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Abstract. Structural monitoring for complex built environments often
suffers from mismatch between design, laboratory testing, and actual
built parameters. Additionally, real-world structural identification prob-
lems encounter many challenges. For example, the lack of accurate base-
line models, high dimensionality, and complex multivariate partial dif-
ferential equations (PDEs) pose significant difficulties in training and
learning conventional data-driven algorithms. This paper explores a new
framework, dubbed NeuralSI, for structural identification by augmenting
PDEs that govern structural dynamics with neural networks. Our app-
roach seeks to estimate nonlinear parameters from governing equations.
We consider the vibration of nonlinear beams with two unknown param-
eters, one that represents geometric and material variations, and another
that captures energy losses in the system mainly through damping. The
data for parameter estimation is obtained from a limited set of measure-
ments, which is conducive to applications in structural health monitoring
where the exact state of an existing structure is typically unknown and
only a limited amount of data samples can be collected in the field. The
trained model can also be extrapolated under both standard and extreme
conditions using the identified structural parameters. We compare with
pure data-driven Neural Networks and other classical Physics-Informed
Neural Networks (PINNs). Our approach reduces both interpolation and
extrapolation errors in displacement distribution by two to five orders of
magnitude over the baselines. Code is available at https://github.com/
human-analysis/neural-structural-identification.

Keywords: Neural differential equations · Structural system
identification · Physics-informed machine learning · Structural health
monitoring

1 Introduction

Structural-system identification (SI) [3,15,22,35,39,41] refers to methods for
inverse calculation of structural systems using data to calibrate a mathemat-
ical or digital model. The calibrated models are then used to either estimate
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Fig. 1. Overview: We consider structures whose dynamics are governed by a known
partial differential equation (PDE), but with unknown parameters that potentially vary
in both space and time. These unknown parameters are modeled with neural networks,
which are then embedded within the PDE. In this illustration, the unknown parameters,
modulus P and damping C, vary spatially. The network weights are learned by solving
the PDE to obtain the structural response (deflection in this case) and propagating the
error between the predicted response and the measured ground truth response through
the PDE solve and the neural networks.

or predict the future performance of structural systems and, eventually, their
remaining useful life. Non-linear structural systems with spatial and temporal
variations present a particular challenge for most inverse identification meth-
ods [4,14,21]. In dynamic analysis of civil structural systems, prior research
efforts primarily focused on matching experimental data with either mechanistic
models (i.e., known mechanical models) [31,38] or with black box models with
only input/output information (i.e., purely data-driven approaches), [10,13,34].
Examples of these approaches include eigensystem identification algorithms [37],
frequency domain decomposition [7], stochastic optimization techniques [30], and
sparse identification [8]. A majority of these approaches, however, fail to capture
highly non-linear behaviors.

In this paper, we consider the class of non-linear structural problems with
unknown spatially distributed parameters (see Fig. 1 for an overview). The
parameters correspond to geometric and material variations and energy dissipa-
tion mechanisms, which could be due to damping or other system imperfections
that are not typically captured in designs. As an instance of this problem class,
we consider forced vibration responses in beams with spatially varying parame-
ters. The primary challenges in such problems arise from the spatially variable
nature of the properties and the distributed energy dissipation. This is typi-
cal for built civil structures, where energy dissipation and other hard-to-model
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phenomena physically drive the dynamic response behavior. In addition, it is
very common to have structural systems with unknown strength distributions,
which can be driven by geometric non-linearities or indiscernible/hidden mate-
rial weaknesses. Finally, a typical challenge in structural systems is the rarity of
measured data, especially for extreme loading cases.

We propose a framework, dubbed NeuralSI, for nonlinear dynamic system
identification that allows us to discover the unknown parameters of partial dif-
ferential equations from measured sensing data. The developed model perfor-
mance is compared to conventional PINN methods and direct regression models.
Upon estimating the unknown system parameters, we apply them to the differ-
ential model and efficiently prognosticate the time evolution of the structural
response. We also investigate the performance of NeuralSI under a limited train-
ing data regime across different input beam loading conditions. This replicates
the expected challenges in monitoring real structures with limited sensors and
sampling capabilities.

