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Abstract. When determining a lung nodule malignancy one must con-
sider the spiculation represented by spike-like structures in the nod-
ule’s boundary. In this paper, we develop a deep learning model based
on a VGG16 architecture to locate the presence of spiculation in lung
nodules from Computed Tomography images. In order to increase the
expert’s confidence in the model output, we apply our novel Riemann-
Stieltjes Integrated Gradient-weighted Class Activation Mapping attri-
bution method to visualize areas of the image (spicules). Therefore, the
attribution method is applied to the layer of the model that is responsi-
ble for the detection of the spiculation features. We show that the first
layers of the network are specialized in detecting low-level features such
as edges, the last convolutional layer detects the general area occupied
by the nodule, and finally, we identify that spiculation structures are
detected at an intermediate layer. We use three different metrics to sup-
port our findings.

Keywords: Artificial intelligence · XAI · Computer-aided detection ·
CAD · Imaging informatics

1 Introduction

Spiculation is one of the features used by medical experts to determine if a
lung nodule is malignant [18,30]. It is defined as the degree to which the nod-
ule exhibits spicules, spike-like structures, along its border. This feature can
be observed using imaging detection, which is easy to perform and causes less
discomfort than alternative diagnosis methods such as a biopsy.

Automatic detection of features such as nodule spiculation by computer-aided
detection (CAD) systems can help medical experts in the diagnosis process. For
these systems to be adopted in clinical practice, their output has to be not only
accurate, but also explainable in order to increase the trust between the human
and the technology.

In this work, our main goal is to introduce a new approach to identify highly
spiculated lung nodules using a convolutional network, and provide a visual
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Karlinsky et al. (Eds.): ECCV 2022 Workshops, LNCS 13807, pp. 457–471, 2023.
https://doi.org/10.1007/978-3-031-25082-8_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25082-8_30&domain=pdf
http://orcid.org/0000-0002-4252-7746
http://orcid.org/0000-0003-4703-6417
http://orcid.org/0000-0002-1015-6290
http://orcid.org/0000-0002-2165-7234
https://doi.org/10.1007/978-3-031-25082-8_30


458 M. Lucas et al.

explanation by highlighting the locations of the spicules. Furthermore, we want
to determine what part of the network is responsible for the detection of spic-
ulation. Convolutional neural networks (CNN) perform a bottom-up process of
feature detection, beginning with low level features (such as edge detection) at
the layers that are closer to the input, to high level features (such as the gen-
eral location of an object) at layers closer to the output [12]. This is so because
the kernels processing the outputs of each layer cover only a small area of the
layer, and they can pay attention only to that small area. As the information
flows from input to output it gets integrated into complex combinations of lower
level features that can be interpreted as higher level features. In the particular
problem studied here, i.e., detection of spiculation in lung nodules, we are inter-
ested in locating the defining elements of spiculation (the spicules) in the input
image, and also what part of the network (which layer) plays the main role in
detecting this particular feature. This is important because common attribution
methods used to explain classification of images (like the ones discussed in the
next section) are applied to a pre-selected layer of the network, so we need to
determine which layer provides the strongest response to the presence of the
feature that we are trying to detect. Our hypothesis is that spicule detection
happens at some intermediate layer of the network, not necessarily the last one.
In the process of testing this hypothesis we make the following contributions:

– We use transfer learning on a network pretrained on a large dataset of images
(ImageNet) to be used on CT scans of lung nodules to detect high/marked
spiculation.

– We apply a novel attribution method to locate the spicules in nodules classi-
fied with high/marked spiculation.

– We identify the layer of the network that captures the “spiculation” feature.

The approach and methods used here are easy to generalize to other problems
and network architectures, hence they can be seen as examples of a general
approach by which not only the network output is explained, but also the hidden
parts of the network are made more transparent by revealing their precise role
in the process of feature detection.

2 Previous Work

Spiculation has been used for lung cancer screening [1,17,19,20], and its detec-
tion plays a role in computer-aided diagnosis (CAD) [11]. New tools for can-
cer diagnosis have been made available with the development of deep learning,
reaching an unprecedented level of accuracy which is even higher than that of
a general statistical expert [8]. Following this success, the need of developing
tools to explain the predictions of artificial systems used in CAD quickly arose.
They take the form of attribution methods that quantify the impact that various
elements of a system have in providing a prediction.

