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Abstract. In this paper, we propose an embarrassingly simple yet highly
effective adversarial domain adaptation (ADA) method. We view ADA
problem primarily from an optimization perspective and point out a fun-
damental dilemma, in that the real-world data often exhibits an imbal-
anced distribution where the large data clusters typically dominate and
bias the adaptation process. Unlike prior works that either attempt loss
re-weighting or data re-sampling for alleviating this defect, we introduce
a new concept of go-getting domain labels (Go-labels) to replace the orig-
inal immutable domain labels on the fly. The reason why call it as “Go-
labels” is because “go-getting” means able to deal with new or difficult
situations easily, like here Go-labels adaptively transfer the model atten-
tion from over-studied aligned data to those overlooked samples, which
allows each sample to be well studied (i.e., alleviating data imbalance influ-
ence) and fully unleashes the potential of adaption model. Albeit simple,
this dynamic adversarial domain adaptation framework with Go-labels
effectively addresses data imbalance issue and promotes adaptation. We
demonstrate through theoretical insights, empirical results on real data as
well as toy games that our method leads to efficient training without bells
and whistles, while being robust to different backbones.

1 Introduction

Most deep models rely on huge amounts of labeled data and their learned fea-
tures have proven brittle to data distribution shifts [58,68]. To mitigate the
data discrepancy issue and reduce dataset bias, unsupervised domain adapta-
tion (UDA) is extensively explored, which has access to labeled samples from a
source domain and unlabeled data from a target domain. Its objective is to train
a model that generalizes well to the target domain [8,10,14,15,19,24,25,28].
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As a mainstream branch of UDA, adversarial domain adaptation (ADA)
approaches leverage a domain discriminator paired with a feature generator to
adversarially learn a domain-invariant feature [9,11,15,35,50]. For the domain
discriminator training, all source data are equally taken as one domain (e.g., pos-
itive ‘1’) while target data as another one (e.g., negative ‘0’) [11,15,35]. However,
this fixed positive-negative separation neglects a fact that most real-world data
exhibit imbalanced distributions [12,13]: the clusters with abundant examples
(i.e., large clusters) may swamp the clusters with few examples (i.e., small
clusters). Such imbalanceness contains two aspects, intra-class long-tailed dis-
tribution [34,44] and inter-class long-tailed distribution [55,64], and is widely
existed in many UDA benchmarks. For example, in DomainNet [42], the “dog”
class in the “clipart” domain has 70 image samples while has 782 image samples
in the “real” domain. The majority “bike” samples (90%) in “Amazon” domain
in Office31 [46] have no background scene (empty) while minority “bike” samples
have real-world background instead.

On the other hand, deep neural networks (DNNs) typically learn simple pat-
terns first before memorizing. In other words, DNN optimization is content-
aware, taking advantage of patterns shared by multiple training examples [2].
Therefore, in the process of domain adaptation, the large domain clusters would
dominate the optimization of domain discriminator, so that bias its decision
boundary and hinder the effective adaptation. As shown in Fig. 1(a), only the
large clusters of two domains (i.e., two large circles) have been pulled close as
the adaptation goes on, but those minority clusters (four small circles) are still
under-aligned. This bias the optimization of domain discriminator so that mis-
leads the feature extractor to learn unexpected domain-specific knowledge from
large clusters. As a result, the adapted model still can not correctly classify these
under-explored samples (marked by “misclassify”).

In this paper, we attempt to design an optimization strategy to progressively
take full advantage of both large and small data clusters across different domains,

Fig. 1. Motivation illustration. (×, �) denote two different classes, and (blue, orange)
color mean different domains. (a) Previous DA methods tend to be dominated by those
large clusters and neglects small clusters, which will bias the domain discriminator opti-
mization, leading to a sub-optimal adaptation accuracy. (b) Our method attempts to
fully leverage both large and small data clusters for alignment, to enhance the domain-
invariant representation learning, and thus achieving a better adaptation performance
on the target set. (Color figure online)
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like shown in Fig. 1(b). In this way, the domain-invariant representation learn-
ing could be gradually promoted, and the potential of adaptation model will be
unleashed, leading a satisfied classification performance. Our study is different
from existing methods that purely designed for long-tailed classification [22,69,71]
in application scenarios and exhibits advantages in domain-agnostic representa-
tion learning. This problem is challenging, but valuable and meaningful for DA
task.

There also exists few works have noticed the distribution imbalance issues in
the domain adaptation task, and try to tackle it by re-weighting (IWAN [61,70]),
data re-sampling (RADA [24]), or data augmentation (Domain Mixup [65]). Dif-
ferently, our paper focuses on a more general imbalance setting, which contains
two aspects of long-tailed intra-class and inter-class distribution. Besides, we try
to achieve a high-powered optimization strategy to empower DA model study
each sample well to promote distribution alignment without any cost increase.

