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Abstract. In recent years, there has been a great development in real-time three-
dimensional (3D) scene reconstruction from depth sensor data, as well as the
study of such data in Virtual Reality (VR) and Augmented Reality (AR) contexts.
Although it has been extensively investigated and has attracted the attention of
many researchers, the challenge of real-time 3D reconstruction remains a difficult
research task. The majority of current techniques, target real-time 3D reconstruc-
tion for the single-view-based system rather than multi-view. In order to provide
multi-view 3D reconstruction for Mixed Reality (MR) telepresence, this chapter
aims to propose a multiple depth sensor capture using a marching square approach
to produce a single full 3D reconstruction surface of a moving user in real-time.
The chapter explains the design stage that involves setup from multiple depth
sensors, surface reconstruction and merging of 3D reconstruction data for MR
Telepresence. The chapter ends with results and a conclusion.
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1 Introduction

Globalization has boosted demand for immersive telepresence solutions, which are a
type of technology that allows individuals who are physically separated to collaborate
as if the userwere in the same room [1]. By giving an alternative to travelling to presential
meetings, this technology can save time andmoney while also decreasing environmental
impact [2]. It enables users to present at a remote location through a virtual projection.
The idea of telepresence arises from Marvin Minsky, one of the first to coin the term
“telepresence” as the feeling of remote existence when using a teleoperator [3]. Since
Marvin Minsky stated the principle, several systems have been developed to accomplish
telepresence [4].

In early telepresence, due to limitations in the technology available at that time,
telepresence systems were unable to acquire and transmit high-quality real-time three-
dimensional (3D) reconstruction objects to distant users [5]. However, following the
introduction of inexpensive commodity depth sensors such as the Microsoft Kinect
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became more widely available, many 3D reconstructions at the room size were devel-
oped, such as room2room life-size telepresence [6]. The capability of 3D reconstruction
that is able to capture and reconstruct real-world elements makes significant advances
in telepresence [7].

However, implementing 3D reconstruction for telepresence requires real-time ren-
dering for moving object since telepresence capture user movement in real-time. Real-
time 3D reconstruction for moving objects is challenging in computer vision and com-
puter graphics [7, 8]. The majority of current techniques target real-time 3D reconstruc-
tion for a single-view-based system, from a single depth sensor rather thanmultiple-view
from multiple depth sensors.

With the use of a Head-mounted-display (HMD), 3D reconstruction can be viewed
with a wider Field-of-View (FoV) compared to a standard phone or monitor [9]. This
allows users to interact with virtual environments in a manner that is similar to being
physically present in those environments [10]. Mixed Reality (MR) refers to a new
category of experiences in which a layer of computer-graphics-based interaction tied to
a certain activity is superimposed on top of the real environment [11]. It allows users
to experience the actual world as a more integrated and better environment. The user of
an MR interface sees the actual world through a portable HMD that coats graphics on
the surroundings [12]. [13] were the first to demonstrate HMD, which gave rise to the
concept of MR. According to [14], an MR system brings together physical and digital
objects in the same space, allows for two-way communication between them, and keeps
track of their location and state in real-time.

In this chapter, a depth sensor is proposed to capture real-world objects and recon-
struct the data in 3D. However, the FoV of a depth sensor is insufficient to capture a full
3D object and physically impossible to gather all the input data for the object or scene
at once [15]. Therefore, to produce a full 3D reconstruction, most researchers use the
fusion Kinect method, which moves the depth sensor around the real-world object to
capture the data by frame. This method, however, is very computationally intensive and
can only be run in an offline mode [16]. Furthermore, more than half of the picture is
obscured at any given time when employing a single depth sensor to reconstruct non-
rigid motion, and continuous motion creates large frame-to-frame fluctuations, which
may lead to inconsistency in the scene’s topological structures [17].

As a result, multiple depth sensors are required to be positioned at different angles
to obtain unobstructed data from the sides of the object in order to complete the full
3D reconstruction in real-time [18]. According to [19], multiple depth sensors, enable
users to get visual information that may not be available from a certain perspective
when using a single depth sensor. From the previous studies, multiple depth sensors
often consist of more than two depth sensor devices. However, based on recent studies
in [20–22], multiple depth sensors and multiple cameras can be achieved by utilizing
two depth sensors or two cameras. Therefore, this chapter proposes a real-time 3D
reconstruction method with multiple depth sensors for MR telepresence. The related
work for this chapter is further discussed in the next section. The methodology of the
proposed method is described in Sect. 3, and in Sect. 4 we presented the result.
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2 Related Work

Real-world 3D reconstruction has long been an aim of computer vision. Numerous
instruments, including as stereo cameras, laser range finders, monocular cameras, and
depth sensors, have been used to correctly perceive the 3D environment [23]. With the
advancement of depth sensor devices such as Microsoft Kinect and Intel RealSense,
many new and exciting applications is developed. However, due to issues like noisy
depth data, poor registration, camera tracking drift, and a lack of precise surface details,
3D models reconstructed by depth consumer cameras are not yet widely employed in
applications. Table 1 represents the summary of related work on 3D reconstruction for
MR telepresence which are utilizing depth sensor devices to enable 3D reconstruction.

