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Abstract. Using self-supervised learning, neural networks are trained
to predict depth from a single image without requiring ground-truth
annotations. However, they are susceptible to input ambiguities and it
is therefore important to express the corresponding depth uncertainty.
While there are a few truly monocular and self-supervised methods mod-
elling uncertainty, none correlates well with errors in depth. To this end
we present Variational Depth Networks (VDN): a probabilistic extension
of the established monocular depth estimation framework, MonoDepth2,
in which we leverage variational inference to learn a parametric, continu-
ous distribution over depth, whose variance is interpreted as uncertainty.
The utility of the obtained uncertainty is then assessed quantitatively in
a 3D reconstruction task, using the ScanNet dataset, showing that the
accuracy of the reconstructed 3D meshes highly correlates with the pre-
cision of the predicted distribution. Finally, we benchmark our results
using 2D depth evaluation metrics on the KITTI dataset.

Keywords: Self-supervised learning · Depth estimation · Variational
inference

1 Introduction

Depth estimation is an important task in computer vision, since it forms the
basis of many algorithms in applications such as 3D scene reconstruction [2,38,
39,47,55] or autonomous driving [52,57,60] among others. Inferring depth from
a single image is an inherently ill-posed problem due to a scale ambiguity: an
object in an image will appear the same if it were twice as large and placed
twice as far away [20]. Nevertheless, deep neural networks are able to provide
reliable, dense depth estimates by learning relative object sizes from data [10].
To this end, there are two main learning paradigms: supervised training from
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(a) (b)

Fig. 1. (a) Top to bottom: input images from ScanNet [7] (scene 0019 00), predicted
depths (far close), predicted uncertainties (low high); (b) Top: recon-
structed scene from all dense depth predictions, bottom: reconstructed scene from
filtered depths. Notice how the predicted uncertainty highlights regions (circled in
red) for which the network would not have received meaningful error signal during self-
supervised training, and is therefore susceptible to mistakes. Those can then be filtered
using thresholded uncertainties as masks, leading to a sparser but more accurate scene
reconstruction (Color figure online)

dense [12,49,51] or sparse [34] ground truth depth maps, e. g.obtained by a Time-
of-Flight [22,43] sensor such as LiDAR [6], and self-supervised training which
exploits 3D geometric constraints to construct an auxiliary task of photometric
consistency between different views of the same scene [13,16,17,62]. The latter
approach is particularly useful as it does not require ground truth depth images,
and can be applied on sequences of frames taken by an ordinary, off-the-shelf
monocular camera.

To reliably make use of the estimated depth in downstream tasks, a dense
quantification of the uncertainty associated to the predictions is essential [28].
Consider the example given in Fig. 1 where the depth predictions for the overex-
posed, blank white walls are compromised (see red markings in Fig. 1a), leading
to a noisy scene reconstruction as shown in the top part of Fig. 1b. To miti-
gate this, one can use the uncertainty maps to filter the potentially erroneous
depth pixels and produce a sparser but more accurate mesh, cf.bottom of Fig. 1b.
However, obtaining meaningful confidence values from a single image in a fully
self-supervised learning setting is an especially challenging task, as the depth is
only indirectly learnt. Consequently the majority of existing uncertainty-aware
methods are either trained in a supervised fashion [4,31,35,50], assume that mul-
tiple views are available at test time [26] or model other types of uncertainty,
e. g.on the photometric error [58].