To this end,we propose to replace the original immutable domain labels with an
adjustable and importance-aware alternative, dubbed Go-getting Domain Labels
(Go-labels). Its core idea is to adaptively reduce the importance of these dominated
training data that have been aligned, and timely encourage the domain discrimina-
tor to pay more attention to those easy-to-miss minority clusters, which ensures
each sample can be well studied. In the implementation, we assign a go-getting
domain label (Go-label) to each sample according to its own optimization situa-
tion: If one sample has ambiguous domain predictions (e.g., ∼0.5) when passing
through domain discriminator, it means such sample has been well studied, or said,
the learned feature w.r.t this sample has been domain-invariant. Then, we enforce
a relaxation constraint on it through changing its groundtruth (i.e., directly tak-
ing 0.5 as its new domain label), so as to reduce its optimization importance. Our
contributions are summarized as follows,

– We revisit domain adaptation problem from an optimization perspective, and
pinpoint the training defect caused by imbalanced data distributions issue.

– To alleviate this issue, we propose a novel concept of go-getting domain labels
(Go-labels) to achieve a dynamic adaptation, which allows each sample to
be well studied and reduces long-tailed influence, so as to promote domain
alignment for DA without any increase in computational cost.

– As a byproduct, our work also provides a new perspective to understand the
task of adaptation, and gives theoretical insights about the effectiveness of
dynamic training strategy with Go-labels.

We thoroughly study the proposed Go-labels with several toy cases, and con-
duct experiments on multiple domain adaptation benchmarks, including Digit-
Five, Office-31, Office-Home, VisDA-2017, and large-scale DomainNet, upon var-
ious baselines, to show it is effective and reasonable.

2 Related Work

Unsupervised Domain Adaptation. Recent UDA works focus on two main-
stream branches, (1) moment matching and (2) adversarial training. The former
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works typically align features across domains by minimizing some distribution
similarity metrics, such as Maximum Mean Discrepancy (MMD) [7,36,62] and
second-/higher-order statistics [28,42,54]. Adversarial domain adaptation (ADA)
methods have achieved superior performance and this paper also focuses on it.
The pioneering works of DANN [15] and ADDA [59] both employ a domain dis-
criminator to compete with a feature extractor in a two-player mini-max game.
CDAN [35] improves this idea by conditioning domain discriminator on the infor-
mation conveyed by the category classifier. MADA [41] uses multiple domain dis-
criminators to capture multi-modal structures for fine-grained domain alignment.
Recent GVB [11] gradually reduces the domain-specific characteristics in domain-
invariant representations via a bridge layer between the generator and discrimi-
nator. MCD [49], STAR [37] and Symnet [72] all build an adversarial adaptation
framework by leveraging the collision of multiple object classifiers. Unfortunately,
all these methods ignore the imbalanced distribution issue in DA.

Imbalanced Domain Adaptation. Several prior works have noticed the dis-
tribution imbalance issues in domain-adversarial field, and provided rigorous
analysis and explanations [23,26,55,64,74]. In particular, IWAN [70] leverages
the idea of re-weighting for adaptation, and RADA [24] enhances the ability of
domain discriminator in DA via sample re-sampling and augmentation. Besides,
the works of [30,55,64] focus on the subpopulation shift issue (partial DA),
where the source and target domains have imbalanced label distribution. Dif-
ferently, our paper focuses on the more general covariate shift setting in DA,
which contains two aspects of long-tailed intra-class and inter-class distribution.
Such imbalanced problems are widely existed in the existing UDA benchmarks.

Adversarial Training. Our work is also related to the researches which aim
to leverage or modify the discriminator output to further augment the standard
GAN training [1,3,17,18,39,52,63]. Their core idea is to distill useful informa-
tion from the discriminator to further regularize generator to obtain a better
generation performance. Although our work shares a similar idea of enhancing
adversarial training, the main contributions and target task are different.

3 Adversarial Domain Adaptation with Go-labels

3.1 Prior Knowledge Recap and Problem Definition

To be self-contained, we first simply review the problem formulation of adversar-
ial domain adaptation (ADA). Taking classification task as example, we denote
the source domain as DS = {(xs

i , y
s
i , d

s
i )}Ns

i=1 with Ns labeled samples covering
C classes, ys

i ∈ [0, C − 1]. dsi is the domain label of each source sample and
it always equals to ‘1’ during the training [15,35]. The target domain is simi-
larly denoted as DT = {xt

j , d
t
i}Nt

j=1 with Nt unlabeled samples that belong to the
same C classes, dti denotes the domain label of each target sample and it always
equals to ‘0’ so as to construct a ‘0–1’ pair with source samples for adversarial
optimization. Most ADA algorithms tend to learn domain-invariant representa-
tions, by adversarially training the feature extractor and domain discriminator
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in a minmax two-player game [11,15,21,35]. They typically use classification loss
Lcls (i.e., cross-entropy loss Lce) and domain adversarial loss Ladv (i.e., binary
cross-entropy loss Lbce) for training,

Lcls =
1

Ns

Ns∑

i=1

Lce(C(F (xs
i )), y

s
i ),

Ladv =
1

Ns

Ns∑

i=1

Lbce(D(F (xs
i )), d

s
i = 1) +

1
Nt

Nt∑

i=1

Lbce(D(F (xt
i)), d

t
i = 0),

(1)

where F,C,D represents the feature extractor, the category classifier, and the
domain discriminator, respectively. They are shared across domains. The total
optimization objective is described as (min

D
Ladv + min

F,C
Lcls − Ladv). Note that,

a gradient reversal layer (GRL) [15] is often used to connect feature extractor F
and domain discriminator D to achieve the adversarial function by multiplying
the gradient from D by a certain negative constant during the back-propagation
to the feature extractor F .

