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Abstract. Transparent objects present multiple distinct challenges to
visual perception systems. First, their lack of distinguishing visual fea-
tures makes transparent objects harder to detect and localize than
opaque objects. Even humans find certain transparent surfaces with little
specular reflection or refraction, e.g. glass doors, difficult to perceive. A
second challenge is that common depth sensors typically used for opaque
object perception cannot obtain accurate depth measurements on trans-
parent objects due to their unique reflective properties. Stemming from
these challenges, we observe that transparent object instances within
the same category (e.g. cups) look more similar to each other than to
ordinary opaque objects of that same category. Given this observation,
the present paper sets out to explore the possibility of category-level
transparent object pose estimation rather than instance-level pose esti-
mation. We propose TransNet, a two-stage pipeline that learns to esti-
mate category-level transparent object pose using localized depth com-
pletion and surface normal estimation. TransNet is evaluated in terms
of pose estimation accuracy on a recent, large-scale transparent object
dataset and compared to a state-of-the-art category-level pose estima-
tion approach. Results from this comparison demonstrate that TransNet
achieves improved pose estimation accuracy on transparent objects and
key findings from the included ablation studies suggest future direc-
tions for performance improvements. The project webpage is available
at: https://progress.eecs.umich.edu/projects/transnet/.

Keywords: Transparent objects · Category-level object pose
estimation · Depth completion · Surface normal estimation

1 Introduction

From glass doors and windows to kitchenware and all kinds of containers,
transparent materials are prevalent throughout daily life. Thus, perceiving the
pose (position and orientation) of transparent objects is a crucial capability
for autonomous perception systems seeking to interact with their environment.
However, transparent objects present unique perception challenges both in the
RGB and depth domains. As shown in Fig. 2, for RGB, the color appearance
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Karlinsky et al. (Eds.): ECCV 2022 Workshops, LNCS 13808, pp. 148–164, 2023.
https://doi.org/10.1007/978-3-031-25085-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25085-9_9&domain=pdf
http://orcid.org/0000-0002-1707-233X
http://orcid.org/0000-0002-4093-302X
http://orcid.org/0000-0003-1988-059X
http://orcid.org/0000-0002-1303-562X
http://orcid.org/0000-0002-6213-1394
http://orcid.org/0000-0003-3750-7334
https://progress.eecs.umich.edu/projects/transnet/
https://doi.org/10.1007/978-3-031-25085-9_9


TransNet: Category-Level Transparent Object Pose Estimation 149

Fig. 1. Overview of TransNet, a pipeline for category-level transparent object pose
estimation. Given instance-level segmentation masks as input, TransNet estimates the
6 degrees of freedom pose and scale for each transparent object in the image. Internally,
TransNet uses surface normal estimation, depth completion, and a transformer-based
architecture for accurate pose estimation despite noisy sensor data.

of transparent objects is highly dependent on the background, viewing angle,
material, lighting condition, etc. due to light reflection and refraction effects.
For depth, common commercially available depth sensors record mostly invalid
or inaccurate depth values within the region of transparency. Such visual chal-
lenges, especially missing detection in the depth domain, pose severe problems
for autonomous object manipulation and obstacle avoidance tasks. This paper
sets out to address these problems by studying how category-level transparent
object pose estimation may be achieved using end-to-end learning.

Recent works have shown promising results on grasping transparent objects
by completing the missing depth values followed by the use of a geometry-based
grasp engine [9,12,29], or transfer learning from RGB-based grasping neural
networks [36]. For more advanced manipulation tasks such as rigid body pick-
and-place or liquid pouring, geometry-based estimations, such as symmetrical
axes, edges [27] or object poses [26], are required to model the manipulation tra-
jectories. Instance-level transparent object poses could be estimated from key-
points on stereo RGB images [23,24] or directly from a single RGB-D image [38]
with support plane assumptions. Recently emerged large-scale transparent object
datasets [6,9,23,29,39] pave the way for addressing the problem using deep
learning.

