresponds to an observational study of a set of genetic vari-
ants in the genomes of different individuals in order to see if any variant or a set of
variants located in a specific region of the genome (e.g., a set of genes) is associated
with a disease [7]. The usual design to conduct a GWAS test is a cases-controls, where
genotype distributions at different genetic positions are compared between samples of
individuals affected by the disease of interest (cases) and unaffected individuals from
the same population (controls). This is the case of the WSS algorithm [8], the objec-
tive of which is to compare the number of genotypes in a set of genetic variants from
both cases and controls for a studied gene. These association tests are externalized in
cloud environments to access high-capacity storage and computation capabilities. How-
ever, outsourcing genomic data induces several security issues in confidentiality, trace-
ability, integrity, or traitor tracing, ranging from unintentional disclosure of data due
to human errors to planned attacks. Furthermore, genomic data are vulnerable because
they allow the owner’s unique identification [9]. In this work, we are interested in secur-
ing genomic data used in case-control studies such as WSS by watermarking to ensure
traitor tracing, i.e., the identification of individuals who are the origin of illegal infor-
mation disclosure. Different tools have been proposed in order to ensure the security
of outsourced data. They are based on various security mechanisms such as encryp-
tion [10], digital signatures [11,12], data structure [13] or watermarking [14,15]. Even
though digital signature and data structure-based solutions are more commonly used in
database management systems to verify integrity, they introduce additional information
in the data. Encryption-based methods allow the protection of data confidentiality, but
data are no longer protected once they are decrypted. Contrary to all these categories,
watermarking relies on the invisible embedding of a message, i.e., a watermark into
host data, by imperceptibly modifying them with the constraint that the introduced dis-
tortion is controlled. This mechanism leaves access to watermarked data while main-
taining them protected. Depending on the relationship between the host data and the
embedded watermark, watermarking solutions can be used to achieve different security
goals, such as ensuring data integrity, protecting copy rights, or finding spies. These
methods were proposed either for using genomic data as a storage mediums [16,17],
for protecting messages in genomic data [18,19] or for protecting genomic data them-
selves [20–22]. They can be used for watermarking the DNA of living organisms or not.
All these methods allow genomic data watermarking for various purposes. They were
proposed for cellular DNA, and they can not be used for genomic data outsourced for
GWAS.

This paper presents the first robust watermarking method for ensuring traitor trac-
ing for genomic data externalized for GWAS studies. Our method is unique in that it
employs a database watermarking strategy to capitalize on the fact that GWAS data are
stored in Variant Call Format (VCF) files, which have a database-like structure. And, it
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proposes a quantization index modulation (QIM) [23] based on watermarking modula-
tion for GWAS data under the constraint of not interfering with identifying candidate
variants or genes involved in the pathology. The contributions of this paper can be sum-
marized as follows: (i) To the best of our knowledge, the proposed approach is the first
attempt to demonstrate the application of watermarking on genomic data, specifically
securing the variant genetic sequences stored in the VCF file and used in GWAS. (ii)
The watermark is secretly embedded within genomic data without violating genomic
processing, such as identifying candidate variants or genes involved in the pathology.
(iii) The results show that the proposed approach inserts the watermark in the genomic
data with very low data distortion and high robustness to common watermark attacks
such as tuples suppression and addition.

The rest of this paper is organized as follows: In Sect. 2, we come back to the intro-
duction to genomic data and database models. Section 3 provides the details of the
watermarking solution we propose, while Sect. 4 details the theoretical performance
of our solution. Experimental results and discussion are presented in Sect. 5 and con-
clusions are given in Sect. 6.

2 Genomic Data and Database Model

This section briefly introduces genomic data used in GWAS, particularly VCF files and
weighted sum statistic (WSS) files, before detailing the database model.

2.1 Genomic Data

The human body is made up of billions of cells where each has one nucleus, and this
nucleus contains 23 pairs of chromosomes. The complete set of all the DNA contained
in one cell is called the genome, and the basic unit of heredity is a particular part of
the genome called a gene. Human beings have all the same number of genes, each con-
trolling a particular behavior. However, some behaviors do not express themselves in
the same way. These differences between individuals’ genomes are called genetic vari-
ations. Genetic variants account for about 1% of the difference between two people.
One can distinguish three main types of genetic variants [24]: SNP (Single Nucleotide
Polymorphisms) that corresponds to a substitution of a single nucleotide at a specific
position in the genome; indels (insertions/deletions) that correspond to the insertion or
deletion of several nucleotides in the genome; and structural variants that correspond
to the deletions, duplications, or rearrangements of large sections of a chromosome or
even whole chromosomes. Genetic variants are common genomic data that are used for
performing GWAS, and these data are kept in VCF files [25]. The variant call format
was developed in order to standardize large-scale genetic variant sharing and storage. A
VCF file corresponds to a text file consisting of three parties: meta-data lines, a header
line, and data lines. Meta-data lines that begin the file and are included after ## pro-
vide data line descriptions. The header line started by # names the columns for data
lines. Finally, data lines follow the header line, and each data line or record represents
one variant of a given position in the genome. Among several columns per data line
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present in the VCF file, eight of them are fixed. These are: CHROM: a unique identi-
fier from the reference genome that corresponds to chromosome number. POS: refers
to the position of first base on the reference genome. ID: a unique identifier for each
record if it exists. REF: reference base(s). ALT: alternate base(s).QUAL: a measure of
the quality of the identification of ALT. FILTER: filter status. INFO: gives additional
information such as the number of individuals, frequency alleles, etc. If genotype data
is present, fixed columns are followed by a FORMAT column which specifies the data
types and order, then an arbitrary number of genotyped individuals. Notice that the dot
‘.’ symbol represents missing value. As shown in Fig. 1, each column that represents
genotyped individuals contains genotype information with the same data type indicated
in the FORMAT column. One of the significant components of the genotype informa-
tion is genotype values (GT) which encodes alleles as numbers separated by ‘|’ or ‘/’;
0 indicates the reference allele, 1 indicates the first allele listed in ALT, 2 indicates the
second allele listed in ALT and so on. Therefore, GT could be 0/0, 0/1, 1/2, ./1 or
1/1, etc.

Fig. 1. An example of VCF file. It stores genomic data, in particular, genetic variants.

2.2 Weighted Sum Statistic (WSS) Method

To conduct GWAS, individuals who are affected (cases) and unaffected (controls) are
genotyped to produce thousands or up to millions of genetic variants stored into VCF
files. After that, an intermediary step is conducted to generate other files specific to
each GWAS. In this paper, we are interested in watermarking WSS files. As illustrated
in Table 1, a WSS file is composed of the following columns: CHROM, POS, ID, REF,
ALT, and an arbitrary number of individuals. The WSS is GWAS method that was
proposed in [8] as a tool for the identification of the association of rare variants with
diseases. Some studies have pointed out that groups of multiple rare variants together
can explain a large proportion of the genetic basis for some diseases. In WSS, variants
are grouped according to their biological functionality (e.g., gene), and each individual
is scored by a weighted sum of the variant counts. To test for an excess of variants in
affected individuals, we use a permutation of disease status among affected and unaf-
fected individuals. Using permutations, the WSS method adjusts the variant weights
and the requirement that a mutation is observed to be included in the study. In WSS,
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rare variant counts within the same gene for each individual are accumulated rather
than collapsing. Then, it introduces a weighting term to emphasize alleles with a low
frequency in unaffected individuals. Finally, the scores for all individuals are ordered,
and then, WSS is computed as the sum of ranks for cases. A permutation procedure
determines the significance based on the p-value.

Table 1. An example of VCF file; it stores genomic data, particularly genetic variants.

#CHROM POS ID REF ALT NA00001 NA00002 NA00003

20 1234567 microsat1 GTC G 0 0 1

20 1234567 rs6040355 GTC GTCT 1 2 0

3 Proposed Database Watermarking Scheme for GWAS Data

In this section, we first present the standard chain of database watermarking [26], the
QIM and, by next, the watermarking scheme we propose for WSS data. Before entering
in detail, we illustrate in the Table 2 the acronyms used in our scheme.

Table 2. Acronyms that are used in the watermarking method we propose.

Δ Quantization step (distortion factor) w A watermark bit w ∈ 0, 1

Ng Number of groups Sg Number of tuples for each group

G Group of tuples, i.e. {Gi}i=1,··· ,Ng GA Sub-group A of tuples in G

GB Sub-group B of tuples in G |CA
0 | Cardinality of zero values in sub-group GA

|CB
0 | Cardinality of zero values in sub-group GB d |CA

0 | - |CB
0 |

Nc Number of columns in the WSS file DΔ Percentage of modulation for a given Δ

Nr Number of tuples in the WSS file (i.e. Sg × Ng ) dbsize Size of WSS file (i.e. Nr × Nc )

3.1 Database Watermarking

By definition, a database is an organized collection of data that are generally stored
and accessed from a computer system. Formally, a database DB refers to a finite set of
tables or relations {Ri}i=1,··· ,Nr

. From hereon and for sake of simplicity, we will con-
sider a database that contains one single relation constituted of N tuples {tu}u=1,··· ,N ,
each of M attributes {A1, A2, · · · , AM}. The attribute An takes its values within an
attribute domain, and tu.An refers to the value of the nth attribute of the uth tuple of
the database. The value tu.PK is an attribute value or a set of attribute values, repre-
sents the unique identifier of each tuple of the database. In the literature, most schemes
that have been proposed for database watermarking follow the process illustrated in
Fig. 2.

This process is based on two basic procedures: watermark embedding and water-
mark detection/extraction. The watermark embedding procedure includes a pretreat-
ment, the purpose of which is to make the watermark insertion/extraction independent
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of the database structure or the way the database’s data is stored. To do so, database
tuples are grouped into Ng non-overlapping groups {Gi}i=1,··· ,Ng

. This grouping is
usually conducted by calculating the index number nu ∈ [0, Ng − 1] of each group for
the tuple tu such that

nu = H(Kw|H(Kw|tu.PK)) mod Ng (1)

where H , Kw, and | represent the cryptographic hash function, the secret watermarking
key, and the concatenation operator, respectively. We use a cryptographic hash func-
tion, such as the Secure Hash Algorithm (SHA), to ensure certain grouping and equal
distribution of tuples into different groups. After database partitioning, one bit of the
watermark is inserted into each group of tuples by modifying or modulating attribute
values accordingly to the rules of the retained watermarking modulation, such as the
order of database tuples [27]. Therefore, within a database of Ng groups, a watermark
W = {wi}i=1,...,Ng

of Ng bits is embedded. The watermark detection works similarly.
First, the database is partitioned into Ng groups based on the secret watermarking key
Kw. Then, one watermark bit is extracted or detected from each group based on the
used modulation. In the sequel, we explain the proposed method, which follows these
procedures and is based on QIM and majority vote.

Fig. 2. A common database watermarking chain.

3.2 Quantization Index Modulation (QIM)

QIM [28] relies on quantifying the host data (e.g., image, database) components by
rounding each component to the nearest odd/even quantized value according to the
value of the watermark bit w and a quantization step size Δ. More specifically, let
w ∈ {0,1} be a watermark bit, Δ be a quantization step size that controls the level
of distortion. In the QIM method, according to the value of the watermark bit to be
embedded, the host data components are shifted by ±Δ. In this work, we apply this
QIM method in order to embed one watermark bit wi into each group of tuples, i.e.
{Gi}i=1,··· ,Ng

. More clearly, let wi ∈ {0,1} be a watermark bit, Δ be a quantization
step size that control the level of distortion and d be the difference between the cardinal-
ity of zero values in sub-group GA (|CA

0 |) and sub-group GB (|CB
0 |) for each individual

(Pi: i = 1, · · · , |patients|), where

d = |CA
0 |Pi

− |CB
0 |Pi

(2)
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According to the value of wi, d is rounded to the nearest even/odd quantized value
using the quantization step size Δ. Therefore, the embedding modulation is performed
as follows:

d∗ = (� d

Δ
� + (� d

Δ
�2! = w)) × Δ (3)

3.3 Watermark Embedding in WSS Data

In this work, we consider a framework which is composed by three entities: a Genomic
Research Unity (GRU), a Genomic Research Center (GRC) and a Cloud Services
Provider (CSP). GRU and GRC decide to outsource their genetic data on the cloud
for storage and/or processing purposes. Before being outsourced, these data are water-
marked so as to ensure their copyright protection and traitor tracing. To do so, we
describe in this section a robust database watermarking scheme that allows message
embedding for WSS data. Let us consider a WSS database DB, which consists of many
genes, our solution is implemented as follow:

– First the table DB is secretly reorganized into the database DBr. To do so, data
owner assigns a primary key vu.PK for each variant vu ∈ {u = 1, · · · , |variants|
}, where vu.PK = CHROM‖POS‖GENE. Then, this primary key is used for
partitioning the database into Ng groups using a secret watermarking key Kw. The
group index number for each variant nvu

is computed based on secure hash algo-
rithm using (4) and Ng groups {Gi}i=1,2,··· ,Ng

, are constituted.

nvu
= H(Kw(H(vu.PK|Kw)) mod Ng (4)

Once all groups are obtained, one bit of the watermark is embedded into each group.
– The data owner (in our case GRU/GRC) generates a binary watermark

W = {w1, w2, · · · , wNg
} uniformly distributed.

– Each group Gi of the database is divided into two tuple sub-groups GA
i and GB

i ,
based on the secret watermarking key Kw. To do so, the sub-group index number
ngvu

for each variant vu in Gi, is computed using secure hash algorithm such that:

ngvu
= H(Kw||(H(vu.PK||Kw)) mod 2 (5)

If the value ngvu
= 1, then the variant vu belongs to GA

i , otherwise (ngvu
= 0),

then it belongs to GB
i .

– QIM is used for embedding one watermark bit in these sub-groups so as to produce
the watermarked sub-groups GW

A,i and GW
B,i. The watermark embedding process is

illustrated in Algorithm 1 according to three cases. After sub-group watermarking,
the watermarked database DBrw is constituted.

3.4 Watermark Extraction

It is worth noting that during watermarking process, one watermark bit is embedded
in each database column. Thus, during extraction stage a majority vote is performed
in order to decide which watermark bit will be extracted. Indeed, majority vote is one
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Algorithm 1. Watermark embedding modulation in one group
1: INPUT: Subgroups GA

i and GB
i of Gi, A watermark bit wi, a quantization step size Δ

2: procedure GROUPWATERMARKING(GA
i ,GB

i ,wi,Δ, d = |CA
0 | − |CB

0 |)
3: if � d

Δ �%2 == wi then
4: d∗ = � d

Δ � × Δ

5: else
6: d∗ = � d

Δ � × Δ + Δ

7: end if
8: modulationValue = abs(d∗ - � d

Δ �)
9: Case 1
10: if d∗ ≥ d and |CB

0 | ≥ modulationValue then
11: |CBW

0 | = |CB
0 | - modulationValue

12: Case 2
13: else if d∗ < d and |CA

0 | ≥ modulationValue then
14: |CAW

0 | = |CA
0 | - modulationValue

15: Case 3
16: else
17: Not embeddable group
18: end if
19: return GW

A,i,G
W
B,i

20: end procedure

of the popular optimal algorithms which is used to find the majority element among
the given elements that have more than N

2 occurrences. However, watermark reading
works similarly. The watermarked database DBw is first reorganized into Ng groups,
and each group {GW

i }i=1,··· ,Ng
is partitioned into two sub-groups GW

A,i,G
W
B,i. From

each group, one message bit wPi
is detected and extracted in each column according

to the Eq. (6). After that, a majority vote is conducted in order to decide which water-
mark bit is extracted. While tuple primary keys are not modified, the knowledge of the
watermarking key ensures synchronization between watermark embedding and water-
mark detection/extraction. The watermark extraction process is illustrated in Algorithm
2. We discuss the theoretical performances of our solution in the next section before
presenting experimental results.

wPi
= �dw∗ + Δ

2

Δ
� mod 2 (6)

where
dw∗ = |CAW

0 |Pi
− |CBW

0 |Pi

4 Theoretical Performance

In this section, we start by presenting the constraints of some parameters in the pro-
posed algorithm and then present the theoretical performance of our scheme in terms
of distortion introduced to data during the watermarking, the insertion capacity, and the
robustness against different database watermarking attacks.
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Algorithm 2.Watermark extraction in one group
1: INPUT: Subgroups GW

A,i,G
W
B,i of GW

i , a quantization step size Δ

2: procedure WATERMARK DETECTION(GW
A,i,G

W
B,i,Δ)

3: for each individual (Pi:i=1,··· ,|patients|) in GW
i do

4: dw∗ = |CAW
0 |P i - |CBW

0 |P i

5: wPi
= � dw∗+ Δ

2
Δ � mod 2

6: end for
7: w

′
i = majority-vote(wPi:i=1,··· ,|patients| )

8: return extracted watermark (w
′
i)

9: end procedure

4.1 Parameter Constraints

In our solution, in order to work properly and intuitively, some constraints such as
distortion factor (Δ), number of groups in the database (Ng), number of tuples in the
database (Nr) and the probability to have 0 in one group (Pr0) must to be defined and
respected. These constraints are such that

Sg

2
> Δ ⇔ Nr

Ng
> 2 × Δ ⇔ Nr > 2 × Δ × Ng ⇔ Pr0 × Nr > 2 × Δ × Ng (7)

this constrain is important, because the number of zeros in a sub-group should be greater
than the distortion factor Δ otherwise we can’t embed the watermark into the group.
As we will see later, this constraint will help us in analyzing the performance of our
watermarking method.

