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Abstract. We introduce CenDerNet, a framework for 6D pose estima-
tion from multi-view images based on center and curvature representa-
tions. Finding precise poses for reflective, textureless objects is a key
challenge for industrial robotics. Our approach consists of three stages:
First, a fully convolutional neural network predicts center and curva-
ture heatmaps for each view; Second, center heatmaps are used to detect
object instances and find their 3D centers; Third, 6D object poses are
estimated using 3D centers and curvature heatmaps. By jointly optimiz-
ing poses across views using a render-and-compare approach, our method
naturally handles occlusions and object symmetries. We show that Cen-
DerNet outperforms previous methods on two industry-relevant datasets:
DIMO and T-LESS.

Keywords: Object detection · 6D object pose estimation · Industrial
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1 Introduction

1.1 Context

6D pose estimation is an essential aspect of industrial robotics. Today’s high-
volume production lines are powered by robots reliably executing repetitive move-
ments. However, as the manufacturing industry shifts towards high-mix, low-
volume production, there is a growing need for robots that can handle more vari-
ability [2]. Estimating 6D poses for diverse sets of objects is crucial to that goal.
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Manufacturing use cases present unique challenges. Many industrial objects
are reflective and textureless, with scratches or saw patterns affecting their
appearance [4,31]. Parts are often stacked in dense compositions, with many
occlusions. These densely stacked, reflective parts are problematic for existing
depth sensors. In addition, object shapes vary greatly, often exhibiting sym-
metries leading to ambiguous poses. Many applications require sub-millimeter
precision and the ability to integrate new, unseen parts swiftly.

Fig. 1. Multi-view input images (left) are converted to center and curvature heatmaps
(center), used to estimate 6D object poses (right).

This work presents a framework for 6D pose estimation targeted to these
conditions. Our approach predicts object poses for known textureless parts from
RGB images with known camera intrinsics and extrinsics. We use multi-view
data as monocular images suffer from ambiguities in appearance and depth. In
practice, images from multiple viewpoints are easily collected using multi-camera
or hand-in-eye setups. This setup reflects many real-world industrial use-cases.

1.2 Related Work

Recent progress in 6D pose estimation from RGB images was demonstrated in the
2020 BOP challenge [10]. Convolutional neural networks (CNNs) trained on large
amounts of synthetic data are at the core of this success. Many recent methods con-
sist of three stages: (1) object detection, (2) pose estimation, and (3) refinement,
using separate neural networks for each stage. While most approaches operate on
monocular RGB images, some focus on multi-view data.

Object Detection. In the first stage, CNN-based neural networks are used to
detect object instances. Although these detectors typically represent objects by
2D bounding boxes [6,7,17,22], 2D center points can be a simple and efficient
alternative [33].

Pose Estimation. In the second stage, the 6D pose of each detected object
is predicted. Classical methods based on local features [1] or template match-
ing [8] have been replaced by learning systems. CNNs are used to detect local
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features [14,25,26,30] or find 2D-3D correspondences [18,19,29,32]. Crucial
aspects are the parameterization of 6D poses [34] and how symmetries are
handled [20].

Refinement. In the final stage, the estimated poses are iteratively refined by
comparing object renders to the original image. This comparison is not trivial,
as real-world images are affected by lighting, texture, and background changes,
not captured in the corresponding renders. However, CNNs can be trained to
perform this task [14,16,32].

Multi-view. Approaches for multi-view 6D object pose estimation extend exist-
ing single-view methods. First, poses hypotheses are generated from individual
images. Next, these estimates are fused across views [14,15].

1.3 Contributions

We present CenDerNet, a framework for 6D pose estimation from multi-view
images based on center and curvature representations. First, a convolutional neu-
ral network is trained to predict center and curvature heatmaps. Second, center
heatmaps are used to detect object instances and find their 3D centers. These
centers initialize and constrain the pose esimates. Third, curvature heatmaps
are used to optimize these poses further using a render-and-compare approach
(Fig. 1).