In this work, we aim to extend the frontier of 3D transparent object percep-
tion with three primary contributions.

– First, we explore the importance of depth completion and surface normal
estimation in transparent object pose estimation. Results from these studies
indicate the relative importance of each modality and their analysis suggests
promising directions for follow-on studies.

– Second, we introduce TransNet, a category-level pose estimation pipeline for
transparent objects as illustrated in Fig. 1. It utilizes surface normal esti-
mation, depth completion, and a transformer-based architecture to estimate
transparent objects’ 6D poses and scales.
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– Third, we demonstrate that TransNet outperforms a baseline that uses a
state-of-the-art opaque object pose estimation approach [7] along with trans-
parent object depth completion [9].

Fig. 2. Challenge for transparent object perception. Images are from Clearpose dataset
[6]. The left is an RGB image. The top right is the raw depth image and the bottom
right is the ground truth depth image.

2 Related Works

2.1 Transparent Object Visual Perception for Manipulation

Transparent objects need to be perceived before being manipulated. Lai et al. [18]
and Khaing et al. [16] developed CNN models to detect transparent objects from
RGB images. Xie et al. [37] proposed a deep segmentation model that achieved
state-of-the-art segmentation accuracy. ClearGrasp [29] employed depth comple-
tion for use with pose estimation on robotic grasping tasks, where they trained
three DeepLabv3+ [4] models to perform image segmentation, surface normal
estimation, and boundary segmentation. Follow-on studies developed different
approaches for depth completion, including implicit functions [47], NeRF fea-
tures [12], combined point cloud and depth features [39], adversarial learning [30],
multi-view geometry [1], and RGB image completion [9]. Without completing
depth, Weng et al. [36] proposed a method to transfer the learned grasping pol-
icy from the RGB domain to the raw sensor depth domain. For instance-level
pose estimation, Xu et al. [38] utilized segmentation, surface normal, and image
coordinate UV-map as input to a network similar to [32] that can estimate 6
DOF object pose. Keypose [24] was proposed to estimate 2D keypoints and
regress object poses from stereo images using triangulation. For other special
sensors, Xu et al. [40] used light-field images to do segmentation using a graph-
cut-based approach. Kalra et al. [15] trained Mask R-CNN [11] using polariza-
tion images as input to outperform the baseline that was trained on only RGB
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images by a large margin. Zhou et al. [44–46] employed light-field images to
learn features for robotic grasping and object pose estimation. Along with the
proposed methods, massive datasets, across different sensors and both synthetic
and real-world domains, have been collected and made public for various related
tasks [6,9,15,23,24,29,37,39,44,47]. Compared with these previous works, and
to the best of our knowledge we propose the first category-level pose estima-
tion approach for transparent objects. Notably, the proposed approach provides
reliable 6D pose and scale estimates across instances with similar shapes.

2.2 Opaque Object Category-Level Pose Estimation

Category-level object pose estimation is aimed at estimating unseen objects’ 6D
pose within seen categories, together with their scales or canonical shape. To
the best of our knowledge, there is not currently any category-level pose esti-
mation works focusing on transparent objects, and the works mentioned below
mostly consider opaque objects. They won’t work well for transparency due to
their dependence on accurate depth. Wang et al. [35] introduced the Normalized
Object Coordinate Space (NOCS) for dense 3D correspondence learning, and
used the Umeyama algorithm [33] to solve the object pose and scale. They also
contributed both a synthetic and a real dataset used extensively by the following
works for benchmarking. Later, Li et al. [19] extended the idea towards articu-
lated objects. To simultaneously reconstruct the canonical point cloud and esti-
mate the pose, Chen et al. [2] proposed a method based on canonical shape space
(CASS). Tian et al. [31] learned category-specific shape priors from an autoen-
coder, and demonstrated its power for pose estimation and shape completion.
6D-ViT [48] and ACR-Pose [8] extended this idea by utilizing pyramid visual
transformer (PVT) and generative adversarial network (GAN) [10] respectively.
Structure-guided prior adaptation (SGPA) [3] utilized a transformer architecture
for a dynamic shape prior adaptation. Other than learning a dense correspon-
dence, FS-Net [5] regressed the pose parameters directly, and it proposed to learn
two orthogonal axes for 3D orientation. Also, it contributed to an efficient data
augmentation process for depth-only approaches. GPV-Pose [7] further improved
FS-Net by adding a geometric consistency loss between 3D bounding boxes,
reconstruction, and pose. Also with depth as the only input, category-level point
pair feature (CPPF) [42] could reduce the sim-to-real gap by learning deep point
pairs features. DualPoseNet [20] benefited from rotation-invariant embedding for
category-level pose estimation. Differing from other works using segmentation
networks to crop image patches as the first stage, CenterSnap [13] presented a
single-stage approach for the prediction of 3D shape, 6D pose, and size.

