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Abstract. The ECCV 2022 Sign Spotting Challenge focused on the
problem of fine-grain sign spotting for continuous sign language recog-
nition. We have released and made publicly available a new dataset of
Spanish sign language of around 10 h of video data in the health domain
performed by 7 deaf people and 3 interpreters. The added value of this
dataset over existing ones is the frame-level precise annotation of 100
signs with their corresponding glosses and variants made by sign lan-
guage experts. This paper summarizes the design and results of the chal-
lenge, which attracted 79 participants, contextualizing the problem and
defining the dataset, protocols and baseline models, as well as discussing
top-winning solutions and future directions on the topic.
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1 Introduction

In recent years, the scientific community has accelerated research in automatic
Sign Language Recognition (SLR), supported by the latest advances in deep
learning models with flexible spatial-temporal representation capacities [27]. It
is well known that these methods need to be fed with huge amounts of data and
this is one of the main drawbacks for a faster progress of automatic SLR. Sign
languages are purely visual languages lacking a fully accepted writing system.
Transcribing the visual information of continuous signing to glosses or any of the
few alternative codes (e.g., HamNoSys [26]) can only be made by few specialists
and it is a extremely time-consuming task.

SLR can be roughly classified into Isolated (ISLR) and Continuous (CSLR)
sign language recognition. ISLR is the most studied scenario by the scientific
community and for which more annotated datasets are available, because of
the relative easy annotation protocols of a discrete and predefined set of signs.
CSLR, however, is much more complex due to three main factors. First, the co-
articulation between signs drastically increases the variability of the sign realiza-
tion with respect to isolated signs and reflects the signing style of each person.
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Second, the speed is much higher than in the examples of isolated signs. Another
point is the interplay of non-manual components: torso, head, eyebrows, eyes,
mouth, lips, and even tongue [9]. The third factor is the already mentioned
shortage of experts capable of annotating signs in sentences.

The ultimate goal consist in Sign Language Translation (SLT) from a Sign
Language (SL) to a spoken language. Therefore, available corpora composed of
a visual sign language and the corresponding transcription in glosses are scarce.
Recent works [1,4,36] are leveraging captioned and signed broadcast media to
develop direct SLT without passing explicitly through any intermediate tran-
scribed representation. Nevertheless, in those restricted-domain cases where the
transcription to glosses is available, either decoupling SLR to glosses and transla-
tion from glosses to spoken language, or using the glosses as a training guidance
for the end-to-end translation process yields better performance [5].

Sign Spotting is a special case of CSLR where the specific grammar of each
SL is not taken into account but only delimiting the localization of a particular
sign. It allows the development of a wide number of applications such as indexing
SL content, enabling efficient search and “intelligent fast-forward” to topics of
interest, helping to linguistic studies or even learning sign language. Sign spotting
can also be reliably used for collecting co-articulated samples of the query sign to
improve an ISLR model without the need of extensive expert annotations [20].

2 Related Work

Early works on sign/gesture localization in video were supported by time-series
pattern spotting techniques like Dynamic Time Warping [35], Global Alignment
Kernel [25], Hidden Markov Models [2], Conditional Random Fields [39] or Hier-
archical Sequential interval Pattern Trees [24] to build models over hand-crafted
features usually directed by linguistic knowledge. Most of these approaches were
tested over ad-hoc datasets of isolated signs in lab conditions or continuous sign
language with limited variability of signers or annotated signs. The statistical
approach used in speech recognition [18] was adapted to SL and tested on the
“new” RWTH-Phoenix-Weather database [12], which set a milestone in CSLR.

With the release of the RWTH-Phoenix-Weather database of German contin-
uous SL and the advent of deep learning, CSLR started to attract the attention
of many research groups. Cui et al. [10] proposed the first CSLR system com-
pletely trained with deep networks, based on weakly supervision and end-to-end
training. They used a convolutional neural network (CNN) with temporal con-
volution and pooling for spatio-temporal representation learning, and a RNN
model with a long short-term memory (LSTM) module to learn the mapping
of feature sequences to sequences of glosses. The trend shifted to learn short-
term spatial-temporal features of signs directly from the RGB(+D) sequences
or modalities derived from it (e.g., optical flow or skeletal data), mostly pushed
by the success of 3D Convolutional Networks and the two-stream Inflated 3D
ConvNet (I3D model) used in action classification [7]. Spatio-temporal Graph
Convolutional Networks (ST-GCNs) [38], inherited from the action recognition
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field, also helped to stimulate research on ISLR and CSLR, using skeleton data
from RGB body sequences [6,8] to learn spatio-temporal patterns.

