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Abstract. Sketches are arguably the most abstract 2D representations
of real-world objects. Although a sketch usually has geometrical distor-
tion and lacks visual cues, humans can effortlessly envision a 3D object
from it. This suggests that sketches encode the information necessary
for reconstructing 3D shapes. Despite great progress achieved in 3D
reconstruction from distortion-free line drawings, such as CAD and edge
maps, little effort has been made to reconstruct 3D shapes from free-hand
sketches. We study this task and aim to enhance the power of sketches
in 3D-related applications such as interactive design and VR/AR games.

Unlike previous works, which mostly study distortion-free line draw-
ings, our 3D shape reconstruction is based on free-hand sketches. A
major challenge for free-hand sketch 3D reconstruction comes from the
insufficient training data and free-hand sketch diversity, e.g. individu-
alized sketching styles. We thus propose data generation and standard-
ization mechanisms. Instead of distortion-free line drawings, synthesized
sketches are adopted as input training data. Additionally, we propose a
sketch standardization module to handle different sketch distortions and
styles. Extensive experiments demonstrate the effectiveness of our model
and its strong generalizability to various free-hand sketches. Our code is
available.

Keywords: Sketch · Interactive design · Shape reconstruction · Data
insufficiency · 3D reconstruction

1 Introduction

Human free-hand sketches are the most abstract 2D representations for 3D visual
perception. Although a sketch may consist of only a few colorless strokes and
exhibit various deformation and abstractions, humans can effortlessly envision
the corresponding real-world 3D object from it. It is of interest to develop a
computer vision model that can replicate this ability. Although sketches and
3D representations have drawn great interest from researchers in recent years,
these two modalities have been studied relatively independently. We explore the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Karlinsky et al. (Eds.): ECCV 2022 Workshops, LNCS 13808, pp. 184–202, 2023.
https://doi.org/10.1007/978-3-031-25085-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25085-9_11&domain=pdf
http://orcid.org/0000-0002-8356-2775
http://orcid.org/0000-0002-3507-5761
https://github.com/samaonline/3D-Shape-Reconstruction-from-Free-Hand-Sketches
https://doi.org/10.1007/978-3-031-25085-9_11


Sketch to 3D 185

plausibility of bridging the gap between sketches and 3D, and build a computer
vision model to recover 3D shapes from sketches. Such a model will unleash
many applications, like interactive CAD design and VR/AR games.
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Fig. 1. Left: We study 3D reconstruction from a single-view free-hand sketch, differ-
ing from previous works [7,30,49] which use multi-view distortion-free line-drawings as
training data. Center: While previous works [7,49] employ distortion-free line draw-
ings (e.g. edge-maps) as proxies for sketches, our model trained on synthesized sketches
can generalize better to free-hand sketches. Further, the proposed sketch standardiza-
tion module makes the method generalizes well to free-hand sketches by standardizing
different sketching styles and distortion levels. Right: Our model unleashes many prac-
tical applications such as real-time 3D modeling with sketches. A demo is here.

With the development of new devices and sensors, sketches and 3D shapes,
as representations of real-world objects beyond natural images, become increas-
ingly important. The popularity of touch-screen devices makes sketching not
a privilege to professionals anymore and increasingly popular. Researchers have
applied sketch in tasks like image retrieval [12,26,45,51,58,62] and image synthe-
sis [12,13,29,40,52,63] to leverage its power in expression. Furthermore, as depth
sensors, such as structured light device, LiDAR, and TOF cameras, become more
ubiquitous, 3D data become an emerging modality in computer vision. 3D recon-
struction, the process of capturing the shape and appearance of real objects, is an
essential topic in 3D computer vision. 3D reconstruction from multi-view images
has been studied for many years [1,4,11,38]. Recent works [8,10,43] have further
explored 3D reconstruction from a single image.

Despite these trends and progress, there are limited works connecting 3D
and sketches. We argue that sketches are abstract 2D representations of 3D per-
ception, and it is of great significance to study sketches in a 3D-aware perspec-
tive and build connections between two modalities. Researchers have explored
the potential of distortion-free line drawings (e.g. edge maps) for 3D modeling
[27,28,57]. These works are based on distortion-free line drawings and generalize
poorly to free-hand sketches (Fig. 1L). Furthermore, the role of line drawings in
such works is to provide geometrical information for the subsequent 3D model-
ing. Some other works [7,30] employ neural networks to reconstruct 3D shapes

https://streamable.com/z76m47
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directly from line drawings. However, their decent reconstructions come with
two major limitations: a) they use distortion-free line drawings as training data,
which makes such models hard to generalize to free-hand sketches; b) they usu-
ally require inputs depicting the object from multi-views to achieve satisfactory
outcomes. Therefore, such methods cannot reconstruct the 3D shape from a
single-view free-hand sketch well, as we show later in the experiment section.
Other works such as [19,49] tackle 3D retrieval instead of 3D shape reconstruc-
tion from sketches. Retrieved shapes come from the pre-collected gallery set and
may not resembles novel sketches well. Overall, reconstructing a 3D shape from
a single free-hand sketch is still left not well explored.