The goal of our work is to extend self-supervised depth training with prin-
cipled uncertainty estimation. To that end, we present Variational Depth Net-
works (VDN)—an entirely monocular, probabilistically motivated approach to
depth uncertainty. It builds upon established self-supervised methods and lever-
ages advancements in approximate Bayesian learning. Specifically, VDN extends
MonoDepth2 [17] to model the depth as a continuous distribution, whose param-
eters are optimised using the framework of variational inference [18,30]. As a
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result, the network learns to assign high uncertainty to regions for which the
depth can vary a lot without significantly increasing the photometric error, and
low uncertainty otherwise. Building up on this idea, in Sect. 4 we also present a
new method to quantitatively evaluate the utility of the uncertainty maps in a
3D reconstruction task using the ScanNet dataset [7], and benchmark the quality
of the 2D depth predictions on the KITTI dataset [14]. In summary, our main
contributions are as follows:

– We propose VDN as a novel probabilistic framework for monocular, self-
supervised depth estimation, which uses approximate Bayesian inference to
learn a continuous, parametric distribution over the depth. The uncertainty
is then expressed as the variance of this distribution.

– We show qualitatively that the obtained uncertainty is more interpretable as it
highlights regions in the image which are difficult to learn in a self-supervised
setting.

– We also demonstrate that high confidence predictions are more likely to be
accurate. For that, we propose an evaluation scheme based on the task of 3D
scene reconstruction, where the depth uncertainty is used to filter unreliable
predictions before fusion.

2 Related Work

Self-supervised Uncertainty. Self-supervised learning for monocular depth
estimation was originally proposed by Zhou et al. [62]. Their core idea is that a
network that predicts the depth and relative pose of a video frame can be opti-
mised by using the photometric consistency with warped neighbouring frames
as a loss function. They also include an explainability mask in their network to
account for moving objects and non-Lambertian surfaces, which can be inter-
preted as a form of uncertainty estimation. Later, Godard et al. [17] consolidated
several improvements into a conceptually simple method called MonoDepth2,
which did not include the explainability mask since it did not have a significant
impact on the accuracy of the estimated depth in practice.

Klodt and Vedaldi [31] were the first to probabilistically model the depth,
pose and photometric error and use the estimated uncertainties to down-weight
regions in the image that violate the colour constancy assumption made by
the photometric objective function. The depth and poses are modelled through
Laplacian distributions where the likelihoods of target depth and pose, obtained
from a classical Structure-from-Motion system [36], are maximised. In contrast
to their method, ours is self-contained, i. e.it does not rely on external teachers
and therefore its performance is not bounded by the quality of those. In an
analogous way, Yang et al. [58] also model the photometric error as a Laplacian
distribution, and show that its variance can be used to improve the downstream
task of visual odometry [59].

Alternatively, depth estimation can be reframed as a discrete classification
problem, as proposed by Johnston and Carneiro [24], which allows for computing
the variance without any additional prediction head in the network. However,
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their approach does not have strong guarantees on the quality of the output dis-
tribution [19] and in practice the variance appears to mostly inversely correlate
with the predicted disparity except for the furthest regions in the image. On
the other hand, Poggi et al. [42] present a comprehensive summary of various
depth uncertainty estimation techniques for self-supervised learning and propose
a combination of ensembling and self-teaching methods as an effective way to
improve depth accuracy. They also propose evaluation metrics based on sparsi-
fication, which can be used to assess the quality of the predicted uncertainty. In
our work we will compare to baselines from both [24] and [42].

Last, the shortcomings of photometric uncertainty estimation in the context
of Multi-View Stereo [44] are addressed by Xu et al. [56] with the goal of directly
improving the predicted depth. In contrast, we aim for a monocular method with
interpretable uncertainty values.

Supervised Uncertainty. A fully supervised probabilistic approach is taken
by Liu et al. [35], where the authors update a discrete depth probability vol-
ume (DPV) for each image, by fusing information from consecutive frames in
an iterative Bayesian filtering fashion. Due to the discrete nature of the DPV,
arbitrary distributions can be expressed, however to obtain an initial estimate
for it, one needs to compute a cost volume from a number of frames in a video
sequence. Moreover, their confidence maps show banding artefacts originating
from the discrete depth representation in the cost volume.