Sign spotting has benefited from the advances in spatial-temporal represen-
tation and sequence learning from weakly labeled signs. Sign spotting has a
specific domain mismatch problem between the query (usually isolated signs)
and target (co-articulated signs). Jiang et al. [16] designed a one-shot sign
spotting approach using I3D for learning the spatial-temporal representation
to address the temporal scale discrepancies between the query and the target
videos, building multiple queries from a single video using different frame-level
strides. They proposed a transformer-based network that exploits self attention
and mutual attention between the query and target features to learn the self and
mutual temporal dependency. Their results on the BSLCORPUS [30] (continu-
ous) using SignBank [11] (isolated) as queries outperformed previous approaches.
The recently released BSL-1K [1] dataset, with weakly-aligned subtitles from
broadcast footage and a vocabulary of 1000 signs automatically located in 1000 h
hours of video allows training larger CSLR models and testing sign spotting tech-
niques. In [34], the authors proposed an approach to one/few shot sign spotting
through three supervision cues: mouthing, subtitled words and isolated sign dic-
tionary. They used a unified learning framework using the principles of Noise
Contrastive Estimation and Multiple Instance Learning [22], which allows the
learning of representations from weakly-aligned subtitles while exploiting sparse
labels from mouthings [1] and explicitly accounts for sign variations. The app-
roach is based on I3D and was evaluated for sign spotting on BSL-1K using the
isolated signs dataset collected by the same research group, BSLDICT [23].

3 Challenge Design

The ECCV 2022 Sign Spotting Challenge1 was aimed to attract attention on
the strengths and limitations of the existing approaches, and help to define the
future directions of the field. It was divided into two competition tracks:

– MSSL (multiple shot supervised learning). MSSL is a classical machine
learning track where signs to be spotted are the same in training, validation
and test sets. The three sets contain samples of signs cropped from the con-
tinuous stream of Spanish sign language, meaning that all of them have co-
articulation influence. The training set contains the begin-end timestamps (in
milisecs) annotated by a deaf person and a SL-interpreter (with an homoge-
neous criteria) of multiple instances for each of the query signs. Participants
needed to spot those signs in a set of test videos.

– OSLWL (one shot learning and weak labels). OSLWL is a realistic
variation of a one-shot learning adapted to the sign language specific problem,
where it is relatively easy to obtain a couple of examples of a sign using just
a sign language dictionary, but it is much more difficult to find co-articulated

1 Challenge - https://chalearnlap.cvc.uab.cat/challenge/49/description/.

https://chalearnlap.cvc.uab.cat/challenge/49/description/
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versions of that specific sign. When subtitles are available, as in broadcast-
based datasets, the typical approach consists in using the text to predict a
likely interval where the sign might be performed. In this track, we simulated
that case by providing a set of queries (20 isolated signs performed by a signer
of the dataset and 20 by an external one) and a set of 4 sec video intervals
around each and every co-articulated instance of the queries. Intervals with
no instances of the queries were provided to simulate the typical case where
the subtitle or translated text shows a word that the signer selected not to
perform or even a subtitle error. Participants needed to spot the exact location
of the sign instances in the provided video intervals. In this track, only one
sign needs to be located for each video.

The participants were free to join any of these challenge tracks. Each track
was composed of two phases, i.e., development and test phase. At the develop-
ment phase, public train data was released and participants needed to submit
their predictions with respect to a validation set. At the test phase, participants
needed to submit their results with respect to the test data. Participants were
ranked, at the end of the challenge, using the test data. Note that this compe-
tition involved the submission of results (and not code). Therefore, participants
were required to share their codes and trained models after the end of the chal-
lenge so that the organizers could reproduce their results in a “code verification
stage”. At the end of the challenge, top ranked methods that passed the code
verification stage (discussed in Sect. 4) were considered as valid submissions.