We explore single-view free-hand sketch-based 3D reconstruction (Fig. 1C). A
free-hand sketch is defined as a line drawing created without any additional tool.
As an abstract and concise representation, it is different from distortion-free line
drawings (e.g. edge maps) since it commonly has some spatial distortions, but it
can still reflect the essential geometric shape. 3D reconstruction from sketch is
challenging due to the following reasons: a) Data insufficiency. Paired sketch-3D
datasets are rare although there exist several large-scale sketch datasets and 3D
shape datasets, respectively. Furthermore, collecting sketch-3D pairs can be very
time-consuming and expensive than collecting sketch-image pairs, as each 3D
shape could be sketched from various viewing angles. b) Misalignment between
two representations. A sketch depicts an object from a certain view while a 3D
shape can be viewed from multiple angles due to the encoded depth information.
c) Due to the nature of hand drawing, a sketch is usually geometrically imprecise
with a individual style compared to the real object. Thus a sketch can only
provide suggestive shape and structural information. In contrast, a 3D shape is
faithful to its corresponding real-world object with no geometric deformation.

To address these challenges, we propose a single-view sketch-to-3D shape
reconstruction framework. Specifically, it takes a sketch from an arbitrary angle
as input and reconstructs a 3D point cloud. Our model cascades a sketch stan-
dardization module U and a reconstruction module G. U handles various sketch-
ing styles/distortions and transfers inputs to standardized sketches while G takes
a standardized sketch to reconstruct the 3D shape (point cloud) regardless of the
object category. The key novelty lies in the mechanisms we propose to tackle the
data insufficiency issue. Specifically, we first train an photo-to-sketch model on
unpaired large-scale datasets. Based on the model, sketch-3D pairs can be auto-
matically generated from 2D renderings of 3D shapes. Together with the stan-
dardization module U which unifies input sketch styles, the synthesized sketches
provide sufficient information to train the reconstruction model G. We conduct
extensive experiments on a composed sketch-3D dataset, spanning 13 classes,
where sketches are synthesized and 3D objects come from the ShapeNet dataset
[3]. Furthermore, we collect an evaluation set, which consists of 390 real sketch-
3D pairs. Results demonstrate that our model can reconstruct 3D shapes with
certain geometric details from real sketches under different styles, stroke line-
widths, and object categories. Our model also enables practical applications such
as real-time 3D modeling with sketches (Fig. 1R).
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To summarize our contributions: a) We are one of the pioneers to study the
plausibility of reconstructing 3D shapes from single-view free-hand sketches. b)
We propose a novel framework for this task and explore various design choices. c)
To handle data insufficiency, we propose to train on synthetic sketches. Moreover,
sketch standardization is introduced to make the model generalize to free-hand
sketches better. It is a general method for zero-shot domain translation, and we
show applications on zero-shot image translation tasks.

Fig. 2. Model overview. The model consists of three major components: sketch genera-
tion, sketch standardization, and 3D reconstruction. To generate synthesized sketches,
we first render 2D images for a 3D shape from multiple viewpoints. We then employ
an image-to-sketch translation model to generate sketches of corresponding views.
The standardization module standardize sketches with different styles and distortions.
Deformation D2 is only used in training for augmentation such that the model is robust
to geometric distortions of sketches. For inference, sketches are dilated (D1) and refined
(R) so their style matches that of training sketches. For 3D reconstruction, a view esti-
mation module is adopted to align the output’s view and the ground-truth 3D shape.
(Color figure online)

2 Related Works

3D Reconstruction from Images. While SfM [38] and SLAM [11] achieve
success in handling multi-view 3D reconstructions in various real-world scenar-
ios, their reconstructions can be limited by insufficient input viewpoints and
3D scanning data. Deep-learning-based methods have been proposed to further
improve reconstructions by completing 3D shapes with occluded or hollowed-out
areas [4,22,59]. In general, recovering the 3D shape from a single-view image is
an ill-posed problem. Attempts to tackle the problem include 3D shape recon-
structions from silhouettes [8], shading [43], and texture [54]. However, these
methods need strong presumptions and expertise in natural images [65], limit-
ing their usage in real-world scenarios. Generative adversarial networks (GANs)
[14] and variational autoencoders (VAEs) [24] have achieved success in image
synthesis and enabled [55] 3D shape reconstruction from a single-view image.
Fan et al. [10] further adopt point clouds as 3D representation, enabling models
to reconstruct certain geometric details from an image. They may not directly
work on sketches as many visual cues are missing.