Table 1. Related work of 3D reconstruction for MR telepresence using a depth sensor

Year Researchers Proposed method No. of depth sensors Drawbacks

2022 Lin et al. [24] OcclusionFusion:
calculate
occlusion-aware 3D
motion to guide the
reconstruction

1 Unable to handle
topology change

2022 Sun et al. [25] Propose a hybrid
voxel- and
surface-guided
sampling technique
which leads to
significant
improvements in
reconstruction
quality

1 Inaccurate camera
registration can affect
final reconstruction
quality

2021 Muhlenbrock
et al. [21]

Propose a
combination of a
custom 3D
registration with a
feature detection
algorithm

2 Slight distortions due
to the depth camera in
a larger volume

2020 Fadzli et al. [26] Explores a robust
real-time 3D
reconstruction
method for MR
telepresence

1 MR wearable headset
is heavy and has a
face distortion issue

(continued)
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Table 1. (continued)

Year Researchers Proposed method No. of depth sensors Drawbacks

2019 Prokopetc &
Dupont [27]

Present a
comparative study
with an evaluation
of four depth
map-based
Multi-View Stereo
methods for dense
3D reconstruction
against brand-new
deep learning
models

1 Dataset is hard to
achieve in the settings
of real medical
environments due to
the vast amount of
specular materials
and weakly-textured
surfaces

2018 Papaefthymiou
et al. [28]

Present a
comparison of the
most recent
hardware and
software methods
for the speedy
reconstruction of
actual people using
RGB or RGB-D
images as input

1 Does not provide an
evaluation of the
proposed method

2017 Joachimczak
et al. [10]

Proposed to render
3D reconstructions
directly (real-time),
inside HoloLens in
MR Telepresence

2 Require stable
internet connection

2016 Sing & Xie [29] Garden: enables the
player to transform
their environment
into a virtual garden
of 3D
reconstruction in
MR

1 Improvements in drift
correction are
required

Sun et al. [25] have presented a real-time 3D reconstruction in MR by discretizing
the world space into 10 cm voxels which are grouped into 8× 8× 8 chunks. Voxels that
have points that fall within its boundaries are marked occupied and rendered as cubes,
like in Minecraft. While engaging with a virtual environment, the user is free to move
through wide areas in the actual world without running into any barriers.

Meanwhile, Joachimczak et al. [10] highlighted the real-time 3D reconstruction
in MR Telepresence in their study. They utilized HoloLens with Kinect devices as a
depth sensor for the 3D reconstruction purpose as shown in Fig. 1. However, their study
provides limited information as they did not perform the evaluation of the proposed
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method for further discussion. In the research carried out by Fadzli et al. [26], the
authors provided a discovery on the MR framework that might be used to transmit a
full-body human from a nearby region to a more distant one. Therefore, they introduced
a user telepresence capability for 3D reconstruction, allowing people to interact with an
accurate 3Dmodel of a remote user. The depth data from the depth sensor is captured and
processed in real-time for the 3D reconstruction with the point cloud rendering process.

Fig. 1. Real-time 3D reconstruction using HoloLens and Kinect [10].

3 Real-Time 3D Reconstruction Method

This section elaborates on the real-time 3D reconstruction method, which consists of
multiple depth sensor setup, surface reconstruction and merging of 3D reconstruction
data for MR telepresence. This is explained in the next subsection.

3.1 Multiple Depth Sensor Setup

In order to produce the 3D reconstruction, depth information is required to generate
the data. The conventional camera is only capable of producing two-dimensional (2D)
red, green and blue (RGB) data, including photos and videos. The conventional camera
is unable to collect depth data into the programmed device, the output is insufficient
to enable and capture an item in 3D data. Therefore, a depth sensor is required in this
chapter for capturing and converting real-world objects into 3D data. The depth sensor
proposed in this chpater is the Microsoft Kinect sensor.

