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Abstract. Hand-held scanners are progressively adopted to workflows on con-
struction sites. Yet, they suffer from accuracy problems, preventing them from
deployment for demanding use cases. In this paper, we present a real-world
dataset collected periodically on a construction site to measure the accuracy
of SLAM algorithms that mobile scanners utilize. The dataset contains time-
synchronised and spatially registered images and LiDAR scans, inertial data and
professional ground-truth scans. To the best of our knowledge, this is the first pub-
licly available dataset which reflects the periodic need of scanning construction
sites with the aim of accurate progress monitoring using a hand-held scanner.

Keywords: Real-world dataset · SLAM · Construction progress monitoring ·
Point cloud

1 Introduction

The digitization of the geometry of existing infrastructure assets is a crucial step for cre-
ating an effective Digital Twin (DT) for many applications in Architecture, Engineering
and Construction (AEC) industry. On the one hand, the growing adoption of mobile
and hand-held scanning devices brings the hope of increased productivity with respect
to capturing the geometric data. On the other, however, the underlying Simultaneous
Localization And Mapping (SLAM) algorithms, which such scanners utilize, are not yet
accurate enough to meet the requirements of demanding use cases such as engineering
surveying. As a result, there is a mix of technologies used on construction sites.

Publicly available datasets serve as battlegrounds against which different methods
compare their performance. Yet, there are very few of them that would enable the com-
parison of SLAM methods on construction sites. In fact, there is no publicly available
dataset that would reflect the periodic need of scanning construction sites, with the view
of accurate progress monitoring using a hand-held scanner. Our paper aims at address-
ing this problem.
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Under the following link https://github.com/mac137/ConSLAM, we present a real-
world dataset, the “ConSLAM”, recorded by our prototypical hand-held scanner. The
dataset consists of four sequences captured at the same floor of a construction site.
We recorded one sequence approximately every month. Each sequence contains Red-
Green-Blue (RGB) and Near-InfraRed (NIR) images of resolutions 2064 × 1544 and
2592 × 1944 pixels respectively, 16-beam Velodyne LiDAR scans and 9-axis Inertial
Measurement Unit (IMU) data. The first three sensors were synchronised in time and
recorded at 10 Hz while IMU was recorded at 400 Hz. The acquired sequences vary
in their duration between five and nine minutes. For every sequence, we also include a
Ground-Truth (GT) point cloud provided by a land surveying team. We used these point
clouds to produce the ground-truth trajectories of our scanner, against which SLAM
algorithms can measure their accuracy. Our hope is that all these modalities will enable
further exploration of mobile mapping algorithms.

This paper is structured as follows. Section 2 provides a discussion on the existing
datasets. Section 3 includes the description of our hand-held prototype, as well as other
devices and methods we used to produce the complete dataset. In Sect. 4, we briefly
describe the construction site and present the structure as well as availability of our
dataset. We close the paper by discussing future steps in Sect. 5.

2 Existing Datasets

Mobile scanning systems are portable devices that integrate multiple sensors for obtain-
ing detailed surveys of scanned scenes by creating 3D point cloud data. There are dif-
ferent sequential point cloud datasets, but very few, such as the Hilti SLAM challenge
dataset [12] are both sequential as well as collected for construction sites.

The available sequential datasets can be categorized into two main types: synthetic
and real-world. A synthetic dataset is artificially generated in a virtual world by simulat-
ing a real-world data acquisition system. A sequential dataset is collected as sequences
of frames from a movable platform, e.g., vehicular or hand-held ones. Most studied
sequential datasets are described in this section, and also summarized in Table 1.

KITTI1 is a well-known benchmark collected mainly for 3D object detection sce-
narios [8,9]. The data includes six hours of traffic scenarios at 10–100 Hz using a system
mounted on a moving vehicle with a driving speed up to 90 km/h. The system comprises
data from high-resolution colour and greyscale stereo cameras, a LiDAR, a Global Posi-
tioning System (GPS) as well as IMU devices [8]. The set-up allows collecting data that
are suitable for different tasks: stereography, optical flow, Visual Odometry (VO) and
3D object detection. For the visual odometry benchmark, the data contain 22 sequences
of images, 11 of them being associated to ground-truth, and the remaining mainly con-
tains raw sensor data. The ground-truth for VO is the output of GPS/IMU localization.
The data is also provided along with the trajectories.

SemanticKITTI [1] is based on the KITTI dataset, mainly the sequences provided
for the OV task. SemanticKITTI provides dense point-wise annotation for zero to ten
sequences, while the other 11–21 sequences are used for testing, making the data suit-
able for various tasks. Three main tasks are proposed for SemanticKITTI; semantic

1 http://www.cvlibs.net/datasets/kitti.
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segmentation of a scene, semantic scene completion (i.e., predicting future semantic
scenes), and semantic segmentation of multiple sequential scans.