Our system is conceptually simple and easy to use. Many existing methods
consist of multiple stages, each with different training and tuning requirements.
Our framework is more straightforward. We use a single, fully-convolutional
neural network to convert RGB images to interpretable representations. Next,
we use classical optimization techniques that require little tuning.

Using a render-and-compare approach, we jointly estimate poses for all
objects in a scene across all viewpoints. As a result, our method naturally han-
dles occlusions and object symmetries. We provide a GPU implementation of
our render-and-compare method that allows evaluating over 2,000 scene pose
estimates per second.

We evaluate CenDerNet using DIMO and T-LESS, two challenging, industry-
relevant datasets. On DIMO, our method outperforms PVNet by a large margin.
On T-LESS, CenDerNet outperforms the 2020 ECCV results of CosyPose, the
leading multi-view method.

2 CenDerNet

Our system consists of three stages:

1. A convolutional neural network predicts center and curvature heatmaps for
multi-view input images.

2. The predicted center heatmaps are converted to 3D center points. These 3D
centers initialize and constrain the set of predicted object poses.

3. Object poses are optimized by comparing curvature renders to the predicted
curvature heatmaps.



100 P. De Roovere et al.

Fig. 2. Step 1: multi-view RGB images are converted to center and curvature heatmaps
by a single, fully convolutional network.

2.1 From Images to Center and Curvature Heatmaps

This step eliminates task-irrelevant variations by converting images into center
and curvature representations (Fig. 2). RGB images can vary significantly due to
lighting, background, and texture changes. These changes, however, do not affect
object poses. This step eliminates these effects by transforming images into rep-
resentations that simplify pose estimation. As we want our system to apply to a
wide range of objects, these representations should be category-independent. We
identify centers and curvatures as suitable representations with complementary
properties.

Centers. We use center heatmaps—modeling the probability of object center
points—to detect objects and roughly estimate their locations. Previous work
has shown that detecting objects as center points is simple and efficient [33].
Moreover, 2D center points can be triangulated to 3D, initializing object poses
and enabling geometric reasoning. For example, center predictions located at
impossible locations can be discarded. When predicting center points, there is
a trade-off between spatial precision and generalization. Precise center locations
can differ subtly between similar objects. This makes it difficult for a learning
system to predict precise centers for unseen objects. As we want our system
to generalize to unseen categories, we relax spatial precision requirements, by
training our model to predict gaussian blobs at center locations. We use a single
center heatmap for all object categories.

Curvature. We use curvature heatmaps to highlight local geometry and enable
comparison between images and renders. Representations based on 3D geometry
are robust to changes in lighting, texture, and background and can be created
from textureless CAD files. Representations based on global geometry [29] or
category-level semantics [5,19] do not generalize to unseen object types. There-
fore, we focus on local geometry. Previous work has shown that geometric edges
can be used for accurately estimating 6D poses [3,12,13]. We base our represen-
tation on view-space curvature. To obtain these view-space curvatures, we first
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render normals in view-space. Next, we approximate the gradients for each pixel
using the Prewitt operator [21]. Finally, we calculate the 2-norm of these gradi-
ents to obtain a per-pixel curvature value. Areas with high curvatures correspond
to geometric edges or object boundaries and are visually distinct. Similarly, visu-
ally similar areas, like overlapping parallel planes, contain no curvatures values,
as shown in Fig. 3b.

Fig. 3. (a) Curvatures are calculated by rendering normals in view space, approximat-
ing per-pixel gradients using the Prewitt operator, and calculating the 2-norm. (b)
Visually similar areas, like overlapping parallel planes, exhibit no curvature values.

Model and Training. We use a fully convolutional network to predict center
and curvature heatmaps. The same weights are applied to images from different
viewpoints. The architecture is based on U-net [23] and shown in Fig. 4. A shared
backbone outputs feature maps with a spatial resolution equal to the input
images. Separate heads are used for predicting center and curvature heatmaps.
Ground-truth center heatmaps are created by projecting 3D object centers to
each image and splatting the resulting points using a Gaussian kernel, with
standard deviation adapted by object size and distance. Curvature heatmaps
are created as explained in Sect. 2.1. Binary cross entropy loss is used for both
outputs.