3D reconstruction networks are designed differently depending on the out-
put 3D representation. 3D voxel reconstruction networks [18,48,56] benefit from
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many image processing networks as convolutions are appropriate for voxels. They
are usually constrained to low resolution due to the computational overhead.
Mesh reconstruction networks [25,53] are able to directly learn from meshes,
where they suffer from topology issues and heavy computation [39]. We adopt
point cloud representation as it can capture certain 3D geometric details with
low computational overhead. Reconstructing 3D point clouds from images has
been shown to benefit from well-designed network architectures [10,32], latent
embedding matching [31], additional image supervision [35], etc.

Sketch-Based 3D Retrievals/Reconstructions. Free-hand sketches are
used for 3D shape retrieval [19,49] given their power in expression. However,
retrieval methods are significantly constrained by the gallery dataset. Precise
sketching is also studied in the computer graphics community for 3D shape mod-
eling or procedural modeling [20,27,28]. These works are designed for profession-
als and require additional information for shape modeling, e.g., surface-normal,
procedural model parameters. Delanoy et al. [7] first employ neural networks to
learn 3D voxels from line-drawings. While it achieves impressive performance,
this model has several limitations: a) The model uses distortion-free edge map as
training data. While working on some sketches with small distortions, it cannot
generalize to general free-hand sketches. b) The model requires multiple inputs
from different viewpoints for a satisfactory result. These limitations prevent the
model from generalizing to real free-hand sketches. Recent works also explore
reconstructing 3D models from sketches with direct shape optimization [17],
shape contours [16], differential renderer [64], and unsupervised learning [50].
Compared to existing works, the proposed method in this work reconstructs the
3D point cloud based on a single-view free-hand sketch. Our model may make
3D reconstruction and its applications more accessible to the general public.
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Fig. 3. Synthesized sketches are visually more similar to free-hand sketches than edge
maps as they contain distortions and emphasize perceptually significant contours. After
standardization, the free-hand sketches share a uniform style similar to training data.
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3 3D Reconstruction from Sketches

The proposed framework has three modules (Fig. 2). To deal with data insuffi-
ciency, we first synthesize sketches as the training set. The module U transfers an
input sketch to a standardized sketch. Then, the module G takes the standard-
ized sketch to reconstruct a 3D shape (point clouds). We also present details of
a new sketch-3D dataset, which is collected for evaluating the proposed model.

3.1 Synthetic Sketch Generation

To the best of our knowledge, there exists no paired sketch-3D dataset. While
it is possible to resort to edge maps [7], edge maps are different from sketches
(as shown in the 3rd and 4th rows of Fig. 3). We show that the reconstruction
model trained on edge maps cannot generalize well to real free-hand sketches
in Sect. 4.4. Thus it is crucial to find an efficient and reliable way to synthe-
size sketches for 3D shapes. Inspired by [29], we employ a generative model to
synthesize sketches from rendered images of 3D shapes. Figure 2L depicts the
procedure. Specifically, we first render m images for each 3D shape, where each
image corresponds to a particular view of a 3D shape. We then adopt the
model introduced in [29] to synthesize gray-scale sketches images, denoted as
{Si|Si ∈ R

W×H}, as our training data. W,H refer to the width and height of a
sketch image.

3.2 Sketch Standardization

Sketches usually have strong individual styles and geometric distortions. Due to
the gap between the free-hand sketches and the synthesized sketches, directly
using the synthesized sketches as training data would not lead to a robust model.
The main issues are that the synthesized sketches have a uniform style and they
do not contain enough geometric distortions. Rather, the synthesized sketches
can be treated as an intermediate representation if we can find a way to project
a free-hand sketch to the synthesized sketch domain. We propose a zero-shot
domain translation technique, the sketch standardization module, to achieve
this domain adaption goal without using the free-hand sketches as the training
data. The training of the sketch standardization module only involves synthe-
sized sketches. The general idea is to project a distorted synthesized sketch to
the original synthesized sketch. The training consists of two parts: a) since the
free-hand sketches usually have geometric distortions, we apply predefined dis-
tortion augmentation to the input synthesized sketches first. b) A geometrically
distorted synthesized sketch still has a different style and line style compared to
the free-hand sketches. Thus, the first stage of the standardization is to apply
a dilation operation. The dilation operation would project distorted synthesized
sketches and the free-hand sketches to the same domain. Then, a refinement
network follows to project the dilated sketch back to the synthesized sketch
domain.
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In summary, as in Fig. 2, the standardization module U first applies a dilation
operator D2 to the input sketch, which is followed by a refinement operator R
to transfer to the standardized synthesized-sketch style (or training-sketch style)
˜Si, i.e. U = R ◦ D2. R is implemented as an image translation network. During
training, a synthesized sketch ˜Si is first augmented by the deformation operator
D1 to mimic the drawing distortion, and then U aims to project it back to ˜Si.
Please note that D1 would not be used during the testing. We illustrate the
standardization process in Fig. 2R with more details in the following.