Problem Definition of Imbalanced Data Distributions in DA. This
paper focuses on the general covariate shift setting following [51,53] in the DA
field, and assumes each domain presents an “imbalanced” data distributions.
Suppose a source/target domain {(xi, yi)}ni=1 drawn i.i.d. from an imbalanced
distribution P (x, y). Such imbalanceness comprises two aspects: 1). the marginal
distribution P (y) of classes are likely long-tailed, i.e., inter-class long-tailed. 2).
the data distribution within each class is also long-tailed, i.e., intra-class long-
tailed distribution. We expect to learn a well adapted model F (·; θ) with adver-
sarial DA technique equipped with a domain discriminator D(·;ω), to learn
domain-invariant representations.

Aligned source 
samples

Aligned target 
samples

Itera�on 50 Itera�on 500 Itera�on 5000

Aligned source 
samples

Aligned target 
samples

Aligned source 
samples

Aligned target 
samples

Fig. 2. Red and green points denote source and target domain data, respectively. The
darker the color, the better the alignment, the more possible to be mis-classified by
domain discriminator. (Color figure online)

Motivation Re-clarification. Here we look into whether the imbalanced data
distribution issue actually hinders the effective ADA training, through a t-
SNE [48] visualization results. This experiment is conducted on Office31 [46]
(W→A setting) with the baseline of DANN [15]. We count the number of times
each sample was misclassified by the domain discriminator during the DA
training, and use this number as the color parameter. The darker the color, the
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better the alignment, the more possible to be mis-classified by domain discrim-
inator. From Fig. 2, we see that, there obviously exists an imbalance situation
with training going on, where some samples (surrounded by a blue circle) have
been well aligned/studied by the domain discriminator (the darker the color, the
better the alignment), but some samples are still under-studied or not aligned
well. Therefore, treating those aligned and not aligned training data in different
ways to promise each sample being well explored to alleviate imbalance influence
is urgently required.

3.2 Proposed Go-getting Domain Labels

To alleviate the optimization difficulty caused by imbalanced data distributions
and thus enhance the domain-invariant representation learning, we introduce a
dynamic adversarial domain adaptation framework with the proposed go-labels:
when calculating the domain adversarial loss on a mini-batch that contains both
source and target domain samples, we replace the original immutable domain
labels of samples (source as ‘1’, target as ‘0’) with an adjustable domain labels
(i.e., Go-labels) on the fly. In formula, we modify the domain adversarial loss Ladv

of Eq. 1 to

Ladv =
1

Ns

Ns∑

i=1

Lbce(D(F (xs
i )), g

s
i ) +

1
Nt

Nt∑

i=1

Lbce(D(F (xt
i)), g

t
i), (2)

where gsi and gti are the updated go-getting domain labels for i-th source sample
and i-th target sample in the mini-batch, they are no longer a fixed ‘1’ or ‘0’,
but become adjustable and adaptive. Intuitively, a reliable metric to distinguish
the well-aligned large cluster data and not aligned small cluster data is needed
for the new updated domain labels assignment/decision.

Measurement of Alignment. The critic, domain discriminator D, can be seen
as an online scoring function for data: one sample will receive a higher score (∼1)
if its extracted feature is close to the source distribution, and a lower score (∼0)
if its extracted feature is close to the target distribution. Thus, we directly take
the predicted domain results of domain discriminator, denoted as d̃s/d̃t, as the
alignment measurement metric for each source/target sample. For example, if
the domain discriminator prefers to classify a source sample (dsi = 1) as target
data, i.e., d̃si → 0, we believe the learned feature w.r.t this sample has been well
aligned and is fake enough to fool domain discriminator. In this way, we could
online distinguish the well-aligned and not aligned data during training.

Go-getting Domain Labels Update. In the implementation, we merge the
alignment measurement (i.e., well-aligned samples selection) and domain label
update into a single step. Formally, we leverage a non-parametric mathematical
rounding Round(·) to modify the original domain labels dsi = 1, dti = 0 of i-th
source, target sample according to their predicted domain results d̃si , d̃ti:
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gsi =
dsi + Round(d̃si )

2
, gti =

dti + Round(d̃ti)
2

(3)

where go-getting domain labels of gsi , gti are dynamic and adjustable, depend-
ing on the different domain prediction results d̃si , d̃ti. The original domain label
dsi = 1, dti = 0 can be taken as groundtruth, and their intermediate decision
boundary (dsi + dti)/2 = 0.5 can be regarded as a threshold to automatically
update go-getting domain labels through Round(·). That means that if the
domain prediction result of a source sample is lower than the threshold of 0.5,
i.e., d̃si < 0.5, we believe the learned feature w.r.t this sample has been well
aligned and is fake enough to fool domain discriminator.