4.2 Distortion Performance

Let us consider a database DB which contains Nc columns, Nr rows and dbsize

attribute values. During the watermarking process, this database is divided into Ng

groups, and each group is partitioned into two sub-groups. If Sg is the number of tuples
in one group. Then, the distortion value DΔ for the database DB corresponds to the
number of modified attribute values in the database for a given Δ, and can be computed
as follows:

DΔ = Ng × Δ

2
× Nc =⇒ DΔ =

Nr

Sg
× Δ

2
× Nc =⇒ DΔ = dbsize × Δ

2 × Sg
(8)

As example, if we take Δ = 2 and Sg = 100, then we can say that the distortion is
1

100 of the dbsize. This is due to symmetric distribution for the difference value of zero
frequency between sub-group GA and sub-group GB . This distortion does not disturb
the results of WSS as we will see in Sect. 5.

4.3 Robustness Performance

In this section, we analyze the robustness of our watermarking scheme under two well-
known database attacks that are deletion attacks and insertion attacks. We evaluate the
robustness of our solution by means of the bit error rate (BER), which corresponds to
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the ratio of the number of incorrectly extracted watermark bits to the number of the
original watermark bits. BER is such that:

BER =
∑Ng

i=1 wi ⊕ w
′
i

Ng
(9)

where wi and w
′
i are the embedded and the extracted watermark bit respectively. Lower

value of BER means that we have a higher watermarking robustness. In the following,
we discuss the attacks considered in this paper.

Deletion Attacks : Let us consider an attack that consists of a random deletion of
attribute values or tuples in the database. We distinguish two cases for this attack: (i)
Column deletion: in this case, an attacker tries to delete Nc1 columns in the database.
No matter how many columns are deleted, one column is enough to detect the water-
mark if all columns are watermarked. (ii) Tuple deletion: if the attacker randomly elim-
inates Nd tuples in the database. The watermark may not be detected depending on the
percentage of deleted data and the group to which deleted elements belongs. We will
come back to this case in Sect. 5, where we demonstrated that the robustness of our
solution against this attack using BER.

Insertion Attacks: An attacker may try to insert a certain number of columns or tuples in
the database. Two cases differ. (i) Column insertion:An attacker tries to insert a certain
number of columns in the database. By doing so, it requires an attacker to duplicate at
least one time the number of columns (or individuals) so as to change the watermark bit.
Assume that the original group verifies the probability to have 1 values is greater than
the probability to have 0 values (Pr1 > Pr0). Then, the watermarked group verifies
Prw

0 > Prw
1 . Hence, we can define X = Pr1 − Pr0 and Xw = Prw

0 − Prw
1 . There are

three cases in which the data can be added by an attacker.

– Case 1: If Pr1 < Pr0, there is no problem as the attack will be always detected.
– Case 2: If Pr1 = Pr0, as in the previous case, the attack will always be detected.
– Case 3: If Pr1 > Pr0, the attacker requires to add M elements in the database as:

M =
Nc × Xw

X
(10)

(ii) Tuple Insertion: This attack corresponds to the insertion a certain number of tuples
in the database. If N is the number of tuples that the attacker want to insert in the
database. Let k be the number of success out of the total number of trials and p the
probability to succeed, while q is the probability of failure. Thus, we have

p =
1

2 × Ng
, q = 1 − p (11)

The probability of k successes out of N trials when the probability of one success is p
is computed according to the Eq. (12)

P (N, k, p) =
(

N
k

)

pkqN−k (12)
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In the previous Eq. (12), the binomial coefficient express the number of combinations
of N takes k. It is calculated according to Eq. (13).

(
N
k

)

=
N !

(N − k)!k!
(13)

We give in next section, obtained results after simulating the discussed attacks.

5 Experimental Results and Discussion

We evaluate our watermarking method in terms of distortion, robustness, and insertion
capacity in the case of a real genetic database.

5.1 Test Database

We used a genetic relational database composed of one table of 80 tuples issued from
a real genetic database, from the FrEx project [29], that contains pieces of informa-
tion related to genetic variants of 733 individuals. Such genetic variants are used by
researchers or/and geneticists in GWAS [3] in order to determine if there is a rela-
tionship between these genetic variants and certain diseases. For each individual and
each variant, the genotype corresponds to an integer value that takes the value 0 if
the alternative allele is equal to the reference allele, 1 to the second alternative allele,
and k ∈ {1, · · · , g} in case of g possible alternative alleles. In the sequel, a set of
attributes composed by the chromosome, the position, and the gene is considered as the
primary key. We chose these attributes because their combination uniquely identifies
each database tuple of variants.

5.2 Distortion Results

To test the impact of the proposed watermarking scheme for GWAS results, we have
conducted a secure WSS method presented in [30]. In this context, the p-value has
been used as a descriptive statistic, which is the p-value of the association, and the null
hypothesis is that the allele frequencies at SNP are the same in cases and controls (For
more details about the computation of the WSS p-value, please refer to [8]). To test
our watermarking method, the database is divided into Ng groups, considering several
cases. These cases correspond to Ng ∈ {1, · · · , 20}. We have also chosen different
values of distortion step Δ such that Δ ∈ {2, 4, 6, · · · , 34}, each group is also divided
into two sub-groups. In order to check if our experiments are going to be different in the
results obtained from the experimental and control groups, Fig. 3 presents the p-values
with different percentages of modulated data after applying our watermarking method
on the given database. The obtained results in Fig. 3 set up such that they conveyed a
meaning that there exists no distinction between the different samples and no interfer-
ence in the association test results. Moreover, the results show us that the differences
are real and not just due to chance as the p-value increases as the ratio of data distor-
tion increases. In addition, the Table 3 presents the p-value results for above chosen Ng

and Δ. The mentioned p-value are very low even with variable number of groups Ng

and quantization step Δ. These results confirm their statistically significant and are less
likely to be caused by noise.
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Fig. 3. Distortion percentage of modulated data.

Table 3. P-value results in function of the quantization step Δ and the number of groups Ng .

Δ
Ng

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

1 4.9 × 10−4 3.5 × 10−4 4.2 × 10−4 4.4 × 10−3 5.9 × 10−4 2.9 × 10−3 3.0 × 10−4 5.9 × 10−4 5.3 × 10−4 5.4 × 10−4 3.4 × 10−3 7.9 × 10−3 5.9 × 10−4 3.9 × 10−3 5.9 × 10−3 3.9 × 10−3 3.7 × 10−4

2 5.9 × 10−4 4.9 × 10−4 6.6 × 10−4 1.4 × 10−3 4.2 × 10−4 5.9 × 10−3 5.9 × 10−4 3.6 × 10−4 9.9 × 10−4 2.9 × 10−3 3.8 × 10−4 5.9 × 10−3 2.9 × 10−3 3.4 × 10−3 2.3 × 10−3 5.4 × 10−3 9.9 × 10−4

3 4.2 × 10−4 1.9 × 10−3 1.1 × 10−3 4.9 × 10−4 6.9 × 10−4 1.1 × 10−3 7.4 × 10−4 1.1 × 10−3 4.2 × 10−4 5.8 × 10−4 4.9 × 10−4

4 6.6 × 10−4 6.6 × 10−4 3.9 × 10−3 2.9 × 10−3 5.2 × 10−4 5.4 × 10−4 5.9 × 10−4 7.7 × 10−4 2.4 × 10−4

5 5.4 × 10−4 7.4 × 10−4 2.3 × 10−4 8.5 × 10−4 6.6 × 10−4 2.9 × 10−3 4.2 × 10−4 8.7 × 10−4

6 5.9 × 10−4 5.4 × 10−4 9.9 × 10−4 2.9 × 10−3 2.9 × 10−3 2.3 × 10−3

7 5.9 × 10−4 6.6 × 10−4 5.4 × 10−4 1.3 × 10−3 6.6 × 10−4

8 5.4 × 10−4 3.7 × 10−4 4.6 × 10−4 6.6 × 10−4

9 1.1 × 10−3 4.4 × 10−3 6.6 × 10−4

10 3.3 × 10−4 1.9 × 10−3 2.3 × 10−4

11 2.3 × 10−3 3.5 × 10−4

12 7.7 × 10−4 2.3 × 10−3

13 9.9 × 10−4 4.2 × 10−4

14 2.6 × 10−4 5.9 × 10−4

15 1.4 × 10−3 8.9 × 10−3

16 7.4 × 10−4

17 4.2 × 10−4

18 1.9 × 10−3

19 2.9 × 10−3

20 4.2 × 10−4

5.3 Capacity Results

The insertion capacity is evaluated by the ratio of database elements that can be used for
the watermark embedding to the total number of elements in the database. Higher water-
marking capacity means that more watermark information that we can embed in the
database. The watermarking capacity of our solution depends on the number of embed-
dable groups that we have in the database. This capacity can reach 100% depending on
genotypes that we have in the database. This means that in some cases, each group in
the database can embed a watermark bit. However, if the capacity is the maximum, the
robustness is reduced.

5.4 Robustness Results

We have simulated, different attacks on our watermarked database. We have considered
an attacker that tries to insert, delete 10%, 20% and 30% of the data in the database.
Obtained results are presented in Tables 4, 5, 6, 7, 8, 9. From these results, the water-
mark can be correctly detected from the database when BER approaches zero.
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Table 4. BER results against column deletion
10%

Δ
Ng

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0.48 0.12 0.63 0.37 0.24

3 0 0 0 0 0 0 0 0 0.47 0.27 0.25 0.43

4 0 0 0 0 0 0.12 0.24 0.48 0.43

5 0 0 0 0 0.09 0.15 0.47 0.39

6 0 0 0 0.09 0.23 0.31

7 0 0 0.04 0.09 0.53

8 0 0 0.09 0.24

9 0 0 0.16

10 0 0

11 0 0

12 0 0.02

13 0 0.12

14 0 0.17

15 0

16 0

17 0

18 0.06

19 0.06

20 0.05

Table 5. BER results against column deletion
20%

Δ
Ng

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0.48 0.12 0.44 0.37 0.24

3 0 0 0 0 0 0 0 0 0.47 0.27 0.25 0.43

4 0 0 0 0 0 0.12 0.24 0.48 0.43

5 0 0 0 0 0.13 0.15 0.47 0.39

6 0 0 0 0.09 0.23 0.31

7 0 0 0.04 0.09

8 0 0 0.09

9 0 0

10 0 0

11 0 0

12 0 0.05

13 0 0.12

14 0 0.15

15 0.04

16 0

17 0

18 0.05

19 0.06

20 0.05

Table 6. BER results against column deletion
30%

Δ
Ng

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0.48 0.12 0.56 0.37 0.24

3 0 0 0 0 0 0 0 0.15 0.47 0.27 0.25 0.43

4 0 0 0 0 0 0.12 0.24 0.48 0.43

5 0 0 0 0 0.13 0.15 0.47

6 0 0 0 0.09 0.23 0.31

7 0 0 0.04 0.09 0.53

8 0 0 0.09 0.24

9 0 0 0.1

10 0 0

11 0 0

12 0 0.04

13 0 0.12

14 0 0.17

15 0.04

16 0

17 0

18 0.02

19 0.06

20 0.05

Table 7. BER results against column addition
10%

Δ
Ng

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0.48 0.12 0.69 0.37 0.24

3 0 0 0 0 0 0 0 0.19 0.47 0.27 0.25 0.43

4 0 0 0 0 0 0.12 0.36 0.48 0.43

5 0 0 0 0 0.14 0.15 0.47

6 0 0 0.04 0.09 0.23 0.31

7 0 0 0.09 0.24 0.53

8 0 0 0.19 0.24

9 0 0 0.20

10 0 0

11 0 0

12 0 0.10

13 0 0.12

14 0 0.17

15 0.04

16 0

17 0

18 0.06

19 0.06

20 0.05

Table 8. BER results against column addition
20%

Δ
Ng

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0.40 0.48 0.12 0.69 0.37 0.24

3 0 0 0 0 0 0 0 0.51 0.47 0.27 0.45 0.43

4 0 0 0 0 0 0.12 0.36 0.48 0.43

5 0 0 0 0.05 0.14 0.24 0.47 0.39

6 0 0 0 0.09 0.24

7 0 0 0.04 0.24 0.53

8 0 0 0.19 0.24

9 0 0 0.25

10 0 0

11 0 0

12 0 0.12

13 0 0.14

14 0 0.17

15 0

16 0

17 0

18 0.06

19 0.06

20 0.05

Table 9. BER results against column addition
30%

Δ
Ng

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0.40 0.48 0.55 0.69 0.37 0.24

3 0 0 0 0 0 0 0.11 0.51 0.47 0.27 0.45 0.43

4 0 0 0 0 0 0.11 0.37 0.50 0.64

5 0 0 0 0.05 0.35 0.25 0.74 0.39

6 0 0 0 0.09 0.24

7 0 0 0.04

8 0 0 0.19

9 0 0 0.22

10 0 0

11 0 0

12 0 0.12

13 0 0.14

14 0

15 0

16 0

17 0

18 0.07

19 0.07

20 0.08
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6 Conclusion

In this paper, we have proposed a new robust database watermarking method that allows
watermarking of genomic data used in GWAS. It is the first method of this kind, and it
can be used for statistical algorithms such as the WSS method. It can be used in protect-
ing traitor tracing and copyright protection, and it is based on QIM and majority vote.
We have studied theoretical performance and experimentally verified the performance
of our solution in terms of robustness against deletion and addition attacks, insertion
capacity, and distortion. In this method, a watermark is embedded in genetic data with-
out altering the results of association tests that can be conducted on these data. This
comfort its future use in real-life applications, especially in cloud environments. As the
primary form of the proposed modulation technique is to preserving the statistical anal-
ysis of GWA studies, we plan to study the proposed technique for other GWA studies
in the future.
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A hybrid cloud deployment architecture for privacy-preserving collaborative genome-wide
association studies. In: Gladyshev, P., Goel, S., James, J., Markowsky, G., Johnson, D. (eds.)
ICDFC 2021. LNICST, vol. 441, pp. 342–359. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-06365-7 21

16. Chen, W.: An artificial chromosome for data storage. Nat. Sci. Rev. 8(5), nwab028 (2021)
17. Nguyen, T.T., Cai, K., Song, W., Immink, K.A.S.: Optimal single chromosome-inversion

correcting codes for data storage in live DNA. In: IEEE International Symposium on Infor-
mation Theory (ISIT), pp. 1791–1796. IEEE (2022)

18. Vinodhini, R., Malathi, P.: Hiding information in the DNA sequence using DNA stegano-
graphic algorithms with double-layered security. Int. J. Inf. Secur. Priv. (IJISP) 16(1), 1–20
(2022)

19. Wang, Y., Han, Q., Cui, G., Sun, J.: Hiding messages based on DNA sequence and recombi-
nant DNA technique. IEEE Trans. Nanotechnol. 18, 299–307 (2019)

20. Lee, S.-H.: Reversible data hiding for DNA sequence using multilevel histogram shifting.
Secur. Commun. Netw. 2018, 1–13 (2018)

21. Hamad, S., Elhadad, A., Khalifa, A.: DNA watermarking using codon postfix technique.
IEEE/ACM Trans. Comput. Biol. Bioinf. 15(5), 1605–1610 (2017)

22. Ayday, E., Yilmaz, E., Yilmaz, A.: Robust optimization-based watermarking scheme for
sequential data. In: 22nd International Symposium on Research in Attacks, Intrusions and
Defenses, pp. 323–336 (2019)

23. Kuribayashi, M., Fukushima, T., Funabiki, N.: Robust and secure data hiding for PDF text
document. IEICE Trans. Inf. Syst. 102(1), 41–47 (2019)

24. Pabinger, S., et al.: A survey of tools for variant analysis of next-generation genome sequenc-
ing data. Brief. Bioinform. 15(2), 256–278 (2014)