3.1 The Dataset

LSE eSaude UVIGO, released for the ECCV 2022 Sign Spotting Challenge, is a
dataset of Spanish Sign Language (LSE: “Lengua de Signos Española”) in the
health domain (around 10 h of video data), signed by 10 people (7 deaf and
3 interpreters) partially annotated with the exact location of 100 signs. This
dataset has been collected under different conditions than the typical Continuous
Sign Language datasets, which are mainly based on subtitled broadcast and real-
time translation. In our case, the signs are performed to explain health contents
by translating printed cards, so reliance on signers is large due to the richer
expressivity and naturalness. The dataset was acquired in studio conditions with
blue chroma-key, no shadow effects and uniform illumination, at 25 FPS and a
resolution of 1080×720. The added value of the dataset is the rich and rigorous
hand-made annotations. Experts interpreters and deaf people were in charge
of annotating the location of the selected signs. Additional details about the
dataset, data split and annotation protocol can be found in the dataset webpage2.

The signers in the test set can be the same or different to the training and
validation set. Signers are men, women, right and left-handed. The amount of
samples per sign was not uniform, as some signs are common terms but others
are related to a specific health topic. The total number of hand annotations

2 Dataset - https://chalearnlap.cvc.uab.cat/dataset/42/description/.

https://chalearnlap.cvc.uab.cat/dataset/42/description/
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are 4822 in MSSL track and 1921 in OSLWL track. The duration of the co-
articulated signs is not a Gaussian variable, starting from 120 ms (3 frames) up
to 2 s (50 frames), with a mean duration of 520 ms (13 frames).

3.2 Evaluation Protocol

The evaluation protocol is the same for both tracks, based on the F1 score.
Matching score per sign instance is evaluated as the Intersection over Unit (IoU)
of the ground-truth interval and the predicted interval. In order to allow relaxed
locations, the IoU threshold is swept from t = 0.2 to 0.8 using 0.05 as step size.

Given a specific video file n and query sign i to spot, the submitted solutions
are evaluated as follows. First, let us define Reti(k, n) as the kth interval in video
file n retrieved as a prediction of sign i, and Reli(n) an interval annotated for
an instance of sign i. Then, IoUi(k, n) is obtained as:

IoUi(k, n) =
Reti(k, n) ∩ Reli(n)
Reti(k, n) ∪ Reli(n)

. (1)

A True Positive (TP ) occurs if IoUi(k, n) ≥ t. Note that IoU is calculated
only between intervals with prediction and ground-truth matching. Moreover, no
overlap is allowed among Reti intervals. Then, for all Reti(k, n) reported from
each and every video file n containing Ln ground-truth instances, we compute
TP (t) =

∑
n

∑
i

∑
k(IoUi(k, n) ≥ t), FP (t) = (

∑
n

∑
i

∑
k 1) − TP (t), and

FN(t) = (
∑

n Ln) − TP (t) for each IoU threshold t. Then, the accumulated
over all t values as TP =

∑
t TP (t), FP =

∑
t FP (t), and FN =

∑
t FN(t).

Precision (P ) and Recall (R) averages the amounts from different thresholds
as P = TP/(TP + FP ) and R = TP/(TP + FN). Finally, the F1 score is
obtained using in Eq. 2.

F1 = 2 ∗ (P ∗ R)/(P + R). (2)

3.3 The Baseline

The baseline model is similar for both tracks, with a common pipeline and two
branches that take into account the requirements of MSSL and OSLWL tracks.
First, a person detection model [28] locates the position of the signer and a 512×
512 ROI is extracted from the original footage. Then, the Mediapipe Holistic
keypoint detector [13] extracts 11 + 21 × 2 = 53 coordinate points each 40ms.
The core of the model is a multi-scale ST-GCN, MSG3D [21], trained with
upper body and hands skeleton [37]. Two models are independently trained and
averaged, one with coordinates as input features (joints), and the other with
distances between connected coordinates (bones). No explicit RGB or motion
information is used for spatial-temporal modeling. The model was pre-trained
on the AUTSL [31] dataset, fine-tuned using 3 signers of MSSL train set and
validated over the other 2. Ground-truth annotations of the 60 class-signs were
used with 2 different context windows: 400 ms to train a short-context model
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and 1000 ms to train a long-context model. Small random shifts around the
ground-truth interval in the training window allowed data augmentation.