It can be see that the Round(·) function could keep the raw domain labels
unchanged for those correctly classified samples by D. They have not been well
aligned (i.e., d̃si > 0.5 and d̃ti < 0.5). We only update the domain labels for these
mis-classified well-aligned samples (i.e., d̃si ≤ 0.5 and d̃ti ≥ 0.5), which reduces
the optimization importance of these aligned training data and encourage the
domain discriminator to pay more attention to those not aligned data.

Implementation in PyTorch. A simple PyTorch-like [40] pseudo-code snippet
is shown below. The dynamic adversarial DA with go-getting domain labels (Go-
labels) modification amounts simply to the addition of lines 9, 10 of the example
code, which indicates its ease of implementation and generality.

1 # Extract features from source (s) and target (t) domain
2 feat_s , feat_t = Extractor(sample_s , sample_t)
3

4 # Get true domain labels and domain predictions
5 d_s , d_t = 1, 0
6 p_s , p_t = Domain_Discriminator(feat_s , feat_t)
7

8 # Get updated go-getting domain labels
9 g_s = (d_s + torch.Round(p_s.detach()) / 2.0

10 g_t = (d_t + torch.Round(p_t.detach()) / 2.0
11

12 # Compute adversarial loss with new go -getting domain labels
13 loss_adv = torch.BCELoss(p_s , g_s) + torch.BCELoss(p_t , g_t)

Discussion: Why use Rounding? Rounding-based dynamic domain labels
only reduce the importance for these well-aligned (i.e., mis-classified by dis-
criminator) majority samples progressively, while keep unchanged for those not
aligned minority data. This design makes the “dynamically change” of go-getting
domain labels more “targeted”. If no rounding, the real-valued soft Go-labels will
be always affected by the probability scores of domain discriminator, even the
discriminator has not yet been well-trained at early stage. In short, the physical
meanings behind Go-labels is to softly reduce the importance for these domi-
nated majority samples on the fly while progressively transferring optimization
focus to those minority data.

3.3 Theoretical Insights of Go-labels

Many classic domain adaptation approaches typically bound/model the adapted
target error by the sum of the (1) source error and (2) a notion of distance
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between the source and the target distributions. The classic generalization bound
theory of the H-divergence that based on the earlier work of [29] and used by
[4,5,15] is obtained following theorem-1 in [6]:

Rt(h) ≤ R̂s(h) +
1
2
dH(D̂N

S , D̂N
T ) + C, (4)

where C is a constant when such bound is achieved by hypothesis in H. And
D̂N

S , D̂N
T denote the empirical distribution induced by sample of size N drawn

from DS , DT respectively. Rt denote the true risk on target domain, and R̂s

denote the empirical risk on source domain.
Let {xs

i}Ni=1, {xt
i}Ni=1 be the samples in the empirical distributions D̂S and D̂T

respectively. The empirical source risk can be written as R̂s(h) = 1
N

N∑
i

R̂xs
i
(h).

Now, considering a dynamic updated source-target domain distributions D̂dS

and D̂dT achieved by the proposed adjustable go-getting domain labels, which
corresponds to relabeling the well-aligned samples (assuming that the number
of selected well-aligned target samples is M), the new generalization bound for
this updated data distribution can be modified as

Rt(h) ≤ ( 1
N

N∑

i

R̂xs
i
(h) +

1
M

M∑

j

R̂xt
j
(h)

)
+

1
2
dHΔH(D̂N+M

dS , D̂N−M
dT ), (5)

the first term on right becomes an updated source risk that could re-energize
the object classifier optimization, and the second term becomes an updated
domain discrepancy/divergency that could re-energize the domain discrimi-
nator optimization. They together unleash the potential of adaptation model.
Besides, the risk of the target domain can be re-bounded by the risk of the
updated source domain and the updated domain discrepancy, providing theo-
retical guarantees for the proposed approach. When M = 0, we get the original
bound of Eq. (4). Hence, the original bound is in the feasible set of our optimiza-
tion with Go-labels.

4 Experiments

4.1 Validation on Toy Problems

2D Random Point Classification. First, we observe the behavior of our
method on toy problem of 2D random point classification. We compared the
class decision boundary of our method with Baseline obtained from the domain
discriminator trained with immutable domain labels. To better evaluate adap-
tation performance of the trained model, we visualize source and target data
separately. Experimental details are provided in Supplementary. We observe
that the Baseline scheme is prone to miss the small tail cluster, especially when
it is very closed to a large cluster belonged to the different class. In contrast,
our method could better leverage both large/head and small/tail data clusters
in the different domains to reduce discrepancy.
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Inter-twinning Moons. Furthermore, we observe the behavior of Go-labels on
toy problem of inter-twinning moons [15,49]. We compare our method with the
model trained with source data only and DANN [15] in the Fig. 3. We observe that
both baselines of Source only and DANN neglect the outlier samples. In contrast,
ourmethod not only gets a satisfactory classification boundary between two classes
in the source domain, but also covers these minority tail data well and classifies
them to the correct class. More details are presented in Supplementary.

