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Abstract. Interoperability issue is a significant problem in Building
Information Modeling (BIM). Object type, as a kind of critical semantic
information needed in multiple BIM applications like scan-to-BIM and
code compliance checking, also suffers when exchanging BIM data or cre-
ating models using software of other domains. It can be supplemented
using deep learning. Current deep learning methods mainly learn from
the shape information of BIM objects for classification, leaving relational
information inherent in the BIM context unused. To address this issue, we
introduce a two-branch geometric-relational deep learning framework. It
boosts previous geometric classification methods with relational informa-
tion. We also present a BIM object dataset—IFCNet++, which contains
both geometric and relational information about the objects. Experi-
ments show that our framework can be flexibly adapted to different
geometric methods and relational features do act as a bonus to gen-
eral geometric learning methods, obviously improving their classification
performance, thus reducing the manual labor of checking models and
improving the practical value of enriched BIM models.

Keywords: BIM · Object classification · Semantic enrichment ·
Relational feature · Deep learning

1 Introduction

Interoperability issues, as an essential problem in the application of BIM, still
affect the practical value of BIM models. Proper use of the BIM technique with-
out interoperability problems requires BIM data to be shared and exchanged
conveniently and undamaged between software of different professions. Now most
BIM software support IFC as a standard data exchange schema, which plays a
crucial role in enabling interoperability [20].
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However, because IFC contains entity and relationship definitions of various
AEC subdomains, the schema defined by IFC is complex and redundant [9],
which causes unacceptable mismatch and reliability problems [9,28]. Lack of
formal logic rigidness in IFC [9] also makes mapping of BIM elements to IFC
types arbitrary and susceptible to misclassifications [20]. These phenomena are
a cause of interoperability problems and hamper the advance of BIM. Fixing
erroneous, misrepresented, contradictory, or missing data that appears during
model data exchange remains to be laborious and frustrating [1]. This poses a
challenge to the reuse of BIM models in downstream tasks. Semantic enrichment
techniques [1,2,7,20,23,25,28–30,32,37] solve the interoperability problem by
exploiting existing numeric, geometric, or relational information in the model to
infer new semantic information.

Object classification integrity is a fundamental yet critical requirement that
needs to be satisfied using semantic enrichment. Object type provides hints about
an object’s function, location, size, etc. However, IFC does not ensure correct
mapping between BIM objects and their corresponding IFC types [23]. Miss-
ing or incorrect object type usually occurs due to the inconsistent definition of
an object’s role in different AEC subdomains. Supplementing the object type
information can improve the usability and practical value of BIM models.

Deep learning applications have been explored in various fields in recent
years, including BIM object classification. By inputting the objects extracted
from an IFC file to a trained deep learning model, the model is able to check
the integrity of BIM element to IFC class mappings and identify discrepancies
[20]. They first represent BIM objects as pure geometric representations, such
as voxels, meshes, 2D views, or point clouds, then classify the objects using
3D geometric learning models like MVCNN [34]. This approach neglects the
relational information between objects in the BIM context, which might also
provide guidance.

Starting from this intuition, we put forward a geometric-relational deep learn-
ing framework that learns the geometric and relational features on different
branches and fuses them as a unified object descriptor. Particularly, we propose
a relational feature extractor and a feature fusion module in the framework. The
two modules serve to extract high-level relational features of BIM objects and
fuse them with geometric features extracted by the geometric feature extractor,
respectively. This framework can be applied to most existing models and robustly
boost their performance, because almost all mainstream geometric deep learning
models can serve as the geometric feature extractor. We select MVCNN, DGCNN
[38] and MVViT (a 3D deep learning model adapted from Vision Transformer
[8]) as geometric feature extractors in the framework and propose three corre-
sponding models, namely Relational MVCNN (RMVCNN), Relational DGCNN
(RDGCNN) and Relational MVViT (RMVViT). Experiments show that with
the addition of relational features, the BIM object classification abilities of these
models are noticeably improved to varying degrees. This proves the efficacy and
flexibility of our framework.
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As for the data, there is still a lack of BIM object datasets that contain
objects’ relations in the BIM context. We propose the IFCNet++ dataset to fill
this vacancy. We attach selected representative relational features to each BIM
object in the dataset, along with their geometric shapes. We use this dataset in
all the experiments for training and testing our models.