At inference stage, the short- and long-context models are applied in a
sequential decision pipeline. The short-context model is applied first with a
stride of one video-frame (40 ms). It yields one class decision per frame if the
wining class surpasses a threshold of 0.75. As this output is noisy, a non-linear
filter designed as a morphological operator eliminates potential short-time false
positives and false negatives by building convex-like sign outputs. The isolated
candidate signs are then fed to the long-context model in charge of eliminating
false positive candidates with a stricter threshold of 0.8. Figure 1 shows the main
blocks of the pipeline for the MSSL (upper branch) and OSLWL (lower branch)
tracks.

Fig. 1. Pipeline of the baseline solution for MSSL and OSLWL tracks.

The solution for OSLWL track had no training at all. The inference pipeline
shares all the blocks with MSSL up to the short-context model. At this point,
the baseline extracts an internal embedding vector of 384D just before the last
FC layer. For every 4 s interval a specific sign can appear at any place (or not
appear at all), so a sub-sequence Dynamic Time Warping (DTW) is applied
with cosine distance between the specific query of the searched sign and the
4 s 384D-sequence. A fixed threshold of 0.2 was set for discarding low-valued
matching scores. So, the result of the sub-sequence DTW is the time-interval of
the spotted sign only if the score surpasses the threshold.

4 Challenge Results and Winning Methods

The challenge ran from 21 April 2022 to 24 June 2022 through Codalab3, a
powerful open source framework for running competitions. It attracted a total
of 79 participants, 37 in MSSL track and 42 in OSLWL track, suggesting where
the research community is paying more attention, given the two challenge tracks.
3 Codalab - https://codalab.lisn.upsaclay.fr.

https://codalab.lisn.upsaclay.fr
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4.1 The Leaderboard

The leaderboard at the test phase of both tracks, for the submissions that passed
the code verification and improved the baseline scores, are shown in Table 1,
ranked by average F1 using multiple IOU thresholds from 0.2 to 0.8 with a
stride 0.05. As it can be observed, the top-3 winning methods improved the
baseline scores on both tracks by a large margin.

Table 1. Leaderboard of MSSL and OSLWL tracks at the test phase.

MSSL OSLWL

Rank Participant Avg F1 Rank Participant Avg F1

1 ryanwong 0.606554 1 th 0.595802

2 th 0.566752 2 Mikedddd 0.559295

3 Random guess 0.564260 3 ryanwong 0.514309

4 Baseline 0.300123 4 Baseline 0.395083

Table 2 shows the scores for different thresholds where the performance on
the relaxed to strict localization requirements can be observed. It is interesting
to highlight three points: i) the top-3 winning methods surpassed the baseline
regardless the IoU threshold; ii) the reduction of F1 when requiring strict spatial
spotting; iii) the th team would win both tracks under the stricter IoU threshold.

Table 2. IoU score for different threshold values (0.2, 0.5, 0.8). Bold values highlight
the overall winning method. In italic, when swapped leadeboard position.

MSSL OSLWL

Participant 1@20 F1@50 F1@80 Participant F1@20 F1@50 F1@80

ryanwong 0.744 0.677 0.280 th 0.784 0.647 0.269

th 0.660 0.626 0.282 Mikedddd 0.809 0.594 0.160

Random guess 0.715 0.652 0.204 ryanwong 0.744 0.552 0.164

Baseline 0.465 0.339 0.056 Baseline 0.621 0.437 0.080

Table 3 shows general information about the top-3 winning methods. As can
be seen, common strategies employed by top-winning solutions are the use of
pre-trained models (most of them for feature extraction, as detailed in the next
section), some face, hand, body detection, alignment or segmentation strategy,
combined with pose estimation and/or spatio-temporal information modeling.
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Table 3. General information about the top-3 winning approaches.