Compared with opaque objects, we find the main challenge to perceive trans-
parent objects is the poor quality of input depth. Thus, the proposed TransNet
takes inspiration from the above category-level pose estimation works regarding
feature embedding and architecture design. More specifically, TransNet leverages
both Pointformer from PVT and the pose decoder from FS-Net and GPV-Pose.
In the following section, the TransNet architecture is described, focusing on how
to integrate the single-view depth completion module and utilize imperfect depth
predictions to learn pose estimates of transparent objects.
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3 TransNet

Fig. 3. Architecture for TransNet. TransNet is a two-stage deep neural network for
category-level transparent object pose estimation. The first stage uses an object
instance segmentation (from Mask R-CNN [11], which is not included in the diagram)
to generate patches of RGB-D then used as input to a depth completion and a sur-
face normal estimation network (RGB only). The second stage uses randomly sampled
pixels within the objects’ segmentation mask to generate a generalized point cloud
formed as the per-pixel concatenation of ray direction, RGB, surface normal, and com-
pleted depth features. Pointformer [48], a transformer-based point cloud embedding
architecture, transforms the generalized point cloud into high-dimensional features.
A concatenation of embedding features, global features, and a one-hot category label
(from Mask R-CNN) is provided for the pose estimation module. The pose estimation
module is composed of four decoders, one each for translation, x-axis, z-axis, and scale
regression respectively. Finally, the estimated object pose is recovered and returned as
output.

Given an input RGB-D pair (I, D), our goal is to predict objects’ 6D rigid body
transformations [R|t] and 3D scales s in the camera coordinate frame, where R ∈
SO(3), t ∈ R

3 and s ∈ R
3
+. In this problem, inaccurate/invalid depth readings

exist within the image region corresponding to transparent objects (represented
as a binary mask Mt). To approach the category-level pose estimation problem
along with inaccurate depth input, we propose a novel two-stage deep neural
network pipeline, called TransNet.

3.1 Architecture Overview

Following recent work in object pose estimation [5,7,34], we first apply a pre-
trained instance segmentation module (Mask R-CNN [11]) that has been fine-
tuned on the pose estimation dataset to extract the objects’ bounding box
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patches, masks, and category labels to separate the objects of interest from
the entire image.

The first stage of TransNet takes the patches as input and attempts to correct
the inaccurate depth posed by transparent objects. Depth completion (Tran-
sCG [9]) and surface normal estimation (U-Net [28]) are applied on RGB-D
patches to obtain estimated depth-normal pairs. The estimated depth-normal
pairs, together with RGB and ray direction patches, are concatenated to feature
patches, followed by a random sampling strategy within the instance masks to
generate generalized point cloud features.

In the second stage of TransNet, the generalized point cloud is processed
through Pointformer [48], a transformer-based point cloud embedding module,
to produce concatenated feature vectors. The pose is then separately estimated in
four decoder modules for object translation, x-axis, z-axis, and scale respectively.
The estimated rotation matrix can be recovered using the estimated two axes.
Each component is discussed in more detail in the following sections.