In the field of attribution methods for networks processing images there are
a variety of approaches. One frequently used is Gradient-weighted Class Activa-
tion Mapping (Grad-CAM) [25], which produces heatmaps by highlighting areas
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of the image that contribute most to the network output. It uses the gradients
of a target class output with respect to the activations of a selected layer. The
method is easy to implement, and it has been used in computer-aided detec-
tion [15], but it does not work well when outputs are close to saturation levels
because gradients tend to vanish. There are derivatives of Grad-CAM, such as
Grad-CAM++ [3], that use more complex ways to combine gradients to obtain
heatmaps, but they are still potentially affected by problems when those gradi-
ents become zero or near zero.

An attribution method that not only is immune to the problem of vanishing
gradients, but can also be applied to any model regardless of its internal struc-
ture, is Integrated Gradients (IG) [27]. This method deals with the given model
as a (differentiable) multivariate function for which we do not need to know how
exactly its outputs are obtained from its inputs. IG is a technique to attribute
the predictions of the model to each of its input variables by integrating the gra-
dients of the output with respect to each input along a path in the input space
interpolating from a baseline input to the desire input. One problem with this
approach is that it ignores the internal structure of an explainable system and
makes no attempt to understand the roles of its internal parts. While ignoring
the internal structure of the model makes the attribution method more general,
it deprives it from potentially useful information that could be used to explain
the outputs of the model.

The attribution method used here, our novel Riemann-Stieltjes Integrated
Gradient-weighted Class Activation Mapping (RSI-Grad-CAM), has the advan-
tage of being practically immune to the vanishing gradients problem, and having
the capability to use information from inner layers of the model [13].

3 Methodology

To detect spiculated nodules and localize the boundaries that present character-
istics specific to spiculation, we employ the following steps:

1. Train a neural network to classify lung nodules by spiculation level.
2. Use an attribution method capable to locate the elements (spicules) that

contribute to make the nodule having high spiculation.
3. Provide objective quantitative metrics showing that the attribution method

was in fact able to locate the spicules.

Additionally, we are interested in determining what part of the network is
responsible for the detection of spiculation versus other characteristics of the
nodule, such as the location of its contour (edge detection) and the general area
occupied by the nodule. This is important because it tells us where to look in the
network for the necessary information concerning the detection of the feature of
interest (spiculation).

In the next subsections we introduce the dataset, deep learning model, and
attribution method used. Then, we explain the metrics used to determine the
impact of each layer of the network in the detection of spiculation.
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3.1 Dataset

This work uses images taken from the Lung Nodule Image Database Consor-
tium collection (LIDC-IDRI), consisting of diagnostic and lung cancer screening
thoracic computed tomography (CT) scans with marked-up annotated lesions
by up to 4 radiologists [9]. The images have been selected from CT scans con-
taining the maximum area section of 2687 distinct nodules from 1010 patients.
Nodules of three millimeters or larger have been manually identified, delineated,
and semantically characterized by up to four different radiologists across nine
semantic characteristics, including spiculation and malignancy. Given that rat-
ings provided by the radiologists do not always coincide, we took the mode of
the ratings as reference truth. Ties were resolved by using the maximum mode.

The size of each CT scan is 512×512 pixels, but most nodules fit in a 64×64
pixel window. Pixel intensities represent radio densities measured in Hounsfield
units (HU), and they can vary within a very large range depending on the area
of the body. Following guidelines from [7] we used the [−1200, 800] HU window
recommended for thoracic CT scans, and mapped it to the 0–255 pixel intensity
range commonly used to represent images.

The radiologists rated the spiculation level of each nodule in an ordinal scale
from 1 (low/no spiculation) through 5 (high/marked spiculation) [5]. The num-
ber of nodules in each level is shown in Table 1. spiculation labels changed accord-
ing to [5].

Table 1. Distribution of nodules by spiculation level.