To sum up, the contributions of this paper are as follows:

• Proposing a geometric-relational deep learning framework to utilize both geo-
metric and relational information of BIM objects simultaneously for BIM
object classification;

• Putting forward three BIM object classification models based on the
geometric-relational framework, and achieving better classification results
than their baseline models using additional relational information.

• Proposing IFCNet++, a BIM object dataset containing geometric and rela-
tional information for BIM object classification task.

• The efficacy and flexibility of our framework to fully exploit the relational
information are demonstrated by comprehensive experiments.

2 Related Work

2.1 3D Object Recognition

3D object recognition is a longstanding problem in computer vision and com-
puter graphics. BIM objects can be seen as 3D objects with semantics, so we
can utilize existing object recognition methods to classify them. Early works
concentrate on designing 3D local feature descriptors to solve a variety of 3D
problems [3,5,12,14,15,21,22,24,26,27,33,36], including 3D object recognition.
These handcrafted descriptors are required to be descriptive and robust [13], but
they have difficulty in deciding a priori what constitutes meaningful information
and what is the result of noise and external factors [18]. In recent years, deep
learning based methods attract great attention. Wu et al. [39] classify objects
represented in voxel form using a 3D convolutional network. Su et al. [34] pro-
pose an architecture that synthesizes a single compact 3D shape descriptor of
an object using image features extracted from the object’s multiple views. The
synthesis is done by a view-pooling layer. Qi et al. [31] design a deep learning
model that directly takes the point cloud as input to carry out classification or
segmentation tasks. This architecture is invariant to input permutation. Wang
et al. [38] proposed to dynamically generate graph structures based on the input
point cloud, and use EdgeConv modules to perform convolution operations on
the graphs. Our geometric-relational framework can be applied to these geomet-
ric learning methods to boost their performance on BIM object classification.

2.2 BIM Object Classification

BIM object classification is a fundamental task of BIM semantic enrichment.
Relative methods can be divided into deductive methods and inductive methods
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[4]. Deductive methods require the design of explicit and unique rules for the
particular object. They usually ensure certainty in conclusions, but the labor
of devising rules for all possible pairs of types makes these methods practically
intractable [20]. As an example, Ma et al. [23] propose a procedure for estab-
lishing a knowledge base that associates objects with their features and relation-
ships, and a matching algorithm based on a similarity measurement between
the knowledge base and facts. Machine learning approaches are representative
of inductive methods. These methods generate their own rules inductively by
optimizing the weights of features in a model [20]. Koo et al. [20] use support
vector machines to check the semantic integrity of mappings between BIM ele-
ments and IFC classes. Kim et al. [17] use 2D CNN to classify furniture entities
according to their images. Koo et al. [18] compare the classification results of
MVCNN and PointNet on wall subtypes and door subtypes. Koo et al. [19] also
use the same two models to classify BIM objects in road infrastructure. Collins
et al. [6] encode BIM objects using two kinds of graph encodings and utilize a
graph convolutional network to create meaningful local features for subsequent
classification. Emunds et al. [11] propose an efficient neural network based on
sparse convolutions to learn from point cloud representation of BIM objects.
This study is also dedicated to solving the BIM object classification problem
using deep learning methods.

2.3 BIM Object Datasets

Sufficiently large and comprehensive datasets are the key to the training of deep
learning models. Currently, there are two relevant datasets, IFCNet [10] and
BIMGEOM [6]. IFCNet is a dataset of single-entity IFC files spanning a broad
range of IFC classes containing both geometric and single-object semantic infor-
mation. BIMGEOM is assembled of building models from both industry and
academia. It consists of structural elements, equipment and interior furniture
types. Both datasets don’t contain any relational information of objects, thus
not suitable for our framework. We propose IFCNet++ which involves certain
relationships between objects and use it to train our models.