3.2 Object Instance Segmentation

Similar to other categorical pose estimation work [7], we train a Mask R-CNN
[11] model on the same dataset used for pose estimation to obtain the object’s
bounding box B, mask M and category label Hc. Patches of ray direction RB,
RGB IB and raw depth DB are extracted from the original data source following
bounding box B, before inputting to the first stage of TransNet.

3.3 Transparent Object Depth Completion

Due to light reflection and refraction on transparent material, the depth of trans-
parent objects is very noisy. Therefore, depth completion is necessary to reduce
the sensor noise. Given the raw RGB-D patch (IB, DB) pair and transparent
mask Mt (a intersection of transparent objects’ masks within bounding box
B), transparent object depth completion FD is applied to obtain the completed
depth of the transparent region {D̂(i,j)|(i, j) ∈ Mt}.

Inspired by one state-of-the-art depth completion method, TransCG [9], we
incorporate a similar multi-scale depth completion architecture into TransNet.

D̂B = FD (IB,DB) (1)

We use the same training loss as TransCG:

L = Ld + λsmoothLs

Ld =
1

Np

∑

p∈Mt

⋂ B

∥∥∥D̂p − D∗
p

∥∥∥
2

Ls =
1

Np

∑

p∈Mt

⋂ B

(
1 − cos

〈
N (D̂p),N (D∗

p)
〉)

(2)
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where D∗ is the ground truth depth image patch, p ∈ Mt

⋂ B represents the
transparent region in the patch, 〈· , ·〉 denotes the dot product operator and
N (·) denotes the operator to calculate surface normal from depth. Ld is L2 dis-
tance between estimated and ground truth depth within the transparency mask.
Ls is the cosine similarity between surface normal calculated from estimated and
ground truth depth. λsmooth is the weight between the two losses.

3.4 Transparent Object Surface Normal Estimation

Surface normal estimation FSN estimates surface normal SB from RGB image
IB. Although previous category-level pose estimation works [5,7] show that
depth is enough to obtain opaque objects’ pose, experiments in Sect. 4.3 demon-
strate that surface normal is not a redundant input for transparent object pose
estimation. Here, we slightly modify U-Net [28] to perform the surface normal
estimation.

ŜB = FSN (IB) (3)

We use the cosine similarity loss:

L =
1

Np

∑

p∈B

(
1 − cos

〈
Ŝp,S∗

p

〉)
(4)

where p ∈ B means the loss is applied for all pixels in the bounding box B.

3.5 Generalized Point Cloud

As input to the second stage, generalized point cloud P ∈ R
N×d is a stack of

d-dimensional features from the first stage taken at N sample points, inspired
from [38]. To be more specific, d = 10 in our work. Given the completed depth
D̂B and predicted surface normal ŜB from Eq. (1), (3), together with RGB
patch IB and ray direction patch RB, a concatenated feature patch is given as[
IB, D̂B, ŜB,RB

]
∈ R

H×W×10. Here the ray direction R represents the direction
from camera origin to each pixel in the camera frame. For each pixel (u, v):

p =
[
u v 1

]T

R =
K−1p

‖K−1p‖2
(5)

where p is the homogeneous UV coordinate in the image plane and K is the
camera intrinsic. The UV mapping itself is an important cue when estimating
poses from patches [14], as it provides information about the relative position
and size of the patches within the overall image. We use ray direction instead of
UV mapping because it also contains camera intrinsic information.

We randomly sample N pixels within the transparent mask of the feature
patch to obtain the generalized point cloud P ∈ R

N×10. A more detailed exper-
iment in Sect. 4.3 explores the best choice of the generalized point cloud.
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3.6 Transformer Feature Embedding

Given generalized point cloud P, we apply an encoder and multi-head decoder
strategy to get objects’ poses and scales. We use Pointformer [48], a multi-stage
transformer-based point cloud embedding method:

Pemb = FPF (P) (6)

where Pemb ∈ R
N×demb is a high-dimensional feature embedding. During our

experiments, we considered other common point cloud embedding methods such
as 3D-GCN [21] demonstrating their power in many category-level pose estima-
tion methods [5,7]. During feature aggregation for each point, they use the nearest
neighbor algorithm to search nearby points within coordinate space, then calcu-
late new features as a weighted sum of the features within surrounding points. Due
to the noisy input D̂ from Eq. (1), the nearest neighbor may become unreliable by
producing noisy feature embeddings. On the other hand, Pointformer aggregates
feature by a transformer-basedmethod.The gradient back-propagates through the
whole point cloud. More comparisons and discussions in Sect. 4.2 demonstrate that
transformer-based embedding methods are more stable than nearest neighbor-
based methods when both are trained on noisy depth data.

Then we use a Point Pooling layer (a multilayer perceptron (MLP) plus
max-pooling) to extract the global feature Pglobal, and concatenate it with local
feature Pemb and the one-hot category Hc label from instance segmentation for
the decoder:

Pglobal = MaxPool (MLP (Pemb))
Pconcat = [Pemb,Pglobal,Hc]

(7)

3.7 Pose and Scale Estimation

After we extract the feature embeddings from multi-modal input, we apply four
separate decoders for translation, x-axis, z-axis, and scale estimation.

Translation Residual Estimation. As demonstrated in [5], residual estima-
tion achieves better performance than direct regression by learning the distribu-
tion of the residual between the prior and actual value. The translation decoder
Ft learns a 3D translation residual from the object translation prior tprior cal-
culated as the average of predicted 3D coordinate over the sampled pixels in P.
To be more specific:

tprior =
1

Np

∑

p∈N

K−1 [up vp 1]T D̂p

t̂ = tprior + Ft ([Pconcat,P])

(8)

where K is the camera intrinsic and up, vp are the 2D pixel coordinate for the
selected pixel. We also use the L1 loss between the ground truth and estimated
position:

Lt =
∣∣t̂ − t∗

∣∣ (9)
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Pose Estimation. Similar to [5], rather than directly regress the rotation
matrix R, it is more effective to decouple it into two orthogonal axes and esti-
mate them separately. As shown in Fig. 3, we decouple R into the z-axis az (red
axis) and x-axis ax (green axis). Following the strategy of confidence learning
in [7], the network learns confidence values to deal with the problem that the
regressed two axes are not orthogonal:

[âi, ci] = Fi (Pconcat) , i ∈ {x, z}
θz =

cx
cx + cz

(
θ − π

2

)

θx =
cz

cx + cz

(
θ − π

2

)
(10)

where cx, cz denote the confidence for the learned axes. θ represents the angle
between ax and az. θx, θz are obtained by solving an optimization problem and
then used to rotate the ax and az within their common plane. More details can
be found in [7]. For the training loss, first, we use L1 loss and cosine similarity
loss for axis estimation:

Lri
= |âi − a∗

i | + 1 − 〈âi, a
∗
i 〉 , i ∈ {x, z} (11)

Then to constrain the perpendicular relationship between two axes, we add
the angular loss:

La = 〈âx, âz〉 (12)

To learn the axis confidence, we add the confidence loss, which is the L1

distance between estimated confidence and exponential L2 distance between the
ground truth and estimated axis:

Lconi
= |ci − exp (α ‖âi − a∗

i ‖2)| , i ∈ {x, z} (13)

where α is a constant to scale the distance.
Thus the overall loss for the second stage is:

L = λsLs + λtLt + λrx
Lrx

+ λrz
Lrz

+ λra
La + λconx

Lconx
+ λconz

Lconz

(14)

To deal with object symmetry, we apply specific treatments for different
symmetry types. For axial symmetric objects (those that remain the same shape
when rotating around one axis), we ignore the loss for the x-axis, i.e.,Lconx

,Lrx
.