Spiculation level Number of nodules

1 No spiculation 1850

2 415

3 180

4 122

5 Marked spiculation 120

Total 2687

We aim to detect spike-like structures, similar to the binary split in [19], we
combine the nodules in two classes to denote low-level spiculation (Class 1 - level
1) and high-level spiculation (Class 2 - levels 4 and 5). After eliminating nodules
with sizes in pixels less than 6 × 6 (too small to significantly encode content
information) and larger than 64 × 64 (there was only one nodule with that size
in our dataset) we obtained a total of 1714 nodules in Class 1 and 234 nodules
in Class 2. Each class is divided in training and testing sets in a proportion of
80/20. The final number of samples in each class is shown in Table 2. Images of
64×64 pixels with the nodule in the center are produced by clipping the original
images. Figure 1 shows a few examples of images of nodules after clipping.
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Table 2. Distribution of nodules by spiculation class.

Spiculation class Total nodules Training set Testing set

1 (low spiculation) 1714 1371 343

2 (high spiculation) 234 187 47

Totals 1948 1558 390

Fig. 1. Sample nodules. The window is 64 by 64 pixels, and the red line is the contour
drawn by a radiologist. The images in the top row belong to class 1 (low spiculation),
the ones in the bottom row belong to class 2 (high spiculation). (Color figure online)

To achieve class balancing in the training set we add images obtained by
random rotations and flips from the images of nodules with high spiculation
(Class 2). In order to avoid losing the corners of the images during the rotations
we work with clippings of size 128×128 pixels, and reclip to the final size 64×64
after rotation. We do not perform class balancing in the testing set.

3.2 Classifier Network

We built a classifier using transfer learning on a VGG16 network pretrained on
ImageNet [2,23,26]. We used the base section of the VGG16 excluding its top
fully connected layers, and added a global average pooling layer at the end, plus
a fully connected layer with 512 outputs and ReLU activation function, followed
by a fully connected layer with 1 output and sigmoid activation function. An
n-class classifier network typically has n output units, but for a binary classifier
one output unit suffices. The outputs are numerical, with target 0 representing
Class 1, and target 1 representing Class 2.

We performed transfer learning in two steps:

1. Model training: We froze all its layers except our two last fully connected
layers and the last convolutional layer of each of its five blocks. The reason
to retrain deep hidden layers is to help the network learn low level features
of images that belong to a domain different from the original ImageNet on
which it was pretrained.
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2. Model parameter tuning: We kept training the network with only the last
(fully connected) layers unfrozen.
The loss function used in both trainings was the Mean Squared Error.

3.3 Attribution Method

We apply our novel attribution method, Riemann-Stieltjes Integrated Gradient-
weighted Class Activation Mapping (RSI-Grad-CAM). This method can be
applied to any convolutional network, and works as follows. First we must pick
a convolutional layer A, which is composed of a number of feature maps, also
called channels, A1, A2, . . . , AN (where N is the number of feature maps in the
picked layer), all of them with the same dimensions. If Ak is the k-th feature
map of the picked layer, and Ak

ij is the activation of the unit in the position (i, j)
of the k-th feature map, then, a localization map or “heatmap” is obtained by
combining the feature maps of the chosen layer using weights wc

k that capture
the contribution of the k-th feature map to the output yc of the network cor-
responding to class c. There are various ways to compute the weights wc

k. For
example Grad-CAM, introduced in [25], uses the gradient of the selected output
yc with respect to the activations Ak

ij averaged over each feature map, as shown
in Eq. (1). Here Z is the size (number of units) of the feature map.

wc
k =

global
average pooling
︷ ︸︸ ︷

1
Z

∑

i

∑

j

∂yc

∂Ak
ij

︸ ︷︷ ︸

gradients
via backprop

(1)

Given that Grad-CAM is vulnerable to the vanishing gradients problem that
occurs when the gradients are zero or near-zero [6], we propose to use our novel
RSI-Grad-CAM method which handles the vanishing gradient problem. RSI-
Grad-CAM computes the weights wc

k using integrated gradients in the following
way. First we need to pick a baseline input I0 (when working with images I0
is typically a black image). Then, given an input I, we consider the path given
in parametric form I(α) = I0 + α(I − I0), where α varies between 0 and 1, so
that I(0) = I0 (baseline) and I(1) = I (the given input). When feeding the
network with input I(α), the output corresponding to class c will be yc(α), and
the activations of the feature map k of layer A will be Ak

ij(α). Then, we compute
the weights by averaging the integral of gradients over the feature map, as shown
in Eq. (2).

