
Unsupervised Joint Image Transfer
and Uncertainty Quantification Using

Patch Invariant Networks

Christoph Angermann(B) , Markus Haltmeier , and Ahsan Raza Siyal

Department of Mathematics, University of Innsbruck,
Technikerstraße 13, 6020 Innsbruck, Austria

christoph.angermann@uibk.ac.at

http://applied-math.uibk.ac.at/

Abstract. Unsupervised image transfer enables intra- and inter-
modality image translation in applications where a large amount of
paired training data is not abundant. To ensure a structure-preserving
mapping from the input to the target domain, existing methods for
unpaired image transfer are commonly based on cycle-consistency, caus-
ing additional computational resources and instability due to the learn-
ing of an inverse mapping. This paper presents a novel method for uni-
directional domain mapping that does not rely on any paired training
data. A proper transfer is achieved by using a GAN architecture and
a novel generator loss based on patch invariance. To be more specific,
the generator outputs are evaluated and compared at different scales,
also leading to an increased focus on high-frequency details as well as an
implicit data augmentation. This novel patch loss also offers the possi-
bility to accurately predict aleatoric uncertainty by modeling an input-
dependent scale map for the patch residuals. The proposed method is
comprehensively evaluated on three well-established medical databases.
As compared to four state-of-the-art methods, we observe significantly
higher accuracy on these datasets, indicating great potential of the pro-
posed method for unpaired image transfer with uncertainty taken into
account. Implementation of the proposed framework is released here:
https://github.com/anger-man/unsupervised-image-transfer-and-uq.

Keywords: Unsupervised image transfer · Uncertainty
quantification · Generative adversarial network · Patch invariance ·
Modality propagation · Accelerated MRI · Radiotherapy

1 Introduction

Image transfer, e.g., within and across medical imaging modalities, has gained a
lot of popularity in the last decade of research [1]. The application range of inter-
and intra-modality image translation is multifaceted and can help to overcome
key weaknesses of an acquisition method. For example, modality propagation in
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magnetic resonance imaging (MRI) is of high interest since acquisition of multiple
contrasts is crucial for better diagnosis for many clinical protocols [2]. Especially
acquiring T1-weighted (T1w) and T2-weighted (T2w) contrasts increases scan-
ning time significantly and thus is often formulated as a translation task from
T1w to T2w. Another example is accelerated MRI, where medical costs and
patient stress are minimized by decreasing the amount of k-space measurements
[3,4]. Such methods for MRI reconstruction of undersampled measurements allow
the use of MRI in applications where it is currently too time and resource inten-
sive. A third application to mention here is automated computed tomography
(CT) synthesis based on MRI images, which allows for MRI-only treatment
planning in radiation therapy. A MRI-to-CT synthesizing method can eliminate
the need for CT simulation and therefore improves the treatment workflow and
reduces radiation exposure for the patient during radiotherapy [1,5–8].

Just discussed applications correspond to (un)supervised image transfer,
which targets at translating an image from one domain to another. Supervised
approaches exploit the inter-domain correspondence between input and output
data [9]. These methods rely on large amounts of paired data and perfectly reg-
istered scans of the same patient, which are not always abundant in medical
applications [5]. Unsupervised approaches are commonly built on a generative
adversarial network (GAN) [10] that assimilates the distribution of the gen-
erated samples to the real distribution of the target domain by employing an
adversarial discriminator network. To ensure that the synthesized output does
not become irrelevant to the input, additional constraints may be added to the
generator loss [11–14]. Especially cycle-consistency is a well-received method for
structure preservation in fully unsupervised medical image transfer [6–9]. How-
ever, a cycle-consistent GAN (cycleGAN) requires the parallel learning of an
inverse mapping. As a result, the training time is significantly increased and
the final performance depends on the inverse transfer function. Furthermore,
cycle-consistent GANs compare the reconstruction on a whole-image base and
therefore pay less attention to fine structures and high-frequency details.

Although current methods provide powerful tools for high-dimensional image
transfer, the generator loss calculation usually assumes that the learned map-
pings are correct. This represents a significant source for instability and erroneous
predictions when considering out-of-distribution (OOD) data during training
[9,15]. Tackling data-dependent uncertainty in deep computer vision has raised a
lot of interest in the last years of research and provided effective tools to check the
reliability of a model’s predictions in supervised applications. However, research
on modeling uncertainty inherent from data in a completely unsupervised setting
is still limited [9,16] and needs a deeper investigation.