For planar symmetric objects (those that remain the same shape when mirrored
about one or more planes), we generate all candidate x-axis rotations. For exam-
ple, for an object symmetric about the x− z plane and y − z plane, rotating the
x-axis about the z-axis by π radians will not affect the object’s shape. The new
x-axis is denoted as axπ

and the loss for the x-axis is defined as the minimum
loss of both candidates:

Lx = min (Lx(ax),Lx(axπ
)) (15)
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Scale Residual Estimation. Similar to the translation decoder, we define the
scale prior sprior as the average of scales of all object 3D CAD models within
each category. Then the scale of a given instance is calculated as follows:

ŝ = sprior + Fs (Pconcat) (16)

The loss function is defined as the L1 loss between the ground truth scale
and estimated scale:

Ls = |ŝ − s∗| (17)

4 Experiments

Dataset. We evaluated TransNet and baseline models on the Clearpose Dataset
[6] for categorical transparent object pose estimation. The Clearpose Dataset
contains over 350K real-world labeled RGB-D frames in 51 scenes, 9 sets, and
around 5M instance annotations covering 63 household objects. We selected 47
objects and categorize them into 6 categories, bottle, bowl, container, tableware,
water cup, wine cup. We used all the scenes in set2, set4, set5, and set6 for
training and scenes in set3 and set7 for validation and testing. The division
guaranteed that there were some unseen objects for testing within each category.
Overall, we used 190K images for training and 6K for testing. For training depth
completion and surface normal estimation, we used the same dataset split.

Implementation Details. Our model was trained in several stages. For all the
experiments in this paper, we were using the ground truth instance segmentation
as input, which could also be obtained by Mask R-CNN [11]. The image patches
were generated from object bounding boxes and re-scaled to a fixed shape of
256×256 pixels. For TransCG, we used AdamW optimizer [25] for training with
λsmooth = 0.001 and the overall learning rate is 0.001 to train the model till
converge. For U-Net, we used the Adam optimizer [17] with a learning rate of
1e−4 to train the model until convergence. For both surface normal estimation
and depth completion, the batch size was set to 24 images. The surface normal
estimation and depth completion model were frozen during the training of the
second stage.

For the second stage, the training hyperparameters for Pointformer followed
those used in [48]. We used data augmentation for RGB features and instance
mask for sampling generalized point cloud. A batch size of 18 was used. To bal-
ance sampling distribution across categories, 3 instance samples were selected
randomly for each of 6 categories. We followed GPV-Pose [7] on training hyper-
parameters. The learning rate for all loss terms were kept the same during train-
ing, {λrx

, λrz
, λra

, λt, λs, λconx
, λconz

} = {8, 8, 4, 8, 8, 1, 1}× 0.0001. We used the
Ranger optimizer [22,41,43] and used a linear warm-up for the first 1000 iter-
ations, then used a cosine annealing method at the 0.72 anneal point. All the
experiments for pose estimation were trained on a 16G RTX3080 GPU for 30
epochs with 6000 iterations each. All the categories were trained on the same
model, instead of one model per category.
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Evaluation Metrics. For category-level pose estimation, we followed [5,7]
using 3D intersection over union (IoU) between the ground truth and estimated
3D bounding box (we used the estimated scale and pose to draw an estimated 3D
bounding box) at 25%, 50% and 75% thresholds. Additionally, we used 5◦2 cm,
5◦5 cm, 10◦5 cm, 10◦10 cm as metrics. The numbers in the metrics represent the
percentage of the estimations with errors under such degree and distance. For
Sect. 4.4, we also used separated translation and rotation metrics: 2 cm, 5 cm,
10 cm, 5◦, 10◦ that calculate percentage with respect to one factor.

For depth completion evaluation, we calculated the root of mean squared
error (RMSE), absolute relative error (REL) and mean absolute error (MAE),
and used δ1.05, δ1.10, δ1.25 as metrics, while δn was calculated as:

δn =
1

Np

∑

p

I

(
max

(
D̂p

D∗
p

,
D∗

p

D̂p

)
< n

)
(18)

where I(·) represents the indicator function. D̂p and D∗
p mean estimated and

ground truth depth for each pixel p.
For surface normal estimation, we calculated RMSE and MAE errors and

used 11.25◦, 22.5◦, and 30◦ as thresholds. Here 11.25◦ represents the percentage
of estimates with an angular distance less than 11.25◦ from ground truth surface
normal.