wc
k =

1
Z

∑

i,j

∫ α=1

α=0

∂yc(α)
∂Ak

ij

dAk
ij(α) (2)

The integral occurring in Eq. (2) is the Riemann-Stieltjes integral of func-
tion ∂yc(α)/∂Ak

ij with respect to function Ak
ij(α) (see [16]). For computational

purposes this integral can be approximated with a Riemann-Stieltjes sum:
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wc
k =

1
Z

∑

i,j

(

m
∑

�=1

{

∂yc(α�)
∂Ak

ij

× ΔA(α�)

})

(3)

where ΔA(α�) = Ak
ij(α�) − Ak

ij(α�−1), α� = �/m, and m is the number of
interpolation steps.

The next step consists in combining the feature maps Ak with the weights
computed above, as shown in Eq. (4). Note that the combination is also followed
by a Rectified Linear function ReLU(x) = max(x, 0), because we are interested
only in the features that have a positive influence on the class of interest.

Lc
Grad-CAM = ReLU

(

∑

k

wc
kAk

)

︸ ︷︷ ︸

linear combination

(4)

After the heatmap has been produced, it can be normalized and upsampled
via bilinear interpolation to the size of the original image, and overlapped with it
to highlight the areas of the input image that contribute to the network output
corresponding to the chosen class.

We also generated heatmaps using other attribution methods, namely Grad-
CAM [25], Grad-CAM++ [3], Integrated Gradients [27], and Integrated Grad-
CAM [24], but our RSI-Grad-CAM produced the neatest heatmaps, as shown in
Fig. 3.

3.4 Metrics

In order to test the quality of our attribution method, we need to ensure that the
metrics are not affected by limitations in the classification power of the neural
network. Consequently, during the evaluation we use only sample images that
have been correctly classified by the network (Table 4).

Since the spicules occur at the boundary of the nodule, we measure the
localization power of our attribution method by determining to what extent the
heatmaps tend to concentrate on the contour of the nodule (annotated by one of
the radiologists) compared to other areas of the image. To that end, we compute
the average intensity value of the heatmap along the contour (Avg(contour)),
and compare it to the distribution of intensities of the heatmap on the whole
image. Using the mean μ and standard deviation σ of the intensities of the
heatmap on the image, we assign a z-score to the average value of the heatmap
along the contour using the formula

zAvg(contour) =
Avg(contour) − μ

σ
(5)

This provides a standardized value that we can compare across different images.
We expect our attribution method will produce a larger zAvg(contour) for high
spiculation nodules compared to low spiculation nodules. We also study how the
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difference between high and low spiculation zAvg(contour) varies depending on
which layer we pick to apply our attribution method.

The first approach consisted in comparing boxplots of zAvg(contour) for low
and high spiculation (see Fig. 4). That provided a first (graphical) evidence of
the power of our attribution method to recognize spiculation as a feature that
depends on characteristics of the contour of a nodule. An alternative approach
consists in comparing the cumulative distribution functions (cdfs) of zAvg(contour)

for high and low spiculation nodules (see Fig. 5).
Next, we measured the difference between the distributions of zAvg(contour)

for low and high spiculation nodules using three different approaches, two of
them measuring distances between distributions, and the third one based on an
hypothesis testing in order to determine which distribution tends to have larger
values.

In the first approach we used the Energy distance between two real-valued
random variables with cumulative distributions functions (cdfs) F and G respec-
tively, given by the following formula [22,28]:

D(F,G) =
(

2
∫ ∞

−∞
(F (x) − G(x))2 dx

)1/2

(6)

Recall that the cdf F of a random variable X is defined F (x) = P (X ≤ x) =
probability that the random variable X is less than or equal x.