Microsoft Kinect sensor is a low-cost depth sensor known as a skeleton tracker that
is used with the Microsoft software development kit [30]. It allows users to communi-
cate with computers and game consoles intuitively via gestures and spoken commands
without any additional peripherals [31]. It can also extract data about the subject’s 3D
joint locations [32].

Microsoft offers not one but twoKinectmodels. Thefirst generation ofKinect sensors
(Kinect v1) debuted in 2010. They were based on structured light coding technology.
Following that, Microsoft made it Windows-compatible using a standard development
kit (SDK) and a power conversion adaptor. Based on the time-of-flight (ToF) technology,
the second generation of Kinect sensors (Kinect v2) was released in 2014 with improved
specs in comparison to the first Kinect in terms of speed, accuracy, and field of vision.
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However, the FoV of the Kinect sensor is constrained and physically impossible to
gather all the point cloud data for the 3D object at once. Therefore, this chapter proposes
two Kinect sensors, to acquire the data front and back of the user simultaneously. The
setup for multiple depth sensors is shown in Fig. 2. Based on Fig. 2, the distance between
the Kinect sensor and the user is fixed at 2.1 m. While the height of the Kinect sensor
from the floor is fixed at 1.1 m. This setup for the multiple Kinect sensors is based on
[33] research. This setup will ensure the Kinect sensor able to track the user’s full body
for the 3D reconstruction process.

Fig. 2. Setup for multiple depths

3.2 Surface Reconstruction

Surface reconstruction is one of the steps in this chapter’s real-time 3D reconstruction
technique. Surface reconstruction is the process of acquiring 3D real-world object input
data from a depth sensor in order to produce a mesh from the input data. For surface
reconstruction, there are two methods available, explicit and implicit methods. The
implicit method is proposed in this chapter to reconstruct the surface. When one of the
isocontours is available near the input data, it is defined as an implicit surface. In the
depiction of the reconstructed surfaces, the implicit technique employs the triangulation
method.

The most intuitive form of triangulated surfaces for surface reconstruction uses k-
nearest neighbours of a point to generate the connection between linked triangles made
from the input points [34]. To generate the triangulated surface from the implicit method,
the Marching Squares algorithm is by far the most well-known technique.

Marching Squares is a computer graphics approach for recovering 2D isocontours
from a grid of sample points. The goal is to analyze each grid cell individually and
to calculate the contours that pass through it depending on the values at its corners.
The initial stage in this procedure is to identify the edges that are linked by contours
depending on whether the corners are above or below the contour value. To keep things
simple, the evaluation is only considering contours along with the value 0, focusing on
the positive or negative corners. The Marching Squares lookup table is shown in Fig. 3
Based on Fig. 3, there is a total of 2^4 = 16 distinct examples which consists of Case 0
until Case 15.
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Fig. 3. Marching squares lookup table

The pseudocode for the marching square algorithm is shown in Table 2 as referred
to [35]. Based on the Marching Squares algorithm the triangulation process is imple-
mented by including the process of searching for vertex candidates from the value of the
contour based on the Marching Squares lookup table. Hence, the triangulation is formed
according to the vertex candidates lists.

Table 2. Marching squares algorithm

Marching Squares algorithm

1. function TRIANGULATION
2. for all vertex candidates do
3. current disparity coordinate ß visited
4. block size = 2 x 2 FIND_BLOCK (current 
5. disparity coordinate, block size, current four 
6. vertex candidates per block)
7. four vertex candidates ß current four vertex 
8. candidates per block
9. FIND_TRIANGLE_CANDIDATE (four vertex 

10. candidates, current triangle candidate lists) 
11. triangle candidate lists ß current triangle
12. candidates lists
13. CREATE_TRIANGLE (triangle candidate lists, 
14. triangle) 
15. triangle lists ß triangle
16. end for
17. end function



74 S. A. K. Ishigaki and A. W. Ismail

This process of triangulation using the Marching Squares algorithm is performed
after the point cloud data is acquired from the depth sensor as shown in Fig. 4. Based
on Fig. 4. After the triangulation has been completed and successfully produced the
mesh. The mesh will be mapped with texture mapping. Texture mapping is the final
stage to complete the 3D reconstruction look. The texture for the mesh is generated by
composing the segmented images from the depth sensor as shown in Fig. 4. The images
contain vertices that consist of a single colour per vertex. The colours are acquired to
produce the texture and mapped to the mesh. After the texture has been mapped to the
mesh, the 3D reconstruction final output is ready to display as a 3D representation for
MR telepresence.