NeuralSI contributes to the fields of NeuralPDEs, structural identification,
and health monitoring:

1. NeuralSI allows us to learn unknown parameters of fundamental governing
dynamics of structural systems expressed in the form of PDEs.

2. We demonstrate the utility of NeuralSI by modeling the vibrations of nonlin-
ear beams with unknown parameters. Experimental results demonstrate that
NeuralSI achieves two-to-three orders of magnitude lower error in predicting
displacement distributions in comparison to PINN-based baselines.

3. We also demonstrate the utility of NeuralSI in temporally extrapolating dis-
placement distribution predictions well beyond the training data measure-
ments. Experimental results demonstrate that NeuralSI achieves four-to-five
orders of magnitude lower error compared to PINN-based baselines.

2 Related Work

Significant efforts have been directed toward physics-driven discovery or approx-
imation of governing equations [15,21,26]. Such studies have further been ampli-
fied by the rapid development of advanced sensing techniques and machine learn-
ing methods [16,17,19,32]. Most of the work to date has mainly focused on ordi-
nary differential equation systems [21,40]. Neural ODEs [9] have been widely
adopted due to their capacity to learn and capture the governing dynamic behav-
ior from directly collected measurements [2,28,40]. They represent a significant
step above the direct fitting of a relation between input and output variables.
In structural engineering applications, Neural ODEs generally approximate the
time derivative of the main physical attribute through a neural network.

More recently, data-driven discovery algorithms for the estimation of param-
eters in differential equations are introduced. These methods typically referred
to as physics-informed neural networks (PINNs) include differential equations,
constitutive equations, and initial and boundary conditions in the loss function
of the neural network and adopt automatic differentiation to compute derivatives
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of the network parameters [20,29]. Variational Autoencoders were also learned
to build baseline behavioral models, which were then used to detect and localize
anomalies [23]. Many other applications have employed Neural ODE for dynamic
structure parameter identification in both linear and nonlinear cases [2,21,40].
On the other hand, few studies have explored Neural PDEs in other fields such
as message passing [6], weather and ocean wave data [11], and fluid dynamics
[5]. In [18], a Graph Neural Network was used to solve flow phenomena, and a
NeuralPDE solver package was developed in Julia [42] based on PINN.

3 Structural Problem – PDE Derivation

3.1 Problem Description

Many physical processes in engineering can be described as fourth-order time-
dependent partial differential problems. Examples include the Cahn-Hilliard type
equations in Chemical Engineering, the Boussinesq equation in geotechnical
engineering, the biharmonic systems in continuum mechanics, the Kuramoto-
Sivashinsky equation in diffusion systems [27] and the Euler-Bernoulli equation
considered as an example case study in this paper. The Euler-Bernoulli beam
equation is widely used in civil engineering to estimate the strength and deflec-
tion of beam structures. The dynamic beam response is defined by:

F (t) =
∂2

∂x2

(
P (x)E0I

∂2u

∂x2

)
+ρA

∂2u

∂t2
+ C(x)

∂u

∂t
(1)

where u(x, t) is the displacement as a function of space and time. P (x) and E0 are
the modulus coefficient and the reference modulus value of the beam, I, ρ, and A
are refereed to the beam geometry and density. F is the distributed force applied
to the beam. C(x) represents damping, which is related to energy dissipation in
the structure. In this paper, we restrict ourselves only to spatial variation of the
beam’s properties and leave the most generalized case with variations in space
and time of all variables for a future study.

The fourth-order derivative of the spatial variable and the second-order
derivative of time describes the relation between the beam deflection and the
load on the beam [1]. Figure 2 shows an illustration of the beam problem con-
sidered here, with the deflection u(x, t) as the physical response of interest. The
problem can also be formulated as a function of moments, stresses, or strains.
The deflection formulation presents the highest order differentiation in the PDE.
This was selected to allow for flexibility of the solution to be extended to other
applications beyond structural engineering.