25. Danecek, P.: The variant call format and VCF tools. Bioinformatics 27(15), 2156–2158
(2011)

26. Rani, S., Halder, R.: Comparative analysis of relational database watermarking techniques:
an empirical study. IEEE Access 10, 27970–27989 (2022)

27. Li, Y., Guo, H., Jajodia, S.: Tamper detection and localization for categorical data using frag-
ile watermarks. In: Proceedings of the 4th ACM Workshop on Digital Rights Management,
pp. 73–82 (2004)

28. Chen, B., Wornell, G.W.: Quantization index modulation: a class of provably good methods
for digital watermarking and information embedding. IEEE Trans. Inf. Theory 47(4), 1423–
1443 (2001)

29. Genin, E., Redon, R., Deleuze, J.-F., Campion, D., Lambert, J.-C., Dartigues, J.-F.: The
French exome (FREX) project: a population-based panel of exomes to help filter out com-
mon local variants. Int. Genet. Epidemiol. Soc. 41, 691 (2017)

30. Bellafqira, R., Ludwig, T.E., Niyitegeka, D., Génin, E., Coatrieux, G.: Privacy-preserving
genome-wide association study for rare mutations-a secure framework for externalized sta-
tistical analysis. IEEE Access 8, 112515–112529 (2020)

https://doi.org/10.1007/978-3-030-11389-6_12
https://doi.org/10.1007/978-3-030-11389-6_12
https://doi.org/10.1007/978-3-031-06365-7_21
https://doi.org/10.1007/978-3-031-06365-7_21


Adaptive Robust Watermarking Method Based
on Deep Neural Networks

Fan Li1,3, Chen Wan1,3, and Fangjun Huang2,3(B)

1 School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510006,
China

2 School of Cyber Science and Technology, Sun Yat-sen University, Shenzhen 518107, China
huangfj@mail.sysu.edu.cn

3 Guangdong Provincial Key Laboratory of Information Security Technology, Sun Yat-sen
University, Guangzhou 510006, China

Abstract. Aiming at the problem of digital multimedia piracy and infringe-
ment, an adaptive robust watermarking algorithm based onDeepNeural Networks
(DNNs) is proposed. In our method, the watermark sequence to be embedded is
mapped to a noise pattern first, which has the same dimension as the carrier image.
Specifically, the noise pattern is generated adaptively according to the statistical
properties of the carrier image, in which the noise intensity corresponding to the
texture area of the carrier image is large, and that corresponding to the smooth
area is small. Thus, after adding the generated noise pattern to the carrier image,
good visual quality can be easily obtained. Furthermore, considering a series of
attacks such as adding noise and JPEG compression, the watermark encoder and
decoder in our scheme are jointly trained to resist the potential attacks in the phys-
ical world. Experimental results demonstrate that better visual quality and higher
robustness can be obtained compared with those state-of-the-art algorithms based
on DNNs. This means that we have better solved the problem of mutual restriction
between visual quality and robustness.

Keywords: Robust watermarking · Adaptive strategy · Deep neural networks

1 Introduction

Nowadays, image is one of the most popular carriers of information exchange. The
copyright of digital images has attracted more and more attention, and how to protect
the copyright of digital images has become an urgent problem to be solved [1].

In the past few years, with the great success of deep learning in the fields of computer
vision and pattern recognition, a series of digital steganography [2–7] and watermarking
methods [7–16] based on deep neural networks (DNNs) have been proposed. In this
paper, we mainly focus on robust watermarking technology. It can embed the watermark
information into the carrier image in a visually imperceptible way. However, when the
image is disturbed by some image processing attacks such as adding noise and scaling,
the watermark information can be extracted reliably. The two key points to measure the
performance of a watermarking system are robustness and visual imperceptibility.
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HiDDeN [7] is the first end-to-end trainable framework to realize robust watermark-
ing using DNNs. In this framework, the encoder network receives a cover image and a
watermark sequence, and outputs an encoded image; the decoder network receives the
encoded image and attempts to reconstruct the watermark message. Considering HiD-
DeN’s lack of robustness to some specific attacks in the physical world, StegaStamp
[11] adopt the image perturbation module in the training process, which approximately
simulates the display and imaging process of the real world. In [12], by introducing a
dataset of 1,000,000 camera captured images, Wengrowski et al. designed a camera dis-
play transfer function (CDTF), which can be used to model the camera-display pipeline
for training the encoder and decoder in their method. Luo et al. [13] pointed out that
with resorting to the neural network channel coding, the decoding accuracy ofwatermark
message can be improved for those deep learning-based watermarking schemes. In [15],
Zhang et al. proposed the universal deep hiding meta-architecture (UDH), in which the
watermark message generated by their method is independent of the carrier image. In
[16], Abdelnabi et al. first proposed an end-to-end model to hide data in the text, which
is effective in largely preserving text utility and decoding the watermark while hiding
its presence against adversaries.

In the field of robust watermarking, visual quality, robustness and embedding capac-
ity are constrained by each other. Existingmethods combine visual quality and robustness
loss for training, but they do not limit the embedding position, and the comprehensive
performance of visual quality and robustness is poor. There is an urgent need for a
method to achieve better visual quality and robustness at the same time.

In this paper, we propose a new adaptive robust watermarking algorithm based on
DNNs. In our method, the watermark sequence to be embedded is mapped to a noise
pattern first, which is generated adaptively according to the statistical properties of the
carrier image. Specifically, the noise intensity corresponding to the texture area of the
carrier image is large, and that corresponding to the smooth area is small. Thus, after
adding the generated noise pattern to the carrier image, good visual quality can be easily
obtained.

2 Proposed Method

The proposed framework consists of two modules, the watermark embedding module
and the watermark decoding module, which are depicted in Fig. 1. The embedding
module is contained in the green dotted line box and the decoding module is in the red
dotted line box. Although the embedding and decoding modules are independent, they
are trained together during the training process. Following that, the proposed method
will be thoroughly described from three perspectives: watermark embedding, watermark
decoding, and loss function.

2.1 Watermark Embedding Module

The purpose of the watermark embedding module is to generate the watermarked image
with highvisual quality,whichmainly includes twocomponents: encoderEand threshold
generation part TGP.
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Fig. 1. Our robust watermarking framework.

The encoder E is implemented with the Unet++ [17], and the output of the last layer
adopts the sigmoid function,which can normalize the output values to [0, 1]. The encoder
E receives a carrier image Ic of shape H × W × C and the preprocessed watermark
information, and outputs the modification map Mmap, which has the same shape as the
input carrier image Ic. Note that the binary watermark sequenceMsg ∈ {0, 1}L of length
L is not input into the encoder E directly. It should be preprocessed through a fully
connected network and then up-sampled to produce a H × W × C tensor as in [11].

The Threshold Generation Part (TGP) receives the carrier image Ic as input and
produces the distortion threshold map Tmap. Specifically, we perform Gaussian filtering
on the carrier image Ic to obtain image Ig first. Then, the Sobel operators are used to
calculate the first-order differences of Ig in horizontal and vertical directions to obtain
the threshold map Tmap as shown in Eq. (1).

Tmap = ∣
∣Ig ⊗ Kh

∣
∣ + ∣

∣Ig ⊗ Kv
∣
∣ (1)

where ⊗ represents convolution operation, and Kh and Kv are Sobel operators in
horizontal and vertical directions, respectively.

After obtaining Mmap and Tmap, the specific noise pattern Npat can be generated by
performing the element-wise product operation on Mmap and Tmap as shown in Eq. (2).
With adding Npat to the carrier image Ic, we can obtain the watermarked image Iw, as
shown in Eq. (3).

Npat = Mmap · Tmap (2)

Iw = Ic + ε ∗ Npat (3)

where Tmap ∈ R
H×W×C ,Mmap ∈ R

H×W×C , and ε is a parameter that controls the
embedding strength of Npat .
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2.2 Watermark Decoding Module

The watermark decoding module includes Noise PipeLine (NPL) and decoder D. The
NPL simulates the noise in the real physical world by performing a series of attacks on
the obtained watermarked image Iw. The input of NPL is the watermarked image Iw, and
the output is the attacked image I∗w. The decoder D consists of 7 convolution layers and
2 full connection layers, which receives the attacked image I∗w as input and outputs the
predicted watermark sequence Msgp.

It should be emphasized that NPL attacks the watermarked image Iw by simulating
various distortions in the real physical world to improve the robustness of the decoder.
Since the physical attacks are composed of multiple single attacks, we decompose them
into single attacks, which are analyzed separately. In our scheme, the following single
attacks are included.

Moire Fringe Noise
In order to resistMoire fringenoise,wegenerateMoire noiseMandadd it towatermarked
image to simulate Moire noise attack, as shown in Eq. (4).

I∗w = (1 − α)Iw + αM (4)

In Eq. (4), α ∈ [0, 1] refers to the transparency of the foreground area relative to the
background image [18], and Iw and I∗w represent the watermarked image and attacked
image, respectively.

Perspective Warp
Using the Perspective warp, we can simulate the geometric transformation attack during
photographing. The new coordinates (x′, y′) is modified within a fixed range, as shown
Eq. (5).

∣
∣x − x′∣∣ < W ∗ τ,

∣
∣y − y′∣∣ < H ∗ τ (5)

where (x, y) represents the original coordinates, (x′, y′) represents the new coordinates,
W and H are the width and height of the image, τ represents the scale of the allowable
offset of the coordinates.

JPEG Compression
Let S represents the 8× 8Discrete Cosine Transform (DCT) block in JPEG (Joint Photo-
graphic Experts Group) compression process and Si,j(0 ≤ i ≤ 7, 0 ≤ j ≤ 7) represents
the DCT coefficient in S. We simulate the quantization and rounding operations in JPEG
compression process, as shown in Eq. (6).

Bi,j = f

(
Si,j

βQi,j

)

(6)

where Qi,j(0 ≤ i ≤ 7, 0 ≤ j ≤ 7) represents the element in the standard JPEG quan-
tization table with the quality factor (QF) of 50, and β is a parameter used to control
the quantitative loss. The larger β means the higher compression rate and the stronger
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the JPEG compression attack, which also leads to the worse image quality. The func-
tion f is defined as f (x) = x3, x < 0.5; f (x) = x, x > 0.5, which helps to reduce the
phenomenon of gradient disappearance.

Other Common Noise Attacks
In addition to the above-mentioned attacks, we use a series of random color transforma-
tions to approximate the display-shooting perturbations, e.g., Gaussian noise N (μ, σ 2),
Brightness and Contrast offset bIw + c, etc. Note that after these attacks, the attacked I∗w
should be clipped to [0, 1].

2.3 Loss Function

In order to make sure that the watermarked image Iw looks visually similar to carrier
image Ic, two losses, i.e., Learned Perceptual Image Patch Similarity (LPIPS) loss Llpips
[19] and Mean Square Error (MSE) loss Lmse, are employed to measure the “similarity”
between Ic and Iw.

In addition, considering that the decoded watermarkMsgp should be the same as the
original embedded watermark Msg, the difference between Msg and Msgp is evaluated
by the cross-entropy loss Lce. The final training loss Ltotal in our scheme is shown in
Eq. (7).

Ltotal = λ1Lce + λ2Lmse + λ3Llpips (7)

where λ1, λ2, and λ3 represent the weights of Lce, Lmse, and Llpips, respectively.

3 Experiments

In our experiments, 25,000 images randomly selected fromMirflickr [20] are used as the
training data, 1500 images randomly selected from the ImageNet2012 [21] validation
set are used for testing, and all images are scaled to the size of 400 × 400 × 3. The
watermark encoder and decoder are jointly trained with the training data first, and then
the obtained model is evaluated with those images in the test dataset.

3.1 Training Process

In the training process, the hyper-parameters for different attacks are shown in Table 1,
where p∼U means that the parameter p is a number randomly selected from U. In
order to accelerate the optimization speed, the Adam optimizer [22] is utilized in our
training process, where the learning rate and the number of epochs are set as 0.00001
and 200 respectively. Some details that may promote the convergence of the network
are summarized below.

• To ensure that the embedded watermark sequence can be accurately decoded, only
Lce loss is optimized at the beginning of training process, i.e., in the first 8000 steps
of training, This can quickly reduce the overall loss and prevent the gradient from
disappearing and unable to train. The training loss is set as Ltotal = λ1Lce with
λ1 = 3.5. Then in the next training process, the training loss is set as Ltotal =
λ1Lce + λ2Lmse + λ3Llpips with λ1 = 3.5, λ2 = 2, and λ3 = 1.5.
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• The adaptive embedding parameter ε needs to be set to a large value in the early stage
and gradually decreases in the later stage. In this paper, we set ε = 0.8 in the first 5
epochs, and then gradually decays to 0.25 linearly.

Table 1. The parameters for various attacks.

Attacks Parameters

Moire fringe noise α = 0.3

Perspective warp τ = 0.1

JPEG compression β∼U [0.1, 1.1]
Gaussian noise μ = 0, σ∼U [0, 0.18]
Brightness and Contrast b∼U [0.6, 1.4], c∼U [−0.2, 0.2]

3.2 Test Results

To demonstrate the efficiency of our new method, Peak Signal to Noise Ratio (PSNR)
[23], Structural Similarity (SSIM) [24], and Learned Perceptual Image Patch Similarity
(LPIPS) [19] are selected in the test process to evaluate the visual quality of watermarked
images. Note that for PSNR and SSIM, higher is better, and for LPIPS, lower is better.
In addition, we test the bit recovery accuracy of the watermark sequence under various
attacks. The bit recovery accuracy (ACC) is equal to n/L, where n is the number of bits
correctly recovered by the decoder, and L represents the total length of the watermark
sequence. Two state-of-the-art methods, HiDDeN [7] and StegaStamp [11] are selected
for comparison in our experiments.

Visual Quality
The binary watermark sequences used in our experiments are randomly generated with
the length of 50, 100, 150, and 200 bits respectively. The PSNR, SSIM, and LPIPS
values between the carrier image Ic and the watermarked image Iw are shown in Table 2,
and some watermarked images after embedding 100 bits of watermark information are
shown in Fig. 2.

As shown in Table 2, the visual quality of watermarked images generated by our
method is better than that generated by HiDDeN [7] and StegaStamp [11] when the
embedded message is less than 100 bits. However, when the embedded message is more
than 100 bits, the visual quality of watermarked images generated by our method is
slightly worse than HiDDeN [7] but still better than StegaStamp [11]. It is generally
known that embedding capacity, visual quality and robustness are mutually exclusive.
Therefore, when the embedding capacity is increased, the performance of visual quality
and robustness will be reduced accordingly. However, the comprehensive performance
of this paper is better than the existing methods.
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Fig. 2. The watermarked image with embedding 100 bits watermark information.

Table 2. The PSNR, SSIM and LPIPS values between carrier image and watermarked image.

L Method PSNR↑ SSIM↑ LPIPS↓
50 HiDDeN [7] 34.52 0.9494 0.0275

StegaStamp [11] 30.87 0.9258 0.0697

Ours 36.46 0.9756 0.0097

100 HiDDeN [7] 36.95 0.9745 0.0102

StegaStamp [11] 28.59 0.8949 0.0885

Ours 37.46 0.9781 0.0078

150 HiDDeN [7] 39.89 0.9884 0.0039

(continued)
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Table 2. (continued)

L Method PSNR↑ SSIM↑ LPIPS↓
StegaStamp [11] 30.66 0.9260 0.0683

Ours 33.71 0.9461 0.0189

200 HiDDeN [7] 40.03 0.9963 0.0017

StegaStamp [11] 31.64 0.9409 0.0631

Ours 33.30 0.9339 0.0199

In Fig. 3, we also illustrated the specific noise patternNpat that has been generated in
the embedding process, which is added to the carrier image to obtain the watermarked
image. Note that the noise pattern Npat is obtained by performing the dot product oper-
ation on the modification map Mmap and threshold map Tmap as shown in Eq. (2). In
general, the elements in Npat are with small values, which are magnified 10 times for
visualization in Fig. 3. As seen, when using our method to embed the watermark, the
modification mainly focuses on the edge or the texture area of the carrier image (e.g.,
the hair of Lena images, the tree part in the house image, and the blue snow mountain of
Aircraft image), which may result in the better visual quality of the watermarked image.