4.1 Comparison with Baseline

Table 1. Comparison with the baseline on the Clearpose Dataset.

Method 3D25↑ 3D50↑ 3D75↑ 5◦2 cm↑ 5◦5 cm↑ 10◦5 cm↑ 10◦10 cm↑
GPV-Pose 93.7 58.3 10.5 0.4 1.5 7.4 9.1

TransNet 90.3 67.4 22.1 2.4 7.5 23.6 27.6

We chose one state-of-the-art categorical opaque object pose estimation model
(GPV-Pose [7]) as a baseline, which was trained with estimated depth from
TransCG [9] for a fair comparison. From Table 1, TransNet outperformed the
baseline in most of the metrics on the Clearpose dataset. 3D25 is very easy to
learn, so there is no huge difference between them. For the rest of the metrics,
TransNet achieved around 2× the percentage on 3D50, 3× on 10◦5 cm, 10◦10 cm
and 5× on 5◦5 cm, 5◦2 cm over the baseline. Qualitative results are shown in
Fig. 4 for TransNet.

4.2 Embedding Method Analysis

In Table 2, we compared the embedding method between 3D-GCN [21] and
Pointformer [48] on TransNet. Modalities for generalized point cloud were depth,
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Fig. 4. Qualitative results of category-level pose estimates from TransNet. The left
column is the original RGB image within our test set and the right column is the pose
estimation results. The white bounding box is the ground truth and the colored one is
the estimation result. Different colors represent different categories. For axial symmetric
objects, because we only care about the scale and z-axis, we use the ground truth x-
axis and estimated z-axis to calculate the estimated x-axis, for better visualization. In
the figure, there is a pitcher without either ground truth or estimated bounding box
because it is not within any of the defined categories, so we ignore it for both training
and testing.
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RGB and ray direction (without surface normal) for all the trials. The only dif-
ferences between them were depth type and embedding methods. With ground
truth input, 3D-GCN and Pointformer achieved similar results. For some met-
rics, i.e. 5◦5 cm, 3D-GCN was even better. But when the ground truth depth was
changed to estimated depth (modeling the change from opaque to transparent
setting), Pointformer retained much more accuracy than 3D-GCN. Here is our
explanation. Like many point cloud embedding methods, 3D-GCN propagates
information between nearest neighbors. It is a very efficient method given a point
cloud with low noise. But given the completed depth, high noise makes it unsta-
ble to pass data among neighbors. While for Pointformer, information is passed
through the whole point cloud, no matter how large the noise is. Therefore,
given depth information with large uncertainty, the transformer-based embed-
ding method might be more powerful than embedding methods using nearest
neighbors.

Table 2. Comparison between different embedding methods

Depth type Embedding 3D25↑ 3D50↑ 3D75↑ 5◦2 cm↑ 5◦5 cm↑ 10◦5 cm↑ 10◦10 cm↑
Ground truth 3D-GCN 90.0 84.1 43.0 21.4 48.0 61.8 64.7

Pointformer 90.0 81.8 56.5 24.1 39.3 59.0 60.7

Estimation 3D-GCN 88.8 59.8 10.4 0.9 3.4 12.3 15.4

Pointformer 88.5 62.2 17.6 1.6 5.0 17.4 20.9

4.3 Ablation Study of Generalized Point Cloud

We explored different combinations of feature inputs for the generalized point
cloud to find the one most suitable for TransNet. Results are shown in Table 3.
For trials 1 and 2, we compared the effect of adding estimated surface normal
to the generalized point cloud. All the metrics demonstrated that the inclusion
of surface normal does improve the resulting pose estimation accuracy.

Table 3. Ablation study for a different combination of the generalized point cloud.
For both trials, we also use RGB as an input feature for the generalized point cloud.