Source Only DANN Ours

(a) Label Classification (b) Representation PCA

Source Only DANN Ours

Fig. 3. The second toy game of inter-twinning moons. Red “+”, green “-”, and black
“·” markers indicate the source positive samples (label 1), source negative samples
(label 0), and target samples, respectively.

4.2 Experiments on the General UDA Benchmarks

Table 1. Classification accuracy (mean ± std %) of different schemes. We evaluate the
effectiveness of Go-labels with different baselines, including DANN [15], CDAN [35],
GVB [11], on the Digit-Five/Office31 datasets with Cov3FC2 [42]/ResNet-50 [20] as
backbone. We re-implement all the baselines, thus the results are sightly different from
the reported ones in the original papers.

(a) Comparison results on Digit-Five.

Method mn → sv mn → sy sv → mn sv → sy sy → mn sy → sv Avg.

DANN [15] 23.2 ± 0.5 40.0 ± 0.3 71.0 ± 0.3 84.6 ± 0.1 93.6 ± 0.4 84.7 ± 0.3 66.2

+Go-labels 26.3 ± 0.4 40.7 ± 0.3 79.0 ± 0.2 87.7 ± 0.7 95.3 ± 0.2 85.1 ± 0.2 69.0

CDAN [35] 29.8 ± 0.3 39.3 ± 0.5 69.3 ± 0.1 90.5 ± 0.0 92.5 ± 0.5 86.3 ± 0.1 67.9

+Go-labels 28.1 ± 0.5 41.3 ± 0.3 78.6 ± 0.0 90.6 ± 0.0 95.5 ± 0.5 86.4 ± 0.1 70.1

GVB [11] 30.0 ± 0.1 40.4 ± 0.2 72.5 ± 0.2 90.8 ± 0.5 91.9 ± 0.3 86.6 ± 0.3 68.7

+Go-labels 30.3 ± 0.1 42.1 ± 0.2 79.6 ± 0.1 90.9 ± 0.5 95.9 ± 0.3 87.2 ± 0.0 71.0

(b) Comparison results on Office31.

Method A → D A → W D → W W → D D → A W → A Avg.

DANN [15] 82.9 ± 0.5 88.7 ± 0.3 98.5 ± 0.3 100 ± 0.0 64.9 ± 0.4 62.8 ± 0.3 82.9

+Go-labels 89.9 ± 0.4 92.4 ± 0.3 98.9 ± 0.2 100 ± 0.0 71.6 ± 0.0 68.3 ± 0.2 86.9

CDAN [35] 92.2 ± 0.3 93.1 ± 0.5 98.7 ± 0.1 100 ± 0.0 72.8 ± 0.5 70.1 ± 0.0 87.8

+Go-labels 93.2 ± 0.5 93.3 ± 0.3 98.6 ± 0.0 100 ± 0.0 73.8 ± 0.5 74.2 ± 0.3 88.9

GVB [11] 94.8 ± 0.1 92.2 ± 0.3 94.5 ± 0.3 100 ± 0.0 75.3 ± 0.2 73.2 ± 0.3 88.3

+Go-labels 95.0 ± 0.3 93.7 ± 0.2 98.5 ± 0.2 100 ± 0.0 74.9 ± 0.4 74.3 ± 0.5 89.4
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Datasets. Except for toy tasks, we also conduct experiments on the commonly-
used domain adaptation (DA) datasets, including Digit-Five [14], Office31 [46],
Office-Home [60], VisDA-2017 [43], and DomainNet [42]. These datasets cover
various kinds of domain gaps, such as handwritten digit style discrepancy, office
supplies imaging discrepancy, and synthetic↔real-world environment discrep-
ancy. The data distribution imbalanced issue is also widely existed, and espe-
cially serious for the large-scale set, like DomainNet. The detailed introductions
for each dataset can be found in Supplementary.

Implementation Details. As a plug-and-play optimization strategy, we
apply our Go-labels on top of four representative ADA baselines, DANN [15],
CDAN [35], GVB [11], and ASAN [45] for validation. DANN has been described
in Sect. 3, and CDAN additionally conditions the domain discriminator on the
information conveyed by the category classifier predictions (class likelihood).
Recently-proposed GVB equips the adversarial adaptation framework with a
gradually vanishing bridge, which reduces the transfer difficulty by reducing
the domain-specific characteristics in representations. ASAN [45] integrates rel-
evance spectral alignment and spectral normalization into CDAN. All reported
results are obtained from the average of multiple runs (Supplementary).

Effectiveness of Go-getting Domain Labels. Our proposed Go-labels is
generic and can be applied into most existing ADA frameworks, to alleviate
the optimization difficulty caused by imbalanced domain data distributions, and
thus enhance the domain-invariant representation learning. To prove that, we
adopt three baselines, DANN [15], CDAN [35], GVB [11], and evaluate adapta-
tion performance on Digit-Five and Office31, respectively. Table 1(a)(b) shows
the comparison results, we observe that, regardless of the difference in frame-
work design, our Go-labels (all +Go-labels schemes) consistently improves the
accuracy of all three baselines on two datasets, i.e., 2.8%/4.0%, 2.2%/1.1%,
2.3%/1.1% gains on average for DANN, CDAN, GVB, respectively on Digit-
Five/Office31. With the help of Go-labels, each sample can be well explored in
a dynamic way, resulting in better adaptation performance.