Deformation. When training U , each synthesized sketch is deformed with mov-
ing least squares [46] for random, local and rigid distortion. Specifically, we
randomly sample a set of control points on sketch strokes and denote them
as p, and denote the corresponding deformed point set as q. Following mov-
ing least squares, we solve for the best affine transformation lv(x) such that:
min

∑

i wi|lv(pi)−qi|2, where pi and qi are row vectors and weights wi = 1
|pi−v|2α .

Affine transformation can be written as lv(pi) = piM + T . We add constraint
MT M = I to make the deformation is rigid to avoid too much distortion. Details
can be found in [46].

Style Translation. Adapting to unknown input free-hand sketch style during
inference can be considered as a zero-shot domain translation problem, which is

Fig. 4. Sketch standardization can be considered as a general zero-shot domain transla-
tion method. Given a sample from a zero-shot (input) domain X, we first translate it to
a universal intermediate domain Y , and finally to the target domain Z. 1st example
(2nd row): the input domain is an unseen free-hand sketch. With sketch standard-
ization, it is translated to an intermediate domain: standardized sketch, which shares
similar style as synthesized sketch for training. With 3D reconstruction, the standard-
ized sketch can be translated to the target domain: 3D point clouds. 2nd example
(last row): the input domain is an unseen nighttime image. With edge extraction, it gets
translated to an intermediate domain: edge map. With the image-to-image translation
model, the standardized edge map can be translated to the target domain: daytime
image.
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challenging. Inspired by [61], we first dilate the augmented training sketch strokes
with 4 pixels and then use image-to-image translation network Pix2Pix [21] to
translate the dilated sketches to the un-distorted synthesized sketches. During
inference, we also dilate the free-hand sketches and apply the trained Pix2Pix
model such that the style of an input free-hand sketch could be adapted to the
synthesized sketch style during training. The dilation step can be considered as
introducing uncertainty for the style adaption. Further, we show in Sect. 4.5 that
the proposed style standardization module could be used as a general zero-shot
domain translation technique, which generalizes to more applications such as
sketch classification and zero-shot image-to-image translation.

A More General Message: Zero-Shot Domain Translation. We illustrate
in Fig. 4 a more general message of the standardization module: it can be consid-
ered as a general method for zero-shot domain translation. Consider the following
problem: we would like to build a model to transfer domain X to domain Z but
we do not have any training data from domain X. We propose a general idea to
solve this problem is to build an intermediate domain Y as a bridge such that:
a) we can translate data from domain X to domain Y and 2) we can further
translate data from domain Y to domain Z. We give two examples in the caption
of Fig. 4 and provided experimental results in Sect. 4.5.

3.3 Sketch-Based 3D Reconstruction

Our 3D reconstruction network G (pipeline in Fig. 2R) consists of several compo-
nents. Given a standardized sketch ˜Si, the view estimation module first estimates
its viewpoint. ˜Si is then fed to the sketch-to-3D module to generate a point cloud
Pi,pre, whose pose aligns with the sketch viewpoint. A 3D rotation corresponding
to the viewpoint is then applied to Pi,pre to output the canonically-posed point
cloud Pi. The objective of G is to minimize distances between reconstructed
point cloud Pi and the ground-truth point cloud Pi,gt.

View Estimation Module. The view estimation module g1 aims to determine
the 3D pose from an input sketch ˜S. Similar to the input transformation module
of the PointNet [42], g1 estimates a 3D rotation matrix A from a sketch ˜S, i.e.,
A = g1(˜S). A regularization loss Lorth = ‖I −AAT ‖2F is applied to ensure A is a
rotation (orthogonal) matrix. The rotation matrix A rotates a point cloud from
the viewpoint pose to a canonical pose, which matches the ground truth.

3D Reconstruction Module. The reconstruction network g2 learns to recon-
struct a 3D point cloud Ppre from a sketch ˜S, i.e., Ppre = g2(˜S). Ppre is fur-
ther transformed by the corresponding rotation matrix A to P so that P aligns
with the ground-truth 3D point cloud Pgt’s canonical pose. Overall, we have
P = g1(˜S) · g2(˜S). To train G, we penalize the distance between an output point
cloud P and the ground-truth point cloud Pgt. We employ the Chamfer distance
(CD) between two point clouds P, Pgt ⊂ R

3:

dCD(P‖Pgt) =
∑

p∈P

min
q∈Pgt

‖p − q‖22 +
∑

q∈Pgt

min
p∈P

‖p − q‖22 (1)
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The final loss of the entire network is L =
∑

i dCD (G ◦ U(Si)‖Pi,gt) + λLorth =
∑

i dCD (Ai · Pi,pre‖Pi,gt) + λLorth =
∑

i dCD

(

g1(˜Si) · g2(˜Si)‖Pi,gt

)

+ λLorth

where λ is the weight of the orthogonal regularization loss and ˜Si = R ◦
D2 ◦ D1(Si) is the standardized sketch from Si. We employ CD rather than
EMD (Sect. 4.2) to penalize the difference between the reconstruction and the
ground-truth point clouds because CD emphasizes the geometric outline of point
clouds and leads to reconstructions with better geometric details. EMD, how-
ever, emphasizes the point cloud distribution and may not preserve the geometric
details well at locations with low point density.