Trial Depth Normal Ray-direction 3D25↑ 3D50↑ 3D75↑ 5◦2 cm↑ 5◦5 cm↑ 10◦5 cm↑ 10◦10 cm↑
1 � � 88.5 62.2 17.6 1.6 5.0 17.4 20.9

2 � � � 90.3 67.4 22.1 2.4 7.5 23.6 27.6

4.4 Depth and Surface Normal Exploration on TransNet

We explored the combination of depth and surface normal with different accu-
racy. Results in Table 4 and Table 5 show performance for TransCG and U-
Net separately. “GT” and “EST” in Table 6 represent ground truth and esti-
mated input for depth and surface normal respectively. From the comparison
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Table 4. Accuracy for depth completion on Clearpose dataset. All the metrics are
calculated within the transparent mask.

Metric RMSE↓ REL↓ MAE↓ δ1.05↑ δ1.10↑ δ1.25↑
Value 0.055 0.044 0.041 68.93 89.40 98.93

Table 5. Accuracy for surface normal estimation on Clearpose dataset.

Metric RMSE↓ MAE↓ 11.25◦↑ 22.5◦↑ 30◦↑
Value 0.1915 0.1334 56.75 88.45 96.64

Table 6. Evaluation for depth and surface normal accuracy on TransNet.

Trial Depth Normal 3D25↑ 3D50↑ 3D75↑ 5◦2 cm↑ 5◦5 cm↑ 10◦5 cm↑ 10◦10 cm↑ 5◦ ↑ 10◦ ↑ 2 cm↑ 5 cm↑ 10 cm↑
1 GT GT 95.1 87.7 66.7 31.8 48.4 66.5 66.7 47.3 66.3 63.3 97.9 99.9

2 GT EST 90.9 82.1 56.3 23.4 36.5 58.0 59.6 37.3 59.6 53.6 97.2 99.9

3 EST GT 94.0 83.8 34.3 8.1 29.9 47.8 60.3 37.3 61.8 22.2 77.1 97.4

4 EST EST 90.3 67.4 22.1 2.4 7.5 23.6 27.6 8.8 28.1 16.6 77.4 96.8

of results among trials 1–3, accurate depth is more essential than surface nor-
mal for category-level transparent object pose estimation. For instance, as the
ground truth depth changes to the estimated depth from trial 1 to trial 3,
5◦2 cm decreases by 23.7. Compared with surface normal estimation, 5◦2 cm
only decreases by 8.4 between trial 1 and trial 2. More specifically, from decou-
pled rotation and translation metrics, we can see that 2 cm decreases by 41.1
between trial 1 and trial 3 compared to 9.7 between trial 1 and trial 2, meaning
that depth accuracy is more important for translation estimation. Focusing on
2 cm, 5 cm, 10 cm between trial 1 and trial 4, the first metric decreases by 46.7
but the latter two lose much less (20.5 for 5 cm and 3.1 for 10 cm). This can be
explained by the result of depth completion accuracy shown in Table 4 (MAE =
0.041 m, between 2 cm and 5 cm). From the comparison of trial 1–4 on metrics
5◦ and 10◦, we can see that either accurate surface normal or accurate depth
can support good performance in rotation metrics (for either trial 2 or trial 3, 5◦

decreases by 10.0 and 10◦ decreased by around 7). Once we use the estimation
version of both, 5◦ decreases by 38.5 and 10◦ decreases by 38.2.

5 Conclusions

In this paper, we proposed TransNet, a two-stage pipeline for category-level
transparent object pose estimation. TransNet outperformed a baseline by taking
advantage of both state-of-the-art depth completion and opaque object category
pose estimation. Ablation studies about multi-modal input and feature embed-
ding modules were performed to guide deeper explorations. In the future, we
plan to explore how category information can be used earlier in the network for
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better accuracy, improve depth completion potentially using additional consis-
tency losses, and extend the model to be category-level across both transparent
and opaque instances.
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