This paper presents a novel GAN approach to fully unpaired medical image
transfer, including prediction of data-dependent uncertainty and invariance
over patches. To be more exact, a Wasserstein generative adversarial network
(WGAN) [17] is leveraged to an uni-directional image transfer model. Struc-
tural correspondence between input and target modality is guaranteed using
a novel generator loss that enforces invariance over image patches. Further-
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more, the patch-based residuals are assumed to follow a zero-mean Laplace
distribution with the scale parameter being a function of the input. As a conse-
quence, the generator is allowed to predict uncertainty that operates as a learned
loss attenuation and can be used to indicate the quality of a transferred image in
the absence of ground truth data. The proposed model and training strategy is
evaluated in three different unsupervised scenarios: modality propagation using
T1w and T2w brain MRI from the IXI [18] database; accelerated MRI enhance-
ment using emulated single-coil knee MRI from the FastMRI [3] database;
MRI-to-CT synthesis using head CT scans from the CQ500 [19] database.
The proposed framework is benchmarked against state-of-the-art works for uni-
directional and bi-directional image translation [9,11,12,14]. We not only evalu-
ate accuracy on unseen test data but further investigate robustness to perturbed
inputs.

Contributions:

– We present an unidirectional framework that enables fully unsupervised image
transmission of medical data while preserving fine structures.

– Structural correspondence between different characteristics and modalities is
ensured by an improved generator loss based on patch invariance. This also
yields implicit data augmentation for the critic and generator networks.

– In addition to the image transmission, the model provides an uncertainty map
that correlates with the prediction error, indicating the quality of a mapped
instance.

2 Related Work

2.1 Generative Adversarial Networks

The GAN architecture [10] is composed of a generator network G : Z → X
and an adversarial part f : X → [0, 1]. The generator maps from a latent space
Z to image space X , where the parameters of G are adapted such that the
distribution of the synthesized examples assimilates to the real data distribu-
tion on X . Simultaneously, the adversarial f is trained to distinguish between
synthesized and real instances. In a two-player min-max game, generator param-
eters are updated to fool a steadily improving discriminator [20]. Improving the
joint loss functional of the generating and the adversarial part yielded improved
modifications of the initial GAN framework, like WGAN [17], improved WGAN
[21], LSGAN [22] or SNGAN [23]. While GANs reach outstanding performance
in image synthesis [24,25], they are also well accepted in improving prediction
quality in supervised image applications such as super-resolution [26], paired
image translation [27,28], and medical image enhancement [5,29].

2.2 Unpaired Image Transfer and Domain Mapping

Unpaired image translation maps an image from input to target domain where
corresponding samples from both spaces are hard to obtain or applied regis-
tration methods yield too much misalignment. In these cases, cycleGAN [11]
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has become the gold standard since it learns an inverse mapping from target
domain back to input space. The core idea of cycleGAN is that the synthesized
image must retain enough detail of the input instance in the target domain to
allow for reconstruction. Especially in the medical sector, a structure-preserving
transfer function is of high priority. Wolterink et al. [7] utilized cycle-consistency
for MRI-only treatment planning in radiotherapy. Hiasa et al. [8] improved the
cycleGAN architecture in this application area by adding a gradient consistency
loss to pay more attention to the edges in the image. Yang et al. [6] added to
cycleGAN a structure-consistency loss based on a modality independent neigh-
borhood descriptor.

Learning an inverse GAN framework simultaneously (bi-directional) in order
to ensure input-output consistency increases hardware requirements and intro-
duces an additional instability if the inverse generator is not trained sufficiently
or if the transfer mapping is not injective. Fu et al. [12] investigated geometry-
consistent GAN (gcGAN), an uni-directional approach that enforces consistency
when applying geometric transformations (rotation, flipping) before and after
propagation through the generator network. Benaim et Wolf [13] considered
GAN in combination with a distance constraint, where the distance between
two samples from the input domain should be preserved after mapping to the
target domain. A very recent and successful uni-directional approach to unpaired
domain mapping was made by Park et al. [14] that uses contrastive unpaired
translation (CUT), i.e., structure-consistency is preserved by matching patches
of the input and the synthesized instance using an additional classification step.