Bit Recovery Accuracy
In order to demonstrate the robustness of our method, a series of attacks are conducted
on the watermarked image Iw separately first, and then we combine all the attacks
together attacked the watermarked image Iw, which is also called combined attack. The
bit recovery accuracies under different attacks are shown in Table 3, where B&C rep-
resents Brightness and Contrast offset (b∼U [0.5, 1.5], c∼U [0.1, 0.3]), Gauss repre-
sents Gaussian noise attack (μ = 0, σ∼U [0, 0.2]), JPEG represents JPEG compression
(β∼U [0.1, 1.1]),Moire representsMoire fringe noise attack (α∼U [0, 0.3]),Warp rep-
resents Perspectivewarp attack (τ = 0.1), andCombined represents the combined attack
with all the above parameters. The experimental results demonstrate that under different
attacks, the bit recovery accuracy rates of our method are higher than that of StegaStamp
and HiDDeN. Especially with the increase of the embedding rate, our method shows
stronger robustness.

The Influence of Attack Intensity on Bit Recovery Accuracy
In order to explore the impact of the attack intensity on watermark recovery accuracy,
we also carry out the following experiments, where the binary watermark sequence to
be embedded is with the length of 100.

The experimental results are shown in Fig. 4, where the abscissa represents the attack
intensity, and the ordinate represents the bit recovery accuracy. The experimental results
corresponding to JPEG compression, Perspective warp, Moire fringe noise, Gaussian
noise, and Brightness and Contrast are shown in Fig. 4(a)–(e), respectively. As seen, with
the increase of attack intensity, the bit recovery accuracy will decrease. The Perspective
wrap has the greatest impact on the bit recovery rate, while Moire fringe noise has small
impact on the bit recovery rate. In addition, we can find that our proposed method and
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Fig. 3. Visualization results of the embedding process. (Color figure online)

Table 3. Bit recovery accuracy under different attacks.

L Methods B&C Gauss JPEG Moire Warp Combined

50 HiDDeN [7] 69.2% 67.0% 60.5% 68.0% 69.5% 56.0%

StegaStamp [11] 99.2% 99.9% 99.9% 99.9% 99.9% 97.8%

Ours 99.9% 99.9% 99.9% 99.9% 99.7% 98.8%

100 HiDDeN [7] 64.2% 64.4% 56.1% 61.8% 63.4% 52.0%

StegaStamp [11] 99.0% 99.8% 99.8% 99.7% 99.0% 95.7%

(continued)
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Table 3. (continued)

L Methods B&C Gauss JPEG Moire Warp Combined

Ours 99.8% 99.9% 99.9% 99.9% 99.4% 97.5%

150 HiDDeN [7] 54.9% 54.5% 53.4% 54.2% 53.6% 51.0%

StegaStamp [11] 98.2% 99.4% 99.4% 99.3% 99.2% 95.8%

Ours 99.8% 99.9% 99.9% 99.9% 99.4% 97.6%

200 HiDDeN [7] 50.1% 48.6% 50.3% 49.2% 49.8% 51.6%

StegaStamp [11] 92.5% 94.2% 94.2% 93.9% 94.0% 90.1%

Ours 97.5% 97.8% 97.9% 97.8% 97.1% 94.6%

StegaStamp have better robustness than HiDDeN under various attacks. Specifically, if
Brightness and Contrast offset is selected to attack the watermarked image, our method
is always better than HiDDeN and StegaStamp with the increase of attack intensity, and
can achieve the highest bit recovery rate.

Overall, StegaStamp has strong robustness but slightly poor visual quality, whereas
HiDDeNhas good visual quality but poor robustness. Comparedwith these twomethods,
our method can obtain better visual quality and higher robustness simultaneously.
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Fig. 4. Bit recovery accuracy under different noise intensity attacks.
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4 Conclusion

In this paper, an adaptive robust watermarking algorithm based on DNNs is proposed
(the code is available at https://github.com/Liv2016/Robust-watermarking). The main
contributions are as follows.

1) The noise pattern is adaptively generated according to the statistical properties of
the carrier image, and thus, after adding it to the carrier image, good visual quality
can be easily obtained.

2) With considering a series of attacks such as Perspective warp, adding noise, and
JPEG compression, the watermark decoder in our scheme can efficiently resist some
potential attacks in the physical world.

3) Experimental results demonstrate that compared with the state-of-the-art algorithms
based onDNNs, our method can get better visual quality and higher robustness at the
same time. The problem of mutual restriction between visual quality and robustness
is solved to some extent.
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Abstract. With the digitalization of the physical markets, the number
of users engaging in e-commerce and shopping online is rapidly increas-
ing. An important application area for digital watermarking is the prod-
uct tracking scenario. For product tracking scenario, watermarking can
be used to provide both product links and copyright protection, so the
robustness and extraction efficiency of watermarking are the most impor-
tant metrics. The auto-convolution function (ACNF) based watermarking
scheme is the latest image watermarking that achieves the most compre-
hensive robustness. However, ACNF watermarking is not resilient in the
case of Gauss noise and average filtering. Besides, ACNF watermarking
focuses only on robustness and ignores extraction efficiency, and the low
efficiency of watermark extraction leads to unpleasant user experience. In
this paper, we propose an adaptive despread spectrum-based image water-
marking for fast product tracking. For watermark embedding, we con-
struct a low-frequency watermark signal in the spatial domain to enhance
the robustness to signal processing attacks. In watermark extraction, our
scheme uses discrete wavelet transform (DWT) for image dimensionality
reduction and adaptively watermark despread spectrum according to the
wavelet decomposition level, which can achieve accurate and fast extrac-
tion of watermark. The experimental results demonstrate that our pro-
posed watermarking scheme has superior robustness and extraction effi-
ciency than the existing methods under the same imperceptibility.

Keywords: Image watermarking · Robustness · E-commerce

1 Introduction

Online shopping has become a daily behavior for the public. Adding invisible
website links to product images is an important application direction for digi-
tal watermarking [1]. Figure 1 gives an illustration of the digital watermarking
technology used in a product tracking scenario. As shown in Fig. 1(a), users
usually save (download or screenshot) the picture of the product they want to
buy through their mobile devices. As shown in Fig. 1(b), in order to make it
easier for users to get the product link directly through the image for accurate
purchase, digital watermarking technology can be used to hide the product link
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Fig. 1. Illustration of digital watermarking applied to product tracking scenario.

information into the image in an invisible form. Mobile device can be linked to
corresponding e-commerce website through digital watermark.

When watermarking is applied to copyright protection and traceability sce-
nario, it allows for longer execution times since watermark extraction is an off-
line procedure [2]. Yet, if the watermark is applied to the product tracking
scenario, the watermark extraction time is too slow, leading to bad user experi-
ence. With the rapid development of mobile terminal camera technology, most
of the images taken by mobile phones are currently close to 4K resolution, and
most of the mobile phone screens (screenshot images) are close to 1080p reso-
lution. However, most of the watermarking schemes [3–5], which are studied on
a standard set of images (512 × 512 resolution), do not take into account the
practicality and time efficiency of the algorithms at real image resolutions.

Digital watermarking technology has been extensively studied and many
research outcomes have been achieved in the past decades. Divided by embedding
domain, watermarking schemes can be classified as spatial domain watermark-
ing and transform domain watermarking. Earlier spatial watermarking includes
Least Significant Bit (LSB) [6] and Patchwork [7], but they have very lim-
ited robustness. In order to improve the robustness of watermarking, transform
domain watermarking has been gradually developed, Discrete Cosine Transform
(DCT) [8], Discrete Wavelet Transform (DWT) [9], Duat-Tree Complex Wavelet
Transform (DT CWT) [10], etc. are commonly used transform domains. In
order to resist geometric attacks, some scholars embed watermarks into geomet-
ric invariant moments, Zernike Moments (ZMs) [11], Radial Harmonic Fourier
Moments (RHFMs) [12], etc. are commonly used geometric invariant moments.
The existing state-of-the-art various types of watermarking have their inher-
ent disadvantages, such as moment-based image watermarking [12] cannot resist
cropping attacks and have less efficient algorithms. Transform domain-based
watermarking [8] lacks resilience to arbitrary angle rotation attacks. The lat-
est auto-convolution function based watermarking scheme [3] obtains the most
comprehensive robustness, which is robust to most common geometric attacks,
but it is not robust to average filtering and Gauss noise due to the medium and
high frequency propert of its watermarked signal. Auto-convolution function
based watermarking is less time efficient in the case of large resolution images,
and besides, it needs to know the number of symmetric peaks (i.e., the original
image resolution) as side information to accomplish watermark extraction.
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Fig. 2. Comparison of the watermark embedding workflow between Ma et al. [3]. (top)
and our proposed method (bottom). The key difference is that the proposed method
artificially constructs the spread spectrum matrix R at low frequency and introduces
a KB filter to generate the watermark difference.

Inspired by this, we propose an adaptive despread spectrum-based image
watermarking for fast product tracking. The discrete wavelet transform can be
used for image dimensionality reduction to reduce the time for watermark extrac-
tion and the low frequency component will have better robustness to signal pro-
cessing attacks. On the embedding side, we introduce a KB (Ker-Bohme) filter
[13] from the adaptive steganography to convolve the original image to determine
the pixel-level embedding strength of the watermark, resulting in better imper-
ceptibility. Finally, the watermark is embedded into the image spatial domain
in the form of spread spectrum. At the extraction end, we need to perform
discrete wavelet transform on the watermarked image in order to achieve fast
extraction of the watermarked, and adaptively select the corresponding spread
spectrum matrix for watermark despread spectrum according to the transform
level. Besides, we also introduce a nonlinear filter at the extraction end to remove
the pseudo-peak points generated by the auto-convolution function, so that the
algorithm does not need to know the resolution of the original image for water-
mark extraction. In summary, the contributions of this paper are three-fold:

– We propose to use DWT for image dimensionality reduction and adaptive
watermark despread spectrum according to the wavelet decomposition level,
which can achieve accurate and fast extraction of watermark.

– We design a nonlinear filter to remove the symmetric peak noise, which
allows the watermarking scheme to be applied to various types of images with
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different resolutions and to achieve blind extraction without any additional
side information about the original image.

– We introduce the KB filter to guide the watermark signal not to embed into
clean edges, which improves the imperceptibility of the watermark.

2 Motivation

In this section, we first briefly review the work [3], a recent representative auto-
convolution function (ACNF) based watermarking scheme, and then point out
its inherent limitation. This motivates us to design a watermark fast extrac-
tion framework. The embedding process of the scheme in [3] is given in Fig. 2.
By applying a key, we generate a bipolar random matrix r. Then r is doubly
upsampled to obtain spread spectrum matrix R. Watermark message is encoded
using R to obtain a watermark unit. Watermark unit needs to be masked to
form the final masked watermark unit, denoted as p. Flip p until it is the same
size as the original image, and then multiply it element by element with the
standard deviation filtered image to get the watermark difference. Finally, the
watermark difference is directly superimposed into the component Y of original
image (YCbCr space) to complete the embedding of the watermark.

As can be seen in Fig. 2, after standard deviation (SD) filtering of the Lena
image, the watermark difference outputs high corresponding values at the clean
edges. Indeed, both smooth areas and clean edges belong to the sensitive areas
of the human eye [14]. Therefore, using standard deviation filtering to determine
the watermark strength can cause distortion at the clean edges where the human
eye is more sensitive, thus compromising imperceptibility.

Original image Watermarked image
Watermarked image attacked by 

Gaussian noise (σ=0.01)

Zoomed watermark signal Zoomed Gaussian noise signal

Difference Difference

Fig. 3. Frequency distribution of Gauss noise signal and watermarked signal of auto-
convolution function based watermarking scheme [3].

In watermark extraction, Wiener filtering of the component Y is required
to estimate the watermark signal. Then, the auto-convolution of the watermark
signal is calculated to obtain the position of each watermark unit. Finally, each
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watermark unit is demasked and despread spectrum to complete the watermark
extraction. Due to the complexity of the extraction process, when the scheme is
applied to large resolution images, the time complexity of the auto-convolution
algorithm increases and the watermark extraction process becomes very slow.
In addition, [3] needs to know the resolution of the original image in order to
complete the filtering of symmetric peaks during the binarization of the auto-
convolution signal. However, the resolution of products images in real-life appli-
cations is varied, and the condition that the watermark extraction requires the
resolution of the original image limits the practical application of the watermark.
More details related to the watermark extraction can be found in Sect. 4 of the
work [3].

In our experiments, we find that the scheme [3] has poor robustness against
Gauss noise and average filtering. The frequency distribution of the watermark
signal generated by [3] as well as the Gauss noise signal is given in Fig. 3. It can
be seen that the frequency of the watermark signal belongs to the medium-high
frequency. Gauss noise is closer to the frequency distribution of the watermark
signal, which can cause serious interference to the watermark signal. Average
filtering is often used to remove Gauss noise. Therefore, [3] is poorly resilient to
Gauss noise and average filtering attacks. To this end, we propose an adaptive
despread spectrum-based image watermarking in the next section to address the
inherent limitations of the scheme in [3].

Original image SD filtering KB filtering

Zoomed original image Zoomed watermarked image

(Using SD filtering)

Zoomed watermarked image

(Using KB filtering)

Fig. 4. Comparison of the imperceptibility of the scheme [3] using SD (Standard devi-
ation) filter and KB (Ker-Bohme) filter, respectively.

3 Adaptive Despread Spectrum-Based Image
Watermarking

3.1 Watermark Embedding

Figure 2 shows the workflow of the proposed watermark embedding process. As
described in Sect. 2, clean edges are not suitable for embedding high-intensity
watermark signal. Assume that component Y of the original image M is I of
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size N × M, Ii,j ∈ [0, 255], i = 1, 2, ..., N, j = 1, 2, ...,M . Here, we use the KB
(Ker-Bohme) filter [13] commonly used in adaptive steganography to compare
the SD (standard deviation) filter in [3]. KB filter as a form as:

KB =

⎡
⎣

−1 2 −1
2 −4 2

−1 2 −1

⎤
⎦

Figure 4 gives the watermark intensity matrices obtained using the KB filter
and the SD filter, respectively, and a comparison of the imperceptibility of the
watermark embedded using the scheme in [3]. Here, we control other factors
constant and only change the filter. It can be seen that compared to the water-
marked image obtained by the SD filter, the watermarked image obtained by the
KB filter does not cause distortion at the clean edges perceived by the human
eye, and the imperceptibility of the watermark is better. Thus, the watermark
intensity matrix s is determined in our scheme using the KB filter:

s = log2(|I ⊗ KB|). (1)

where the notation ⊗ stands for the mirror-padded convolution. For the elements
in s, we restrict the minimum value to 1.

Spread spectrum

MessageLR/2
1 0 1 0
0 1 0 1
1 1 1 0
0 0 0 1

LR/2

× =
Spread-spectrum matrix R

Watermark unit Mask matrix K Masked watermark unit (p)

Fig. 5. Artificially constructing the spread spectrum matrix as well as the mask matrix
makes the watermark signal more low frequency.

As shown in Fig. 5, we manually constructed the spread spectrum matrix R of
size LR, with white denoting pixels value +1 and black denoting pixels value −1.
After spreading the message matrix to form a watermark unit, it is masked by a
mask matrix K of size LK . The potential motivation behind this strategy is that
we can artificially control the frequency distribution of the watermarked signal in
the spatial domain. Here, we suggest that LR ≥ 8 to make the signal frequency
distribution more low-frequency and thus enhance its robustness against Gauss
noise and average filtering attacks.

After getting the masked watermark unit p, we flip it until it is the same size
as the original image. The final watermark difference is obtained using the water-
mark intensity s. The watermark difference is superimposed onto the original
image to complete the embedding of the watermark.
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3.2 Watermark Extraction

In general, the embedding and extraction domain of the watermark should be
consistent. However, in our scheme, although the watermark is embedded into the
spatial domain, we choose to extract the watermark signal in the wavelet domain.
The potential motivations are as follows: first, the discrete wavelet transform
(DWT) can reduce the dimensionality of the image, which will improve the
efficiency of watermark extraction. Second, our watermark signal is embedded
in the original image in the form of low frequency, it will map to the low frequency
sub-band (LL) of DWT, and theoretically we can adjust the spread spectrum
matrix and mask matrix in different wavelet decomposition levels to achieve the
extraction of the watermark signal in the spatial domain.

After lossy channel transmission, we obtain the degraded watermarked image
M∗. The component Y of M∗ is denoted as I∗ of size N∗ ×M∗. Similarly, I∗

i,j ∈
[0, 255], i = 1, 2, ..., N∗, j = 1, 2, ...,M∗. Note that N∗, M∗ are not necessarily
equal to N ,M , respectively, as the image suffer from unknown distortion. Figure 6
shows the proposed watermark extraction process. We follow the steps below for
watermark extraction.

Q-level 2-D DWT

Q-level low frequency sub-band

(LLQ)
Watermarked image

Wiener filtering
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
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Fig. 6. The workflow of the proposed watermark extraction.