Track MSSL OSLWL

Rank 1 2 3 1 2 3

Participant ryanwong th Random guess th Mikedddd ryanwong

Pre-trained models ✓ ✓ ✓ ✓ ✓ ✓

External data ✗ ✗ ✗ ✗ ✗ ✗

Any kind of depth information
(e.g., 3D pose estimation)

✗ ✗ ✓ ✗ ✓ ✗

Use of validation set as part of the
training data (at test stage)

✓ ✓ ✓ ✗ ✓ ✗

Handcrafted features ✗ ✗ ✗ ✗ ✗ ✗

Face / hand / body detection,
alignment or segmentation

✓ ✓ ✗ ✓ ✓ ✓

Use of any pose estimation method ✗ ✓ ✓ ✓ ✓ ✗

Spatio-temporal feature extraction ✓ ✓ ✓ ✓ ✓ ✓

Explicitly classify any attribute
(e.g., gender/handedness)

✗ ✗ ✗ ✗ ✗ ✗

Bias mitigation technique (e.g.
rebalancing training data)

✓ ✗ ✓ ✗ ✗ ✗

Next, we briefly introduce the top winning methods based on the informa-
tion provided by the authors. For a detailed information, we refer the reader to
the associated fact sheets, available for download in the challenge webpage(See
footnote 4).

Fig. 2. Top-1, MSSL track (ryanwong team): proposed pipeline.
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4.2 Top Winning Approaches: MSSL Track

Top-1: ryanwong team. The ryanwong team proposed to modify and use an
I3D [7] model from [1], pretrained on WLASL [19] dataset. Originally, the I3D
model outputs a single sign prediction (i.e., for a given region in time), given a
sign video sequence of 32 frames, which limits the network to coarse temporal
predictions. Thus, they proposed hierarchical I3D model, which can predict signs
at frame level. Instead of taking the output at the final layer with spatial tem-
poral global average pooling and applying a FC layer for class predictions, they
take the output before global average pooling and additional feature outputs
before the 3D max pool layers in the I3D model, obtaining 3 feature outputs
each with a higher temporal resolution. For a given sequence length of 32 frames
of dimensions 224 × 224, the base I3D model outputs the following features
1024× 4× 7× 7, 832× 8× 14× 14 and , 480× 16× 28× 28, with a temporal res-
olution of 4, 8 and 16, respectively. The proposed network, illustrated in Fig. 2,
uses these inputs to output coarse-to-fine temporal predictions ranging from 4,
8, 16 and 32 temporally aligned predictions. That is, making 1 prediction every
8, 4, 2 and 1 frame(s), respectively. Cross Entropy loss is used to predict the sign
at each time segment for the coarse-to-fine predictions. A trade off between pre-
cision and recall is obtained with different random sampling probabilities were
instead of selecting only frame regions around only known sign classes, they ran-
domly select frame regions from other areas. The final predictions are based on
temporally interpolating the softmax of the logit features for each of the predic-
tions to the original sequence length (32) and averaging the 5 output results to
obtain the probabilities for each class prediction at frame level.

Top-2: th team. The th team proposed a two-stage framework, which consists
of feature extraction and temporal sign action localization, illustrated in Fig. 3a.

Fig. 3. a) Top-2 and b) Top-1 winning solutions on MSSL and OSLWL track, respec-
tively, both from th team.
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First, multiple modalities (RGB, optical flow [33] and pose) are used to extract
robust spatio-temporal feature representation. Then, a Transformer backbone
is adopted to identify actions in time and recognize their categories. As pre-
processing, MMDetection [8] is employed to detect the signer spatial location,
followed by MMPose [6] (from OpenMMLab project) for extracting body and
hand poses, used to crop the upper-body patch of the signer. Finally, three types
of data are generated, one for each modality. Different backbones are used for
feature extraction, given their complementary representations. RGB modality is
fed into the BSL-1k [1] pre-trained I3D [7]. Flow modality is processed by the
AUTSL [31] pre-trained I3D [7]. For the pose modality, pre-trained GCN [3,14]
is used to extract body and hand cues. The extracted features are concatenated
for the next localization stage, where Transformer is used to perform localization
similar to [40]. Specifically, it combines a multiscale feature representation with
local self-attention, using a light-weighted decoder to classify every moment in
time and to estimate the corresponding action boundaries. During training, focal
loss for sign action classification and generalized IoU loss for distance regression
are adopted. At the inference stage, the output of every time step is taken, orga-
nized as the triplet sign action confidence score, onset and offset of the action.
These candidates are further processed via NMS to remove highly overlapping
instances, which leads to the final localization outputs.