4 Experimental Results

We first present the datasets, training and evaluation details, followed by qualita-
tive and quantitative results. Then, we provide comparisons with some state-of-
the-art methods. We also conduct ablation studies to understand each module.

4.1 3D Sketching Dataset

To evaluate the performance of our method, we collected a real-world evalua-
tion set containing paired sketch-3D data. Specifically, we randomly choose ten
3D shapes from each of the 13 categories of the ShapeNet dataset [3]. Then we
randomly render 3 images from different viewpoints for each 3D shape. Totally,
there are 130 different 3D shapes and 390 rendered images. We recruited 11 vol-
unteers to draw the sketches for the rendered images. Final sketches are reviewed
for quality control. We present several examples in Fig. 3.

Fig. 5. Left: Performance on free-hand sketches with different design choices. The
design pool includes the model with a cascaded two-stage structure (2nd column), the
model trained on edge maps (3rd column), the model whose 3D output is represented
by voxel (4th column), and the proposed model (5th column). Overall, the proposed
method achieves better performance and keeps more fine-grained details, e.g., the legs
of chairs. Right: 3D reconstructions on our newly-collected free-hand sketch evaluation
dataset. Outlined in green: Examples of some good reconstruction results. Our model
reconstructs 3D shapes with fine geometric fidelity of multiple categories uncondition-
ally. Outlined in red: Examples of failure cases. Our model may not handle detailed
structures well (e.g., watercraft), recognize the wrong category (e.g., display as a lamp)
due to the ambiguity of the sketch, as well as not able to generate 3D shape from very
abstract sketches where few geometric information is available (e.g., rifle). (Color figure
online)
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4.2 Training Details and Evaluation Metrics

Training. The proposed model is trained on a subset of ShapeNet [3] dataset,
following settings of [56]. The dataset consists of 43,783 3D shapes spanning 13
categories, including car, chair, table, etc. For each category, we randomly select
80% 3D shapes for training and the rest for evaluation. As mentioned in Sect. 3.1,
corresponding sketches of rendered images from 24 viewpoints of each 3D shape
of ShapeNet are synthesized with our synthetic sketch generation module.

Evaluation. To evaluate our method’s 3D reconstruction performance on free-
hand sketches, we use our proposed sketch-3D datasets (Sect. 4.1). To evaluate
the generalizability of our model, we also evaluate on three additional free-hand
sketch datasets, including the Sketchy dataset [45], the TU-Berlin dataset [9],
and the QuickDraw dataset [15]. For these additional datasets, only sketches
from categories that overlap with the ShapeNet dataset are considered.

Following the previous works [10,31,60], we adopt two evaluation met-
rics to measure the similarity between the reconstructed 3D point cloud P
and the ground-truth point cloud Pgt. The first one is the Chamfer Distance
(Eq. 1), and another one is the Earth Mover’s Distance (EMD): dEMD(P, Pgt) =
minφ:P �→Pgt

∑

x∈P ‖x − φ(x)‖, where P, Pgt has the same size |P | = |Pgt| and
φ : P �→ Pgt is a bijection. CD and EMD evaluate the similarity between two
point clouds from two different perspectives (more details can be found in [10]).

4.3 Implementation Details

Sketch Generation. We utilize an off-the-shelf sketch-image translation model
[29] to synthesize sketches for training. Given the appropriate quality of the
generated sketches on the ShapeNet dataset (with some samples depicted in
Fig. 3), we directly use the model without any fine-tuning.

Table 1. Ours outperforms baselines for 3D reconstruction. [7] uses edge-maps rather
than sketches as input. [56] uses voxels rather than point clouds as output. [37] repre-
sents the 3D shapewith multi-view depth maps. “cas.” refers to the two-stage cascaded
training following [10,29]. CD and EMD measure distances between reconstructions
and ground-truths from different perspectives (see text for details). The lower, the
better.