What Happens to Domain Discriminator When Training with Go-
labels? For this experiment, we made statistics on the mis-classified cases of
the domain discriminator during the training, and then visualize the chang-
ing trend in Fig. 4. There are two symmetrical mis-classified cases that need
to be counted: mis-classify the raw source sample into the target domain or
mis-classify the raw target sample into the source domain. Experiments are con-
ducted on the Office31 and VisDA-2017 datasets, the compared baseline scheme
is DANN [15]. As shown in Fig. 4, we observe that, the number of mis-classified
cases by domain discriminator in our method is more than that in the baseline.
We know that, ‘mis-classified by domain discriminator’ can be approximately
equivalent to ‘well-aligned’. Therefore, more ‘mis-classified’ samples by domain
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discriminator indicates that our method with Go-labels has a capability to align
more samples, or said, could better cover those easy-to-miss minority clusters
for alignment.

Loss Curve Comparison. Here we also show and compare the loss curves of
domain discriminator for baseline DANN and our method. From Fig. 5, we can
observe that the loss curve of baseline first drops quickly and gradually rises to
near a constant as training progresses. In comparison, the domain discriminator
loss curve of our method drops slowly, because more samples (including large
and small cluster data) need to be studied/aligned during the training, which
could in turn further drive better domain-invariant representations learning.

Fig. 4. Trend analysis of the mis-classified cases statistics for the domain discriminator
in the training. Here, baseline is DANN [15] with ResNet-50 as backbone.

Fig. 5. Domain discriminator loss curves of baseline (DANN) and our method (DANN
+ Go-labels). Experiments are on the setting of W→A of Office31.

Why Not Directly Ignore Well-Aligned Data? The core idea of our
dynamic adversarial domain adaptation with Go-labels is to transfer the model
attention from over-studied aligned data to those overlooked samples progres-
sively, so as to allow each sample to be well studied. Therefore, an intuitive
alternative solution is to directly discard these over-aligned data, e.g., simply
zero out their gradients. We conduct this experiment on the Office31 based on
DANN [15]. In Table 2, we see the scheme of DANN + Zero Out that directly
discards these well-aligned samples is even inferior to Baseline (DANN) by 2.1%
on average. This indicates that such ‘hard and rude’ data filtering trick is
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sub-optimal because it may lose some important knowledge by mistake. Differ-
ently, our Go-labels training strategy could softly and progressively transfer
the focus of optimization from the over-aligned samples to the under-explored
data.

Comparison with Re-weighting Based Methods. As pointed in previous
researches [27,33], the re-weighting schemes have the risks of over-fitting the tail
data (by over-sampling) and also have the risk of under-fitting the global data
distribution (by under-sampling), when data imbalance is extreme [76]. Besides,
most sample re-weighting techniques [67] start re-weighting operation from the
beginning of the entire training process. However, the non-converged feature
extractor may affect the re-weighting decision, and cause unstable training. To
prove that, we further compare our Go-labels with some sample (re)weighting
based methods, including entropy-based re-weighting (+ E) [35], IWAN [70].
Entropy-based re-weighting (+ E) aims to prioritize the easy-to-transfer samples
according to predictions of the category classifier to ease the entire adaptation
optimization. IWAN [70] re-weights the source samples to exclude the outlier
classes in the source domain. Table 2 shows the comparison results. We can
observe that even all the sample re-weighting strategies bring performance gains,
3.0% for + E and 2.4% for + IWAN, but our Go-labels strategy still outperforms
all competitors. In addition, our Go-labels is also complementary to these re-
weighting techniques, the scheme of DANN + E + Go-labels still could achieve
1.6% gain in comparison with DANN + E.

Table 2. Comparison with gradient penalization and re-weighting related methods on
Office31. The adopted baseline is DANN.

Method A→D A→W D→W W→D D→A W→A Avg.

DANN [15] 82.9 ± 0.5 88.7 ± 0.3 98.5 ± 0.3 100 ± 0.0 64.9 ± 0.4 62.8 ± 0.3 82.9

+ Zero Out 84.3 ± 0.2 82.9 ± 0.1 98.2 ± 0.3 100 ± 0.0 58.0 ± 0.4 61.1 ± 0.5 80.8

+ E [35] 86.3 ± 0.1 91.0 ± 0.2 98.8 ± 0.3 100 ± 0.0 69.6 ± 0.3 69.8 ± 0.5 85.9

+ IWAN [70] 85.9 ± 0.1 91.9 ± 0.1 98.3 ± 0.2 100 ± 0.0 68.3 ± 0.4 67.5 ± 0.5 85.3

+ Go-labels 89.9 ± 0.4 92.4 ± 0.3 98.9 ± 0.2 100 ± 0.0 71.6 ± 0.0 68.3 ± 0.2 86.9

+ E + Go-labels 91.2 ± 0.2 91.4 ± 0.4 99.1 ± 0.1 100 ± 0.0 71.4 ± 0.1 71.9 ± 0.3 87.5