To accurately represent the behavior of a structural component, its properties
need to be identified. Though the beam geometry is straightforward to measure,
the material property and damping coefficient are hard to estimate. The beam
reference modulus E0 is expected to have an estimated range based on the choice
of material (e.g., steel, aluminum, composites, etc.) but unforeseen weaknesses
in the build conditions can introduce unexpected nonlinear behavior. One of the
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Fig. 2. Simply supported dynamic beam bending problem. Dynamic load can be
applied to the structure with its values changing in time. The geometry, modulus,
and other properties of the beam can also vary spatially with x. The deflection of the
beam is defined as u(x, t).

objectives of this work is to capture this indiscernible randomness from response
measurements. In addition, as discussed above, the damping is unpredictable
at the design stage and is usually calculated by experiments. For the simply
supported beam problem, the boundary conditions are defined as:

{
u(x = 0, t) = 0; u(x = L, t) = 0
∂2u(x=0,t)

∂x2 = 0; ∂2u(x=L,t)
∂x2 = 0

(2)

where L is the length of the beam. Initially, the beam is static and stable, so the
initial conditions of the beam are:{

u(x, t = 0) = 0
∂u(x,t=0)

∂t = 0
(3)

4 NeuralSI

4.1 Discretization of Space

To tackle this high-order PDE efficiently, a numerical approach based on the
method of lines is employed to discretize the spatial dimensions of the PDE.
Then the system is solved as a system of ordinary differential equations (ODEs).
The implemented discretization for the spatial derivatives of different orders are
expressed as:

A∗
4u/Δx4 =

∂4u

∂x4
; A∗

3u/Δx3 =
∂3u

∂x3
; A∗

2u/Δx2 =
∂2u

∂x2
(4)

where in the fourth order discretization, A∗
4 is a N × N modified band matrix

(based on the boundary conditions), and the size depends on the number of
elements used for the space discretization, and Δx is the distance between the
adjacent elements discretized in the spatial domain. A similar principle is applied
for other order derivatives.
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4.2 The Proposed NeuralSI Schematic

A pictorial schematic of NeuralSI is shown in Fig. 1. The Julia differential equa-
tion package [28] allows for very efficient computation of the gradient from the
ODE solver. This makes it feasible to be used for neural network backpropaga-
tion. Thus, the ODE solver can be considered as a neural network layer after
defining the ODE problem with the required fields of initial conditions, time
span, and any extra parameters. Inputs to this layer can either be output from
the previous network layers or directly from the training data.

The network in NeuralSI for the beam problem takes as input the location
of the deformation sensors installed on the structure for continuous monitoring
of its response. A series of dense layers are implemented to produce the out-
put, which are the parameters that represent the structural characteristics. The
parameters are re-inserted into the pre-defined ODE to obtain the final output,
i.e., the structure’s dynamic response. The loss is determined by the difference
between the dynamic responses predicted by NeuralSI and those measured by
the sensors (ground truth).

4.3 Training Data Generation

For experimental considerations in future lab testing, we simulate in this case a
beam with length, width, and thickness respectively of 40 cm, 5 cm, and 0.5 cm.
The density ρ is 2700 kg/m3 (aluminum as base material). The force F (t) is
defined as a nonlinear temporal function. Considering the possible cases of poly-
nomial or harmonic material properties variations as an example [33], we inte-
grate the beam with a nonlinear modulus E(x) as a sinusoidal function. We use
a range for the modulus from 70 GPa to 140 GPa (again using aluminum as a
base reference). The damping coefficient C(x) is modeled as a ramp function.
The PDE can be rewritten and expressed as:

F (t) = E0I
(∂2P (x)

∂x2

∂2u

∂x2
+ 2

∂P (x)
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+ P (x)

∂4u
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)
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1uP (x)A∗
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∂2u

∂t2
+ C(x)

∂u
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(5)

F (t) =
{

1000 t ≤ 0.02 s
0 t > 0.02 s (6)

where the estimated modulus reference E0 is 70 GPa, and P (x) and C(x) are
modulus coefficient and damping that can vary spatially with x. The pre-defined
parameters P0(x) and C0(x) are shown in Fig. 3.