2.3 Uncertainty Quantification

Uncertainty quantification methods have been applied to solve a variety of real-
world problems in computer vision where in addition to the model’s response
also a measure on its confidence is provided [30]. In general, two broad categories
of uncertainty are considered: aleatoric uncertainty captures noise inherent in
the data and epistemic/model uncertainty describes uncertainty in the model
parameters [15]. The latter type of uncertainty occurs in finite data settings and
thus can be explained away providing a sufficient amount of data. Bayesian mod-
els provide a mathematically grounded framework that can account for model
uncertainty in combination with Bayesian inference techniques. Gal et Ghahra-
mani [31] set up a theoretical framework that casts the dropout technique as
approximate Bayesian inference, enabling a rather simple calculation of epis-
temic uncertainty by multiple network forward passes. The works of Saatci et
Wilson [16] as well as Palakkadavath et Srijith [32] leverage this framework
to Bayesian GANs and show that considering Bayesian learning principles can
address mode collapse in image synthesis. Kendall et Gal [15] have explored the
benefits of modeling aleatoric and epistemic uncertainty simultaneously in image
segmentation and regression and concluded that the two types of uncertainty are
not mutually exclusive, but in fact complementary in different data scenarios.
Upadhyay et al. modeled aleatoric uncertainty for MRI image enhancement [2]
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and unsupervised image transfer [9] by introducing uncertainty-aware general-
ized adaptive cycleGAN (UGAC). Therefore, the latter work will also serve as
a benchmark method for the proposed uncertainty-aware uni-directional image
transfer approach.

3 Method

3.1 Preliminaries and GAN Architecture

The underlying structure of the proposed uncertainty-aware domain mapping
is a GAN combined with a patch invariant generator term. Let X ⊂ R

d×d×cin

and Y ⊂ R
d×d×cout denote the input and the target domain, respectively. For

simplicity we consider quadratic instances with the number of image pixels equal
to d2. Furthermore, let X := {x1, . . . , xM} be the set of M given input images
and Y := {y1, . . . , yN} the set of N available but unaligned target images. PX
and PY denote the distributions of the images in both domains. The proposed
image transfer is built on a generator function Gθ : X → Y, which aims to
map an input sample to a corresponding instance in the target domain. The
generator function is approximated by a convolutional neural network (CNN),
which is parameterized by a weight vector θ. By adjusting θ, the distribution
Pθ of generator outputs may be brought closer to the real data distribution
PY in the target domain. The distance between the generator distribution and
the real distribution is estimated with the help of the critic fω : Y → R, which
is parameterized by weight vector ω and is trained simultaneously with the
generator network since Pθ changes after each update to the generator weights
θ [20].

We choose a network critic based on the Wasserstein-1 distance [17,20,33].
The Wasserstein-1 distance between two distributions P1 and P2 is defined as
W1(P1, P2) := infJ∈J (P1,P2) E(x,y)∼J ‖x − y‖, where the infimum is taken over
the set of all joint probability distributions that have marginal distributions P1

and P2. The Kantorovich-Rubinstein duality [33] yields

W1(P1, P2) = sup
‖f‖L≤1

[
E

y∼P1
f(y) − E

y∼P2
f(y)

]
, (1)

where ‖·‖L ≤ C denotes that a function is C-Lipschitz. Equation (1) indicates
that a good approximation to W1(PY , Pθ) is found by maximizing Ey∼PYfω(y)−
Ey∼Pθ

fω(y) over the set of CNN weights {ω | fω : Y → R 1-Lipschitz}, where
the Lipschitz continuity of fω can be enhanced via a gradient penalty [21]. Given
training batches y = {yn}b

n=1, yn
iid∼ PY and x = {xn}b

n=1, xn
iid∼ PX , this yields

the following empirical risk for critic fω:

�cri(ω, θ,y,x, p) :=
1

b

b∑

n=1

fω(Gθ(xn)) − fω(yn) + p ·
((‖∇ỹnfω(ỹn)‖2 − 1

)
+

)2

, (2)
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Fig. 1. Utilizing patch invariance for unsupervised MRI propagation and uncertainty
quantification. The T1w input and a corresponding random patch on a finer scale
are fed to the generator Gθ, which outputs the synthesized T2w counterparts and
corresponding scale maps (red). The synthesized patch and the corresponding patch of
the full-size output are compared. Loss attenuation is introduced by the scale map of
the synthesized patch. The generator is additionally updated using the Wasserstein-1
distance, estimated with the help of fω. (Color figure online)

where p denotes the influence of the gradient penalty, (·)+ := max({0, ·}) and
ỹn := εn · Gθ(xn) + (1 − εn) · yn for εn

iid∼ U [0, 1]. Since only the first term of the
functional in (2) depends on θ and the goal for the generator is to minimize the
Wasserstein-1 distance, the adversarial empirical risk for generator Gθ simplifies
as follows:

�gen(θ, ω,x) := −1
b

b∑
n=1

fω(Gθ(xn)). (3)

3.2 Patch Invariance

In the frame of medical image translation, it is not sufficient to ensure that
the output samples lie in the target domain. Great attention should be paid
that a model also preserves global structure as well as fine local details. Let
x ∈ R

d×d×c and Φ :=
{
(ρ, j1, j2) ∈ [0.7, 1] × [0, d]2

∣∣ j1 + ρd ≤ d ∧ j2 + ρd ≤ d
}
.

We define the patch operator P : Φ × R
d×d×c → R

d×d×c as follows:

P(ρ, j1, j2)(x) := Rd×d×c (x [j1 : j1 + ρd, j2 : j2 + ρd, :]) , (4)

where (ρ, j1, j2) ∈ Φ and Rd×d×c resizes the patch to original image size d×d×c.
The patch operator P chooses a quadratic patch of 70% to 100% the input size
and conducts resampling to original size (cf. Fig. 1). For resampling, we use
bicubic interpolation1.

The basic intuition now is: if we take a patch of the input image and propa-
gate it through the generator, than it should be equal to the corresponding patch

1 https://www.tensorflow.org/api docs/python/tf/image/resize.

https://www.tensorflow.org/api_docs/python/tf/image/resize
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of the transferred full-size image. We choose the 1-norm for comparing the cor-
responding patches and ensure realistic synthesized patches by adding the patch
operator also to the Wasserstein-1 critic. This yields the following improvements
for the critic and the generator risks:

�cri(ω, θ,y,x, p, �φ) :=
1

b

b∑

n=1

[
fω(Gθ(xn)) − fω(yn)

+ fω (Pφn(Gθ(xn))) − fω(Pφn(yn)) + p · (. . .)2
]
,

(5)

�gen(θ, ω,x, �φ, λ) :=
1
b

b∑
n=1

[
− fω (Gθ(xn)) − fω (Pφn

(Gθ(xn)))

+ λ · d−2 ‖Gθ(Pφn
(xn)) − Pφn

(Gθ(xn))‖1︸ ︷︷ ︸
�patch(θ,xn,φn)

]
,

(6)

where λ controls the influence of the patch loss and the patch extraction settings
φ = {φn}b

n=1, φn ∈ Φ are chosen randomly at each risk calculation.
This approach yields some practical advantages: The generator is forced to be

consistent over smaller patches, which prevents the network to generate modes
with highest similarity to the real data (mode collapse). Furthermore, the gen-
erator is prevented from learning arbitrary mappings between input and target
domain (e.g., mapping a T1w MRI of an old lady to a T2w MRI of a young
boy), because this memorized mapping would then also have to be fulfilled for
all smaller patches, i.e., the transfer would also have to be memorized on arbi-
trary scales. The patch extractor can also be viewed as a magnification and
cropping operation. This yields a higher penalty when comparing fine struc-
tures that may not have much effect on the loss function when compared on full
image scale. Finally, patch extraction causes implicit data augmentation and can
help to avoid critic overfitting where the critic is tempted to memorize training
samples.

3.3 Uncertainty by Loss Attenuation

We consider now Eq. (6) from a probabilistic point of view. For x ∈ X , let
a = Pφ(Gθ(x))) and b = Gθ(Pφ(x)) for a patch configuration φ ∈ Φ. If we force
the patch invariance via the 1-norm, the underlying assumption is that every
pixel of the residual ε := a− b should follow a zero-mean and fixed-scale Laplace
distribution [9]. Consider residual pixel εj ∼ Laplace(0, σ)(εj) = 1