SemanticPOSS [14] is a dataset that contains LiDAR scans with dynamic instances.
It uses the same data format as SemanticKITT. Similar to KITTI, SemanticPOSS has
been collected by a moving vehicle equipped with a Pandora module2 and a GPS/IMU
localization system to collect 3D point cloud data. The Pandora integrates cameras and
LiDAR into the same module. The vehicle travelled a distance of around 1.5 kilometres
on a road that includes many moving vehicles and walking and riding students. The
collected data are annotated that each point contains unique instance labels for dynamic
objects (car, people, rider). The data are suitable for predicting the accuracy of dynamic
objects and people [7] and 3D semantic segmentation [14]. The data size of Semantic-
POSS is limited compared to SemanticKITTI. Although there is a higher resolution on
horizontal LiDAR scans, the spatial distribution of the LiDAR points is unbalanced [7].

SynthCity [10] is a synthetic labelled point cloud dataset generated from a synthetic
full-colour mobile laser scanning with a predefined trajectory. Each point is labelled by
one of nine categories: high vegetation, low vegetation, buildings, scanning artefacts,
cars, hardscape, man-made terrain, and natural terrain. The synthetic point clouds are
generated in urban/suburban environments modelled within Blender 3D graphics soft-
ware3. The dataset has been released primarily for semantic per-point classification,
where each point contains a local feature vector and a classification label. However, the
dataset is unsuitable for instance segmentation as it does not include instances’ identi-
fiers.

The Grand Theft Auto V (GTA5) [15] is a synthetic sequential point cloud dataset
that was generated based on the photo-realistic virtual world in the commercial video
game “Grand Theft Auto V”. The approach is based on creating large-scale pixel-level
semantic segmentation by extracting a set of images from the game and then applying
a pipeline to produce the corresponding label. The game includes different resource
types, including texture maps and geometric meshes, combined to compose a scene,
which facilitates establishing the associations between scene elements. GTA5 is three
orders of magnitude larger than semantic annotations included in the KITTI dataset [8,
15]. The data contains 19 semantic classes, including road, building, sky, truck, person,
traffic light and other objects on road scenes. The data was used for training semantic
segmentation models and evaluated on two datasets, including KITTI [8] where the
training phase included both real and synthetic data using minibatch stochastic gradient
descent. The model trained with generated synthetic data within GTA5 outperforms the
model trained without it by factor 2.6.

The nuTonomy scenes (nuScenes) [4] is a real-world dataset for collecting point
cloud using six cameras, five radars and a LiDAR, each with a full 360-degree field of
view. The data is fully annotated with 3D bounding boxes, mainly for autonomous driv-
ing scenarios, with available map information associated to the collected data. The data
include trajectories as idealized paths that the movable platform should take; assuming
there are no obstacles in the route. The data include 23 classes: road, pavement, ground,
tree, building, pole-like, and others. Compared to the KITTI dataset, nuScenes has seven

2 Please consult www.hesaitech.com.
3 https://www.blender.org/.
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times more object annotations and one hundred times more images. The dataset is cur-
rently suitable for 3D object detection and tracking, where tracking annotation is also
available [5].

The Hilti SLAM 2021 challenge dataset [12] is a benchmark dataset that collects
multiple sensor modalities of mixed indoor and outdoor environments with varying illu-
mination conditions and along the trajectory. The indoor sequences portray labs, offices
and construction environments, and the outdoor sequences were recorded in parking
areas and on construction sites4. The data were collected by a handheld platform com-
prising multiple sensors: five AlphaSense cameras (stereo pair), two LiDARs (Ouster
OS0-64 and Livox MID70), and three IMUs (ADIS16445) with accurate spatial and
temporal calibration. The main aim of this dataset is to promote the development of
new SLAM algorithms that attain both high accuracy and robustness for challenging
real-world environments such as construction sites. In 2022, the same challenge was
organized, but the data were collected mainly for construction sites and Sheldonian
Theatre in Oxford, UK5. The data were collected by a sensor suite mounted on an alu-
minium platform for handheld operation. The suite consists of a Hesai PandarXT-32
and Sevensense Alphasense Core camera head with five 0.4MP global shutter cameras.
The LiDAR and cameras are synchronised via Precision Time Protocol and all sensors
are aligned within one millisecond.