Go-labels is Well-Suited to DA Settings with Intra-class and Inter-
class Imbalance. The results on DomainNet [42] can be taken as experimen-
tal evidence to prove this point. Because DomainNet has multiple domains,
when testing the model adaptation ability on the certain target domain, the rest
domains are mixuped as a large source domain. Such large source domain is seri-
ously imbalanced, with both of intra-class and inter-class situations [55]. From
the Table 3, we can observe that our Go-labels consistently achieves gains on the
different sub-settings, which demonstrates it is always effective to DA settings
with the different imbalances to some extents. We analyze that the go-getting
labeling encourages the domain discriminator to learn well each sample to get a
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better source and target domain alignment. This in turn drives a better feature
extractor to learn discriminative and domain-invariant features for all samples
(they promote each other). Thus, a better feature extractor further improves the
classifier and classification accuracy even the classes are still imbalanced.

Analysis About Rounding Operation in Go-labels. To validate the round-
ing design in Go-labels, we experimented with real-valued soft go-getting domain
labels (based on the probability scores without rounding) for comparison. Actu-
ally, this is the initial version of our Go-labels. This scheme of using real-valued
soft go-getting domain labels (built upon DANN) is inferior to our rounding
version by 9.4% in average accuracy on Office31 (77.5% vs. 86.9%, baseline of
DANN is 82.9%). We analyze such large drop is because that the real-valued soft
go-getting domain labels of training samples are always affected by the prob-
ability scores of domain discriminator, even the discriminator has not yet been
well-trained at early stage. On the contrary, our rounding-based Go-labels makes
no influence for the entire optimization at the stage where the domain discrimi-
nator could clearly/correctly classify source-target sample. And, it only reduce
the importance for these well-aligned (mis-classified by discriminator) majority
samples progressively while keep unchanged for those not aligned minority data.
In short, the rounding design makes Go-labels more robust.

Table 3. Classification accuracy on DomainNet. ResNet-101 as backbone.

Methods Clipart Infograph Painting Quickdraw Real Sketch Average

MDAN [75] 60.3± 0.41 25.0± 0.43 50.3± 0.36 8.2± 1.92 61.5± 0.46 51.3± 0.58 42.8

M3SDA [42] 58.6± 0.53 26.0± 0.89 52.3± 0.55 6.3± 0.58 62.7± 0.51 49.5± 0.76 42.7

CMSS [67] 64.2± 0.18 28.0± 0.20 53.6± 0.39 16.0± 0.12 63.4± 0.21 53.8± 0.35 46.5

CDAN [35] 63.3± 0.21 23.2± 0.11 54.0± 0.34 16.8± 0.41 62.8± 0.14 50.9± 0.43 45.2

+ Go-labels 65.7± 0.22 25.7± 0.34 55.6± 0.21 18.4± 0.31 63.6± 0.28 53.6± 0.13 47.1

Table 4. Performance (%) comparisons with the state-of-the-art UDA approaches on
Office31. All experiments are based on ResNet-50 pre-trained on ImageNet.

Method Venue A→D A→W D→W W→D D→A W→A Avg.

DANCE [47] NeurIPS’20 89.4 ± 0.1 88.6 ± 0.2 97.5 ± 0.4 100.0± .0 69.5 ± 0.5 68.2 ± 0.2 85.5

Re-weight [61] IJCAI’20 91.7 ± —- 95.2 ± —- 98.6 ± —- 100.0± – 74.5 ± —- 73.7 ± —- 89.0

DADA [57] AAAI’20 92.3 ± 0.1 93.9 ± 0.2 99.2 ± 0.1 100.0± .0 74.4 ± 0.1 74.2 ± 0.1 89.0

MetaAlign [62] CVPR’21 93.0 ± 0.5 94.5 ± 0.3 98.6 ± 0.0 100.0± .0 75.0 ± 0.3 73.6 ± 0.0 89.2

FGDA [16] ICCV’21 93.3 ± —- 93.2 ± —- 99.1 ± —- 100.0± .0 73.2 ± —- 72.7 ± —- 88.6

SCDA [32] ICCV’21 94.2 ± —- 95.2 ± —- 98.7 ± —- 99.8 ± —- 75.7 ± —- 76.2 ± —- 90.0

RADA [24] ICCV’21 96.1 ± 0.4 96.2 ± 0.4 99.3± 0.1 100.0± .0 77.5± 0.1 77.4± 0.3 91.1

CDAN + E (Baseline) [35] NIPS’18 90.8 ± 0.3 94.0 ± 0.5 98.1 ± 0.3 100.0± .0 72.4 ± 0.4 72.1 ± 0.3 87.9

CDAN + E + Go-labels This work 94.2 ± 0.3 93.3 ± 0.1 99.0 ± 0.1 100.0± .0 75.8 ± 0.1 75.2 ± 0.3 89.6

GVB (Baseline) [11] CVPR’20 94.8 ± 0.1 92.2 ± 0.2 94.5 ± 0.2 100.0± .0 75.3 ± 0.3 73.2 ± 0.4 88.3

GVB + Go-labels This work 95.0 ± 0.3 93.7 ± 0.1 98.5 ± 0.1 100.0± .0 74.9 ± 0.1 74.3 ± 0.3 89.4