2σ exp (−|εj |/σ)
where σ represents the scale parameter of the distribution. Maximum likelihood
(ML) optimization on the full image (note a and b are functions of θ) yields

max
θ

d2∏
j=1

1
2σ

exp (−|aj − bj |/σ) . (7)
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Applying the negative logarithm and dividing by factor d2 results in

min
θ

1
d2

d2∑
j=1

|aj − bj |/σ + log(2σ), (8)

which is equivalent to minimizing �patch(θ, x, φ) in Eq. (6) when considering a
fixed scale σ. The assumption of a fixed scale for the pixel-wise residuals is quite
strong and may not hold in the presence of OOD data. The idea now is to
consider individual scales for every pixel. Inspired by [9,15], we make the scale
σ a function of input x, i.e., we split the generator Gθ(x) = [GI

θ(x), Gσ
θ (x)] in

the output branch and return two images, the transferred image GI
θ(x) and the

corresponding pixel-wise scale map Gσ
θ (x) for the residuals. This results in

�patch(θ, x, φ) =
1
d2

d2∑
j=1

|GI
θ(Pφ(x))j − Pφ(GI

θ(x))j |
Gσ

θ (Pφ(x))j
+ log (2 · Gσ

θ (Pφ(x))j) . (9)

This can be seen as a loss attenuation as we get high values in Gσ
θ (x) for image

regions with high absolute residuals. At the same time, the logarithmic term dis-
courages the model to predict high uncertainty for all pixels. The proposed gen-
erator loss for patch invariant and uncertainty-aware image transfer is obtained
by inserting �patch (9) into �gen (6).

3.4 Implementation Details

In this work, the generator is a U-net [34] with five downsampling operations
and approximately 10.7 × 106 parameters. After the last upsampling opera-
tion, the U-Net is split into two branches to generate two responses, the trans-
ferred image GI

θ(·) and the corresponding uncertainty map Gσ
θ (·), c.f. (9). A

non-negative scale map is enforced by applying the softplus activation function
softplus(x) := log(exp(x) + 1) to the latter output branch. A decoding network
for the Wasserstein critic is built following the DCGAN critic [35] with 5 down-
sampling steps and approximately 4.7 × 106 parameters. Detailed information
on critic and generator implementation can be found in the github repository.
All models are trained using the Adam optimizer [36] with β1 = 0, β2 = 0.9
and minibatch size 8. The learning rate is set to 5 × 10−5 for the generator
and 2 × 10−5 for the critic network. No learning rate scheduler or further data
augmentation techniques are applied. The total amount of generator updates is
15k and we iterate between 15 critic updates and 1 generator update. Gradient
penalty parameter p equals 10, the influence λ of the patch constraint is chosen
for each data set individually by a grid search.

4 Experiments

4.1 Datasets

We consider three different tasks in medical image-to-image translation.
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Modality Propagation: The IXI [18] database consists of registered T1w and
T2w scans of 577 patients. We want to demonstrate the plausibility of our model
for unpaired modality propagation and thus build a model for T1w to T2w
transfer. To do so, we remove 10% of the patients for evaluation. The remaining
patients are randomly split into input and target data, where no patient con-
tributes to both domains at the same time. This is done to simulate a scenario
where no paired slices are available throughout the entire training process. We
only use the core 60% of all axial slices, which yields approximately 20k train
slices for input, 20k train slices for target, and 4k pairs for evaluation. The spatial
dimension d equals 256.

Accelerated MRI Enhancement: The FastMRI [3] database consists of more
than 1500 multi-coil diagnostic knee MRI scans and corresponding emulated
single-coil data. Our experiments are based on a subset of nearly 800 coronal
proton-density weighted scans without fat-suppression from the official train and
validation single-coil releases. We remove 10% of the patients for evaluation and
split the remaining patients into input and target data. While the target domain
consists of slices from fully-sampled MRI scans, we consider 4x acceleration (only
25% of k-space measurements) for the slices by using the subsampling scheme
discussed in [3,4]. This yields 7.1k train slices for input and 6.9k for target.
We are aware that enhancement of accelerated MRI can also be considered as
a supervised task since generation of paired instances is feasible. However, this
experiment should demonstrate possible applicability of the proposed framework
to inverse problems in general.

MRI-to-CT Synthesis: The CQ500 [19] consists of CT scans of nearly 500
patients, where we use a randomly selected subset of 80 patients for the target
domain. Furthermore, we make use of T1w MRI scans of 144 randomly selected
patients taken from IXI [18] as input data. For each dataset we use the core
60% of all axial slices, which yields 11.4k train slices for input and 10.4k train
slices for target. All slices are subsampled to spatial size d = 256. Note that
in this experiment input and target data is coming from completely separated
datasets (inconsistent head orientations, different brain areas, resolution, etc.).
An additional challenge are artifacts outside the skull caused by the CT table and
the measurement equipment in CQ500. We step away from any preprocessing
here and investigate how the method reacts to this kind of artifacts. Since no
ground truth data is available for the two separated databases only qualitative
evaluation is conducted.