The PDE presented in (5) is solved via the differential equation package in
Julia. The RK4 solver method is selected for this high-order PDE. The time span
was set to 0.045 s to have 3 complete oscillations of the bending response. The
number of spatial elements and time steps are chosen as 16 and 160 respectively
for balancing the training time cost and response resolution (capture the peak
deflections). The deflections u(x, t) are presented as a displacement distribution
of size 16 × 160, from which ground truth data is obtained for training.



338 X. Li et al.

Fig. 3. Pre-defined structural properties and resultant dynamic response. Structural
parameters P and C are defined as a sinusoidal and a ramp function. Force is applied
as a step function of 1000 N and reduced to zero after 0.02 s.

4.4 Network Architecture and Training

The network architecture is presented as a combination of multiple dense layers
and an PDE-solver layer. The input to the network is the spatial coordinates x
for the measurements, and the network output is the prediction of the dynamic
response u(x, t). It is worth mentioning that the structural parameters P and C
are produced from the multiple dense layers in separate networks, and the PDE
layer takes those parameters to generate a response displacement distribution of
size 16 × 160. The activation function for predicting the parameter P is a linear
scale of the sigmoid function so that the output can be in a reasonable range.
For the prediction of parameter C, the network of the same architecture is used,
but the last layer does not take any activation function since the range of the
damping value is unknown.

The modulus coefficient might be very high during training and lead to erro-
neous predictions with very high-frequency oscillations. So, we used minibatch
training to escape local minima with a batch size of 16. The loss function is
defined as the mean absolute error (MAE) between samples from the predicted
and ground truth displacement distribution:

loss =
1
n

n∑
i=1

|u − û| (7)

where n is the number of samples for training, u and û are the values from
true and prediction dynamic responses at different training points in the same
minibatch.

Furthermore, inspired by the effectiveness of positional embeddings for rep-
resenting spatial coordinates in transformers [36], we adopt the same as well as
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Fig. 4. NeuralSI network architecture and training. The network has several dense
layers and the output is split into P and C. Those parameters are taken to the PDE
solver for structural response prediction. Samples are taken randomly from the response
for training the network.

for the spatial input to the network. It is worth noting that the temporal infor-
mation in the measurements is only used as an aid for mapping and matching
the predictions with the ground truth. We use ADAMW [24] as our optimizer,
with a learning rate of 0.01 (Fig. 4).

5 Results and Performance

The evaluation of NeuralSI is divided into two parts. In the first part, we evaluate
predictions of the parameters P and C from the trained neural network. We
assume that each structure has a unique response. To determine how well the
model is predicting the parameters, Fréchet distance [12] is employed to estimate
the similarity between the ground truth and predicted functions. In this case,
the predicted P and C are compared to the original P0 and, C0 respectively.

The second part of our evaluation is the prediction of the dynamic responses,
which is achieved by solving the PDE using the predicted parameters. The met-
ric to determine the performance of the prediction is the mean average error
(MAE) between the predicted and ground truth displacement distribution. The
prediction can be extrapolated by solving the PDE for a longer time span and
compared with the extrapolated ground truth. The MAE is also calculated from
the extrapolated data to examine the extrapolation ability of NeuralSI. More-
over, the dynamic response can be visualized on different elements separately
(i.e., separate spatial locations x) for a more fine-grained comparison of the
extrapolation results.

5.1 Results

We first trained and evaluated NeuralSI with different combinations of number
and size of dense layers, percentage of data used for training, and minibatch
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size. The best results were achieved by taking a minibatch size of 16, training
for a total of 20 epochs, and a learning rate of 0.001 (the first 10 epochs has a
learning rate of 0.01).

Fig. 5. Predicted beam parameters modulus coefficient (top) and damping (bottom).
Observe that the modulus coefficient P matches well with the sinusoidal ground truth,
since the modulus dominates the magnitude of the response. The damping C fluctuates
as it is less sensitive than P , but the outputs still present a trend of increasing damping
magnitude from the left end of the beam to the right end.