Whereas most prior work uses a Laplacian or Gaussian distribution to model
the depth and its uncertainty, ProbDepthNet from Brickwedde et al. [4] uses a
Gaussian mixture model (GMM). The main benefit of GMMs is that they can
represent multi-modal distributions, which can occur in foreground-background
ambiguity. Walz et al. [50] propose a method for depth estimation on gated
images and model the aleatoric depth uncertainty. Ke et al. [26] have the goal
to improve scene reconstruction using depth uncertainty in a two-stage method:
(i) predict a rough depth and uncertainty estimates using optical flow and tri-
angulation from multiple frames; and (ii) refine the outputs of the first stage in
an iterative procedure based on recurrent neural networks.

3 Methods

3.1 Background and Motivation

Fundamentals. Let D = {It}t=1...N be a sequence of image frames and Tt→s

the corresponding 3D camera motion from a target frame t to a source frame s.
Further, let K denote the camera intrinsic matrix, projecting from 3D camera
coordinates to 2D pixel coordinates x ∈ X . Then, by exploiting 3D geometric
constraints, one can cast the task of learning a depth map Dt for a frame It

as a photometric consistency optimisation problem between the target and the
warped source frames [13,17,62]:

Lphoto(It,Dt) =
∑

x∈X
‖Is〈KTt→sDt(x)K−1x〉 − It(x)‖, (1)
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Fig. 2. (a) A sample input image from ScanNet [7] (scene 0000 00); (b) Photometric
uncertainty; (c) Variational depth uncertainty; (low high)

where Is〈·〉 stands for a (bilinear) interpolation on the source frame Is, following
the notation of [17]. For the sake of notational brevity, here and throughout the
rest of the paper we omit the dependencies on K as well as on Is and Tt→s in
the losses.

The estimated depth Dt is usually expressed as the inverse disparity output
of a deterministic convolutional neural network μθ, parametrised by weights θ:

Dt = μθ(It)
−1

. (2)

For numerical reasons, the disparity output is activated by a sigmoid non-
linearity and stretched to a predefined

[
d−1
max, d

−1
min

]
range. In practice, the loss

from Eq. (1) is also extended to account for multiple source frames (e. g.using
the minimum reprojection error [17]) and combined with other terms such as
structural similarity [53] or smoothness regularisation [16,17]. In this paper we
will refer to the extended loss as Lphoto and to the full model as MonoDepth2.
Importantly, this will serve us as a basis framework for monocular, self-supervised
depth learning upon which we will introduce a probabilistic extension in Sect.
3.2.

Uncertainty Estimation. Despite its wide-spread popularity, MonoDepth2
is not designed to account for the uncertainty associated with Dt. Following a
paradigm of modelling the aleatoric uncertainty explicitly [28] one can reframe
the loss from Eq. (1) into an exponential family likelihood with a learnable
variance σ̂θ:

p(It | Dt) ∝ 1
σ̂θ(It)

exp
(

−Lphoto(It,Dt)
σ̂θ(It)

)
, (3)

where we abuse the notation for the weights θ and the neural network σ̂, which
may share only some of its parameters with μ. At this point, it is important
to clarify that σ̂θ(It), as used in Eq. (3), accounts merely for the variance in
the photometric error, Lphoto, and not the predicted depth Dt. To give and
intuitive explanation why the two uncertainties are not interchangeable, con-
sider the following thought experiment: let all pixels in It and Is have the
same colour value. Then, for any predicted Dt and arbitrary Tt→s we have that
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It(x) = Is〈KTt→sDt(x)K−1x〉 = Is(x), ∀x ∈ X and the likelihood from Eq.
(3) is maximised with σ̂θ(It) → 0. Thus the photometric variance will collapse,
while the actual depth variance is large.

In reality, this scenario can occur at large textureless surfaces, such as walls
or overexposed regions close to light sources. Figures 2a and 2b show an example
input and the corresponding photometric uncertainty. Notice how the network
confidence is lowest in the aforementioned regions and highest on their bound-
aries or in high-frequency patterned areas, where small changes in Dt can sub-
stantially increase Lphoto. Thus, the photometric variance does not necessarily
correlate with the uncertainty in the depth estimate, and in some cases it is
even complementary to the latter. On the other hand, VDN is able to assign
high depth variance to those regions, cf. Fig. 2c.