To the best of our knowledge, the ConSLAM dataset is the first sequential dataset
with a trajectory for a construction site that aims to capture the construction of a site
over a few months. The data are collected by a hand-held mobile scanner comprising a
LiDAR, RGB and NIR cameras and an IMU (shown in Fig. 1). All the modalities are
synchronised in time and spatially registered. This aims to foster novel research and
progress in evaluating SLAM approaches and trajectory tracking at construction sites
and developing progress monitoring and quality control systems for the AEC commu-
nity.

3 Methodology

In this section, we introduce the configuration of the hand-held prototype device, and
our data acquisition and post-processing pipelines.

3.1 Sensors and Devices

The sensors used during data acquisition at the construction site are shown in Fig. 1. As
shown in Fig. 1(a), our prototypical hand-held scanner consists of a LiDAR at the top
(Velodyne VLP-16), an RGB camera (Alvium U-319c, 3.2 MP) located directly below
the LiDAR, a NIR camera (Alvium 1800 U-501, 5.0 MP) located to the right of the
RGB camera and an IMU (Xsens MTi-610), to the left of the RGB camera. They are
rigidly attached to a custom-made aluminium frame with a handle at the bottom. All
of them are connected to a laptop (MacBook Pro 2021) where data were recorded and

4 https://hilti-challenge.com/dataset-2021.html.
5 https://hilti-challenge.com/dataset-2022.html.

https://hilti-challenge.com/dataset-2021.html
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Table 1. Summary of existing sequential point cloud datasets

Name Real/
Synthetica

Indoor/
Outdoor b

Traject-
ory c

Sector Applications Sensors

KITTI [9] R I � Urban and
transport

Autonomous vehicles [6,13], 3D
object detection and visual
odometry [9]

Four colour and greyscale stereo
cameras, a laser scanner (Velodyne),
four Edmund optics lenses, GPS
navigation systems

Semantic-
KITTI [1]

R O � Urban/road Semantic segmentation of a scene,
semantic scene completion (i.e.,
predicting future semantic scenes),
and semantic segmentation of
multiple sequential scans [1]

Relying on the data collected by
laser scanner (Velodyne) in the
KITTI dataset

HILTI-
OXFORD [12]

R I &O � Construction Construction robotics, construction
site environments

Five AlphaSense cameras (stereo
pair), two LiDARs (Ouster OS0-64
and Livox MID70), and three IMUs
(ADIS16445)

Semantic-
POSS [14]

R O ✗ Urban/road Prediction accuracy of dynamic
objects and people [7] and 3D
semantic segmentation [14]

Pandora module (LiDAR, mono and
colour cameras) and GPS/IMU

SynthCity [10] S O � Urban/
suburban
environments

Point cloud classification [10] Mobile laser scanning

GTA5 [15] S O ✗ Urban/road Semantic segmentation and scene
understanding [15]

Frames extracted from “Grand Theft
Auto V” video game; from a car
perspective

nuScenes [4] R O � Urban/road
and
autonomous
driving

Object detection and tracking,
segmentation [4]

Six cameras, five radars and one
LiDAR, all with full 360◦ field of
view

ConSLAM R O � Construction Progress monitoring & quality
control, object detection and
tracking

LiDAR (Velodyne VLP-16), RGB
camera (Alvium U-319c, 3.2 MP), a
NIR camera (Alvium 1800 U-501,
5.0 MP) and an IMU (Xsens
MTi-610)(see Fig. 1)

a R: real-world, S: synthetic/artificial.
b I: indoor, O: outdoor.
c Indicates whether the data includes sensor’s path, i.e., trajectory.

pre-processed. In addition, a Leica RTC 3606 (see Fig. 1(b)) is used to collect precise
scans which are later stitched together and geo-referenced by land surveyors. These
scans serve as our ground-truth.

3.2 Intrinsic Calibrations of the Sensors

Both cameras, i.e., RGB and NIR, are intrinsically calibrated according to the Brown-
Conardy model [3] with the camera intrinsic matrix and lens distortion coefficients
stored along with the dataset. The resolution of distorted images is 2064 × 1544
and 2592 × 1944 pixels for the RGB and NIR cameras, respectively. Moreover, the
LiDAR’s intrinsic parameters have mostly default values as in the manufacturer’s
manual and the Velodyne driver7 with a restricted range of 60 m and the parameter
lidar timestamp first packet is set to true.