3 Geometric-Relational Deep Learning Framework

The target of our research is to create a reasonable deep learning framework
to simultaneously learn the geometric and relational information for BIM object
classification. Object shape data and relational data are usually presented in dif-
ferent forms, which makes learning these features using a single network branch
difficult. So we adopt a two-branch method intuitively. The two branches can
use different network architectures to process the two kinds of information and
extract a geometric descriptor and a relational descriptor of the object. These
descriptors are fused to get a unified object descriptor.

We show the overview of our geometric-relational deep learning framework
in Fig. 1. It consists of three main modules, i.e. geometric feature extractor,
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Fig. 1. Geometric-relational framework overview. The geometric feature extractor rep-
resents a common geometric learning backbone. In this figure we use the MVCNN back-
bone. It extracts the geometric feature of the BIM object from its shape representation.
The relational feature extractor extracts relational features from raw relational data.
It also connects low-level features to high-level features to form the complete relational
feature. The feature fusion module fuses these two kinds of features and outputs the
object descriptor, which can be sent to a classifier to get the corresponding type label
of the object

relational feature extractor and feature fusion module. The geometric feature
extractor learns to represent a BIM object’s shape as a geometric descriptor.
The relational feature extractor extracts relational features of different levels and
connects them to form the relational descriptor. The feature fusion module mixes
the two descriptors and outputs the final object descriptor. This descriptor is a
more complete abstraction of the BIM object than a pure geometric descriptor,
and can be used by a classifier to perform classification more accurately. Next, we
will introduce the module designs and implementation details of our framework.

3.1 Module Designs

In the following, we make a detailed explanation of the design intuitions and
detailed structures of the three modules in our framework.

Geometric feature extractor serve to learn from objects’ shapes. It takes the
raw geometric data of BIM objects as input and outputs their high-level geomet-
ric descriptors. A BIM object’s shape can be represented in various forms, like
multiple views, point clouds, voxels, etc. To properly extract geometric features
from these representations, we do not fix the geometric feature extractor to a
certain design. Instead, any geometric deep learning method that can extract a
geometric descriptor from an object can be the geometric extractor. This pro-
vides flexibility to the geometric input form and our framework design. It also
empowers our framework to boost geometric methods’ of any kind with relational
information. The classification result of our framework would also be improved
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as better geometric deep learning models are proposed. In our implementation,
we use MVCNN and MVViT to learn from objects’ multi-view representation
and DGCNN to learn from the point cloud representation.

Relational feature extractor is used to learn the relation pattern of each BIM
object type. It takes as input a 1D vector to represent an object’s interaction with
the context and outputs the relational descriptor. We use an MLP with batch
normalization and ReLU to gradually extract high-level relational features. In
the meantime, we have observed that the original input vectors also show some
simple distribution patterns that may be helpful to represent the object’s type.
This indicates that low-level relational features may also be instructive to the
classification process. Therefore we directly connect features of former layers to
the feature of the last layer to form the final relational descriptor.

Feature fusion module merges the above two branches and further studies a
unified BIM object descriptor using the extracted geometric feature and rela-
tional feature. It is designed as an MLP with batch normalization and ReLU,
too, but without connections between different layers. It first concatenates the
two descriptors, then uses the MLP to extract the object descriptor, which can
be sent to a classifier.

3.2 Implementation Details

According to the observation that the geometric aspect of a BIM object contains
more useful information and can provide more clues about the object’s type label
than its relational aspect, we design the geometric branch as the main branch
and the relational branch as a supplement. Specifically, the geometric feature
extractor is more complicated than the relational counterpart. And the geometric
descriptor size is larger than the relational descriptor size. This viewpoint can
be observed in the following implementation details.