Despite that, the photometric uncertainty has been reported to quantita-
tively improve the depth estimates [42,58]. We hypothesise that this can be
attributed to the effect of loss attenuation as the supervisory signal is not dom-
inated by noise stemming from the difficult, depth sensitive areas such as non-
Lambertian objects, similarly to the observations made by [28] in a supervised
depth regression setup. Nevertheless, there are real-world applications, such as
3D scene reconstruction where proper depth uncertainty estimation is of greater
importance, as we will show experimentally in Sect. 4.

3.2 Variational Depth Networks

Objective. In the following, we will introduce a probabilistic extension to the
self-supervised depth learning pipeline, in which the variance of the predicted
depth maps can be reliably estimated. Intuitively speaking, we will assume that
Dt is a random variable following some conditional distribution and we will make
the image warping transformation in Eq. (1) aware of the probabilistic nature of
Dt. We find this intuition to fit well into the Bayesian framework of reasoning
and we will leverage approximate variational inference [18,25,30] to optimise a
parametric distribution over Dt.

In essence, it requires that we specify a likelihood p(It | Dt), a prior p(Dt) and
a posterior distribution p(Dt | It) to which a tractable approximation, qθ(Dt | It)
is fit. Then, using qθ we can derive a lower bound on the marginal log-likelihood:

EpD [log pθ(It)] = EpD

[
logEqθ

[
p(It | Dt)p(Dt)

qθ(Dt | It)

]]
(4)

≥ EpD,qθ

[
log

p(It | Dt)p(Dt)
qθ(Dt | It)

]
. (5)

This can be further decomposed into a log-likelihood and a KL-divergence term,
into the so-called evidence lower bound :

LELBO(It,Dt) = EpD,qθ
[log p(It | Dt)]

− EpD [KL (qθ(Dt | It) || p(Dt))].
(6)
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One can show that maximising LELBO w. r. t.θ is equivalent to minimising
EpD [KL (qθ(Dt | It) || p(Dt | It))] thus closing the gap between the approxima-
tion and the underlying true posterior [18,25]. For the likelihood of VDN we
choose an unnormalised density as in Eq. (3), however, throughout this work we
will not model both the photometric and depth uncertainty, so as to isolate the
effects of our contribution. In the subsequent sections we will specify the exact
form of qθ(Dt | It) and p(Dt).

Approximate Posterior. In the context of depth estimation, one has to take
into account two considerations when choosing a suitable family of variational
distributions. First, it has to have a positive, bounded support over [dmin, dmax]
and, second, it has to allow for reparametrisation so that the weights θ can be
learnt with backpropagation. One such candidate distribution is given by the
truncated normal distribution [5], constrained to the aforementioned interval,
whose location parameter is defined by the output of the neural network μθ and
the scale by σθ, similarly to Eq. (3). Unlike the photometric variance σ̂θ, σθ

will have a direct relation to the variance of the estimated depth. For numerical
reasons, however, it may be beneficial to express the approximate posterior over
disparity instead of depth [17], and convert disparity samples to depth as per Eq.
(2):

qθ(D−1
t It) = Ntr

(
D−1

t | μθ(It), σθ(It), d−1
max, d

−1
min

)
. (7)

Backpropagating to μθ and σθ is possible through a reparametrisation using the
inverse CDF function, which is readily implemented in TensorFlow [1,11] and in
third-party packages [40] for Pytorch [41].