4.2 Compared Methods and Scenarios

We compare our approach to a variety of state-of-the-art methods for unsuper-
vised image transfer that have already been introduced in Sect. 2.2 and Sect. 2.3:
cycle-consistent GAN (cycleGAN) [11], uncertainty-aware generalized adaptive
cycleGAN (UGAC) [9], geometry-consistent GAN (gcGAN) [12] with horizontal
flip and contrastive unpaired translation (CUT) [14]. We test two versions of
our approach: the first version utilizes only patch invariance (PI, cf. (6)) and the
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second version utilizes uncertainty-aware patch invariance (UAPI, cf. (9)). For
cycleGAN, UGAC and gcGAN we make use of the same generator and critic
architecture and training configurations as described in Sect. 3.4 to guarantee
a fair comparison. For CUT, we use the publicly available github repository2.
All slices are normalized to range [0, 255] and handled as grayscale images. Dur-
ing optimization, the images are scaled to [−1, 1] to speed up training while
evaluation metrics, the structural similarity index (SSIM) [37] and the peak-
signal-to-noise-ratio (PSNR), are calculated on original image scale.

For each of the three applications, we want to test not only performance on
unseen assessment data, but also robustness to different types of perturbations.
All approaches are trained on unaffected images (without additional noise) and
evaluated in the following scenarios: GN0 (original test images); GN5 (adding
Gaussian noise, deviation 5% of image range); GN10 (adding Gaussian noise,
deviation 10%); GN20 (adding Gaussian noise, deviation 20%); IP2 (impulse per-
turbation, 2% of pixels replaced by random values); IP5 (5% of pixels replaced);
IP10 (10% of pixels replaced).

4.3 Quantitative Evaluation

Table 1. Quantitative evaluation of our approach and four compared methods on two
datasets under seven different noise scenarios. The reported metrics are the structural
similarity index and the peak-signal-to-noise-ratio (SSIM/PSNR, higher is better).

Methods GN0 GN5 GN10 GN20 IP2 IP5 IP10

IXI test data

cycleGAN 78.99/20.90 77.04/20.71 72.53/20.14 63.87/19.19 69.81/20.39 64.51/19.99 60.08/19.50

UGAC 79.31/21.21 77.24/21.05 72.53/20.43 64.03/19.37 70.15/20.68 64.88/20.22 61.01/19.78

gcGAN 81.00/21.52 76.51/20.66 69.96/19.50 57.75/17.90 73.79/20.30 69.24/19.55 63.91/18.78

CUT 78.67/21.15 76.10//21.2271.43/20.58 61.27/19.67 74.11/21.19 71.78/20.94 68.97/.65

PI(ours) 82.53/22.18 69.82/21.49 51.90/20.64 36.96/19.26 54.85/20.92 44.10/20.24 38.73/19.70

UAPI(ours)79.99/22.62 78.76/22.2074.49/21.70 62.24/20.34 77.44/21.9374.29/21.56 69.35/21.14

FastMRI test data

cycleGAN 81.60/21.48 70.71/19.45 59.59/17.89 40.87/15.80 62.95/18.35 57.50/17.74 50.80/17.02

UGAC 85.29/22.62 72.17/19.91 59.64/17.99 43.21/16.24 72.01/20.03 63.97/18.73 56.36/17.71

gcGAN 80.73/20.76 68.67/18.13 59.23/16.60 48.31/15.26 71.51/18.61 65.22/17.54 58.66/16.61

CUT 89.36/23.37 85.67/22.7183.32/ 22.1576.63/ 20.5886.61/23.0284.45/ 22.4582.59 /21.86

PI(ours) 85.85/23.37 76.22/20.85 66.44/18.94 53.46/17.19 75.77/20.80 67.61/19.28 59.44/18.04

UAPI(ours)90.37/ 24.7481.08/21.37 69.97/18.41 55.72/16.07 79.18/19.81 71.69/17.97 65.44/16.98