Step 1 Discrete Wavelet Transform: We need to perform DWT on I∗. This
work selects Haar wavelet to do DWT for images, because it can make a water-
mark algorithm more robust to attacks than others [15]. An image can be divided
into a lower resolution approximation image (LL1) and three detailed compo-
nents, vertical (LH1), diagonal (HH1) and horizontal (HL1). The dimensions of
LL1, LH1,HL1 and HH1 are (N∗/2) × (M∗/2).

Generally speaking, the LL1 component can be DWT again to obtain the
high-level decomposition results, i.e., LL2, LH2,HH2 and HL2. As the water-
mark signal in the spatial domain is low frequency, we only consider watermark
extraction in the wavelet low frequency sub-band LLQ, Q = 1, 2, 3, · · ·. The
larger the Q value, the higher the watermark extraction efficiency. Besides, we
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need to adjust the spread spectrum matrix R and the mask matrix K adaptively
according to the wavelet decomposition level Q. Specifically, the extraction on
LLQ requires performing a scaling of 1/2Q times for R and K. The scaling
process uses nearest-neighbor interpolation.

Step 2 Wiener Filtering: After determining the DWT decomposition level
Q, we obtained the LLQ, and the corresponding R and K. Here we use the
common Wiener filter for the estimation of the watermark signal Ŵ , i.e.

Ŵ = (LLQ − μLLQ
)
max(σ2

LLQ
,mean(σ2

LLQ
))

σ2
LLQ

. (2)

where μLLQ
and σ2

LLQ
are the local mean and local variance of LLQ, respec-

tively. mean(·) indicates the mean value of the matrix. max(·) denotes taking
the maximum value.

Step 3 Compute the Auto-convolution to Obtain the Watermark Units
Map: To determine the location of the watermarked units, we take the auto-
convolution function (ACNF) to calculate the symmetry S:

S = D(IFFT (FFT (Ŵp))FFT (Ŵp)). (3)

where FFT and IFFT stand for the fast Fourier transform and the inverse
fast Fourier transform, respectively. D is a downsampling function that scales
its input matrix to the half size. Ŵp is Ŵ zero-padding to double the original
size. To separate symmetrical peaks, [3] use an adaptive threshold to obtain a
watermark unit map A:

A =
{

1, if S > μS + βσS

0, otherwise
(4)

where μS and σS denote the local average and the standard deviation of S. β is
an empirical coefficient that is set from 3.0 to 4.3. However, the actual calculation
of A in [3] requires a rough idea of the number of original symmetric peaks
(i.e., the resolution of the original image) for the best extraction, as detailed in
the author’s publicly available code [16]. However, in real life, the resolution of
images is various. We wish to extract the watermark with as less side information
as possible in order to improve the practicality of the scheme. In this paper, a
nonlinear filter is proposed that can remove pseudo-peak points (noise) to obtain
a clean map of watermark units without the need to know the number of original
peak points.

Step 4 Nonlinear Filtering: We use the method in [3] as a basis to search
for as many peak points as possible, i.e., we assume that the original number
of peak points is the maximum within a reasonable range. Many pseudo-peak
points (noise) appear after the execution of Eq. (4). We assume that the true
peak point is maximum in the local area. Therefore, we design a nonlinear filter
as follows to obtain the de-noised watermark units map A′:

A′ =
{

1, if max(Z) = S & A = 1
0, otherwise

(5)
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where Z denotes the local neighborhood of size (LK/2Q+2−1)×(LK/2Q+2−1).
Here LK is the size of the original mask matrix K, i.e. the size of the watermark
unit. The size of the local region Z is chosen to be 1/2 the size of the watermark
unit in the current DWT decomposition level, i.e., LK/2Q+2. The final area
range is performed -1 so that the true peak point is not deleted when the 0.5
times scaling attack occurs.

An example of the effect of nonlinear filtering for de-noising is given in Fig. 7.
We need to estimate as many peak points as possible and then use a nonlinear
filter to get clean peak points. This process does not require knowledge of the
resolution of the original image, enhancing the practicality of existing scheme.
Now, we can estimate the geometric distortion parameters of the image based
on A′ and thus correct the geometric distortion.

Map of watermark units A
(with noise)

Map of watermark units A
(Nonlinear Filtering)

Fig. 7. Demonstration of de-noising effect of nonlinear filter.

Step 5 Watermark State Determining: We first need to obtain the spread
spectrum matrix R and the mask matrix K adjusted according to the wavelet
decomposition level Q. After recovering the geometric distortion, we can obtain
a partial set of watermark units, expressed as Wunits = {Wi, i ∈ N

+}, and the
number of watermark units is |Wunits|. As shown is Fig. 8, there are 8 possible
states of the watermark unit Wi. We use K demask it to get W r

i and construct
a null hypothesis as follows:

H0 : Wi is not state 1.

If H0 is false and the correlation between W r
i and the spread spectrum

matrix R is higher, we divide W r
i into non-overlapping blocks according to the

size of R, expressed as (W r
i )n,m, where n,m ∈ [1,

√
L]. L is the length of the

watermark. Then the correlation Y between W r
i and R can be calculated as:

Y =
∑
n

∑
m

|C((W r
i )n,m,R)| (6)

where C(·) represent the inner product. Assume that the set of possible null
hypothesis is Λ:
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Λ = {H0 : Wi is not state z, z ∈ [1, 8]}
Therefore, we take the null hypothesis with the highest correlation Y in the

set Λ to reject it and determine the final watermark state.

p q

b d p
q

b
d

State 1 State 2 State 5 State 6

State 3 State 4 State 7 State 8

Fig. 8. Eight possible watermark unit states.

Step 6 Despread Spectrum: Once the state of the single watermark unit Wi

has been determined, watermark extraction can be performed:

ŵi(n,m) =
{

1, if C((W r
i )n,m,R) ≥ 1

0, otherwise
(7)

To improve robustness, we traverse Wunits = {Wi, i ∈ N
+} and give the final

extracted message ŵ:

ŵ(n,m) =
{

1, if
∑

i ŵi(n,m) ≥ |Wunits|/2
0, otherwise

(8)

4 Experimental Evaluation

4.1 Experimental Setup

In our experiments, we choose the wavelet decomposition level Q = 1 and the
spread spectrum matrix R size LR = 8. For all watermarking schemes in the
comparison experiments, their message length L is uniformly set to 64 bits. As
described in Sect. 1, the current state-of-the-art watermarking schemes are DCT
domain spread spectrum-based watermarking [8], moment-based watermarking
[12], and auto-convolution function based watermarking [3]. We use SSAES
(Spread spectrum scheme with adaptive embedding strength) [8], RHFMs-FFT
(Radial harmonic Fourier moments based on fast Fourier transform) [12], and
ACNF (Auto-convolution function) [3] to represent the above three watermark-
ing schemes in order to concisely illustrate the experimental results.

The test host images consisted of 120 randomly selected color images from
the USC-SIPI image database [17] and Yahoo’s image sharing website [18], 60
of size 512 × 512 and another 60 of size 1920 × 1080. Besides, to verify that the
watermarking scheme can be applied to various image formats, we also adjust the
format of the image dataset. We adjusted the format of sixty 512×512 images so
that they included 20 jpg images, 20 bmp images and 20 png images. Similar
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Table 1. Average PSNR and SSIM of watermarked images generated by different
schemes.

Scheme [8] [12] [3] Proposed

PSNR (dB) 41.4965 41.5730 41.8620 41.8765

SSIM 0.9399 0.9966 0.9406 0.9717

Table 2. BERs under the signal process attacks.

Attack types [8] [12] [3] Proposed

JPEG compression 80% 0.003 0.001 0.000 0.000

JPEG compression 60% 0.003 0.001 0.000 0.002

JPEG compression 40% 0.006 0.002 0.018 0.012

Gauss noise 0.0001 0.002 0.001 0.000 0.000

Gauss noise 0.001 0.002 0.002 0.000 0.000

Gauss noise 0.01 0.007 0.088 0.118 0.046

Salt & pepper noise 0.001 0.002 0.001 0.000 0.000

Salt & pepper noise 0.01 0.003 0.003 0.000 0.001

Salt & pepper noise 0.02 0.005 0.006 0.000 0.003

Average filtering 3 × 3 0.003 0.001 0.000 0.001

Average filtering 5 × 5 0.008 0.001 0.035 0.003

Average filtering 7 × 7 0.495 0.001 0.410 0.004

Laplacian filtering 3 × 3 0.002 0.071 0.000 0.000

Laplacian filtering 5 × 5 0.002 0.071 0.000 0.000

Laplacian filtering 7 × 7 0.002 0.071 0.000 0.000

Contrast change −30% 0.002 0.477 0.001 0.000

Contrast change −50% 0.002 0.605 0.000 0.000

Contrast change +30% 0.004 0.408 0.001 0.005

Contrast change +50% 0.006 0.480 0.015 0.045

Saturation change −30% 0.002 0.025 0.000 0.004

Saturation change −50% 0.002 0.055 0.000 0.000

Saturation change +30% 0.002 0.022 0.000 0.000

Saturation change +50% 0.002 0.062 0.000 0.000

Luminance change −30% 0.002 0.001 0.000 0.000

Luminance change −50% 0.002 0.001 0.000 0.000

Luminance change +30% 0.002 0.001 0.000 0.000

Luminance change +50% 0.002 0.001 0.000 0.000

Chroma change −30% 0.002 0.112 0.000 0.001

Chroma change −50% 0.002 0.160 0.000 0.000

Chroma change +30% 0.003 0.117 0.000 0.001

Chroma change +50% 0.002 0.093 0.000 0.000
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Fig. 9. Top row: Host images; Bottom row: Watermarked images generated by the
proposed scheme.

formatting has been done for 1080p images. A partial example of the host images
generated by this scheme and its corresponding watermarked images are given
in Fig. 9. The average peak signal-to-noise ratio (PSNR) of 120 watermarked
images is 41.8765 dB. The robustness of the scheme is evaluated by the bit
error rate (BER) of the watermarked image at the corresponding distortion.
In the comparison experiments, the other watermarking schemes take the same
experimental setup. The average PSNR and structural similarity index (SSIM) of
the four watermarking schemes are given in Table 1. The average PSNR values of
the watermarked images generated by the four different watermarking schemes
were all set to the same level of 41.6 ± 0.3 dB.

4.2 Robustness to Signal Processing Attacks

In this section, we compare the resilience of SSAES [8], FFT-RHFMs [12], and
ACNF [3] to signal processing attacks. Attack types include JPEG compression,
Gauss noise, Salt & Pepper noise, Average filtering (image blurring), Lapla-
cian filtering (image sharpening) and Contrast/Saturation/Luminance/Chroma
change.

The average BER of the four schemes against different signal processing
attacks is listed in Table 2. In general, BER ≤ 0.050 is an acceptable robustness
performance. It can be seen that the overall robustness of SSAES [8] watermark-
ing is excellent, but poor when suffering from average filtering (7 × 7) attack.
RHFMs-FFT [12] watermark is poorly resilient to contrast change. ACNF water-
marking [3] cannot resist Gauss Noise (0.01) attack and average filtering (7 × 7)
attack, while our scheme solves the shortcomings of ACNF scheme well. Due to
the artificial control that we keep the spatial watermark signal at low frequency,
which enhances its resilience to Gauss noise and average filtering attacks. It can
be seen that our scheme has better robustness against various types of signal
processing attacks and can resist common types of signal processing attacks.
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4.3 Robustness to Geometric Attacks

In this section, we compare the resilience of SSAES [8], FFT-RHFMs [12], and
ACNF [3] to geometric attacks. Attack types include Cropping, Insert, Adding
boundary, Scaling, Flipping, Rotation and Aspect ration change.

The average BER of the four schemes against different geometric attacks is
listed in Table 3. SSAES [8] watermarking is not resistant to geometric attacks
that cause resolution changes, such as cropping and adding boundary. Besides,
it is not resilient to rotation attacks at arbitrary angles (not multiples of 90).
Whereas, FFT-RHFMs [12] watermark is not resistant to cropping, adding
boundary and aspect ration change attacks due to the lack of synchronization
capability. In contrast, the robustness of ACNF [3] watermarking is more com-
prehensive. The robustness of our proposed scheme is closer to that of the ACNF
scheme and can resist common geometric attacks.

Table 3. BERs under the geometric attacks.

Attack types [8] [12] [3] Proposed

Cropping 10% N/A N/A 0.000 0.000

Cropping 30% N/A N/A 0.000 0.001

Cropping 50% N/A N/A 0.000 0.001

Insert 10% 0.003 0.281 0.000 0.001

Insert 30% 0.003 0.490 0.000 0.002

Insert 50% 0.014 0.489 0.001 0.050

Adding boundary 10% N/A N/A 0.000 0.001

Adding boundary 30% N/A N/A 0.000 0.000

Adding boundary 50% N/A N/A 0.192 0.043

Scaling 0.5 0.002 0.001 0.000 0.001

Scaling 0.7 0.002 0.001 0.000 0.009

Scaling 0.9 0.002 0.001 0.000 0.010

Scaling 1.1 0.002 0.001 0.000 0.006

Scaling 1.3 0.002 0.001 0.008 0.006

Scaling 2.0 0.002 0.001 0.067 0.001

Horizontal flipping 0.002 0.001 0.000 0.000

Vertical flipping 0.002 0.001 0.000 0.001

Rotation −10◦ N/A 0.001 0.000 0.000

Rotation −20◦ N/A 0.001 0.000 0.042

Rotation −30◦ N/A 0.001 0.000 0.024

Rotation −90◦ 0.002 0.001 0.000 0.000

Rotation +10◦ N/A 0.001 0.000 0.000

Rotation +20◦ N/A 0.001 0.000 0.029

(continued)
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Table 3. (continued)

Attack types [8] [12] [3] Proposed

Rotation +30◦ N/A 0.001 0.057 0.009

Rotation +90◦ 0.002 0.001 0.000 0.000

Aspect ration change (0.9 × 1.1) 0.002 N/A 0.000 0.007

Aspect ration change (0.8 × 1.2) 0.002 N/A 0.003 0.005

Aspect ration change (0.7 × 1.3) 0.003 N/A 0.000 0.006

Aspect ration change (1.1 × 0.9) 0.002 N/A 0.000 0.011

Aspect ration change (1.2 × 0.8) 0.002 N/A 0.000 0.007

Aspect ration change (1.3 × 0.7) 0.003 N/A 0.000 0.024

Table 4. Comparison of the average embedding time (seconds per image) of different
watermarking schemes.

Resolution 512 × 512 1024 × 1024 2048 × 2048 4096 × 4096

[8] 0.27 0.80 3.45 13.28

[12] 7.79 34.32 140.17 693.03

[3] 0.16 0.68 2.76 11.04

Proposed 0.17 0.66 2.79 11.01

Table 5. Comparison of the average extraction time (seconds per image) of different
watermarking schemes.

Resolution 512 × 512 1024 × 1024 2048 × 2048 4096 × 4096

[8] 0.09 0.16 0.46 1.43

[12] 2.03 8.62 37.35 286.15

[3] 0.70 2.00 6.91 40.08

Proposed (Q = 1) 0.26 0.61 2.16 4.66

Proposed (Q = 2) 0.22 0.46 1.54 2.75

4.4 Computational Cost

We test the running time on a PC with Intel(R) Core(TM) i7-9700K CPU and 32
GB RAM. We scale 60 512 × 512 images in the image dataset with parameters
1.0, 2.0, 4.0, and 8.0 to generate 60 images of 512 × 512 size, 60 images of 1024
× 1024 size, 60 images of 2048 × 2048 size, and 60 images of 4096 × 4096 size,
respectively. We use the obtained 240 images to test the watermark embedding
and extraction efficiency of the four schemes.

Table 4 gives a comparison of the average embedding times of the four water-
marking schemes on different resolution images. It can be seen that the embed-
ding efficiency of our scheme and ACNF [3] watermark are closer, and have
higher embedding efficiency compared to SSAES [8] and FFT-RHFMs [12].
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Table 5 gives a comparison of the average extraction times of the four water-
marking schemes on different resolution images. It can be seen that the proposed
scheme has a significant improvement in extraction efficiency compared to the
ACNF [3] watermarking scheme as the Q value increases, and the efficiency is
close to that of SSAES. Obviously, our extraction efficiency is greatly improved
compared with the original ACNF [3] scheme, and the larger the Q value, the
greater the extraction efficiency improvement. It is thanks to DWT that reduces
the image dimensionality and reduces the time complexity of the watermark
extraction algorithm. If we consider the inherent shortcomings of SSAES [8]
watermarking in terms of robustness, our scheme is undoubtedly a better choice
for product tracking scenario.