Error Chamfer Distance (×10−4) Earth Mover’s Distance (×10−2)

Points Edge [7] Voxel [56] Cas. [37] Retrieval [49] Ours Points Edge [7] Voxel [56] Cas. [37] Retrieval [49] Ours

Airplane 11.4 7.8 35.1 71.7 8.0 11.2 6.1 8.5 7.3 10.8 12.7 8.5 11.9 6.5

Bench 29.2 16.7 202.8 414.1 16.8 14.5 13.0 11.1 8.7 22.0 25.8 10.0 8.6 7.8

Cabinet 61.7 50.4 59.1 354.5 51.5 45.3 39.2 17.6 17.8 17.0 29.6 18.4 17.2 16.0

Car 20.8 13.3 173.2 114.2 14.1 14.2 10.4 8.9 20.0 25.2 20.0 21.6 21.2 18.0

Chair 41.8 36.4 108.6 237.1 36.1 33.0 26.9 15.1 15.6 19.4 22.8 16.1 15.3 13.0

Display 68.6 48.3 33.1 340.2 49.3 38.2 37.7 15.5 15.1 13.1 27.9 16.4 14.6 14.4

Lamp 63.3 59.4 107.0 214.0 60.2 63.5 46.3 21.3 22.6 21.2 24.9 22.3 22.6 20.4

Speaker 88.2 79.7 203.2 406.4 81.2 72.3 62.1 19.4 19.2 23.8 28.0 21.8 20.0 17.9

Rifle 17.0 12.1 170.1 15.4 12.3 14.2 10.1 11.2 13.8 23.7 15.4 15.2 17.6 12.4

Sofa 32.8 20.9 141.2 482.4 22.3 20.3 16.3 11.1 8.5 18.6 25.4 9.1 8.6 7.7

Table 55.2 49.4 134.7 469.5 50.5 49.1 40.7 19.1 17.7 18.5 26.5 18.2 18.2 17.3

Telephone 30.7 27.3 26.9 259.8 27.1 27.4 21.3 13.4 13.6 15.1 27.2 15.1 15.3 12.3

Watercraft 32.9 26.0 129.1 53.8 26.0 27.3 20.3 12.5 11.1 23.1 17.8 12.2 12.7 10.6

Avg. 42.6 34.4 117.2 264.1 35.0 33.1 26.9 14.2 14.7 19.3 23.4 15.8 15.7 13.4

Free-hand sketch 87.1 89.0 162.5 334.2 91.8 89.2 86.1 18.6 16.4 22.9 26.1 17.0 16.8 16.0
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Data Augmentation. During training, to improve the model’s generalizability
and robustness, we perform data augmentation for synthetic sketches before
feeding them to the standardization module. Specifically, we apply image spatial
translation (up to ±10 pixels) and rotation (up to ±10◦) on each input sketch.

Sketch Standardization. Each input sketch Si is first randomly deformed with
moving least squares [46] both globally and locally (D1), and then binarized and
dilated five times iteratively (D2) to obtain a rough sketch Sr. The rough sketch
Sr is then used to train a Pix2Pix model [21], R, to reconstruct the input sketch
Si. The network is trained for 100 epochs with an initial learning rate of 2e-4.
Adam optimizer [23] is used for the parameter optimization. During evaluation,
random deformation D1 is discarded.

3D Reconstruction. The 3D reconstruction network is based on [10]’s frame-
work with hourglass network architecture [36]. We compare several different net-
work architectures (simple encoder-decoder architecture, two-prediction-branch
architecture, etc.) and find that hourglass network architecture gives the best
performance. This may be due to its ability to extract key points from images
[2,36]. We train the network for 260 epochs with an initial learning rate of 3e-5.
The weight λ of the orthogonal loss is 1e-3. To enhance the performance on
every category, all categories of 3D shapes are trained together. The class-aware
mini-batch sampling [47] is adopted to ensure a balanced category-wise distri-
bution for each mini-batch. We choose Adam optimizer [23] for the parameter
optimization. 3D point clouds are visualized with the rendering tool from [33].

4.4 Results and Comparisons

We first present our model’s 3D shape reconstruction performance, along with
the comparisons with various baseline methods. Then we present the results on
sketches from different viewpoints and of different categories, as well the results
on other free-hand sketch datasets. Note that unless specifically mentioned, all
evaluations are on the free-hand sketches rather than synthesized sketches.

Baseline Methods. Our 3D reconstruction network is a one-stage model where
the input sketch is treated as an image, and point clouds represent the output
3D shape. As conducting the first work for single-view sketch-based 3D recon-
struction, we explore different design options adopted by previous works on
distortion-free line drawings and/or 3D reconstruction, including architectures,
representation of sketches and 3D shapes. We compare with different variants to
demonstrate the effectiveness of each choice of our model.