The quantitative metrics in Table 1 obtained on unseen test data indicate supe-
rior performance of our approach for the modality propagation task on IXI.
Considering evaluation on clean test data, usage of patch invariance gives an
increase in SSIM and PSNR metrics compared to the bi-directional (cycleGAN,
UGAC) and uni-directional (gcGAN, CUT) benchmarks. As compared to the
benchmark methods, consideration of uncertainty-aware patch invariance even
2 https://github.com/taesungp/contrastive-unpaired-translation.

https://github.com/taesungp/contrastive-unpaired-translation
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improves results, also for the scenarios with perturbed test data (GN5 to IP10).
Robustness of UAPI is also established visually in Fig. 2. Especially for scenarios
with high perturbations (GN10, GN20, IP5, IP10), we observe a performance
advandtage when using the uncertainty-aware method UAPI. Interestingly, usage
of PI without uncertainty awareness on perturbation scenarios GN5 to IP10
yields a significant decrease for the SSIM but not for the PSNR metric. This
rather unexpected observation needs further investigation in future research.

Fig. 2. Visual analysis of the PSNR values on IXI under seven different test scenarios,
obtained by our two approaches (PI, UAPI) and 4 compared methods (cycleGAN,
UGAC, gcGAN, CUT).

In Table 1 we observe for the accelerated MRI enhancement task on FastMRI
that our method UAPI significantly outperforms other benchmark on unaffected
test data but gives modest accuracy when additional noise and perturbed pixels
are added. Figure 3 shows the superior performance of CUT in terms of the
PSNR metric for noisy data. This is quite interesting since that has not been the
case for the previous modality propagation application. The task of accelerated
MRI enhancement strongly differs from the other two applications. While the
goal of modality propagation and MRI-to-CT synthesis is to come up with a
completely new image, the aim of accelerated MRI enhancement is to improve
quality of a already existing image. In fact, the methods cycleGAN, UGAC,
gcGAN, PI and UAPI depend on a rather simple U-Net [34] implementation
and a standard DCGAN critic [35] with the aim to demonstrate plausibility
of different transfer approaches on easy-to-implement frameworks. The CUT
method is a benchmark where the publicly available source code had to be
used, consisting of a ResNet-based generator [11] and built-in data augmentation
techniques that may better compensate for noisy input data. Nevertheless, our
methods PI and UAPI seemingly achieve better results compared to the U-Net
based benchmarks. We will take up investigation of robustness of our methods
in combination with different network architectures as a future goal.
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Fig. 3. Visual analysis of the PSNR values on FastMRI under seven different test sce-
narios, obtained by our two approaches (PI, UAPI) and 4 compared methods (cycle-
GAN, UGAC, gcGAN, CUT).

4.4 Qualitative Evaluation

Fig. 4. Evaluation samples of our approach and four compared methods on IXI and
FastMRI for scenario GN0 (test data without perturbations). From left to right: input,
images transferred by cycleGAN, UGAC, gcGAN, CUT, PI, UAPI and ground truth.

In Fig. 4 we analyze the prediction quality of our and compared approaches in a
qualitative way. Considering modality propagation in MRI, we see that usage of
uncertainty-aware patch invariance (UAPI) gives a better detailed weighting of
the cerebrospinal fluid in the middle of the brain. In general, employing patch
invariance yields better preservation of fine structures. This observation also
applies to accelerated MRI enhancement. In particular, CUT and UAPI provide



Unsupervised Joint Image Transfer and Uncertainty Quantification 73

comparatively sharper knee images with more high-frequency details than the
other methods.

Fig. 5. Evaluation samples of the UAPI method on unseen brain MRI slices. For every
data pair, the input slice and the corresponding UAPI prediction are visualized on
the left and the right side, respectively. The first row contains the images on original
scale, the second row selected patches to visualize the prediction quality for detailed
structures.

Qualitative evaluation plays an important role for the third investigated
application, namely MRI-to-CT synthesis, where quantitative comparison is not
possible due to lack of ground truth data. Satisfying results were obtained with
the UAPI method, which are visualized in Fig. 5. Cavities and brain shapes are
well preserved by our method although we used two completely independent
and unaligned head datasets for this experiment. UAPI synthesizes brain table
artifacts that are also visible in CQ500. A proper evaluation on cleaned CT data
is necessary and thus will be considered as a future working step.