5 Conclusion

In this paper, we propose an adaptive despread spectrum-based image water-
marking for fast product tracking, which has the core idea of using DWT to
reduce the dimensionality of images in order to improve the extraction efficiency
of watermarks. The proposed scheme can adaptively adjust the spread spectrum
matrix and the mask matrix with the wavelet decomposition level, so that the
extraction of low-frequency watermarked signals in the spatial domain can be
achieved in the wavelet domain. The design of nonlinear filters improves the
practicality of watermarking, allowing the proposed scheme to process images of
different resolutions in batch. Besides, we also use the KB filter commonly used
in adaptive steganography to guide the watermark without embedding to clean
edges, improving the subjective imperceptibility of the watermark. Extensive
experimental results demonstrate that our proposed scheme improves the robust-
ness of existing watermarking schemes and substantially improves the extraction
efficiency of watermark. In our future work, we will focus on further improving
the embedding and extraction efficiency of watermarking schemes on extra-large
resolution images.
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Abstract. Reversible data hiding in encrypted images (RDHEI) is a
useful technique for protecting data security, but most RDHEI methods
do not make a satisfied embedding performance yet. To address this, we
propose a novel RDHEI method via arranging blocks of bit-planes to
vacate more room. In the proposed RDHEI method, the eight bit-planes
of prediction error image are divided into non-overlapping blocks, which
are classified into two kinds: uniform block (UB) and non-uniform block
(NUB). To improve the embedding performance, we not only use the UBs
but also exploit the NUBs to vacate room. Specifically, the NUB is further
divided into compressible block or non-compressible block according to
its detailed bits, where the compressible block is used to vacate room. As
more blocks are used for data embedding, the proposed RDHEI method
reaches a high embedding performance. Many experiments are done to
validate performances of the proposed RDHEI method. The results show
that the embedding rates of the proposed RDHEI method on the BOSS-
base, BOWS-2, and UCID databases are 3.9773, 3.8800, and 3.1527 bpp,
respectively. Comparison illustrates that the proposed RDHEI method
outperforms some state-of-the-art RDHEI methods in terms of embed-
ding rate.

Keywords: Reversible data hiding · Image encryption · Block
arrangement · Embedding rate

1 Introduction

With the rapid development of cloud services and 5G networks, Internet com-
munication has become more and more convenient and the amount of data
uploaded to the cloud is increasing. Meanwhile, secure data transmission has
become an urgent problem to be solved. Reversible data hiding in encrypted
images (RDHEI) [1–6] is an effective technique for protecting data security. It
embeds secret data into carrier images by making slight modifications. Moreover,
it can extract the secret data and exactly recover the carrier images without any
error. These advantages make RDHEI suitable for many applications, such as
military applications, medical applications and judicial applications. As digital
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images are widely used in many fields, many researchers have designed various
RDHEI methods for data security. Nowadays, the existing RDHEI methods can
be divided into two types according to the order of reserving room and image
encryption: Reserving room before encryption (RRBE) [7–11] and vacating room
after encryption (VRAE) [12–16]. Some of their typical methods are introduced
in the below paragraphs.

(1) RRBE based RDHEI methods: An early work of this kind methods was
given by Ma et al. [7]. They used a traditional reversible data hiding (RDH)
method to reserve room before encryption and achieved data extraction and
image recovery without error. In another work, Zhang et al. [8] presented
a novel RDHEI method. They estimated some pixels before encryption and
embedded secret data into the estimated errors. In addition, they designed
a special encryption scheme to encrypt those estimated errors. Their data
extraction and image decryption are independent. To vacate more room,
Wu et al. [9] exploited adaptive prediction-error labeling and encryption to
design two methods: Exposing the shuffled labels in encrypted images and
performing the encryption on the labels. As the binary image do not have
much redundancy, Ren et al. [10] divided the binary image into uniform
blocks and non-uniform blocks, and embedded the secret data into these
blocks. To increase the reserved room before image encryption, Yin et al.
[11] improved the method given by Ren et al. [10] by using pixel prediction
and bit-plane rearrangement. Unlike the previous methods, they divided
bit-planes into uniform blocks and non-uniform blocks, and reordered these
blocks to reserve embeddable room.

(2) VRAE based RDHEI methods: A typical method was introduced by Zhang
[12] in 2011. He used a stream cipher to encrypt image, and modified some
encrypted data to embed secret data into the image. To increase the embed-
ding rate, Tang et al. [13] designed a block-based encryption method and pro-
posed a differential compression (DC) technique to compress the encrypted
image. The DC technique can vacate more room for embedding secret data.
In another work, Tang et al. [14] exploited a novel technique called adaptive
prediction error coding to design a new RDHEI method. As the adaptive pre-
diction error coding can vacate more room for data embedding, this RDHEI
method achieves a high embedding rate. Recently, Yu et al. [15] exploited
adaptive difference recovery to design a new technique of data hiding and
used it make an efficient RDHEI method. They preserved spatial redundancy
within encrypted blocks and conducted data embedding by the adaptive dif-
ference recovery. Gao et al. [16] combined the most significant bit prediction
and error embedding to construct a novel RDHEI method. They classified
blocks into three types: flag blocks, error blocks and message blocks. In this
method, the flag blocks are used to distinguish error blocks and message
blocks, and the message blocks are used to embed data.

Many RDHEI methods are reported in the past years and some of them
make good performances in the security and the embedding rate. However, the
embedding performance of most RDHEI methods are not satisfied yet because
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the demand of hiding secret data is rapidly increasing. In this paper, we propose a
novel RDHEI method via arranging blocks of bit-planes to vacate more room. In
the proposed RDHEI method, the eight bit-planes of prediction error (PE) image
are divided into non-overlapping blocks, which are classified into two kinds:
uniform block (UB) and non-uniform block (NUB). To improve the embedding
performance, we not only use the UBs but also exploit the NUBs to vacate
room. Specifically, the NUB is further divided into compressible block (CB) or
non-compressible blocks (NCB) according to its detailed bits, where the CB is
used to vacate room. As more blocks are used for data embedding, the proposed
RDHEI method reaches a high embedding performance. Many experiments on
three open databases are done to validate performances of the proposed RDHEI
method. The results show that the embedding rates of the proposed RDHEI
method on the BOSSbase, BOWS-2, and UCID databases are 3.9773, 3.8800,
and 3.1527 bpp, which are bigger than those of the state-of-the-art methods
[9,11,15,16].

The rest of this paper is organized as follows. Section 2 explains the proposed
RDHEI method in detail. Section 3 discusses the experimental results, and Sect. 4
concludes this paper.

2 Proposed Method

The framework of the proposed RDHEI method contains three stages, as shown
in Fig. 1. In the first stage, the content owner calculates PE image, decomposes
the PE image into eight bit-planes, divides each bit-plane into non-overlapping
blocks (i.e., UBs and NUBs), and arranges these blocks to vacate room. Then
the content owner encrypts the pre-processed image with an encryption key. The
output of the first stage is the encrypted image with the reserved room. In the
second stage, the data hider embeds secret data into the reserved room of the
encrypted image by a data hiding key. After that, the marked encrypted image is
obtained. In the third stage, the receiver can extract secret data or recover image
with the guide of auxiliary information according to the available knowledge of
the data hiding key and encryption key. Details of the proposed RDHEI method
are explained as follows.

Fig. 1. Framework of the proposed RDHEI method
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2.1 Vacating Room

The procedure of vacating room includes two parts: PE calculation, and bit-plane
block arrangement. Their details are explained as follows.

(1) PE Calculation. Suppose that the size of input image is M × N and its
pixel in the i-th row and j-th column is denoted as x(i, j) ∈ [0, 255], where
1 ≤ i ≤ M and 1 ≤ j ≤ N . During the predicted image calculation, the pixels
located in the first row/column remain unchanged as reference pixels, and the
predicted values of other pixels are obtained by their two adjacent pixels. Here,
the predicted value p(i, j) of the pixel x(i, j) can be calculated by the Eq. (1).

p(i, j) =
{
x(i, j), If i = 1 || j = 1
�0.5x(i, j − 1) + 0.5x(i − 1, j)� , Otherwise (1)

where �·� represents the floor operation. Then, the PE e(i, j) of the pixel x(i, j)
is determined by the Eq. (2).

e(i, j) =

⎧⎪⎪⎨
⎪⎪⎩

x(i, j), If i = 1 & j = 1
x(i, j − 1) − x(i, j), If i = 1 & j �= 1
x(i − 1, j) − x(i, j), If i �= 1 & j = 1
x(i, j) − p(i, j), If i �= 1 & j �= 1

(2)

Clearly, the range of the PE e(i, j) is from −255 to 255, which exceeds the
pixel range of a gray-scale image. If PEs are directly used to construct image,
it will cause the pixel-overflow problem. To address this, we use the absolute
values of PEs and a sign map to record the PEs. Let Ls(i, j) be the element of
the sign map Ls in the i-th row and j-th column. Thus, it can determined as
follows.

Ls(i, j) =
{
0, If e(i, j) ≥ 0
1, Otherwise (3)

Clearly, the sign Ls(i, j) can indicate that e(i, j) is a negative number or a non-
negative number. Moreover, the absolute values of PEs are decomposed into
bit-planes for vacating room. The bit-planes of the PE image can be calculated
as follows.

e(l, i, j) =
⌊ |e(i, j)|

2l−1

⌋
mod 2, l = 1, 2, . . . , 8 (4)

where e(l, i, j) is the l-th bit of e(i, j), and mod is the modular operation. There-
fore, the l-th bit-plane of the PE image can be generated by taking all e(l, i, j)
values. Clearly, the PE image can be exactly recovered by using the sign map
and the absolute values of PEs. Note that during image recovery, the pixels in
the first row and the first column are firstly restored, then the recovered pixels
are used to calculate the predicted value by using the Eq. (1) and finally the
predicted value and the corresponding PE are used to recover its original pixel.
To reduce the cost of storing the sign map Ls, the arithmetic coding is exploited
to conduct compression. Figure 2 is an example of the PE calculation.
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Fig. 2. An example of the PE calculation

(2) Bit-Plane Block Arrangement. As most absolute values of PEs are small
values, many bits in their high bit-planes are zero. This feature can be used to
conduct compression. To do so, the bit-planes are divided into non-overlapping
blocks sized k × k. These blocks are classified into two kinds: unique blocks (UB)
and non-unique blocks (NUB). In the UB, all bits have the same value. In other
words, these bits are all 1 or 0. For NUB, the values of its bits are not the same.
Intuitively, the UB can be losslessly compressed by using a sign instead of record-
ing all bits. In this work, a label mapLu is used to mark the blocks of a bit-plane. If
the block is a UB, its corresponding value in the label map is 0. Otherwise, its cor-
responding value is 1. Note that the UBs can be also divided into two categories:
block with bits of ‘0’ and block with bits of ‘1’. To distinguish them, another sign
is needed. Here, the sign of the block with bits of ‘0’ is marked 0 and the sign of
the block with bits of ‘1’ is marked 1. In addition, the NUBs can be also divided
into two categories: compressible block (CB) and non-compressible block (NCB).
For a NUB, if the bit number of ‘0’ or ‘1’ is much bigger than that of ‘1’ or ‘0’, it is
the CB because it can be losslessly compressed by recording the information of the
few bits. Otherwise, it is the NCB. Similarly, to distinguish CB and NCB, another
sign is also required. Therefore, the CB is marked with 0 and the NCB is marked
with 1. In this work, a label map Lc is used to mark the detailed categories of UB
and NUB. Consequently, it is easy to identify the type of a block in the bit-plane
by jointly using the label maps Lu and Lc.

Classification of CB and NCB can be determined by calculating the bit cost of
marking the block. If the block is the CB, some auxiliary information is required
to record for exact recovery. The auxiliary information includes: Value of few bits
(1 bit), Number of few bits, and Locations of few bits. Suppose that the number
of few bits is m in the NUB. Thus, the cost of storing the number of few bits is
�log2 m	 bits, and the cost of storing the locations of few bits is m �log2 k × k	 =
m �2 log2 k	 bits, where �·	 is the ceiling operation. Therefore, the total bit cost of
marking the NUB CNUB can be determined by the following equation.

CNUB = 1 + �log2 m	 +m �2 log2 k	 (5)

Clearly, there are k2 bits in a block. Therefore, the vacated room of the NUB
is S = k2 − CNUB bits. If S > 0, the NUB is a CB. Otherwise, it is a NCB. As
the fixed-length coding is used to record the number of few bits (i.e., m), the
theoretical maximum m value should be determined. For a given block size k,
the maximum m value can be determined by solving the following optimization
problem.
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m = argmin
m

(S), s.t. S > 0 (6)

where m ∈ {1, 2, ..., k2/2}. Figure 3 presents the structure of the auxiliary infor-
mation of CB. Obviously, the CB can be exactly recovered by using the auxiliary
information.

Fig. 3. Structure of the auxiliary information of CB

To vacate room, all blocks of a bit-plane are arranged in the below order.
First, the UBs are arranged in order from left to right and top to bottom. Next,
all CBs are arranged behind the UBs. Finally, all NCBs are arranged behind
CBs. As the arrangement order is fixed, all blocks can be correctly placed to
their original position with the guide of the label maps of Lu and Lc during
image recovery. Since the two label maps are the auxiliary information of a
bit-plane, they are compressed by arithmetic coding for reducing storage cost.
Besides the label maps of Lu and Lc, the bits of NUBs (CBs + NCBs) and
the length of the bits of NUBs are both needed for correct recovery. The bits
of NUBs are constructed by concatenating the auxiliary information of all CBs
and the bits of all NCBs. Figure 4 presents the structure of the bits of NUBs.

Fig. 4. Structure of the bits of NUBs

Clearly, the auxiliary information of a bit-plane includes: the length of the
bits of NUBs (CBs + NCBs), the bits of NUBs (CBs + NCBs), the length of Lu,
the encoded Lu, the length of Lc and the encoded Lc. Here, we use �log2 MN	,⌈
log2(

⌊
M
k

⌋ ⌊
N
k

⌋
)
⌉

and
⌈
log2(

⌊
M
k

⌋ ⌊
N
k

⌋
)
⌉

bits to record the length of the bits
of NUBs, the length of Lu, and the length of Lc, respectively. Suppose that
the number of the bits of NUBs is c1, the bit number of the encoded Lu is c2
and the bit number of the encoded Lc is c3. Figure 5 presents the structure of
the auxiliary information of a bit-plane. Therefore, the bit cost of the auxiliary
information of a bit-plane can be determined by the below equation.

Cbitplane = �log2 MN	 + 2
⌈
log2(

⌊
M

k

⌋⌊
N

k

⌋
)
⌉
+ c1 + c2 + c3 (7)



196 Y. Sun et al.

Fig. 5. Structure of the auxiliary information of a bit-plane

Note that there are MN bits in total in a bit-plane. Let P = MN −Cbitplane.
Obviously, if P > 0, there is still room for data embedding. Therefore, the bit-
plane can be used for data hiding. Otherwise, it isn’t used. In regard to the
bit-plane for data hiding, it can be recovered by its auxiliary information. In
regard to the unused bit-plane, its all bits should be saved. In this work, we use
1 bit to mark whether or not a bit-plane is used for data hiding, where ‘0’ stands
for use and ‘1’ stands for unuse. Therefore, the length of the bit-plane label is 8
bits. Different from some previous RDHEI methods, the auxiliary information is
not separately stored in its bit-plane. Here, all auxiliary information are concate-
nated to form the total auxiliary information of the image. Figure 6 presents the
structure of the auxiliary information of the image. In this structure, the first
part is the bit length of the total auxiliary information, which is represented by
�log2 8MN	 bits. The second part is the bit-plane label with 8 bits. The third
part is the bit length of the encoded Ls, which is represented by �log2 MN	 bits.
The fourth part is the encoded Ls. The 5th∼12th parts are the information of
the 8th∼1st bit-planes, respectively. Note that if the bit-plane is used for data
hiding, the information is its auxiliary information. Otherwise, the information
is its all bits.

After the total auxiliary information is obtained, we use it to fill the image
from the high bit-plane to the low bit-plane. For each bit-plane, the processing
order is from left to right and top to bottom. It is clear that the rest room of
the image is the vacated room for data hiding. Note that it is easy to locate the
start position of the vacated room by using the length of auxiliary information.

Fig. 6. Structure of auxiliary information of the image

For better understanding the process of bit-plane block arrangement, an
example is presented in Fig. 7, where the block size is 4 × 4. Figure 7(a) is a
bit-plane sized 12×12, where the green blocks are UBs and the white blocks are
NUBs. Figure 7 (b) is the label map Lu for marking these blocks. After arranging
UBs in the bit-plane, Fig. 7 (c) is available. Next, the label map Lc is generated
to record the arranged bit-plane (i.e., (c)), as shown in (d). After arranging CBs
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in the bit-plane, Fig. 7 (e) is available. By encoding the CBs, the vacated room
of the bit-plane is obtained, as shown in (f). Figure (g) is the final result by
filling the bits of NUBs from left to right and top to bottom.