1) Model Design: End-to-End vs. Two-Stage. Although the task of recon-
structing 3D shapes from free-hand sketches is new, sketch-to-image synthesize
and 3D shape reconstruction from images have been studied before [10,29,56]. Is
a straight combination of the two models, instead of an end-to-end model, enough
to perform well for the task? To compare these two architectures’ performance,
We implement a cascaded model by composing a sketch-to-image model [66] and
an image-to-3D model [10] to reconstruct 3D shapes.
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2) Sketch: Point-Based vs. Image-Based. Considering a sketch is relatively
sparse in pixel space and consists of colorless strokes, we can employ 2D point
clouds to represent a sketch. Specifically, 512 points are randomly sampled from
strokes of each binarized sketch, and we use a point-to-point network architecture
(adapted from PointNet [42]) to reconstruct 3D shapes from the 2D point clouds.

3) Sketch: Using Edge Maps as Proxy. We compare with a previous work
[7]. Our proposed model uses synthetic sketch for training. However, an alterna-
tive option is using edge maps as a proxy of the free-hand sketch. As edge maps
can be generated automatically (we use the Canny edge detector in implementa-
tion), the comparison helps us understand if our proposed synthesizing method
is necessary.

4) 3D Shape: Voxel vs. Point Cloud. We compare with a previous work [56].
In this variant, we follow their settings and represent a 3D shape with voxels. As
the voxel representation is adopted from the previous method, the comparison
helps to understand if representing 3D shapes with point clouds has benefits.

5) 3D Shape: Depth Map vs. Point Cloud. In this variant, we exactly
follow a previous work [37] and represent the 3D shape with multi-view depth
maps.

Comparison and Results. Table 1 and Fig. 5L present quantitative and quali-
tative results of our method and different design variants. Specifically for quanti-
tative comparisons (Table 1), we report 3D shape reconstruction performance on
both synthesized (evaluation set) and free-hand sketches. This is due to that the
collected free-hand sketch dataset is relatively small and together they provide
a more comprehensive evaluation. We have the following observations: a) Rep-
resenting sketches as images outperforms representing them as 2D point clouds
(points vs. ours). b) The model trained on synthesized sketches performs bet-
ter on real free-hand sketches than the model trained on edge maps (89.0 vs.
86.1 on CD, 16.4 vs. 16.0 on EMD). Training with edge maps could reconstruct
okay overall coarse shape. However, the unsatisfactory performance on geometric
details reveals such methods are hard to generalize to free-hand sketches with
distortions. It also shows the necessity of the proposed sketch generation and
standardization modules. c) For model design, the end-to-end model outper-
forms the two-stage model by a large margin (cas. vs. ours). d) For 3D shape
representation, while the voxel representation can reconstruct the general shape
well, the fine-grained details are frequently missing due to its low resolution
(32×32×32). Thus, point clouds outperform voxels. The proposed method also
outperforms a previous work that uses depth maps as 3D shape representation
[37]. Note that the resolution of voxels can hardly improve much due to the
complexity and computational overhead. However, we show that increasing the
number of points improves the reconstruction quality (details in supplementary).
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Fig. 6. Left: Ours (2nd row) versus nearest-neighbor retrieval results (last row) of
given sketches. Our model generalizes to unseen 3D shapes better and has higher
geometry fidelity. Right: 3D reconstructions of sketches from different viewpoints.
Before the view estimation module, the reconstructed 3D shape aligns with the input
sketch’s viewpoint. The module transforms the pose of the output 3D shape to align
with canonical pose, i.e. the pose of the ground-truth 3D shape.

Synthesized sketch Standardized sketch

Free hand sketch

Synthesized sketch Standardized sketch

Free hand sketch

Fig. 7. Left: Our approach trained on ShapeNet can be directly applied to other unseen
sketch datasets [9,15,45] and generalize well. Our model is able to reconstruct 3D
shapes from sketches with different styles and line-widths, and even low-resolution data.
Right: Standardized sketches converted from different individual styles (by different
volunteers). For each rendered image of a 3D object, we show free-hand sketches from
two volunteers and the standardized sketches from these free-hand sketches. Contents
are preserved after the standardization process, and standardized sketches share the
style similar to the synthesized ones.

Retrieval Results. We compare with nearest-neighbor retrievals, following
methods and settings of [49] (Fig. 6L). We could generalize to unseen 3D shapes
and reconstructs with higher geometry fidelity (e.g., stand of the lamp).
Reconstruction with Different Categories and Views. Figure 5R shows
3D reconstruction results with sketches from different object categories. Our
model reconstructs 3D shapes of multiple categories unconditionally. There are
some failure cases that the model may not handle well.

Figure 6R depicts reconstructions with sketches from different views. Our
model can reconstruct 3D shapes from different views even if certain parts are
occluded (e.g. legs of the table). Slight variations in details exist for different
views.
Evaluation on Other Free-Hand Sketch Datasets. We also evaluate on
three other free-hand sketch datasets [9,15,45]. Our model can reconstruct 3D
shapes from sketches with different styles, line-widths, and levels of distortions
even at low resolution (Fig. 7L).