Our second approach uses the 1-dimensional Wasserstein distance [10,29],
which for (1-dimensional) probability distributions with cdfs F , G respectively
is given by the following formula [21]:

W (F,G) =
∫ ∞

−∞
|F (x) − G(x)| dx (7)

There are other equivalent expressions for Energy and 1-dimensional Wasser-
stein distances, here we use the ones based on cdfs for simplicity (they are Lp-
distances between cdfs). The distributions of zAvg(contour) are discrete, and cdfs
can be used in this distribution, therefore formulas (6) and (7) are still valid [4].

The Energy distance (D) and Wasserstein distance (W ) tell us how different
two distributions are, but they don’t tell which one tends to take larger values.
In our tests we gave a sign to the metrics equal to that of the difference of the
means of the distributions. More specifically, assume the mean of distributions
with cdfs F and G are respectively μF and μG. Then, we define the signed
metrics as follows:

Dsigned(F,G) = sign(μG − μF )D(F,G)
Wsigned(F,G) = sign(μG − μF )W (F,G)

(8)

where sign(x) is the sign function, i.e., sign(x) = x/|x| if x �= 0, and sign(0) = 0.
The third approach consists in using the one-sided Mann-Whitney U rank test

between distributions [14]. For our purposes this test amounts to the following.
Let C1 be the set of samples with low spiculation, and let C2 be set of samples
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with high spiculation. For each sample s1 with low spiculation let u1 be the
z-score of the average of the heatmap over the contour of s1. Define analogously
u2 for each sample s2 with high spiculation. Let U1 = number of sample pairs
(s1, s2) such that u1 > u2, and U2 = number of sample pairs (s1, s2) such that
u1 < u2 (if there are ties u1 = u2 then U1 and U2 are increased by half the
number of ties each). Then, we compute (U2 −U1)/(U1 +U2), which ranges from
−1 to 1. If the result is positive that will indicate that u2 tends to take larger
values than u1, while a negative value will indicate that u1 tends to take larger
values than u2. The one-sided Mann-Whitney U rank test also assigns a p-value
to the null hypothesis H0 ≡ P (u1 ≥ u2) ≥ 1/2 (where P means probability)
versus the alternate hypothesis H1 ≡ P (u1 < u2) > 1/2.

4 Results

We used the VGG16 classifier network described in Sect. 3.2 trained using the
following parameters (for training and fine tuning): learning rate = 0.00001,
batch size = 32, number of epochs = 10. The performance on the testing set is
shown in the classification report, Table 3. The accuracy obtained was 91%.

Table 3. Classification report on the test set.

Class Precision Recall F1-score Support

Class 1 (low spic.) 0.94 0.96 0.95 343

Class 2 (high spic.) 0.64 0.57 0.61 47

accuracy 0.91 390

macro avg 0.79 0.77 0.78 390

weighted avg 0.91 0.91 0.91 390

Table 4. Distribution of nodules by spiculation class.

Class Total nodules Correctly classified

Low spiculation 1714 1606

High spiculation 234 137

Total 1948 1743

Next, we provide evaluation results of our attribution method. In order to
focus the evaluation on the attribution method rather than the network perfor-
mance, we used only images of nodules that were correctly classified. The last
column of Table 4 indicates the number of correctly classified nodules from each
class.
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We computed heatmaps using RSI-Grad-CAM at the final convolutional layer
of each of the five blocks of the VGG16 network, using a black image as baseline.
We used index 0 through 4 to refer to those layers, where 0 represents the last
layer of the first block and 4 refers to the last layer of the last block, as shown
in Table 5.

Table 5. Layers used for evaluating the attribution method.

Layer index Layer name

0 block1 conv2

1 block2 conv2

2 block3 conv3

3 block4 conv3

4 block5 conv3

Figure 2 shows heatmaps produced by our RSI-Grad-CAM method at the
final layer of the final convolutions block for a highly spiculated nodule. The
contour of the nodule appears in red.

Fig. 2. RSI-Grad-CAM heatmaps for a highly spiculated nodule. Each column corre-
sponds to a layer. The original images are at the top, heatmaps in the middle, and
overlays at the bottom. The read line represents the contour annotated by the radiol-
ogist.