Here we assume that qθ is a pixelwise factorised distribution and we obtain a
disparity prediction using the mode, μθ(It). Since we have defined a distribution
over the disparity, it is not straightforward to obtain the mode of the transformed
distribution over the depth, q−1

θ . Fortunately however, for the given truncated
normal parametrisation and the reciprocal transformation one can compute it
analytically from the density of q−1

θ using the change of variables trick, see
Appendix A.2 for details:

mode
(
q−1
θ (Dt | It)

)
= min(max(m, dmin), dmax),

where m =

√
μθ(It)2 + 8σθ(It)2 − μθ(It)

4σθ(It)2
.

(8)

Finally, to obtain the estimated pixelwise depth uncertainty, one can compute
the sample variance of q−1

θ .

Prior. The choice of depth prior is particularly important for us because it can
adversely bias the shape of the variational posterior. To understand the reason
for that, one has to compare the VDN model with a regular VAE [30]: while both
models encode the input image in a latent representation, a VDN does not use
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VDN

warp K

Tt→s

Is

LKL

Lphoto

Ui

frozen VDN

σθ
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1/x
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Fig. 3. Model overview of VDN with an example input from ScanNet [7] (scene
0000 00). Given a target image It, the subnetworks μθ and σθ predict the pixelswise
location and scale parameters of the approximate posterior, resulting in a factorised
distribution over disparities. Then, multiple samples are drawn and the reciprocal of
each is used independently in a warping transformation of a source image Is, assum-
ing known intrinsics K and pose Tt→s. The warped and interpolated source frames
are used to compute the likelihood. The prior is given by the predicted location and
scale parameters from a set of pseudo-inputs Ui as per [48]. The arrow denotes a
sampling operation

a learnable decoder to form the likelihood but rather a fixed warping transfor-
mation. This means that a bias in the latent space, cannot be compensated for
during decoding, resulting in hindered weight optimisation. For this reason we
opt for a learnable prior given by the aggregated approximate posterior, which
is provably the optimal prior for that task [46,48], see Appendix A.1 for details:

p∗(Dt) =
∑

It∈D
qθ(Dt | It)pD(It). (9)

Unfortunately, however, the estimation of the aggregate posterior is compu-
tationally prohibitive for large, high-dimensional datasets. Therefore, we employ
an approximation by Tomczak et al. [48], called VampPrior, where the prior is
given as a mixture of the variational posteriors computed on a set of learnable
pseudo inputs {Ui}i=1...k:

p(Dt) ≈ 1
k

k∑

i=1

qθ(Dt | Ui). (10)

Earlier, we expressed the approximate posterior in disparity- rather than depth-
space and consequently the prior becomes a mixture distribution over disparities
too. Since the KL-divergence is invariant to continuous, invertible transforma-
tions [33] (such as the reciprocal relation of depth and disparity), one can com-
pute KL (qθ(D−1

t | It) || p(D−1
t )) instead. In summary, all of the components of

VDN are presented in Fig. 3.



Variational Depth Networks 51

4 Experiments

4.1 Setup

Datasets

ScanNet. The ScanNet [7] dataset contains 1513 video sequences collected in
indoor environments, annotated with 3D poses, dense depth maps and recon-
structed meshes. The reason to use this dataset is to evaluate the per-image
depth and uncertainty estimation and to assess the utility of uncertainty in
3D reconstruction. Consequently, we use the ground-truth poses to compute the
photometric error instead of predicting them. For training we only consider every
10th frame as target to reduce redundancy and for each, we find a source frame
both backwards and forwards in time with a relative translation of 5–10cm and
a relative rotation of at most 5◦. All images are resized to 384 × 256 pixels.
We use the ground-truth poses to compute the photometric error and do not
train a network to predict the pose since we want to focus our analysis in this
experiment on the depth and uncertainty estimates only.

KITTI. The KITTI dataset [14] is an established benchmark dataset for depth
estimation research and consists of 61 sequences collected from a vehicle. Fol-
lowing [17], we use the Eigen split [12], resize the input images to 640 × 192
and evaluate against LiDAR ground-truth capped at 80 m. Unlike the ScanNet
experiments, here the camera poses are learnt the same way as in [17] so as to
allow for fair comparison.