Because we directly utilize existing geometric learning methods as the geo-
metric feature extractor, we skip this part and begin the introduction with the
relational feature extractor. As shown in Fig. 1, this branch consists of 6 linear
layers. It gradually embeds the input 6-dimensional relation vector into a high-
level feature space of 128 dimensions. We also concatenate the feature of the
second and the fourth layer to the feature of the last layer to form the final rela-
tional descriptor. The total length of the descriptor is 224. The simple design of
the relational branch guarantees that it takes up less computational resources,
verifying the viewpoint in the previous paragraph.

The feature fusion module is composed of four linear layers. It maps the
concatenation of the geometric descriptor and the relational descriptor down to
a 128-dimension feature space. The feature length of the first module layer is
the same as the length of the input, so it may vary as the geometric feature
extractor changes. The second to the last layers output features of fixed length.
Detailed length information is shown in Fig. 1. We use a linear layer with a
softmax operation as the classifier, which outputs the predicted probability of
each BIM object type.
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4 Implementation

4.1 Relational Models

We select MVCNN and DGCNN as our baseline for multi-view based method
and point cloud based method, respectively. To test our framework on a Trans-
former based model to explore its generalization, we modify Vision Transformer
to a multi-view based geometric learning method. We use its backbone to extract
a classification token for each view, and max-pool the tokens to obtain the geo-
metric feature descriptor of the object. The model is called Multi-view Vision
Transformer or MVViT. We transform these three models into corresponding
relational models using our framework, which are called RMVCNN, RDGCNN
and RMVViT, respectively.

4.2 Training Configurations

All the models are implemented based on PyTorch and trained using NVIDIA
RTX 3090. The batch size is 64. Adam optimizer is used with β1 = 0.9, β2 = 0.999
and ε = 1e-8. We use cross-entropy loss as the loss function.

In the implementation, we adopt pre-trained ResNet34 [16] as the backbone
network of MVCNN and RMVCNN. For MVViT and RMVViT, we use pre-
trained ViT-Base as the backbone. Each baseline and its relational model share
the same learning rate and weight decay. The training epochs are tailored for
each model to get relatively good performance.

5 IFCNet++ Dataset

5.1 Dataset Overview

Fig. 2. Dataset samples: (from left to right in reading order) IfcBeam, IfcColumn, Ifc-
Door, IfcFlowFitting, IfcFlowSegment, IfcFlowTerminal, IfcPlate, IfcRailing, IfcSlab,
IfcWall, IfcWindow

We focus on BIM object classification based on supervised learning. Supervised
learning methods use labeled datasets to train models to learn data distribution.
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There are two representative BIM object datasets, which are IFCNet and BIM-
GEOM. These two datasets present BIM objects using file formats such as ifc,
obj and png. Except for the ifc format, which contains varying degrees of single-
object semantics like size and material, other formats only contain geometric
information about the objects. However, BIM models are rich in semantics. That
means BIM objects are not pure geometric shapes. They exist in the building
context and have various spatial and topological relations with other objects. So
these relationships should be recorded to preserve the BIM nature when making
BIM object datasets. Therefore, we propose IFCNet++ as an enhanced BIM
object dataset. It contains BIM objects’ geometric shapes and interactions with
other objects. We collect 9228 objects belonging to 11 most common types in
the dataset. The 11 types are selected based on their appearance frequency and
importance in BIM models. They can cover most objects of interest in a BIM
model, and cover object types in both architectural models and MEP models.
An overview of the dataset is shown in Fig. 2 and Table 1.

Table 1. Data distribution overview of IFCNet++ dataset

BIM object type Training Testing Total

IfcBeam 66 27 93

IfcColumn 64 27 91

IfcDoor 939 402 1341

IfcFlowFitting 103 43 146

IfcFlowSegment 115 49 164

IfcFlowTerminal 273 116 389

IfcPlate 1400 600 2000

IfcRailing 210 90 300

IfcSlab 929 397 1326

IfcWall 1400 600 2000

IfcWindow 965 413 1378

Total 6464 2764 9228

5.2 Relational Feature Design

IFCNet++ focuses on recording relational information of objects. We extract
relational information from relational items in IFC files. IFC schema has defined
abundant relationships among objects. But in most cases, few relationships have
been implemented in an IFC file. Some relationships may also get lost because of
interoperability problems. Therefore, we select four subtypes of IfcRelationship
that appear in most IFC files and are easy to extract, i.e. IfcRelConnectsElement,
IfcRelFillsElement, IfcRelAggregates and IfcRelVoidsElement.