2.2 From Center Heatmaps to 3D Centers

This step converts multi-view center heatmaps to 3D center points. First, local
maxima are found in every heatmap using a peak local max filter [28] (Fig. 5).
Each of these 2D maxima represents a 3D ray, defined by the respective camera
intrinsics and extrinsics. Next, for each pair of 3D rays, the shortest mutual dis-
tance and midpoint are calculated [24]. When this distance is below a threshold
dt, the midpoint is added to the set of candidates. Within this set, points that
are closer to each other than a distance dc are merged. Finally, the remaining
points are refined by maximizing their reprojection score across views, using
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Fig. 4. The architecture of our fully convolutional network is based on U-net. Input
images are first processed by a shared backbone. Afterwards, separate heads output
center and curvature heatmaps.

Fig. 5. Step 2: multi-view 2D center heatmaps are converted to 3D center points.

Scipy’s Nelder-Mead optimizer [27]. This leads to a set of 3D points, each with
per-view heatmap scores. If information about the number of objects in the scene
is available, this set is further pruned. 3D centers are sorted by their aggregated
heatmap score (accumulated for all views) and removed if they are closer than
a distance do to higher-scoring points.

2.3 6D Pose Estimation

This step optimizes the 6D poses for all detected objects, using a render-and-
compare approach based on curvatures (Fig. 6). Object CAD models, camera
intrinsics, and extrinsics are available. Consequently, curvature maps can be
rendered for each set of 6D object pose candidates. We define a cost function that
compares such curvature renders to the predicted curvature heatmaps. This cost
function is used for optimizing a set of object poses, initialized by the previously
detected 3D centers.
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Fig. 6. Step 3: Multi-view curvature heatmaps and 3D object centers are used to find
6D object poses.

Cost Function. Predicted curvature heatmaps are converted to binary images
with threshold tb. Next, for each binary image, a distance map is created where
each pixel contains the distance to the closest non-zero (true) pixel, using scikit-
image’s distance transform [28]. The resulting distance maps have to be calcu-
lated only once and can be reused throughout optimization (Fig. 7).

Fig. 7. Target curvature heatmaps (left) are converted to binary images (center). Next,
distance maps (right) are calculated, where each pixel contains the distance to the
closest non-zero (true) pixel.

Using these distance maps, curvature renders can be efficiently compared to
the target heatmaps. Pixel-wise multiplication of a render to a distance map
returns an image where each pixel contains the distance to the closest true
curvature pixel, weighted by its curvature value. As a result, regions with high
curvature weigh more, and regions with zero curvature do not contribute. The
final cost value is obtained by summing the resulting image, and dividing by
the sum of the rendered curvature map. This is done for each viewpoint. The
resulting costs are weighed by view-specific weights wv and summed, resulting
in a final scalar cost value.
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Fig. 8. Overview of the cost function. First, curvature maps are rendered for each set
of 6D object pose estimates. These curvature maps are compared to a pre-computed
distance map based on the target curvatures. This results in a cost value for each
sample, calculated in parallel.

Figure 8 shows an overview of the cost function. We implement this
function—including curvature rendering—on GPU. Our implementation runs
at 2,000 calls per second on an NVIDIA RTX3090 Ti for six 256 × 320 images
per call.

Optimization. We sequentially optimize 6D object poses by evaluating pose can-
didates anchored by the detected 3D centers. As scenes can consist of densely
stacked objects with many occlusions, we optimize objects sequentially. We argue
highly visible objects are easier to optimize and—crucially—should be taken into
account when optimizing objects they occlude. For each 3D center, we use per-
view center heatmap scores as a proxy for visibility. We optimize objects in
order of decreasing visibility, and weigh the contribution of each view to the cost
according to these scores. When estimating an object pose, we first evaluate a
set of 2,000 pose candidates with random rotations and translations normally
distributed around the 3D center. Afterwards, the best candidates are further
optimized using a bounded Nelder-Mead optimizer [27].