4.5 Uncertainty Scores

Additional to improved accuracy we demonstrate the efficacy of estimating the
scale maps with the proposed method. The input-dependent non-negative scale
maps are derived from the second output branch Gσ

θ , see (9). Indeed, the pre-
dicted scale maps are able to model uncertainty inherent from data. This can
be observed in Fig. 6, where in addition to the transferred images also the pre-
dicted scale maps and the absolute residuals between predicted and ground truth
images are displayed. Obviously, uncertainty is relatively greater in regions with
higher residual values. From the scale maps it can be deduced for which positions
the generator is comparatively uncertain in its prediction, such as the cerebral
cortex and eye sockets in head MRI or the lateral knee ligaments in knee MRI.

The correspondence between residual and scale maps suggests that the latter
can be used as an approximation to a prediction’s residuals that are not avail-
able due to the lack of ground truth data in unsupervised learning. In order to
quantitatively study this relationship we visualize mean absolute residual score
and mean uncertainty maps for 512 randomly selected unseen test images in a
scatter plot (see Fig. 7). Moreover, we compare our uni-directional method UAPI
also to the relations observed by UGAC that models uncertainty with the help
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Fig. 6. Position-based relation between
abs. residuals and predicted scale maps
on IXI (top) and FastMRI (bottom). Left
to right: input, ground truth, prediction
by UAPI, abs. residuals and predicted
scale map.

Fig. 7. Scatter plot between abs. resid-
ual and scale map values on IXI (top)
and FastMRI (bottom). The predictions
are generated by UAPI (left) and UGAC
(right).

of a bi-directional cycleGAN [9]. For modality propagation as well as accelerated
MRI enhancement we visually observe an approximate positive linear correla-
tion between mean absolute residual scores and mean uncertainty scores. We
calculate the Pearson correlation coefficient (PCC) to obtain a quality estimate
for the linear correlation and compare between UAPI and UGAC. Our method
returns a slightly higher PCC on IXI (UAPI: 0.69, UGAC: 0.67). The discrepancy
between both methods even increases on FastMRI (UAPI: 0.72, UGAC: 0.45).
This further encourages the idea that scale maps derived from our approach can
be used to indicate the overall quality of a transferred image.

5 Conclusions

In this paper we proposed a WGAN-based approach using patch invariance to
employ joint image transfer and uncertainty quantification in an fully unsu-
pervised manner. We demonstrate superior performance of our uni-directional
method for modality propagation and accelerated MRI enhancement compared
to four state-of-the-art benchmarks in unpaired image translation. Moreover, the
method reaches qualitatively satisfying results for MRI-to-CT synthesis using
completely unaligned databases during training. The predicted uncertainty can
be representative of the residual maps and thus indicate the quality of a trans-
ferred image in the absence of ground truth data. Further investigation of the
network architecture and improvement in robustness represents an important
goal for future research. Future work will also include the application of the
uncertainty-aware and patch invariant network to other unpaired image-to-image
applications outside the medical sector.



Unsupervised Joint Image Transfer and Uncertainty Quantification 75

References

1. Wang, T., et al.: A review on medical imaging synthesis using deep learning and
its clinical applications. J. Appl. Clin. Med. Phys. 22(1), 11–36 (2021), https://
aapm.onlinelibrary.wiley.com/doi/abs/10.1002/acm2.13121

2. Upadhyay, U., Sudarshan, V.P., Awate, S.P.: Uncertainty-aware GAN with adap-
tive loss for robust MRI image enhancement. In: 2021 IEEE/CVF International
Conference on Computer Vision Workshops (ICCVW), pp. 3248–3257 (2021)

3. Zbontar, J., Knoll, F., et al.: fastMRI: an open dataset and benchmarks for accel-
erated MRI (2018). https://arxiv.org/abs/1811.08839

4. Hyun, C.M., Kim, H.P., Lee, S.M., Lee, S., Seo, J.K.: Deep learning for undersam-
pled MRI reconstruction. Phys. Med. Biol. 63(13), 135007 (2018). https://doi.org/
10.1088/1361-6560/aac71a

5. Lei, Y., et al.: MRI-only based synthetic CT generation using dense cycle consistent
generative adversarial networks. Med. Phys. 46(8), 3565–3581 (2019)

6. Yang, H., et al.: Unpaired brain MR-to-CT synthesis using a structure-constrained
CycleGAN. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol.
11045, pp. 174–182. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
00889-5 20

7. Wolterink, J.M., Dinkla, A.M., Savenije, M.H.F., Seevinck, P.R., van den Berg,
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