Another problem is how to represent these relationships in the dataset. A
direct idea is to build a connected relation graph of a BIM model. That is, each
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object represents a node and each relational item represents a connecting edge.
However, the selected relationships usually exist in local regions. They can not
connect all the objects in a whole graph, so we discard the graph based solution.
Instead, we adopt a counting method and attach a simple 1D vector to each BIM
object. Each vector consists of six numbers. Each number represents how many
times an object is quoted in a certain relationship attribute. The six numbers
correspond to the following six attributes:

• IfcRelConnectsElement.RelatingElement
• IfcRelConnectsElement.RelatedElement
• IfcRelAggregates.RelatingObject
• IfcRelAggregates.RelatedObjects
• IfcRelVoidsElement.RelatingBuildingElement
• IfcRelFillsElement.RelatedBuildingElement

Despite being simple, this vectorized form has a strong representative ability
for the relational information, as the simple local relational structure can be well
represented by this counting approach. Besides, this form is convenient for later
processes using MLP. It also maintains a good trade-off between data size and
the ability to represent relational information.

5.3 Data Collection and Processing

We collected the BIM objects in IFCNet++ from more than ten IFC files. We
first split the model into individual objects. Then we extract all the objects
of interest in obj format to get their geometric representation. Deduplication
is performed on the collected objects. We consider an object as a duplication
if it can overlap with another object after translation and rotation. Next, we
extract the four selected relationship items and count how many times an object
is quoted by a certain relationship attribute. Finally, we attach the counted
vectors to the corresponding objects. The collected object distribution is very
unbalanced across object types. For example, wall objects tend to appear in
large amounts for a BIM model. So we randomly select at most 2000 objects for
a certain object type. We split the training set and the testing set by a ratio of
7:3.

Besides, we need to further process the obj files to get the proper input format
of multi-view based and point cloud based methods. We render each object to
get a 12-view representation using the rendering method of [35]. We also convert
objects to point cloud form using the code in [10]. We show an example of our
12-view representation and point cloud representation in Fig. 3.

6 Experiments

In this section, we show the experimental results of our framework. Experiments
on the three pairs of baseline and relational models show the performance boost
gained by taking relations into the learning process.
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Fig. 3. Two representations of an IfcFlowFitting object in IFCNet++

6.1 Testing Metrics

We test the models on the test set of IFCNet++ and show their classification
results in Table 2.

Table 2. Classification results of our trained models on the IFCNet++ test set

Model Accuracy Balanced accuracy Precision Recall F1 score

MVCNN 0.9732 0.9549 0.9742 0.9732 0.9734

DGCNN 0.9801 0.9536 0.9809 0.9801 0.9802

MVViT 0.9797 0.9527 0.9812 0.9797 0.9799

RMVCNN 0.9917 0.9750 0.9918 0.9917 0.9916

RDGCNN 0.9902 0.9624 0.9906 0.9902 0.9903

RMVViT 0.9841 0.9581 0.9857 0.9841 0.9842

The baselines can already reach a high precision of 97% and a balanced
accuracy of 95% merely utilizing the geometric information. This illustrates that
most BIM objects can be correctly classified by their shapes. However, with the
addition of relational features, the three relational models can get better results
on all the metrics than their corresponding baselines. This intuitively shows
that the composition of selected relationships can effectively represent the local
relation patterns of each object type. And our framework can learn these patterns
and fuse them with geometric features to refine the object descriptors.