Top-3: Random guess team. The Random guess team proposed a two-stage
pipeline for sign spotting. The aim of the first stage is to condense sign language
relevant information from multiple domain experts into a compact representa-
tion for sign spotting, while the goal of the second stage is to spot signs from
longer video with a more powerful temporal module. Their workflow diagram is
presented in Fig. 4. At the inference stage, the processed video clips (cropped
video, masked video, optical flow, and 3D skeleton) are fed into four trained
expert modules. The extracted features of each clip are concatenated into a
vector to represent sign information for spotting. The temporal module takes
vectors as input and extracts contextual information. It is composed of a two-

Fig. 4. Top-3, MSSL track (Random guess team): workflow diagram.
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layer 1D convolutional and a two-layer BiLSTM for local and contextual tempo-
ral information extraction, respectively. Their outputs are integrated through a
convolutional layer. The integrated features are fed into the classification head
and the regression head, separately, to predict the corresponding class and the
offsets to its start-end. Then, a vote-based method is applied to provide better
localization results. During training, they first train the backbone for feature
extraction. Then, the whole model is fine tuned for sign spotting.

4.3 Top Winning Approaches: OSLWL Track

Top-1: th team. The th team presented a two-stage framework, consisting of
feature extraction and sign instance matching, illustrated in Fig. 3b. First, they
extract frame-level feature representation from pose modality. Then, they build a
similarity graph to perform frame-wise matching between the query isolated sign
and long video. MMDetection [8] is used to detect the signer spatial location,
and MMPose for extracting body and hand poses [6]. The compact pose is used
to indicate the gesture state of a certain frame, and for trimming the effective
time span of the query sign. Pre-trained GCN [3,14] is used to extract body
and hand representations in a frame-wise manner. Given the extracted feature
of the query and long video, an ad-hoc similarity graph is built to perform sign
instance matching. Authors suggest incorporating non-manual cues (e.g., facial
expressions) as a possible way to further boost the performance.

Top-2: Mikedddd team. The Mikedddd team proposed a multi-modal frame-
work for extracting sign language features from RGB images using I3D-MLP [7],
2D-pose [32] and 3D-pose [29] based on SL-GCN [15]. They introduced a novel
sign spotting loss function by combining the triplet loss and cross-entropy loss
to obtain more discriminative feature representations and training each model
separately. At inference stage, the three models are employed to extract visual
features before multi-modality features fusion for the sign spotting task. The
pipeline of the proposed framework is shown in Fig. 5. More precisely, to achieve
the goal of the challenge they proposed the following steps: 1) first, they observed
there is an obvious domain gap between isolated signs and continuous signs.
Therefore, they trimmed the isolated sign videos by removing the video frames
before hands up and after hands down. Then, they fed the gallery sign videos
into the model to generate feature representations. As a result, 20 feature repre-
sentations are obtained in total, each of which represents an isolated sign; 2) For

Fig. 5. Mikedddd team (top-2, OSLWL track): the inference pipeline.
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each video from the query set they use a sliding window to crop video clips from
the beginning to the end. Then, they input all clips into the proposed model to
extract feature representations; 3) All feature representations from this video are
used to calculate the Cosine distance with respect to the corresponding feature
representation of the sign provided in the gallery set. The clip that has the max-
imal similarity with the gallery sign representation is regarded as their retrieval
result; 4) They propose a top−K transferring technique to address the domain
gap between the gallery set and the query set. After the second step, they obtain
several retrieved results for each isolated sign, which are sorted given the com-
puted distance to find the most similar K clips. Each feature representation from
the gallery set will be updated by the average of the feature representations of
the top−K retrieved clips. Iteratively, the updated feature representation for a
certain sign will be used to retrieve signs from continuous sign videos again.