Sketch to 3D 197

Table 2. Ablation studies of standardization and view estimation module. CD is
enlarged by 104, and EMD by 102. (a) 3D shape reconstruction errors of ablation
studies of standardization and view estimation module. Having both standardization
and view estimation module gives the highest performance. The lower, the better. (b)
Reconstruction error with different components of the standardization module: defor-
mation and style translation. Having both parts gives the highest performance. (c) The
sketch standardization module improves cross-dataset sketch classification accuracy. A
ResNet-50 model is trained on TU-Berlin [9] and evaluated Sketchy dataset [45]. The
sketch standardization module gives 3% points gain.

(a)

error no standard. no view est. ours

CD 92.6 86.8 86.1

EMD 18.2 16.2 16.0

(b)

deform. trans. CD EMD

× × 92.6 18.2

× � 87.2 16.3

� × 90.1 17.4

� � 86.1 16.0

(c)

(%) acc.

w/o std. 75.1

w/ std. 78.1

4.5 Sketch Standardization Module

Visualization. The standardization module can be considered as a domain
translation module designed for sketches. We show the standardized sketches
of these free-hand sketches and compare them to the synthesized ones Fig. 7R.
With the standardization module, sketches share a style similar to synthesized
sketches which are used as training data. Thus, standardization diminishes the
domain gap of sketches with various styles and enhances the generalizability.

Ablation Studies of the Entire Module. The sketch standardization mod-
ule is introduced to handle various drawing styles of humans. We thus verify
this module’s effectiveness on real sketches, both quantitatively (Table 2a) and
qualitatively (Fig. 5R). As shown in Table 2a, the reconstruction performance
has a significant drop when removing the standardization module. Its effect is
also proved in visualizations. In Fig. 5R, we can observe that our full model
equipping with the standardization module can produce 3D shapes with higher
quality, being more similar to GT shapes, e.g., the airplane and the lamp.

Ablation Studies of Different Components. The standardization module
consists of two components: sketch deformation and style translation. We study
each module’s performance and report in Table 2b. We observe that the style
transformation part improves the reconstruction performance better compared
with the deformation part, while having both parts gives the highest perfor-
mance.

Additional Applications. We show the effectiveness of the proposed sketch
standardization with two more applications. The first applications is on cross-
dataset sketch classification. We identify the common 98 categories of TU-Berlin
sketch dataset [9] and Sketchy dataset [45]. Then we train on TU-Berlin and
evaluate on Sketchy. As reported in Table 2c, adding additional sketch stan-
dardization module, the classification accuracy improves 3% points.
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Fig. 8. Zero-shot domain translation results. We aim to translate zero-shot images
(Left) to the training data domain (Right). Specifically, we evaluate the proposed
zero-shot domain translation performance on three new datasets: UNDD [34], Night-
Time Driving [6] and GTA [44]. The novel domains of night-time and simulated images
can be translated to the target domain of daytime and real-world images by leveraging
the synthetic edge map domain as a bridge. The target domain is CityScapes dataset
[5]. We extract corresponding edge maps and train an image-to-image translation model
[21] to translate edge maps to the corresponding RGB images. 1st, 3rd, 5th, 7th rows
of column 1 depict some sample training RGB images and 2nd, 4th, 6th, 8th rows of
column 1 depict the corresponding edge maps respectively.

The second application corresponds to the second example depicted in Fig. 4.
The target domain is CityScapes dataset [5], where the training data comes from.
We extract corresponding edge maps with a deep learning approach [41] and
train an image-to-image translation model [21] to translate edge maps to the
corresponding RGB images. We evaluate the zero-shot domain translation per-
formance on three new datasets: UNDD [34] (night images), Night-Time Driving
[6] (night images) and GTA [44] (synthetic images; screenshots taken from sim-
ulated environment). The novel domains of night and simulated images can be
translated to the target domain of daytime and real-world images. We visualize
the results in Fig. 8.

4.6 View Estimation Module

Removing the view estimation module leads to a performance drop of CD and
EMD (Table 2a). For qualitative results (Fig. 6R), without the 3D rotation, the
reconstructed 3D shape has the pose aligned with the input sketch. With the
3D rotation, the 3D shape is aligned to the ground truth’s canonical pose.

5 Summary

We study 3D shape reconstruction from a single-view free-hand sketch. The
major novelty is that we use synthesized sketches as training data and intro-
duce a sketch standardization module, in order to tackle the data insufficiency
and sketch style variation issues. Extensive experimental results shows that the
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proposed method is able to successfully reconstruct 3D shapes from single-view
free-hand sketches unconditioned on viewpoints and categories. The work may
unleash more potentials of the sketch in applications such as sketch-based 3D
design/games, making them more accessible to the general public.
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