Fig. 4. Surface reconstruction process

3.3 Merging of 3D Reconstruction Data for MR Telepresence

After the mapped mesh texture has been completed, the next phase is to merge the 3D
reconstruction data from multiple depth sensors for MR telepresence. The drawback of
the Kinect sensor is one personal computer (PC) can only connect to one Kinect sensor.
Therefore, a network is required to merge the data between the multiple Kinect sensors.
The network used for this chapter is a local network. The local network will transmit
the 3D reconstruction data from each Kinect at the remote user site to the receiver site,
which is the local user. Figure 5 shows the process of merging 3D reconstruction data
for the MR telepresence system.

Based onFig. 5, before the 3D reconstruction data is transmitted through the network,
the 3D reconstruction data that consists of vertices, triangles, colours and UVs will
undergo compression to reduce the data size. Reducing the data size can reduce the
bandwidth required for data transmission. After the receiver PC has received the 3D
reconstruction data from both sender PC, the 3D reconstruction data will decompress
and reconstruct the 3D data. The merging of 3D reconstruction data is then executed at
the receiver site to be displayed at the MR telepresence. We manually adjust the position
and rotation of the 3D reconstruction data from sender 1 and sender 2 using unity tools
software, to be aligned in a full 3D reconstruction.
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Fig. 5. Merging process at the receiver

4 Results

This section continues to discuss the results of the proposed method using multiple
depth sensors for 3D reconstruction in real-time for MR Telepresence. Figure 6 shows
the final setup for the remote user workspace. Based on Fig. 6, the remote user is placed
in between the Kinect sensor and the setup for the Kinect sensor is as discussed in the
previous section.

Fig. 6. Final setup for the remote user using multiple depth sensors

Next, Fig. 7 shows the results after the 3D reconstruction data has been merged from
multiple depth sensors. In Fig. 7, we present a full real-time 3D reconstruction view of
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the remote user at six different angles. As shown in Fig. 7, the front and behind views of
the 3D reconstruction remote user have been aligning together into one complete full 3D
reconstruction. However, there is a small gap between the 3D reconstruction data from
the front and behind. This issue rises in this chapter and requires further improvement.
The recommendation for improvement by [36] is to align and stitch two 3D meshes by
the boundaries to complete 3D object models without prior registration using the Joint
Alignment and Stitching of Non-Overlapping Meshes (JASNOM) algorithm. Recent
studies by [37], also suggest a mesh stitching method with their algorithm that includes
pre-processing process, to ensure the alignment is reasonable.

Fig. 7. Results of merging 3D reconstruction data at the receiver site

Furthermore, Fig. 8 shows the final output for real-time 3D reconstruction for theMR
telepresence system using multiple depth sensors. Figure 8 is a captured image from the
local user’s point-of-view (POV). In Fig. 8, the remote user appears in 3D reconstruction
in the MR environment. The interaction between the local user and the remote user is
in real-time. The local user is able to interact and move around the MR telepresence
simultaneously with the remote user.

Fig. 8. Final output real-time 3D reconstruction for MR telepresence
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During the real-time interaction, the data that has been compressed which consists
of vertices, triangles, colors and UVs from the remote user are transmitted to the local
user using a stable local network. Since the data transmitted is required a local network,
the bandwidth of the local network may influence the speed of the data transmission.
The higher, the bandwidth of the local network, the faster the compressed data can be
transmitted to the local user. However, if the local network bandwidth is low, network
latency will occur and reduce the speed of the data transmission which can affect the
real-time performance. Figure 9(a) shows the local user view of the remote user from
the side. While Fig. 9(b) shows the side of the remote user in closer range.

Fig. 9. Local user view of the remote user (a) side view (b) closer range of the side view

5 Conclusion

Based on the literature study, real-time 3D reconstruction technology and MR HMDs
may now be used to enable a new potential for telepresence and teleoperation systems.
Users can interact with a distant individual or operate remote devices by perceiving their
3D virtual representations as a part of their nearby surroundings.

In this chapter, we suggest employing multiple depth sensors to provide a real-time
3D reconstruction for MR telepresence. We utilized two depth sensors to produce depth
data for the 3D reconstruction process. First, we captured depth data to form triangulation
using a marching square algorithm and produce a surface reconstruction. The process
continues with generating texture from the RGB image captured by the depth sensor
to be mapped on the mesh. As the process is completed, the 3D reconstruction of the
remote user is presented in real-time within the MR environment that was enabled on
the HMD worn by the local user.

As for future work, we suggest addressing the gap issues that we found during the
merging of the 3D reconstruction frommultiple depth sensors to produce amore realistic
and volumetric presentation. Other than that, enhancement for the interaction between
the local user and remote user can be studied and improved by adding whiteboard
interaction, pointing ray and object manipulation in MR telepresence.
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