Figure 5 shows the output of modulus coefficient P and damping C from
NeuralSI. For the most part, the predictions match well with the target mod-
ulus and damping, respectively. Compared to the modulus coefficient P , the
predicted damping C has a larger error since it is less sensitive to the response.
A small difference in damping magnitude will not affect the dynamic response
as much as a change in the modulus parameter. However, the non-linearity of
the modulus and damping are predicted accurately, and it is easy to identify
whether the system is under-damped or over-damped based on the predicted
damping parameters.

Figure 6 visualizes the ground truth and predicted dynamic displacement
response, along with the error between the two. We observe that the maximum
peak-peak value in the displacement error is only 0.3% of the ground truth. We
also consider the ability of NeuralSI to extrapolate and display the dynamic
response by doubling the prediction time span. It is worth mentioning that the
peak error in temporal extrapolation does not increase much compared to the
peak error in temporal interpolation. The extrapolation results are also examined
at different elements from different locations. Figure 7 presents the response at
the beam midspan and at quarter length. There are no observed discrepancies
between the ground truth and the predicted response.
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Fig. 6. NeuralSI predictions. The interpolation results (top row) are calculated from 0
to 0.045 s and temporal extrapolation results (bottom row) are from 0.045 s to 0.09 s.
Peak error is only around 0.3% of the peak value from the ground truth, and the error
magnitude remains the same for extrapolation.

5.2 Hyperparameter Investigation

Based on the parameters chosen above, we tested the effect of number of dense
layers, training sample ratio and minibatch size on the parameter identification
and prediction of dynamic responses.

Number of Layers: The number of layers is varied by consecutively adding
an extra layer with 32 hidden units right after the input. From Fig. 8, the per-
formance of the network is affected if the number of layers is below 4. This is
explained by the fact that the network does not have sufficient capacity to pre-
cisely estimate the unknown structural parameters. It is noted that the size of
the input and output are determined by the minibatch size and the number of
elements used for discretization. A higher input or output size will automati-
cally require a bigger network to improve prediction accuracy. Additionally, the
Fréchet distance decreases as the size of the neural network increases, which
demonstrates that the prediction of beam parameters is more accurate.

Sample Ratio: The number of training samples plays an important role in the
model and in real in-field deployment scenarios. The number and the efficiency
of sensor arrangements will be directly related to the number of samples required
for accurately estimating the unknown parameters. It is expected that a reduced
amount of data is sufficient to train the model given the strong domain knowl-
edge (in the form of PDE) leveraged by NeuralSI. From Fig. 8, when 20% of the
ground truth displacement samples are used for training, the loss drops notice-
ably. With an increased amount of training data, the network performance can
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Fig. 7. Elemental response, spatial elements from the beam are selected to examine the
temporal response. The ground truth and prediction responses are matching perfectly.
(a) element at beam midspan; (b) element at quarter length of the beam.

Fig. 8. Hyperparameter performance. A sufficient number of layers, more training sam-
ples, and small minibatch size will produce a good combination of hyperparameters and
loss MAE (top row). The Fréchet distances (bottom row) are calculated for P and C
respectively. The fluctuation of Fréchet distance for different sample ratio is because
the values are relatively small.

still be improved. Furthermore, observe that there is a slight effect of data over-
fitting when using the full amount of data for training. The Fréchet distance of
damping is not stable since our loss function optimizes for accurately predicting
the dynamic deflection response, instead of directly predicting the parameters.
As such, the same error could be obtained through different combinations of
those parameters.
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Minibatch Size: The minibatch size plays an important role in the efficiency
of the training process and the performance of the estimated parameters. It is
worth mentioning that a smaller minibatch size helps escape local minima and
reduces errors. However, this induces a higher number of iterations for a single
epoch, which is computationally expensive. From Fig. 8 we observe that both
the MAE error and the Fréchet distance are relatively low when the minibatch
size is smaller than 32.