Fig. 7. An example of bit-plane block arrangement. (a) A bit-plane, (b) Label map
Lu, (c) UB arrangement, (d) Label map Lc, (e) CB arrangement, (f) Vacated room,
(g) Final result

2.2 Image Encryption

After the bit-plane block arrangement, the pixel Ip(i, j) of the pre-processed
image Ip in the (i, j) position can be calculated by the below equation.

Ip(i, j) =
8∑

l=1

Ip(l, i, j) × 2l−1 (8)

where Ip(l, i, j) is the l-th bit of the pixel Ip(i, j) (l = 1, 2, . . . , 8). To conduct
image encryption, a pseudo-random matrix H of size M × N is generated by a
stream cipher via the encryption key Ke. Then, the bit-wise encryption is done
by the below equation.

Ie(l, i, j) = H(l, i, j) ⊕ Ip(l, i, j) (9)

where ⊕ denotes the XOR operation, H(l, i, j) is the l-th bit of the element
of H in the (i, j) position and Ie(l, i, j) is the encrypted version of H(l, i, j)
(l = 1, 2, . . . , 8). Next, the encrypted pixel can be determined by the following
equation.

Ie(i, j) =
8∑

l=1

Ie(l, i, j) × 2l−1 (10)
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Note that the first �log2 8MN	 bits counted from left to right and top to
bottom in the highest bit-plane are not encrypted because these bits are used to
locate the start position of data hiding.

2.3 Data Embedding

To enhance the security of data embedding, the data hider uses a data hiding
key Kd to generate a pseudo-random sequence and exploits the pseudo-random
sequence to encrypt secret data by XOR operation. The encrypted secret data is
then inserted into the encrypted image. To do so, the data hider firstly extracts
the length of the total auxiliary information and uses the extracted length to
locate the start location of the vacated room. Next, the data hider can directly
insert the encrypted secret data into the vacated room and finally obtains the
marked encrypted image Imark.

2.4 Data Extraction and Image Recovery

In the proposed RDHEI method, the data extraction and image recovery are sep-
arable. The receiver can extract data or recover image according to the available
knowledge of keys. There are three cases as follows:

Case 1: The data hiding key Kd is known. In this case, the receiver can only
extract the secret data, but cannot restore image. Firstly, the receiver divides
the marked encrypted image into 8 bit-planes and extracts the length of the
auxiliary information. According to the length of the auxiliary information,
the start position of embedded secret data is then determined. Finally, the
receiver can extract the encrypted secret data and find the original secret
data by decrypting the encrypted secret data using the data hiding key Kd.

Case 2: The encryption key Ke is known. In this case, the receiver can only
restore the original image, but cannot extract the secret data. Firstly, the
receiver divides the marked encrypted image into 8 bit-planes, extracts the
length of the auxiliary information, and decrypts the marked image using the
encryption key Ke. According to the total length of the auxiliary information,
all auxiliary information is then obtained. After that, the receiver can restore
the original image with the guide of the label maps Lu, Lc and the sign map
Ls.

Case 3: Both the data hiding key Kd and the encryption key Ke are known. In
this case, the receiver can not only extract the secret data, but also recover
the original image. The detailed operations are described in the above two
cases.

3 Experimental Results

In this section, we firstly discuss security of the proposed RDHEI method, then
analyze the embedding performance, and finally compare the proposed RDHEI
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method with four state-of-the-art RDHEI methods [9,11,15,16]. In the exper-
iments, the parameter value of the block size k is 4, and six benchmark gray
images of size 512 × 512 are selected as test images, as shown in Fig. 8. More-
over, three open image databases are also exploited to further test the perfor-
mance. The three databases are BOSSbase [17], BOWS-2 [18] and UCID [19].
The detailed results are described as follows.

Fig. 8. Six benchmark gray images. (a) Lena, (b) Lake, (c) Baboon, (d) Peppers, (e)
Airplane, (f) Barbara

3.1 Security Analysis

To validate the security of the proposed method, visual results and quantitative
results are both calculated. In the visual experiments, six benchmark images
are used and the results indicate that their encrypted images and the marked
encrypted images are noise-like. For space limitation, the results of the Baboon
are presented in the Fig. 9, where (a) is the original Baboon, (b) is the encrypted
image, (c) is the marked encrypted image and (d) is the recovered Baboon. It
can be seen that (b) and (c) are noisy images and there is no cue of (a). Also,
the recovered Baboon is exactly the same with the original Baboon. Moreover,
histograms are also calculated, as shown in Fig. 10, where (a) is the histogram
of original Baboon, (b) is the histogram of the encrypted Baboon, and (c) is the
histogram of the marked encrypted Baboon. It can be observed that (b) and (c)
look like uniform distribution and both of them are different from (a). This also
verifies that it is impossible to observe any information of the original Baboon
from the encrypted Baboon and the marked encrypted Baboon. Therefore, the
proposed method is secure in terms of the visual analysis.

Fig. 9. An example of the proposed method in different stages. (a) Original Baboon,
(b) Encrypted Baboon, (c) Marked encrypted Baboon, (d) Recovered Baboon
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Fig. 10. Histograms of different images. (a) Original Baboon, (b) Encrypted Baboon,
(c) Marked encrypted Baboon

In the quantitative experiments, the well-known metrics called the Shannon
entropy [20], PSNR and SSIM [21] are exploited. The Shannon entropy is often
used to measure image security. The range of the Shannon entropy is [0, 8] for a
gray image with 256 levels. Generally, a bigger entropy means more secure image.
Table 1 lists the entropies of the original Baboon, the encrypted image, and the
marked Baboon image. Clearly, the entropies of the encrypted image and the
marked Baboon image are close to the theoretical value 8. This illustrates that
the encrypted image and the marked Baboon image generated by the proposed
method are secure. In addition, the PSNR and SSIM are also computed for
measuring image difference. The PSNR and SSIM are two famous metrics of
image quality assessment (IQA). The maximum SSIM value is 1. For IQA task,
a bigger PSNR/SSIM value means better quality of the evaluated image. On
the contrary, a low PSNR/SSIM value illustrate that there is a great difference
between the two images. Table 2 presents the PSNR and SSIM results. It can be
seen that these PSNR and SSIM values are very small. This also demonstrates
good security of the proposed method.

Table 1. Entropies of different images

Image Entropy

Original Baboon 7.3585
Encrypted Baboon 7.9992
Marked encrypted Baboon 7.9993

Table 2. PSNR and SSIM values of different image pairs

Image pair PSNR (dB) SSIM

Original Baboon and encrypted Baboon 9.5260 0.0105
Original Baboon and marked encrypted Baboon 9.5229 0.0107
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3.2 Embedding Performance

In this section, the embedding capacity (EC) and the embedding rate (ER) [21]
are taken as the metrics for testing the embedding performance of the proposed
method. Note that the EC and the ER mentioned in the experiments are the pure
EC and the pure ER, respectively. Firstly, the ECs and ERs of six test images
are calculated and the results are as shown in Table 3. It can be seen that the
EC and ER of the proposed method are closely related with the content of the
image. The smooth image will have a large EC and ER and the textural image
will have a relative small EC and ER. For example, the Airplane is a smooth
image and its EC and ER achieve 1070019 bits and 4.0818 bpp (bit per pixel),
respectively. The Baboon has complex textures, and its EC and ER are 448817
bits and 1.7121 bpp, respectively. From Table 3, it can be found that the proposed
method makes good embedding performance on the six test images.

To view our embedding performance on the large datasets, the proposed
method is applied to three open image databases, i.e., BOSSbase, BOWS-2 and
UCID. In this experiment, the best ER, the worst ER and the average ER are all
calculated. The results are shown in Table 4. The best ERs of BOSSbase, BOWS-
2 and UCID are 7.8334, 7.2348 and 5.9313 bpp, respectively. The worst ERs of
BOSSbase, BOWS-2 and UCID are 0.2955, 0.9792 and 0.6853 bpp, respectively.
And the average ERs of BOSSbase, BOWS-2 and UCID are 3.9773, 3.8800 and
3.1527 bpp, respectively. Our average ERs on three datasets are all bigger than
3.0 bpp. This demonstrates that the proposed method has a high embedding
performance.

Table 3. ERs and ECs of six test images

Image Lena Lake Baboon Peppers Airplane Barbara

EC (bit) 879546 672242 448817 789761 1070019 719192
ER (bpp) 3.3552 2.5644 1.7121 3.0127 4.0818 2.7435

Table 4. Our ERs on three open databases

Database BOSSbase BOWS-2 UCID

Best ER 7.8334 7.2348 5.9313
Worst ER 0.2955 0.9792 0.6853
Average ER 3.9773 3.8800 3.1527

3.3 Performance Comparison

To demonstrate advantages of the proposed method, we compare it with four
popular RDHEI methods [9,11,15,16]. Here, we select these RDHEI methods for
comparison because they are recently published in famous journals. In addition,
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the RDHEI methods [9,11] are the state-of-the-art techniques of the RRBE
based RDHEI methods, and the RDHEI methods [15,16] are the state-of-the-art
techniques of the VRAE based RDHEI methods. Since the proposed method and
the compared RDHEI methods can losslessly restore images, we only compare
the embedding performance in this section.

The ER comparison on six test images are conducted and the results are
presented in Table 5, where the best results are in bold and the second best
results are in italic. It can be seen that the ERs of the proposed method are
bigger than those of the compared methods [11,15,16] for all test images. In
addition, the ERs of the proposed method are also bigger than those of the
compared method [9] for four test images, i.e., Lena, Lake, Baboon and BarBara.
For Peppers and Airplane, the compared method [9] makes the best ERs and
the proposed method reaches the second best ERs.

Table 5. ER comparison on six test images (unit:bpp)

Method Lena Lake Baboon Peppers Airplane Barbara

Wu et al. [9] 3.2967 1.8648 0.9660 3.4675 4.7470 2.6049
Yin et al. [11] 2.8699 2.1322 1.3209 2.5117 3.5136 2.3297
Yu et al. [15] 2.5215 1.8434 0.9695 2.2504 2.8975 1.9383
Gao et al. [16] 0.9812 0.9730 0.8357 0.9734 0.9961 0.9326
Proposed 3.3552 2.5644 1.7121 3.0127 4.0818 2.7435

Fig. 11. Average ER comparison

To verify the generalized embedding performance, the average ERs of these
evaluated RDHEI methods on three databases are calculated. The results are
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as shown in Fig. 11. The average ER of the proposed method on BOSSbase is
3.9773 bpp, and the average ERs of RDHEI methods [9,11,15,16] on BOSSbase
are 3.8260, 3.4983, 3.2045, 0.8935 bpp, respectively. Our average ER on BOWS-2
is 3.8800 bpp, and the average ERs of RDHEI methods [9,11,15,16] on BOWS-2
are 3.7030, 3.3930, 3.1145, 0.9714 bpp, respectively. Our average ER on UCID
is 3.1527 bpp, and the average ERs of RDHEI methods [9,11,15,16] on UCID
are 3.1260, 2.7970, 2.4633, 0.8932 bpp, respectively. Obviously, the average ERs
of the proposed method on the three databases are all bigger than those of the
compared RDHEI methods [9,11,15,16]. These results experimentally prove that
the proposed method outperforms the compared RDHEI methods [9,11,15,16]
in embedding performance.

4 Conclusions

We have proposed a novel RDHEI method via arranging blocks of bit-planes,
which can reach a high embedding performance. The proposed RDHEI method
calculates the PE image, divides it into non-overlapping blocks, classifies these
blocks into UBs and NUBs, and further divides NUBs into CBs and NCBs. Since
the proposed RDHEI method not only uses UBs but also exploits CBs to vacate
room, its embedding rate is improved. Experimental results have shown that
the average ERs of the proposed RDHEI method on the BOSSbase, BOWS-
2 and UCID are 3.9773, 3.8800 and 3.1527 bpp, respectively. Comparison has
illustrated that the proposed RDHEI method outperforms some state-of-the-art
RDHEI methods in terms of embedding rate.
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Abstract. Reversible data hiding in encrypted domain(RDH-ED) can
not only protect the privacy of 3D mesh models and embed additional
data, but also recover original models and extract additional data loss-
lessly. However, due to the insufficient use of model topology, the existing
methods have not achieved satisfactory results in terms of embedding
capacity. To further improve the capacity, a RDH-ED method is pro-
posed based on the topology of the 3D mesh models, which divides the
vertices into two parts: embedding set and prediction set. And after inte-
ger mapping, the embedding ability of the embedding set is calculated
by the prediction set. It is then passed to the data hider for embedding
additional data. Finally, the additional data and the original models can
be extracted and recovered respectively by the receiver with the correct
keys. Experiments declare that compared with the existing methods, this
method can obtain the highest embedding capacity.

Keywords: Vertices division · 3D mesh model · Reversible data
hiding · Encrypted models

1 Introduction

Data hiding [1] is a method to achieve copyright protection and covert commu-
nication by embedding additional data into the cover media and extracting the
data without errors. However, the original media can not be restored losslessly
by the traditional data hiding methods. It is a fatal problem in the military,
medical and other fields where data integrity is strictly required. To solve this
problem, reversible data hiding(RDH) is proposed.

RDH can embed additional data in the cover media and restore both media
and data without errors. Over the years, researchers have devised many methods.
They can be divided into three main categories: lossless compression [3], differ-
ence expansion [11] and histogram shifting [7]. In lossless compression methods,
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some features of the original media are discovered and losslessly compressed,
making room for storing additional data. Difference expansion explores redun-
dancy between adjacent pixels and embeds additional data into their difference.
Histogram shifting embeds additional data by shifting peak points toward zero
points in the pixel distribution histogram.

With the boom in cloud computing and privacy protection, many multime-
dia are uploaded, such as digital images, audio, 3D mesh models, etc., to the
cloud for storage and transmission. In order to protect the privacy and security
of data, media will be encrypted before uploading. In this scenario, RDH-ED
has caught the attention of many researchers. There are two main categories of
RDH-ED: vacating room after encryption (VRAE) [15,18,19] and reserving room
before encryption (RRBE) [6,8,16]. Zhang et al. [18] introduced a RDH scheme
for encrypted images based on VRAE. The encrypted images were divided into
non-overlapping blocks, and each block can store 1 bit of data by flipping the
3 least significant bits (LSB) of the encrypted data. In [19], a separable RDH-
ED method was proposed. In this method, a specific matrix multiplication was
designed to losslessly compress the LSB of the encrypted image, which imple-
mented the separability of data extraction and image restoration. However, the
embedding ability of these methods is low due to encrypted image entropy max-
imization. To increase the embedding capacity and reduce the bit error rate,
Ma et al. [6] first proposed a method based on RRBE, which implemented
both data extraction and image recovery losslessly based on histogram shift-
ing. Although many RDH-ED methods have obtained considerable outcomes,
there is not enough research on 3D mesh models.

As an emerging digital media following images, audio and videos, 3D mesh
models are applied in many fields, such as medical treatment, construction, video
games, etc. To protect the privacy security and verification copyright of 3D mesh
models in massive application scenarios, it is essential to study the RDH-ED meth-
ods of 3D mesh models. Jiang et al. [4] first proposed the RDH method based on
VRAE for 3D mesh models in encrypted domain. However, the data extracted
may be errors and the capacity of this method is not satisfactory. Shah et al. [9]
and van Rensburg et al. [13] applied homomorphic encryption to RDH-ED method
and embedded data in dual domain. Although homomorphic encryption increases
the capacity of the method, the computational cost is high. Tsai [12] proposed a
native method by spatial subdivision and space encoding. However, If the param-
eters are not chosen properly, errors may occur during extraction. Xu et al. [14]
proposed the most significant bit(MSB) prediction, which implemented extraction
and recovery separably. In [17], the embeddable room is extended to multi-MSB.
However, the vertices are not fully utilized. Lyu et al. [5] made the use of vertices
more fully by adding labels. However, the topology of 3D mesh models is not uti-
lized and the division of vertices is not sufficient. Therefore, this study proposes a
vertex division method based on the model topology and manages to the highest
embedding capacity compared with state-of-the-art methods.

The main contributions of the proposed method are as follows:

1) We take full advantage of the topology of the 3D mesh models and propose
a more reasonable vertex division method.
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2) Our division method enables the correlation between vertices to be further
exploited. Experiments declare that the proposed method has the highest
embedding capacity compared to other methods.