Top-3: ryanwong team. The ryanwong team presented a method for sign
spotting using existing I3D [7] models pretrained on sign language datasets.
First, they show how these models can be used for identifying important frames
from isolated sign dictionaries. The goal at this stage is to discard the most
common frames where the signer is in their resting pose or those frames with
irrelevant information. To this end, feature vectors are obtained for each frame
using I3D. Then, the Cosine similarity between each of the frame features across
all of the isolated sign videos is computed, which creates a cosine similarity
matrix that is used to determine how common the sign frame is within the
sign video dictionary. The “key” frames are kept for each isolated sign sequence
based on the obtained similarity matrix and predefined thresholds. Next, for
each isolated query video they randomly select 8 frames (sorted by indices) of
the important “key” frames previously identified. This query sequence is used
as input into an I3D model for feature extraction, where a feature vector q is
obtained. Similarly, the co-articulated sign video is used as input into the I3D
model for feature extraction, and a feature vector k is obtained. The cosine simi-
larity between q and k is calculated to obtain the similarity matrix s. This process
is repeated with 64 different combinations of query sequences and 64 different
co-articulated sign video (with random data augmentation and random frame
selection), obtaining 4096 similarity scores. The mean of all similarity scores
at each time step is calculated to obtain the final similarity score sf . Finally,
they compute the “normalized similarity score” sn by making the assumption
that there exists at least 1 occurrence of the isolated sign in the co-articulated
sequence by dividing sf by the maximum value in the sequence. Any indices in
sn greater than a predefined threshold (0.9) is considered a match between the
isolated sign video and the continuous sign segment. For each time index with a
matched spotting they include the 8 subsequent frames as spotting matches and
combine matching spottings if they are in range of 10 frames of each other. The
final results are obtained by ensembling the results of 2 models [1] pretrained on
WLASL [19] and MSASL [17], and taking the average between the normalized
cosine similarities.
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4.4 Performance on Marginal Distributions of the Test Set

In this section, we analyze the performance of the top-winning methods on
marginal distributions of the test set. Table 4 shows model performance in MSSL
track on signers seen during training (SD) and new signers (SI). As expected, top-
winning methods performed worse on the signer independent (i.e., SI) scenario,
with a performance improvement greater than 10% w.r.t the signer-dependent
scenario. Note that all methods had models pre-trained with external sign lan-
guage data. However, they used the challenge training data for fine-tuning. The
baseline also performed worse on the SI scenario but at a smaller ratio if com-
pared with its SD F1 score. This may be explained by the fact that it was tuned
with skeleton data only. It is also worth noting that ranking would stay almost
the same if looking just to SI performance, with a swap between the 2nd and 3rd

position, not surprising as both had already really close F1 values.

Table 4. Signer dependency of the systems of MSSL track at test phase.

MSSL: SD → p01, p05, SI → p03, p08

Rank Participant SD/SI TP FP FN Pr Re F1

1 ryanwong SD 5803 2439 2985 0.704 0.660 0.682

SI 3813 2102 4949 0.645 0.435 0.520

2 th SD 5607 2973 3181 0.653 0.638 0.646

SI 3448 2376 5314 0.592 0.394 0.473

3 Random guess SD 4982 2298 3806 0.684 0.567 0.620

SI 3406 1495 5356 0.695 0.389 0.499

4 baseline SD 2763 5076 6025 0.352 0.314 0.332

SI 1638 2301 7124 0.416 0.187 0.258

Note that this results account for the 13th IoU threshold (i.e., 0.8) tested.

Table 5. Per signer performance of MSSL track at test phase.

MSSL: Signers → p05(interpreter), p01, p03, p08 (deaf)

Rank Participant Signer TP FP FN Pr Re F1

1 ryanwong p05 4823 1573 1781 0.754 0.730 0.742

p01 980 866 1204 0.531 0.449 0.486

p03 3348 1865 4478 0.642 0.427 0.514

p08 465 237 471 0.662 0.497 0.568

2 th p05 4635 1852 1969 0.714 0.702 0.708

p01 972 1121 1212 0.464 0.445 0.454

p03 3067 2224 4759 0.580 0.392 0.468

p08 381 152 555 0.715 0.407 0.518

3 Random guess p05 4143 1473 2461 0.738 0.627 0.678

p01 839 825 1345 0.504 0.384 0.436

p03 2953 1324 4873 0.690 0.377 0.488

p08 453 171 483 0.725 0.484 0.581

4 Baseline p05 2389 3864 4215 0.382 0.362 0.372

p01 374 1212 1810 0.236 0.171 0.198

p03 1354 2104 6472 0.391 0.173 0.240

p08 284 197 652 0.590 0.303 0.401
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Table 5 shows the results marginalized per signer. Signer p05 is a sign lan-
guage interpreter, the remainder in MSSL test set are native deaf signers. Par-
ticipants methods obtained a +10% larger F1 on the interpreter videos, w.r.t
deaf signers. A possible explanation is that interpreters display less naturalness,
hence variability, while signing. This hypothesis should be contrasted further, as
p05 is also the signer with more training data. The F1 ranking among signers
holds among the three competing methods ( p05 > p08 > p03 > p01 ), so there
is a clear dependency on signing style that makes it difficult to separate from the
dependency of amount of training data (p03 and p08 not seen during training).
We leave this important question open to further testing because many of the
current larger datasets are based on broadcast video with interpreters’ signing.