6 https://leica-geosystems.com/products/laser-scanners/scanners/leica-rtc360.
7 https://github.com/ros-drivers/velodyne.

https://leica-geosystems.com/products/laser-scanners/scanners/leica-rtc360
https://github.com/ros-drivers/velodyne
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Fig. 1. Data acquisition: (a) our prototypical hand-held scanner, and (b) a static scanner used to
collect ground-truth scans. Red, green and blue colours represent X-, Y- and Z-axes, respectively
(Color figure online)

3.3 Extrinsic Calibrations of the Sensors

The LiDAR sensor is extrinsically calibrated in a pair with other sensors as follows:
the LiDAR and the RGB camera, the LiDAR and the NIR camera, and the LiDAR
and the IMU. The sensor frames are positioned against each other in our prototypical
hand-held scanner, as shown in Fig. 1(a). It is worth-mentioning that when the scanner
is held vertically (i.e., in its operational position), LiDAR’s X-, RGB camera’s Z- and
NIR camera Z-axes face the front while IMU’s X-axis faces backward. LiDAR’s and
IMU’s Z-axes face upwards, while the RGB and NIR cameras’ Y-axes face downwards.
The remaining axes can be further deduced from the figure.

We used a method proposed by Beltrán et al. [2] to extrinsically calibrate the
LiDAR with both the RGB camera and the NIR camera. We used the method used by
VINS-Mono8 for LiDAR-IMU calibration. Their respective matrices are stored along
with the dataset.

3.4 Data Collection System of the Hand-Held Scanner

Our hand-held data collection system utilizes Robot Operating System (ROS)9 as a
backbone to process the data streams coming from all four sensors. Figure 2 presents
the data processing pipeline in more detail.

We first launch the respective drivers of the four sensors, thus publishing the indi-
vidual data messages to our ROS-based system as shown in the top layer in Fig. 2.
Next, we synchronize the RGB camera, LiDAR and NIR camera in time using a stan-
dard ROS synchronization policy10, based on matching messages whose difference in

8 see https://github.com/chennuo0125-HIT/lidar imu calib, and https://blog.csdn.net/weixin
37835423/article/details/110672571.

9 https://www.ros.org.
10 https://wiki.ros.org/message filters/ApproximateTime.

https://github.com/chennuo0125-HIT/lidar_imu_calib
https://blog.csdn.net/weixin_37835423/article/details/110672571
https://blog.csdn.net/weixin_37835423/article/details/110672571
https://www.ros.org
https://wiki.ros.org/message_filters/ApproximateTime
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timestamps is smaller than 10 milliseconds. However, we decided to split this process
into two because of problems encountered with our NIR camera. If the synchronization
was matching timestamps from all three topics and any of the topics stopped work-
ing for a moment, the synchronization of all the three topics would stop too. Our
NIR camera sporadically stops publishing images for a moment, which would effec-
tively stop the synchronization of all three sensors. Instead, we decided to synchronise
RGB images and LiDAR scans first and publish them on /pp rgb/synced2points

and /pp points/synced2rgb topics respectively. NIR images are then synchronised
with /pp points/synced2rgb using the same synchronization policy and published
on the /pp nir/synced2points topic. This solution allows us to keep recording syn-
chronized RGB images and lidar scans even when the NIR camera stops working for a
moment.

During scanning, we also monitor the three synchronised topics and the IMU mes-
sages to make sure that our system actually receives data from the sensors. In the
last step, we record the synchronised topics along with the IMU data (/imu/data)
and store them as a standard bag file. We decided to record IMU messages 400 Hz
because it is often the case that higher IMU rate improves the performance of SLAM
algorithms [16].

Fig. 2. Processing data streams on construction site
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3.5 Ground-Truth Trajectories

This section discusses the ground-truth dataset and focuses on our post-processing
pipeline used for its creation and refinement. We also discuss the issue of registering
individual LiDAR scans to the ground-truth dataset to recover the ground-truth trajec-
tory of our prototypical scanner. The ground-truth dataset contains four scans referred
to as GTi, i = 1, . . . , 4, which were collected over a period of three months on an active
construction site, as explained in Sect. 4.

Registration Error Metric: we faced two main issues during the registration process
of datasets: varying overlap and geometric discrepancies. Such issues make a 3D point
cloud registration difficult and require manual adjustments in order to ensure high pre-
cision of the data alignment. Such a registration can take up to a few dozens of minutes
to be properly performed by an experienced person.

Nevertheless, we need to be able to provide a registration error metric for the
datasets, hampered by the aforementioned issues. There exist several error metrics,
which can be used for our purposes. We opted for the distance-constrained Root Mean
Square Error (RMSEd for short), as provided in Definition 1.

Definition 1 (RMSEd). Let Pdata ⊂ R3 and Ptarget ⊂ R3 be two point sets, and γ :
Ptarget → Pdata be the nearest-neighbour function. Then,

RMSEd =

√
√

∑

q∈S d

‖γ(q) − q‖2
|S d | , (1)

where S d = {q | ‖γ(q) − q‖ < d} ⊂ Ptarget.