ASAN (Baseline) [45] ACCV’20 95.6 ± 0.4 98.8± 0.2 94.4 ± 0.9 100.0± .0 74.7 ± 0.3 74.0 ± 0.9 90.0

ASAN + Go-labels This work 96.9± 0.2 98.8± 0.1 99.1 ± 0.2 100.0± .0 77.0 ± 0.3 75.9 ± 0.6 91.3
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4.3 Comparison with State-of-the-Arts

As a general technique, we insert our Go-labels into multiple DA algorithms
to validate: CDAN with entropy regularization [35] (CDAN+E), GVB [11],
ASAN [45], and RADA [24]. Table 4, Table 5 and Table 6 show the compar-
isons with the state-of-the-art approaches on Office31, Office-Home and VisDA-
2017, respectively. For fair comparison, we report the results from their original
papers if available, and we also report the results of the baseline schemes GVB
and CDAN+E reproduced by our implementation. We find GVB+Go-labels,
CDAN+E+Go-labels, and ASAN+Go-labels all outperform their corresponding
baselines and also achieves the state-of-the-art performance on three datasets,
and Go-labels is also more simple and efficient per without extra computation.

Table 5. Performance (%) comparisons with the state-of-the-art UDA approaches on
Office-Home. All experiments are based on ResNet-50 pre-trained on ImageNet.

Method Venue Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

BNM [10] CVPR’20 52.3 73.9 80.0 63.3 72.9 74.9 61.7 49.5 79.7 70.5 53.6 82.2 67.9

DANCE [47] NIPS’20 54.3 75.9 78.4 64.8 72.1 73.4 63.2 53.0 79.4 73.0 58.2 82.9 69.1

Reweight [61] IJCAI’20 55.5 73.5 78.7 60.7 74.1 73.1 59.5 55.0 80.4 72.4 60.3 84.3 68.9

SRDC [56] CVPR’20 52.3 76.3 81.0 69.5 76.2 78.0 68.7 53.8 81.7 76.3 57.1 85.0 71.3

CKB [38] CVPR’21 54.2 74.1 77.5 64.6 72.2 71.0 64.5 53.4 78.7 72.6 58.4 82.8 68.7

TSA [31] CVPR’21 57.6 75.8 80.7 64.3 76.3 75.1 66.7 55.7 81.2 75.7 61.9 83.8 71.2

MetaAg. [62] CVPR’21 59.3 76.0 80.2 65.7 74.7 75.1 65.7 56.5 81.6 74.1 61.1 85.2 71.3

FGDA [16] ICCV’21 52.3 77.0 78.2 64.6 75.5 73.7 64.0 49.5 80.7 70.1 52.3 81.6 68.3

SCDA [32] ICCV’21 57.1 75.9 79.9 66.2 76.7 75.2 65.3 55.6 81.9 74.7 62.6 84.5 71.3

CDAN+E [35] NIPS’18 55.6 72.5 77.9 62.1 71.2 73.4 61.2 52.6 80.6 73.1 55.5 81.4 68.1

+Go-labels This work 56.0 74.4 78.2 63.9 72.7 72.0 63.7 54.1 81.7 73.3 59.6 83.0 69.4

ASAN [45] ACCV’20 53.6 73.0 77.0 62.1 73.9 72.6 61.6 52.8 79.8 73.3 60.2 83.6 68.6

+Go-labels This work 55.5 75.1 79.3 65.0 74.1 74.3 64.8 54.4 81.8 74.7 61.8 85.2 70.5

GVB [11] CVPR’20 57.0 74.7 79.8 64.6 74.1 74.6 65.2 55.1 81.0 74.6 59.7 84.3 70.4

+Go-labels This work 57.9 76.2 81.1 65.9 75.0 73.7 67.0 56.6 82.9 75.2 61.0 84.6 71.4

Table 6. Performance (%) comparisons with the state-of-the-art UDA approaches on
VisDA-2017. All experiments are based on ResNet-50 pre-trained on ImageNet.

Method Venue Avg.

MDD [73] ICML’19 74.61

SAFN [66] ICCV’19 76.10

DANCE [47] NeurIPS’20 70.20

CDAN + E (Baseline) [35] NIPS’18 70.83

CDAN + E + Go-labels This work 75.12

ASAN (Baseline) [45] ACCV’20 72.34

ASAN + Go-labels This work 75.21

GVB (Baseline) [11] CVPR’20 75.34

GVB + Go-labels This work 76.42

RADA (Baseline) [24] ICCV’21 76.30

RADA + Go-labels This work 77.52
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5 Conclusion

We propose a simple plug-and-play technique dubbed go-getting domain labels
(Go-labels) to achieve a dynamic adversarial domain adaptation framework,
which effectively alleviates the imbalanced data distribution issue and signifi-
cantly enhances the domain-invariant representation learning. Go-labels requires
changing only two lines of code that yields non-trivial improvements across a
wide variety of adversarial based UDA architectures. In fact, improvements of
Go-labels come without bells and whistles on all domain adaptation benchmarks
we evaluated, despite embarrassingly simple.
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