Table 6 shows per signer performance, precision (Pr), recall (Re) and F1 in
OSLWL track. Note that OSLWL does not have explicit training signs/signers,
but 2 of the analyzed methods, 2nd,Mikedddd and 4th, Baseline, used MSSL
data in the model that extracts feature vectors from the query and MSSL videos.
Mikedddd also used the OSLWL validation data. We can make some observations
from Table 6. First, performance on interpreters (p05, p09 ) is better than on deaf
signers if the model used training data containing them, which is not observed
on methods ranked 1st and 3rd, where deaf signer p04 obtained better or similar
performance. So, as in MSSL, performance is quite signer dependent. Second,
there’s not a better performance on signer p03 who is the one that signs half of
the queries. This observation shows that, even though the scenario and signer
is the same, the domain change between isolated signs and co-articulated signs
plays a more important role.

In short, the top-winning methods show a consistent performance on marginal
distributions of the test set. Per signer evaluation shows a remarkable perfor-
mance difference that can not be fully blamed to the amount of training data
available for each signer but, probably, to factors related to signing style. It seems
that interpreters’ style is easier to learn that deafs’ style, but there’s not enough
evidence to support this hypothesis, which deserves further investigation.

Table 6. Per signer performance of OSLWL track at test phase.

OSLWL: Signers → p05, p09 (interpreters), p01, p03, p04, p08 (deaf)

Rank Participant Pr Re F1 Signer F1 Re Pr Participant Rank

1 th 0.588 0.596 0.592 p05 0.584 0.617 0.554 Mikedddd 2

0.645 0.645 0.645 p09 0.651 0.680 0.624

0.507 0.497 0.502 p01 0.460 0.477 0.444

0.453 0.453 0.453 p03 0.462 0.510 0.421

0.702 0.728 0.715 p04 0.582 0.612 0.555

0.632 0.438 0.517 p08 0.361 0.361 0.361

3 ryanwong 0.488 0.521 0.504 p05 0.422 0.372 0.487 Baseline 4

0.562 0.576 0.569 p09 0.485 0.448 0.529

0.415 0.484 0.447 p01 0.264 0.239 0.294

0.474 0.568 0.517 p03 0.277 0.226 0.357

0.529 0.553 0.541 p04 0.423 0.393 0.457

0.405 0.467 0.434 p08 0.278 0.225 0.365
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5 Conclusions

This paper summarized the ECCV 2022 Sign Spotting Challenge. We analysed
and discussed the challenge design, top winning solutions and results. The new
released dataset allowed training and testing sign spotting methods under chal-
lenging conditions with deaf and interpreter signers. Although having around
10 h of video data, rich and rigorous hand-made annotations, the dataset is still
limited by its small number of participants which have an impact on general-
ization. To address this problem, future research directions should move on the
development of novel large-scale and public datasets and on the research and
development of methods that are both fair and accurate, where people from
different gender, age, demographics, sign style, among others, are considered.

Top winning solutions of this challenge shared similar pipeline blocks regard-
ing spatial-temporal representation using pre-trained models on larger sign lan-
guage datasets from different languages, both from 3DCNN and ST-GCN deep
learning models. That is, they benefited from state-of-the-art approaches for
feature extraction, modeling and/or fusion. Main differences are based on how
the domain adaptation problem is handled and the use of the target dataset to
train/fine-tune the models or their meta-parameters. The post-challenge exper-
iments showed that signer style can affect the quality of the sign spotting per-
formance, which can be affected by the amount of train data and data distri-
bution previously mentioned. In this line, future work should consider paying
more attention to explainability/interpretability, which are key to understand
what part or components of the model are more relevant to solve a particular
problem, or to explain possible sources of bias or misclassification.
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