3 Experiments

We evaluate our method on the 6D localization task as defined in the BOP
challenge [10] on DIMO [4] and T-LESS [9], two industry-relevant datasets. On
DIMO, we show our method significantly outperforms PVNet [19], a strong
single-view baseline. On T-LESS, CenDerNet improves upon the 2020 ECCV
results of CosyPose [14], the leading multi-view method.

3.1 DIMO

Dataset. The dataset of industrial metal objects (DIMO) [4] reflects real-world
industrial conditions. Scenes consist of symmetric, textureless and highly reflec-
tive metal objects, stacked in dense compositions.
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Baseline. We compare our method to PVNet with normalized pose rotations.
PVNet [19] is based on estimating 2D keypoints followed by perspective n-point
optimization. This method is robust to occlusion and truncation, but suffers from
pose ambiguities caused by object symmetries. This is amended by mapping
rotations to canonical rotations before training [20].

Experiments. We use a subset of the dataset, focusing on the most reflective
parts, and scenes with objects of the same category. For training, only synthetic
images are used. We report results on both synthetic and real-world test data.
When predicting center and curvature heatmaps, the same output channel is
used for all object categories.

Evaluation. We report average recall (AR) for two different error functions:

– MSPD, the maximum symmetry-aware projection distance, as it is relevant
for evaluating RGB-only methods.

– MSSD, the maximum symmetry-aware surface distance, as it is relevant for
robotic manipulation.

Strict thresholds of correctness θe are chosen, as manufacturing use-cases require
high-precision poses. θMSSD is reported for 5% of the object diameter, θMSPD for
5px.

Our system predicts poses in world frame, whereas PVNet—a single-view
method—predicts per-image poses that are relative to the camera. For better
comparison, we transform our estimated poses to camera frames and compute
per-image metrics.

Table 1. Results on DIMO for synthetic test images. CenDerNet significantly out-
performs the PVNet baseline. The difference between MSSD and MSPD shows the
importance of multi-view images for robotics applications where spatial precision is
important.

ARMSPD < 5px ARMSSD < 5%

PVNet 0.577 0.079

CenDerNet (ours) 0.721 0.639

Results. As shown in Table 1 and Table 2, CenDerNet significantly outperforms
the PVNet baseline. Despite rotation normalizations, PVNet still suffers from
pose ambiguities, struggling to predict high-precision poses.
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Table 2. Results on DIMO for real-world test images. Both methods are affected by
the sim-to-real gap. While the results of PVNet plummet, CenDerNet is more robust.

ARMSPD < 5px ARMSSD < 5%

PVNet 0.016 0.000

CenDerNet (ours) 0.516 0.403

Fig. 9. Results on synthetic test image of the DIMO dataset. Despite severe reflections
and shadows, our system recovers qualitative center and curvature representations and
precise 6D poses.

Fig. 10. Results on real-world test image of the DIMO dataset. The lower quality of
the center and curvature heatmaps is due to the sim-to-real gap. Nevertheless, the
estimated 6D poses are accurate.

Fig. 11. Failure case on a real-world test image of the DIMO dataset. The unexpected
output in the center heatmap (orange arrow) could be due to the sim-to-real gap.
Objects cannot be differentiated when object centers align (red arrow). (Color figure
online)

The large gap in MSPD en MSSD scores for PVNet shows the importance
of multi-view images for robotics applications. While PVNet’s MSPD score (in
image space) is reasonable, its MSSD score (in world/robot space) is subpar.

Reflections and shadows significantly affect many test images, leading to chal-
lenging conditions, as shown in Fig. 9 and Fig. 10. Nevertheless, center and curva-
ture predictions are often sufficient to find accurate object poses. The difference
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in results between Table 1 and Table 2 shows the effect of the sim-to-real gap.
Here, many of the keypoints predicted by PVNet are too far off to meet the strict
accuracy requirements, causing results to plummet. CenDerNet is more robust.