For comparison, Fig. 3 shows heatmaps produced by various attribution
methods for a highly spiculated nodule at layer 3 (except for Integrated Gradi-
ents that applies to the layer input only).
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Fig. 3. Heatmaps generated by various attribution methods.

We notice that in all the layers heatmaps tend to highlight more the con-
tour of the highly spiculated nodule, but this is not yet evidence of detection
of spicules in the contour. We expect the first layers of the network to be spe-
cialized in low level features such as edge detection, while the last layer may
detect the general area occupied by the nodule. As stated in our hypothesis, we
expect spicule detection to happen at some intermediate layer. The boxplots of
zAvg(contour) in (Fig. 4) provide evidence in favor of this hypothesis.

Fig. 4. Boxplots of z-scores of average values of heatmaps on contours for correctly
classified samples.

The comparison of the cdfs of the z-scores of average values of heatmaps on
contours (Fig. 5) shows that the values tend to be larger for high spiculation
nodules with respect to low spiculation nodules at layers 2 and 3, with the
maximum difference at layer 3.
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Fig. 5. Cdfs of z-scores of average values of heatmaps on contours for correctly classified
samples.

The Energy and Wasserstein distances between the distributions of z-scores
of average values of heatmaps on contours for low and high spiculation nodules
at each layer are shown in Table 6. In order to include information about what
distribution takes higher values we multiplied the computed distance by the
difference of means of the distributions to obtain signed metrics. The numbers
still reach their maximum at layer 3, followed by layer 2.

Table 6. Signed energy distance and signed Wasserstein distance at each layer.

Layer Signed energy Signed Wasserstein

0 0.184 0.214

1 −0.384 −0.374

2 0.402 0.374

3 1.038 1.182

4 −0.558 −0.428

The results for the 1-sided Mann-Whitney U rank test are shown in Table 7.
The barplot shows that the maximum of (U2−U1)/(U1+U2) happens at layer 3,
which is consistent with the results obtained using Energy and Wasserstein met-
rics. The p-values obtained strongly favor the hypothesis that the z-scores of
average values of heatmaps on contours are larger for high spiculation nodules
at layers 2 and 3, with the maximum at layer 3.
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Table 7. One-sided Mann-Whitney U rank test.

Layer U2−U1
U1+U2

p-value

0 0.109 0.017

1 −0.342 1.0

2 0.373 2.01 × 10−13

3 0.730 4.09× 10−43

4 −0.602 1.0

5 Conclusions

We have used a modified VGG16 network retrained with a transfer learning
technique to classify low and high spiculation nodules from images from the
LIDC-IDRI database. Then, we applied the RSI-Grad-CAM attribution method
to locate the elements of the images that contribute to the spiculation, i.e.,
spicules located at the boundary of the nodules. Furthermore, we were interested
in determining what part of the network detects the spiculation feature. Common
attribution methods are applied to a pre-selected layer of the network, so we need
to determine which layer provides the strongest response to the presence of the
feature that we are aiming to detect. Also, it is important to highlight that some
features may be hard to locate directly in the model input, so methods based on
heatmaps highlighting areas of the input may be less useful than the ones able
to identify what internal parts of the model perform the detection of a given
feature.

The metrics used to compare the distributions of average values of heatmaps
on contours corresponding to low and high spiculation nodules were Energy
distance, Wasserstein distance, and the 1-sided Mann-Whitney U rank test. All
three test favor the hypothesis that the spiculation feature is detected at the
last layer of the fourth convolutional block of the network (layer index 3, an
intermediate hidden layer rather than the last one). In practice this means that,
for our network, an explanation for the detection of spiculation can be provided
by the heatmap produced at the last layer of the fourth convolutional block,
since that heatmap tends to highlight the spicules occurring at the contour of
the nodule.

The work performed here has been restricted to one network architecture
(VGG16) performing binary classification, one image domain (images of lung
nodules from the LICD-IDRI dataset), and one semantic feature (spiculation).
Further work can be made to adapt the methods used here to other network
architectures (e.g. ResNet, Siamese networks, etc.), multiclass classification (e.g.
by adding the middle spiculation levels), data domains (e.g. natural language),
and features (e.g. sample similarity).
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