Metrics

3D. Previous works on 3D reconstruction [3,37,45] use point-to-point distances
as the basis for comparing to ground-truth meshes. They convert each mesh
to a point cloud by only considering its vertices, or by sampling points on the
faces, essentially discarding the surface information of the mesh. However, if a
predicted point lies on the surface of the ground-truth mesh it can still incur
a non-zero error since only the distance to the closest vertex is considered. To
mitigate this, we propose to use a cloud-to-mesh (c → m) distance as a basis
for our 3D reconstruction error computation, which is readily available in open-
source software like CloudCompare [15]. Given a mesh M = (V,F), where V
denotes the vertices and F the faces, we compute the accuracy as the fraction of
vertices for which the Euclidean distance to the closest face f ′ ∈ F ′ in another
mesh M′ is smaller than a threshold ε:

accc→m(M,M′) =
1

|V|
∑

v∈V
1

[
min

f ′∈F ′
dist(v, f ′) < ε

]
. (11)

Here 1[·] denotes the indicator function. Given predicted and ground-truth
meshes, Mpred and Mgt respectively, we define the precision as accc→m(Mpred,
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Mgt) and the recall as accc→m(Mgt,Mpred). The F-score is the harmonic mean
of the precision and recall [32]. Following standard practices in 3D reconstruction
literature [37,45] we use a threshold of ε = 5 cm in all our evaluations.

2D. For the evaluation of the 2D predicted depth maps we compute the widely
used metrics proposed by Eigen et al. [12]. Uncertainty is evaluated using spar-
sification curves [23] and the Area Under the Sparsification Error (AUSE) and
Area Under the Random Gain (AURG) as proposed by Poggi et al. [42]. Note
AURG and AUSE are computed w. r. t.another 2D depth metric and therefore
comparison among different models is fair only when they perform similarly on
that metric too.

Implementation Details

Network Architectures and Training Details. Even though our model architec-
ture strictly follows [17] there are a couple of deviations. In particular, to accom-
modate the prediction of the distribution location and scale parameters, we
duplicate the original disparity decoder architecture and, for the scale parame-
ter only, change the output activation to linear. To avoid numerical instability
issues with the scale, we clip it to the [10−6, 3] interval. In all our experiments
we use a ResNet-18 encoder [21], pretrained on ImageNet [9], the Adam opti-
miser [29] with an initial learning rate of 10−4 which we reduce by a factor of 10
after 30 epochs, for a total of 40 epochs. The VampPrior for our VDN models
is computed as described in Sect. 3.2 with 20 pseudo-inputs, which we initialise
by broadcasting a random colour value over the height and width dimensions.
To estimate the loss LELBO from Eq. (6) the approximate posterior is sampled
10 times.

3D Reconstruction. We use the TSDF-fusion algorithm implemented in Open3D
[61] to reconstruct ScanNet [7] scenes. To speed up reconstruction, we only inte-
grate every 10th frame and, during fusion, we use a sample size of 5 cm and a
truncation distance of 20 cm. For evaluation we use the ground-truth meshes
provided with the dataset.

4.2 ScanNet: Uncertainty-Aware Reconstruction

To evaluate the usefulness of the predicted uncertainty we use the task of 3D
reconstruction on ScanNet [7] scenes. In this experiment we leverage the depth
uncertainty for measurement selection by masking out pixels with uncertainty
above a preselected threshold during the integration process. We compare our
method to several other recently proposed depth uncertainty estimation meth-
ods, all implemented on top of the same MonoDepth2 framework. Photometric
uncertainty refers to Eq. (3), which is used by D3VO [58] to improve visual odom-
etry. Self-teaching refers to the method proposed by Poggi et al. [42], where we
use the model without uncertainty as a teacher for training the student network
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Fig. 4. ScanNet: mean reconstruction precision (a) and recall (b) as well as 2D depth
RMSE (c) curves on the validation set for various filtering thresholds on the uncertainty.
A monotonically decreasing precision curve indicates that the uncertainty correlates
well with the errors in the depth maps used for fusion while a higher recall means that
smaller portions of the geometry are being removed

in a supervised way. Discrete depth predicts a discrete disparity volume [24],
from which continuous depth and variance can be derived. Each of these meth-
ods constitute a fair baseline as all are fully self-supervised and monocular.