An important advantage of our method is the interpretability of the predicted
center and curvature representations. The top-right area of the center heatmap in
Fig. 10 and Fig. 11 could be due to the sim-to-real gap. Adding more background
variations while training could improve the robustness of the model.

Figure 11 shows a failure case. When object centers align, the system fails to
differentiate between them.

3.2 T-LESS

Dataset. The T-LESS dataset provides multi-view images of non-reflective, col-
orless industrial objects. As part of the BOP benchmark, it allows easy compar-
ison to state-of-the-art methods. For the 2020 BOP challenge [11], photorealistic
synthetic training images (PBR) were provided.

Baseline. We compare our method to CosyPose [14], the multi-view method that
won the 2020 BOP challenge. We use the ECCV 2020 BOP evaluation results
for 8 views made available by the authors.

Experiments. We use only PBR images for training. As each scene contains a
mix of object types, we extend our model to predict a separate center heatmap
for each object category. This reduces the generality of our method, but allows
us to select the correct CAD model when optimizing poses. As training images
contain distractor objects, we take object visibility into account when generating
ground-truth center and curvature heatmaps.

Evaluation. In addition to reporting ARMSPD < 5px and ARMSSD < 5%, we
report the default BOP [10] evaluation metrics (VSD, MSSD and MSPD). We
transform poses to camera-frames and calculate metrics for all images.

Results. As shown in Table 3, our method outperforms CosyPose in high-
precision scenarios. Table 4 shows we also outperform the provided CosyPose
predictions on the default BOP metrics. However, the CosyPose-variant that is
currently at the top of the BOP leaderboard still performs significantly better.

Table 3. Results on TLESS. CenDerNet outperforms CosyPose on both metrics. The
stark difference in MSSD score is relevant for high-precision robotics applications.

ARMSPD < 5px ARMSSD < 5%

CosyPose (ECCV 2020) 0.499 0.250

CenDerNet (ours) 0.543 0.544
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Table 4. Results on TLESS for the default BOP evaluation metrics. CenDerNet out-
performs the provided CosyPose results. However, the scores reported on the BOP
leaderboard are still significantly higher.

AR ARMSPD ARMSSD ARVSD

CosyPose (ECCV 2020) 0.617 0.686 0.610 0.557

CenDerNet (ours) 0.713 0.715 0.717 0.707

CosyPose (BOP leaderboard) 0.839 0.907 0.836 0.773

Fig. 12. Results on T-LESS.Our model is able to eliminate irrelevant scene elements,
like backgrounds and distractor objects.

Fig. 13. Failure case on T-LESS. The model is confused about the charuco tags around
the scene, leading to an incorrect 3D center. The pose optimization process cannot
recover from this error.

Figure 12 shows predicted heatmaps, object centers and poses. In many situ-
ations, our method is capable of eliminating irrelevant backgrounds and objects,
despite being trained only on synthetic data. There is, however, still a sim-to-real
gap, as shown in Fig. 13. Again, the predicted representations provide hints on
how to improve the system. In this case, the model is confused by charuco tags
on the edge of the table.

4 Conclusions

We present CenDerNet, a system for multi-view 6D pose estimation based on
center and curvature representations. Our system is conceptually simple and
therefore easy-to-use. First, a single neural network converts images into inter-
pretable representations. Next, a render-and-compare approach, with GPU-
optimized cost function, allows for jointly optimizing object poses across mul-
tiple viewpoints, thereby naturally handling occlusions and object symmetries.
We demonstrate our system on two challenging, industry-relevant datasets and
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show it outperforms PVNet, a strong single-view baseline, and CosyPose, the
leading multi-view approach. In future work, we plan to explore ways to fur-
ther decrease the processing time of our method. In addition, we will investigate
improvements to the robustness of our pipeline. For example, fusing information
from multiple viewpoints could improve center and curvature predictions. We
also look forward to evaluating our method in a real-world setup.
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