Noticeably, even though MVCNN doesn’t perform very well relative to the
other two baselines, RMVCNN not only performs best on all the metrics, but also
gains the most improvement with each metric improved by about 2%. RDGCNN
and RMVViT have been improved by about 1% and 0.5% on each metric, respec-
tively. This shows even with the same input relational features, certain geometric
models can gain better improvement using our framework. The relational fea-
ture space fuses best with the geometric feature space learned by MVCNN to
gain the most improvement. So the key to better classification results is to find
a proper geometric method that fits our framework well.
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Table 3. Classification accuracy of RMVCNN organized by object types

Object type Total Correctly classified Accuracy (%)

IfcBeam 27 27 100.0

IfcColumn 27 24 88.9

IfcDoor 402 399 99.3

IfcFlowFitting 43 43 100.0

IfcFlowSegment 49 43 87.8

IfcFlowTerminal 116 116 100.0

IfcPlate 600 598 99.7

IfcRailing 90 89 98.9

IfcSlab 397 390 98.2

IfcWall 600 599 99.8

IfcWindow 413 413 100.0

Total 2764 2741 99.2

We list the classification accuracy of RMVCNN organized by object types in
Table 3 to further explore its classification ability. RMVCNN performs well on 9
of the 11 types, reaching an accuracy higher than 98%. This means RMVCNN
can effectively learn geometric and relational features of most types. Accuracy on
the other two types is slightly lower than 90%. This may be partially explained
by the small quantities of training samples of these types.

6.2 Confusion Rate

The geometric learning baselines are prone to be confused by object types that
contain geometrically similar objects. To quantitatively analyze this trend, we
propose the notion of confusion rate. Suppose A and B are two object types, we
define a model’s confusion rate between a pair of types A and B as:

c =
mAB + mBA

nA + nB
. (1)

Here mAB is the amount of BIM objects of type A misclassified as type B. mBA

is the amount of BIM objects of type B misclassified as type A. nA and nB

represent the amounts of objects of type A and type B in the test set.
We compute the confusion rates of MVCNN and RMVCNN on the test set.

We then sort the type pairs in descending order of the confusion rates of MVCNN
and list the results of the first ten pairs in Table 4.

In the ten type pairs that MVCNN is prone to confuse, RMVCNN’s confusion
rates have obviously reduced on nine of them. The confusion rates of five type
pairs have even been reduced to zero. It shows that for most type pairs that
share similar object shapes, relational information can help the model find the
difference between them according to the union of their shapes and context
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Table 4. Confusion rates of MVCNN and RMVCNN. The first ten type pairs sorted
in descending order of MVCNN’s confusion rates are selected

Type 1 Type 2 MVCNN (%) RMVCNN (%)

IfcColumn IfcFlowSegment 9.2 3.9

IfcBeam IfcFlowSegment 5.3 5.3

IfcDoor IfcWall 1.2 0

IfcPlate IfcSlab 1.1 0.2

IfcSlab IfcWall 0.9 0.4

IfcBeam IfcWall 0.6 0

IfcFlowFitting IfcFlowTerminal 0.6 0

IfcFlowSegment IfcFlowTerminal 0.6 0

IfcFlowTerminal IfcPlate 0.6 0

IfcColumn IfcWall 0.5 0.3

information. What’s more, the highest confusion rate has come down from 9.2%
of MVCNN to 5.3% of RMVCNN. This implies that relational information plays
an important part in lowering both the average level and the upper limit of
confusion rates. Our framework performs well in alleviating the model’s confusion
situations.

6.3 Corrected Classification Results

We display some of the BIM objects that are misclassified by MVCNN but cor-
rectly classified by RMVCNN in Fig. 4. Figure 4a shows an IfcFlowTerminal.
Because its shape looks like a joint of two pipelines, it is misclassified as an
IfcFlowFitting by MVCNN. However, with the assistance of its relational fea-
tures, RMVCNN can judge its type correctly. A similar problem happens when
MVCNN tries to classify the IfcWindow in Fig. 4b. According to the thin columns
on its surface, this window looks much like a straight railing, so MVCNN classi-
fies it as an IfcRailing wrongly. This mistake is also avoided by RMVCNN. The
IfcDoor in Fig. 4c is misclassified as IfcWindow by MVCNN for its window-like
frame and also gets corrected by RMVCNN. These examples clearly demon-
strate our framework’s advantage in distinguishing BIM objects with misleading
geometric shapes.