Table 1. ScanNet: 2D depth, 2D uncertainty and 3D reconstruction metrics.
All methods are based on the same MonoDepth2 architecture and are our own
(re)implementations. ↑ and ↓ denote if higher or lower score is better

Method Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑ AUSEa ↓ AURGa ↑ Precision ↑ Recall ↑ F-score ↑

No uncertainty (MonoDepth2) 0.146 0.088 0.425 0.204 0.800 0.948 0.985 - - 0.216 0.395 0.276

Photometric uncertainty 0.154 0.098 0.426 0.215 0.787 0.940 0.979 0.102 -0.008 0.204 0.395 0.266

Self-teaching [42] 0.170 0.115 0.529 0.246 0.690 0.914 0.975 0.056 0.034 0.194 0.223 0.204

Discrete depth [24] 0.147 0.086 0.419 0.202 0.796 0.946 0.984 0.091 -0.001 0.212 0.392 0.272

VDN (fixed prior) 0.148 0.093 0.416 0.211 0.797 0.944 0.981 0.083 0.006 0.217 0.392 0.276

VDN (VampPrior) 0.144 0.085 0.402 0.194 0.801 0.948 0.985 0.083 0.003 0.219 0.395 0.279

VDN (fixed prior, 10 scenes) 0.414 0.495 1.036 0.787 0.318 0.546 0.675 0.125 0.094 0.096 0.262 0.138

VDN (VampPrior, 10 scenes) 0.287 0.238 0.680 0.348 0.494 0.797 0.931 0.152 0.008 0.103 0.261 0.144

a Measured on Abs Rel.

Table 1 summarises the results for the standard 2D depth and 3D reconstruc-
tion metrics. First, we note that photometric uncertainty performs considerably
worse than the other methods. Discrete depth performs generally on par with
the No uncertainty baseline. VDN slightly outperforms all baselines on most
metrics. Figure 4a shows the mean reconstruction precision when increasing the
uncertainty threshold at which predictions are considered valid. We expect to
see a downwards trend, as using more uncertain predictions should decrease the
accuracy of the reconstructed mesh. Here, the photometric uncertainty does not
show this behaviour, whereas the variational and discrete uncertainty do show it,
with discrete generally having a higher precision everywhere except when using
more than 90% of the pixels. Conversely, Fig. 4b shows the mean reconstruction
recall where a rapid increase signifies that larger pieces of the scene geometry
are being cut out. For the sake of completeness, in Fig. 4c we also a provide
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Fig. 5. (a) Meshes constructed using the ground-truth depth maps from ScanNet [7]
(scene 0019 00); (b) Coloured meshes using the predicted depths; (c) Meshes from
predicted depth, coloured by the cloud-to-mesh distances from the ground-truth; (d)
Meshes from predicted depth, coloured by the depth uncertainty; (low high)

similar plots for the mean RMSE as measured on 2D depth images. Figures
5a and 5b show reconstructions from ground-truth and predicted depths for all
uncertainty-aware baselines, and Figs. 5c and 5d depict the corresponding cloud-
to-mesh distances and uncertainties. Notice how the photometric uncertainty
anti-correlates with the precision, while the discrete depth merely increases the
uncertainty with the distance from the camera. The output of the self-teaching
model is not very interpretable either as it models the aleatoric noise in the
teacher network. More qualitative examples are disclosed in Appendix B.