6 Comparison of NeuralSI with a Direct Response
Mapping Deep Neural Network and a PINN

The NeuralSI framework is compared with traditional deep neural networks
(DNN) and PINN methods. The tested DNN has 5 dense layers and a Tanh
activation. The inputs are the spatial and temporal coordinates x and t, respec-
tively, of the displacement response, and the output is the beam deflection u(x, t)
at that spatio-temporal position. The optimizer is LBFGS and the learning rate
is 1.0. With a random choice of 20% samples, the loss stabilizes after 500 epochs.

The PINN method is defined with a similar strategy to existing solu-
tions [20,29]. The Neural network consists of 5 dense layers with Tanh acti-
vation function. The loss is defined as a weighted aggregate of the boundary
condition loss (second derivative of input x at the boundaries), governing equa-
tion loss (fourth-order derivative of x and second-order derivative of the t), and
loss between the prediction and ground truth displacement response. We used
LBFGS as the optimizer with a learning rate of 1.0. The training was executed
for 3700 epochs.

The prediction of the dynamic deformation responses for the two baseline
methods and NeuralSI and the corresponding displacement distribution errors
are shown in Fig. 9. In NeuralSI, we used ImplicitEulerExtrapolation solver for
a 4× faster inference. We further optimized the PDE function with Modeling-
Toolkit [25], which provides another 10× speedup, for a total of 40× speedup
over the RK4 solver used for training. Due to a limited amount of data for train-
ing, the DNN fails to predict the response. With extra information from the
boundary conditions and equation, the PINN method results in an MAE loss of
0.344, and the prediction fits the true displacement distribution well. Most of
the values in the displacement distribution error are small, except for some cor-
ners. But both methods fail to extrapolate the structural behavior temporally.
The extrapolation of DNN predictions produces large discrepancies compared
to the ground truth. Similarly, the PINN method fails to match the NeuralSI
performance, while fairing much better than the predictions from the DNN, as
expected due to the added domain knowledge. The MAE errors were computed
and compared with the proposed method trained with 20% data as shown in
Fig. 10.
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Fig. 9. Spatio-temporal displacement distribution predictions and comparisons
between DNN, PINN and NeuralSI for both interpolation (top) and extrapolation
(bottom). The DNN method fails to learn the interpolation response, while the PINN
can predict most of the responses correctly, with only a few errors at the corners of
the displacement response. Predictions from NeuralSI have two orders of magnitude
lower error in comparison to PINN. With the learned structural parameters, NeuralSI
maintains the same magnitude of error in extrapolation results. Both DNN and PINN
completely fail at extrapolation and lead to considerable errors.
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Fig. 10. Performance comparison between DNN, PINN, and NeuralSI for both interpo-
lation and extrapolation (a) MAE, (b) Inference time, and (c) Trade-off between MAE
and inference time. NeuralSI offers significantly lower error while being as expensive
as solving the original PDE, thus offering a more accurate solution when the compu-
tational cost is affordable. NeuralSI obtains the extrapolation results by solving the
whole time domain starting from t = 0, while DNN and PINN methods directly take
the spatio-temporal information and solve for extrapolation.

7 Conclusion

In this paper, we proposed NeuralSI, a framework that can be employed for
structural parameter identification in nonlinear dynamic systems. Our solution
models the unknown parameters via a learnable neural network and embeds
it within a partial differential equation. The network is trained by minimizing
the errors between predicted dynamic responses and ground truth measurement
data. A major advantage of the method is its versatility and flexibility; thus,
it can be successfully extended to any PDEs with high-order derivatives and
nonlinear characteristics. The trained model can be used to either explore struc-
tural behavior under different initial conditions and loading scenarios, which is
vital for structural modeling or to determine high-accuracy extrapolation, also
essential in systems’ response prognosis. An example beam vibration study case
was analyzed to demonstrate the capabilities of the framework. The estimated
structural parameters and the dynamic response variations match well with the
ground truth (MAE of 10−4). The performance of NeuralSI is also shown to out-
perform direct regression significantly through deep neural networks and PINN
methods by three to five orders of magnitude.
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