6.4 Computational Cost

To figure out the trade-off between performance boost and computational cost
introduced by our framework, we list the number of parameters and calculations
of MVCNN and RMVCNN in Table 5.

By applying our framework, we only introduce about 1.1 M params (5%)
and 1.1 M MACs (0.0025%) to RMVCNN relative to MVCNN. Considering the
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(a) IfcFlowTerminal mis-
classified as IfcFlowFit-
ting

(b) IfcWindow misclassi-
fied as IfcRailing

(c) IfcDoor misclassified
as IfcWindow

Fig. 4. Demonstration of three BIM objects misclassified by MVCNN but correctly
classified by RMVCNN

Table 5. Number of parameters and calculations of MVCNN and RMVCNN

Model Params (M) MACs (M)

MVCNN 21.290 44049.020

RMVCNN 22.407 44050.135

Cost introduced 1.117 1.115

fact that MVCNN can already reach a very high classification accuracy, further
improvement is hard to achieve. However, our framework uses a relatively low
price to push its performance boundary by an obvious margin. It avoids adding
a huge amount of computational cost like some large-scale models. This result
shows the superiority and efficiency of our method.

6.5 Ablation Study

We conduct ablation studies on RMVCNN and remove each of the three com-
ponent modules to look into their contributions. When removing the geometric
or relational feature extractor, we also abandon the corresponding input infor-
mation. The results are shown in Table 6. When removing the geometric feature
extractor, the fundamental part of the framework, the results are very poor and
could not be trusted. Because the relational feature extractor acts as an auxiliary
part, the results of the framework without it look good but slightly suffer. The
experiment without the feature fusion module shows better results, but could not
reach the results of the full RMVCNN. This illustrates that the fusion process
does help in extracting a more compact and representative object descriptor.
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Table 6. Ablation studies. We remove each of the three modules in RMVCNN to
validate their contribution in recognizing BIM objects

Model Accuracy Balanced accuracy Precision Recall F1 score

w/o geometric 0.5380 0.2839 0.4748 0.5380 0.4030

w/o relational 0.9805 0.9667 0.9813 0.9805 0.9807

w/o fusion 0.9881 0.9695 0.9883 0.9881 0.9881

full RMVCNN 0.9917 0.9750 0.9918 0.9917 0.9916

7 Conclusion

We focus on the BIM object classification problem to ease the interoperability
problem of BIM software. We first propose a two-branch geometric-relational
deep learning framework. It introduces relational information of BIM objects to
assist pure geometric deep learning methods which neglect the relational infor-
mation inherent in BIM models. Geometric descriptors and relational descriptors
are extracted by the two branches, respectively. They are mixed by the feature
fusion module to generate the final object descriptors. Our design of the geo-
metric feature extractor makes the framework applicable to most existing geo-
metric learning methods, including CNN based and Transformer based methods.
And the framework can always boost their classification performance to different
degrees. It shows the efficacy and flexibility of our framework.

Then, to fill the vacancy in BIM object datasets with relationships, we collect
the IFCNet++ dataset. It contains BIM objects’ geometric representation and
certain local relationships. The relational information is stored in a vectorized
form, easy to be processed. Though simple, the relationships are representative
enough to help the geometric methods achieve a performance gain.

We follow our framework to put forward three relational models based on
different geometric learning baselines and carry out experiments on them. We
found that only with little additional cost introduced, our relational models can
utilize objects’ relations to better distinguish between BIM types with similar
looks. They compensate for the weakness of pure geometric-based methods.

The limitation of our research lies in three aspects:

• The relationships of interest are explicitly presented in IFC files. They may
also be wrongly labeled or lost, affecting the performance of our method.

• IFCNet++ dataset only covers major BIM object types. It still needs to be
enriched with more object types, so that it can be used to train a more
generalized deep learning model.

• The BIM object types are coarsely defined. They do not include subtype
information of objects to provide fine-grained type information and domain-
specific knowledge required in some AEC subdomains.
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