The remainder of this paper is organized as follows: The related works are
presented in Sect. 2. Section 3 presents the proposed method. The experimental
results and analysis are shown in Sect. 4. Finally, the paper is concluded in
Sect. 5.

2 Related Works

In this section, we introduce the types of research models and the existing RDH-
ED methods for 3D mesh models.

In computer-aided design, 3D mesh models are usually represented as trian-
gular or polygonal models, which are composed of vertex data and face data.
This paper studies the most popular triangular 3D mesh models. Vertex data
includes vertex coordinates and is represented as V = {vi|1 ≤ i ≤ n} where n
donates the number of vertices. In the rectangular coordinate system of space,
each vertex has three values in the x, y, and z directions. Topological rela-
tionships between vertices are contained in face data, which is represented as
F = {f1, f2, ..., fm} and m is the number of the face. Each face f contains three
vertices. The corresponding file format is shown in Table 1.

Table 1. File format of a triangular mesh model.

Vertex data Face data
Index of vertex x-axis y-axis z-axis Index of face Elements of each face

v1 v1,x v1,y v1,z f1 (v15, v2, v1)
v2 v2,x v2,y v2,z f2 (v4, v6, v1)
... ... ... ... ... ...
v31 v31,x v31,y v31,z f31 (v6, v1, v3)
... ... ... ... ... ...

Jiang et al. [4] introduced the RDH method to 3D mesh models in encrypted
domain for the first time. The vertices were first mapped to integers and
encrypted by stream cipher. After encryption, additional data was embedded
into the multi-LSB. However, this method is not satisfactory in terms of embed-
ding capacity and there may be errors in data extraction. Shah et al. [9] proposed
a two-tier RDH-ED framework. The authentication information was embedded
by the data sender in the first tier and additional data was embedded by the
cloud server in the second tier. This method improves the embedding capac-
ity by applying homomorphic encryption, but this method brings the file size
increments and the encryption process is expensive. Van Rensburg et al. [13]
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applied Paillier encryption to 3D mesh models and proposed an improved two-
layer RDH method. This method minimizes file size increments as much as pos-
sible and improves the capacity. However, the original mesh models cannot be
restored losslessly. Tsai [12] proposed a separable RDH method based on spa-
tial subdivision and space encoding for encrypted 3D mesh models. However,
this method has the problem of bit error during extracting data. Xu et al. [14]
used the MSB prediction and proposed a new method based on RRBE, which
increased the embedding capacity. Vertices were divided into embedding set and
reference set by traversing the face data. The reference set is used for predicting
the embedding set. After division and MSB prediction, the additional data was
embedded in the MSB plane of the embedding set. Based on [14], Yin et al. [17]
implemented higher embedding capacity by utilizing multi-MSB to hide data.
However, this method does not adaptively assign payload to the vertices of the
embedding set. Lyu et al. [5] introduced vertex labels as auxiliary information
and improved the utilization of vertices. However, this method has shortcomings
in the division of vertices. This method only divided the vertices by the index of
vertex data and ignored the face data. To divide the vertices more reasonably,
we propose a vertex division method based on model topology, which has much
improved the embedding capacity compared with state-of-the-art methods.

Fig. 1. Method flowchart.

3 Proposed Method

In this section, the proposed method is described in detail. As shown in Fig. 1, the
proposed method consists of four parts: (1) The mesh models are preprocessed
to make room for embedding additional data. (2) The 3D mesh models are
encrypted by stream ciphers. (3) The encrypted additional data is embedded
in the encrypted model by the data hider. (4) The additional data and original
models can be extracted and recovered losslessly by the data receiver who has
the corresponding key.
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3.1 Room Reservation

Vertices Division. We propose a new division method and increase the number
of the embedding vertices reasonably. In [4,14,16], the vertices were divided
according to the face data. Each face was traversed in numbering order, and
at most 1 vertex in each face was added to the embedding set. This method is
not sufficient for the utilization of vertex data, and can only reach 33% of the
vertex utilization for embedding. In [5], the vertices were divided according to
the parity of the vertex index. This method applied more vertices to embedding
additional data and the vertex utilization ratio reached 50%. However, only the
vertex data was used to divide vertices. To divide the vertices more reasonably,
a native division method combining vertex data and face data is proposed.

Fig. 2. (a) Mushroom, (b) Labeled local topology of Mushroom.

In our method, the vertices are divided into two parts first according to the
parity of the vertex index. For the convenience of introduction, here we select
the even-numbered part as the prediction set Sp and the odd-numbered part as
the embedding set Se. Some vertices in Sp are redundant and unsuitable to use
as prediction vertices. We traverse the vertices in Sp one by one and filter out
the vertices that are suitable for embedding additional data. In order to ensure
that some vertices in Sp with excellent predictive ability are not classified into
the Se, vertices are added to the Se only when the number of odd-numbered
vertices around the vertices does not exceed twice the number of even-numbered
vertices. Besides, in order to ensure the prediction accuracy, the vertices must
also be guaranteed that they can be predicted by at least 2 vertices. An example
of the vertices screening process is shown in Fig. 2. The vertex v8 has four even
neighbor vertices which means that this vertex can be accurately predicted with
multi-MSB and the number of odd-neighbored vertices does not exceed twice
the number of even-numbered vertices. Therefore, v8 is more suitable for the Se.
After that, the predicted vertices for v1 will have v8 removed.
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Integer Mapping. Uncompressed vertex coordinate values are stored in the
computer as 32-bit floating point numbers. [2] suggested that 3D mesh models
do not require this level of accuracy for most applications. Therefore, lossy com-
pression is performed on the values of vertices. The value of vertices is expanded
to between −10p and 10p, where pε(1, 33). The expanded value is processed into
an integer by

v′
i,j = �vi,j × 10p�, i = 1, 2, ..., n, jε(x, y, z), (1)

where �.� is the round down function. The receiver can restore the coordinates
to floating point coordinates by

v′′
i,j = v′

i,j/10
p, i = 1, 2, ..., n, jε(x, y, z). (2)

The bit length l of the integer is determined by the value of p, and the
conversion relationship between them can be expressed as

l =

⎧
⎪⎪⎨

⎪⎪⎩

8, 1 ≤ p ≤ 2
16, 3 ≤ p ≤ 4
32, 5 ≤ p ≤ 8
64, 10 ≤ p ≤ 33.

(3)

Fig. 3. Prediction error labels for v1 in x-axis.

Prediction Error Bit Record. The embedding vertex is predicted by the
vertices around it. In Fig. 3, the process of predicting error labels is illustrated
in detail. The v1 has three neighbor vertices in Sp, which are v2,v4 and v6.
From the MSB to the LSB, the predicted value of each bit plane is determined
according to the mode of all corresponding bit planes of the prediction vertices.
If the number of 0 and 1 is the same, 1 is chosen as the final value. For example,
in the 17th digit of index 2, 4 and 6, 0 appears the most. So the predicted value is
chosen to be 0. The embeddable length is obtained by comparing the predicted
value with v1 and records as a label. Since a vertex has coordinates in three
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directions, the label selection for a vertex will finally be the minimum of the
three directions. In Fig. 3, v1 has a label value of 19 in x-axis. But the final label
value of v1 still needs to be determined by the other two directions y-axis and
z-axis. The embeddable length of each vertex is recorded in the location map,
which is compressed by arithmetic coding and then embedded into the 3D mesh
models as auxiliary information.

3.2 Model Encryption

The 3D mesh model is encrypted by stream cipher in this paper. First, the
coordinate of each vertex is converted to a binary representation. Each binary
bit can be obtained by

bi,j,k = �v′
i,j/2

k� mod 2, k = 0, 1, ..., l − 1. (4)

Then, the data sender uses the stream cipher function to generate pseudo-
random bits ci,j,k, and the encrypted bits are obtained by

ei,j,k = bi,j,k ⊕ ci,j,k, k = 0, 1, ..., l − 1, (5)

where ⊕ means exclusive OR. Finally, the encrypted vertices can get by

v′′′
i,j,k =

l−1∑

k=0

ei,j,k × 10k. (6)

3.3 Data Embedding

The process of data embedding is shown in Fig. 4. The room obtained in Sect. 3.1
is used for data hiding. First, the data hider divides the binary representation of
vertex values in Se into two parts according to the location map, the embeddable
part and the non-embeddable part. Then, the encrypted additional data and
auxiliary information are embedded into the embeddable part by substitution.
Finally, the vertices are reconstructed.

3.4 Data Extraction and Model Recovery

The data receiver who has the correct key can decrypt the encrypted data. The
additional data can be extracted with the key ka and original mesh models can
be recovered with the key km. Therefore, here are three possible scenarios:

Case 1: The receiver only holds ka. All the additional data can be extracted
from the encrypted model and plaintext data is decrypted with ka.
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Fig. 4. Process of data embedding.

Case 2: The receiver only holds km. The data receiver extracts the auxiliary
data and decrypts the mesh models through the key km. However, the embedding
set in the decrypted mesh model is not the same as the original one. Then,
the prediction set is applied to restore the embedding set with the help of the
auxiliary data.

Case 3: The receiver holds both keys ka and km. At this time, the data
receiver can obtain additional data and restore the original models at the same
time. The procedure is the same as in case 1 and case 2, but model decryption
is performed after data extraction.

4 Experiment Results and Analysis

4.1 Visual Quality and Quantitative Analysis

Four test mesh models are demonstrated in Fig. 5. Despite the slight distor-
tion introduced to the models during the preprocess stage, there is little dif-
ference between the original models and the recovered models based on human
visual observations. This shows that our method is feasible in the application. To
further demonstrate the feasibility of the method, we introduce signal-to-noise
ratio(SNR) and Hausdorff distance to quantitatively measure the gap between
the original models and the recovered ones.

SNR can calculate the gap between two models. The larger the SNR, the
smaller the gap between the two models. SNR can be obtained by

SNR = 10log10

∑N
i=1[(vi,x − v̄x)2 + (vi,y − v̄y)2 + (vi,z − v̄z)2]

∑N
i=1[(v

′′
i,x − vi,x)2 + (v′′

i,y − vi,y)2 + (v′′
i,z − vi,z)2]

, (7)
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Fig. 5. Models presentation at different stages(p = 5): (a) original models; (b)
encrypted models; (c) data-embedded models; (d) recovered models.

where vi,x, vi,y, vi,z are the values of original coordinates, v̄x, v̄y, v̄z are the aver-
age values of original coordinates, and v′′

i,x, v′′
i,y, v′′

i,z are the values of recovery
coordinates.

Hausdorff distance measures the maximum distance value among the closest
distances between two model vertices. The smaller the Hausdorff distance, the
smaller the gap between the two models. Assuming there are two sets A =
(a1, a2, ..., au) and B = (b1, b2, ..., bu), Hausdorff distance can be calculated as

D(A,B) = max(d(A,B), d(B,A)),
d(A,B) = max

aεA
min
bεB

‖a − b‖,

d(B,A) = max
bεB

min
aεA

‖b − a‖,
(8)

where ‖.‖ is the Euclidean distance, and u denotes the number of elements in
each set.

The ER of the model Beetle under different p values is given in Fig. 6 and
the values of SNR and Hausdorff distance of model Beetle under different p
values are shown in Fig. 7. It can be seen that as p becomes larger, although
the disturbance introduced into the model becomes smaller, ER also becomes
smaller.
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Fig. 6. ER of Beetle under different p

Fig. 7. ER of Beetle under different p

Under the trade-off of embedding capacity and the requirements of practical
applications, the value of p is to be 5. The results of four test models are shown
in Table 2. As can be seen in the table, the SNR of the four test models has
reached a high value, and the Hausdorff distance is almost zero.
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Table 2. SNR and Hausdorff distance of four test models (p = 5).

Test models Number of vertex Number of face SNR Hausdorff distance(10−6)

Mushroom 226 448 102.26 8.12

Mannequin 428 839 130.93 4.06

Beetle 988 1763 96.20 8.66

Elephant 24955 49918 95.97 8.66

4.2 Capacity Analysis

The embedding rate(ER) is one of the important indicators of the RDH-ED
methods for 3D mesh models in encrypted domain, which is presented by bit per
vertex(bpv). ER can be calculated by

ER =
lp − lai

n
, (9)

where lp is the total capacity and lai is the length of auxiliary information.

Table 3. Comparison of ER(bpv) on four test models.

Test models [4] [9] [13] [12] [14] [17] [5] Ours

Mushroom 0.45 6 13 7.68 1.34 16.72 21.76 22.53
Mannequin 0.34 6 13 7.68 0.95 13.66 18.05 24.08
Beetle 0.35 6 13 7.68 0.98 16.51 23.55 31.75
Elephants 0.34 6 13 7.68 1.02 18.12 27.96 38.93

The comparison of ER on four test models is shown in Table 3. Jiang et al.
[4] used multi-LSB for data embedding. The embedding rate of this method is
not high enough, and it does not exceed 1 bpv at most. Shah et al. [9] designed
a two-layer embedding method. Additional data was embedded in the first layer
through histogram expansion and shifting techniques. The second layer utilized
the self-blinding property of the Paillier cryptosystem to embed additional data.
The final embedding rate of this method is 6 bpv. Compared with [9,13] adjusted
the encryption bit length of the coordinates to reduce the file size increment. Tsai
[12] exploited the ratio of vertex value normalization for model encryption and
data embedding and realized 7.68 bpv. Xu et al. [14] proposed to embed data in
MSB. Although the embedding rate is improved, the relationship between the
adjacent vertices has not been used fully. Yin et al. [17] extended the embedding
range to multi-MSB and achieved a substantial increase in capacity. Lyu et al.
[5] further improved the embedding capacity and improved the utilization of
vertices by labeling vertices. Due to the topology of 3D mesh models, the same
vertex can be included in multiple faces and associated with multiple vertices.
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Furthermore, many correct prediction bits can be obtained with the help of
two or three vertices by rationally utilizing the strong multi-MSB correlation
between adjacent vertices. However, among the aforementioned methods, the
topological structure of the models is not used to divide the vertices and the
division of vertices is not reasonable enough. The proposed method addresses
this issue and implemented the state-of-the-art results on the average ER. The
division results of the embedded vertices and predicted vertices on four test
models are displayed in Table 4. Except for the Mushroom model, the number
of embedded vertices does not increase greatly after vertex division due to the
small number of vertices and faces, the other three models all obtained a high
vertex utilization ratio. The utilization of model topology increases the number
of embedded vertices, and finally the ER of the models is improved.

Table 4. Results of vertices division on four test models (p = 5).

Test
models

Number of
vertex

Number of
face

Number of
embedding vertex

Vertex utilization
ratio(%)

Mushroom 226 448 121 53
Mannequin 428 839 316 73
Beetle 988 1763 705 71
Elephant 24955 49918 18935 75

To be more persuasive, the proposed method is tested on the Princeton
dataset [10] which consists of 380 different 3D mesh models. The caparison with
other methods is shown in Fig. 8 and our method also obtains state-of-the-art
experimental results on the average ER.

Fig. 8. Average capacity comparison with other methods on the Princeton dataset.
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Table 5. Comparison of features.

Features Encryption method Computation complexity Separability Data error

[4] Stream cipher encryption Low No Yes

[9] Homomorphic encryption High No No

[13] Homomorphic encryption High No No

[12] Stream cipher encryption Low Yes Yes

[14] Stream cipher encryption Low Yes No

[17] Stream cipher encryption Low Yes No

[5] Stream cipher encryption Low Yes No

Ours Stream cipher encryption Low Yes No

4.3 Features Analysis

The comparison of features with other methods is shown in Table 5. Jiang et al.
[4] used the smoothness function, which would lead to errors in data extraction,
making the model and data inseparable during recovery and extraction. In [9,
13], it is expensive to apply homomorphic encryption to the models and the
computational complexity of these methods is very high. In [12], the selection
of a suitable threshold is crucial, otherwise the data extraction will be wrong.
[5,14,16] are MSB-based methods that make room for embedding additional
data by exploiting the correlations between vertices. The proposed method can
not only recover the model and additional data reversibly, but also recover and
extract them separably. Besides, the computational complexity of using stream
cipher encryption is lower than that of homomorphic encryption.

5 Conclusion

In this paper, we study a RDH method for 3D mesh models with high capac-
ity in encrypted domain. The vertices are divided into two parts reasonably by
utilizing the vertex data and face data. One is used for data embedding, the
other one is used for model recovery. The experiments demonstrate that the
proposed method reaches state-of-the-art performance. In the future, we con-
sider to enhance the robustness of the method to resist channel interference of
data during network transmission. Besides, a method that does not require the
transmission of auxiliary information from the data sender to the data hider is
also our next research direction.
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