4.3 ScanNet: Prior Ablation Study

To investigate the adverse effects of naively specifying a prior distribution over
the disparity, we compare the VampPrior against a truncated normal distribution
with fixed location and scale parameters at 0.5 and 2.0 respectively, in two
training scenarios: on the full training data and on a subset of 10 scenes only.
The latter setup is especially interesting because it exacerbates any undesirable
influence the prior might have onto the approximate posterior due to the lack of
sufficient training data. While both priors are capable of regularising the spread
of the variational posterior, the VampPrior shows superior results as presented
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Fig. 6. (a) Sample input images from the Eigen test split [12] in KITTI [14]; (b) Pre-
dicted disparities; (c) Predicted disparity variance; (d) Estimated depth variance using
100 samples

Table 2. KITTI: 2D depth and uncertainty evaluation results on the Eigen test
split [12] with raw LiDAR ground truth (80 m)

Method
Abs Rel RMSE δ < 1.25

Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
AUSE ↓ AURG ↑ AUSE ↓ AURG ↑ AUSE ↓ AURG ↑

No uncertainty (MonoDepth2 [17]) 0.115 0.882 4.791 0.190 0.879 0.961 0.982 - - - - - -

Boot+Self [42]a 0.111 0.826 4.667 0.184 0.880 0.961 0.983 0.033 0.040 2.124 1.857 0.033 0.077

Photometric uncertainty [42]a 0.113 0.928 4.919 0.192 0.876 0.958 0.981 0.051 0.027 3.097 1.188 0.060 0.056

VDN (ours) 0.117 0.882 4.815 0.195 0.873 0.959 0.981 0.058 0.018 1.942 2.140 0.085 0.030

a The scores are taken from Tables 10 and 13 in the supplementary material of [42].

in the bottom half of Table 1. In particular, in the low data regime, it achieves
significantly better scores on most metrics.

4.4 KITTI: 2D Depth Evaluation

In order to benchmark VDN on the KITTI dataset [14] against comparable prior
work, we have selected as baselines the original MonoDepth2 [17], referred to as
No uncertainty, the MonoDepth2 (Boot+Self ) from Poggi et al. [42], which does
account for depth uncertainty through self-teaching and bootstrapped ensemble
learning, and the Photometric uncertainty baseline also presented in [42] under
the name MonoDepth2-Log. Table 2 shows the depth and uncertainty results
for the VDN and the baselines. Our model performs slightly worse than the
baselines except for the RMSE-AUSE and AURG metrics, which we attribute
to the increased amount of noise during training, stemming from the stochastic
sampling operations. Figure 6a shows three example inputs from the test set with
their corresponding disparity location and scale predicted parameters in Figs. 6b
and 6c. The resulting depth uncertainty is illustrated in Fig. 6d, which highlights
the depth ambiguity of the sky and distant, indistinguishable objects.

5 Conclusions

We have presented a probabilistic extension of MonoDepth2, which learns a para-
metric posterior distribution over depth. The method yields useful uncertainty,
which correlates well with the error in the depth predictions and consequently,
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we have shown that one can use the uncertainty to mask out unreliable pixels
and improve the precision of meshes in a 3D scene reconstruction task. Such
masking, however, can come at a cost of decreased recall, resulting in sparser
meshes. It is therefore a promising direction for future work to combine our
method with a disparity [27] or mesh completion algorithm [8]. Other extensions
of our work could combine the photometric and variational depth uncertainties,
as the former is complementary to the latter, or apply VDN to multi-view, self-
supervised depth estimation [54]. Finally, we note that due to the stochastic
nature of our method, it is moderately demanding on computation and mem-
ory resources during training, as an additional forward-pass is needed for the
VampPrior, and multiple samples are drawn from the approximate posterior to
estimate the likelihood and KL-divergence terms of the loss. In addition, the
depth uncertainty is computed from samples of the transformed disparity poste-
rior. For the training and evaluation of all models we have used a single NVIDIA
RTX A5000 GPU with 24 GB of memory.
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