In our experiments, the threshold distance d is empirically set to one centimetre.

Registration of Static Scans: each of the GTi sets, was obtained from a multi-view
registration of Mi scans. In this section, we define the multi-view registration problem.

Let P = {Pk ⊂ R3 | 1 ≤ k ≤ M} denote a set of M point clouds, and let HM denote a
square binary matrix, which encodes the registration relation of the elements of P. More
specifically, HM(i, j) = 1 if |Pi ∩ Pj| = N 
 0, and HM(i, j) = 0 otherwise. Finally,
let G = {gk | 1 ≤ k ≤ M, gk ∈ SE(3)} be a set of rigid transformations. The multi-view
registration problem can be then formulated as

E(g1, . . . , gM) =
M
∑

i=1

M
∑

j=1

HM(i, j)
Nj
∑

k=1

fl(‖d(g j(p
j
k), g j(q

j
k))‖2), (2)

where {pj
k → q j

k} are the Nj closest point correspondences from point clouds Pi, Pj,
and fl is a loss function. In other words, we want to minimize the alignment error
by summing up the contributions for every pair of overlapping views. The solutions
g1, . . . , gM = argmin(E) are the rigid transformations that align the M clouds in the
least squares sense. For more information, we refer the reader to a technical report
authored by Adrian Haarbach [11].
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Table 2. RMSEd distance for ground-truths dataset. The measurements are recorded in centime-
tres

Dataset name ≈ minRMSEd ≈ maxRMSEd ≈ meanRMSEd

GT 1 0.319 0.950 0.676

GT 2 0.262 0.980 0.605

GT 3 0.327 0.983 0.607

GT 4 0.360 0.902 0.637

Having registered the scans obtained from a terrestrial scanner, we have downsam-
pled them using distance-based downsampling11 with the threshold of five millimetres.
Finally, we compute RMSEd distances between overlapping point sets, see Table 2.

Registration of LiDAR Scans to Ground-Truth Scans: We create a ground-truth
trajectory of the LiDAR by registering each LiDAR scan to the ground-truth scans. This
means that we recover the true pose of each LiDAR scan with respect to the ground-
truth scans received from land surveyors. To do that, we play each recorded bag file
and save every LiDAR message to the PLY file format as an individual LiDAR scan.
In addition, we run Advanced Lidar Odometry and Mapping (A-LOAM12) algorithm—
an implementation of the LOAM algorithm proposed by Zhang et al. [17]—on each
bag file and save odometric poses corresponding to the individual LiDAR scans as text
files. The text files and the individual LiDAR scans are then matched based on their
timestamps assigned during the data collection.

The ICP algorithm is then executed on each pose-scan pair. We extract edges from
every LiDAR scan in the same way as it is done in A-LOAM and use the corresponding
pose as an initial guess for the fine registration. The ICP is performed for a couple of
iterations, starting with half a metre as an initial threshold for establishing correspon-
dences to the closest points. With every iteration, the threshold decays by a factor of
0.85 and the algorithm converges when the RMSE/fitness is smaller than three centime-
tres.

The resulting six Degree of Freedom (6-DOF) transformations are stored as 4 × 4
matrices and are named after the corresponding LiDAR scans. In other words, these
matrices represent the transformations that the LiDAR scans must undergo to be aligned
with the ground-truth scans. The whole collection of transformations makes up the
ground-truth trajectory. Figures 4 and 5 present photorealistic renderings of the ground-
truth data and the position of the registered LiDAR scans.

We implemented a computer program to automate the registration process described
above. However, there were still situations where our software was unsuccessful. This
includes the following: (1) the drift by the LOAM algorithm run on the stream of LiDAR
scans was high enough that its poses fed to our registration algorithm were too distant

11 We used the distance-based downsampling implemented in CloudCompare 2.12.2. See https://
www.cloudcompare.org.

12 https://github.com/HKUST-Aerial-Robotics/A-LOAM.

https://www.cloudcompare.org
https://www.cloudcompare.org
https://github.com/HKUST-Aerial-Robotics/A-LOAM
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to find correct correspondences between the extracted LiDAR features and the ground
truth scans; (2) the exact trajectory our scanner followed is not fully covered by the
ground-truth scans from the land surveying team, hence it was not possible to align the
LiDAR scans from such places to the ground-truth scans. An example relating to the
first issue can be seen in Fig. 3. We estimate that we have correctly registered around
80% of LiDAR scans to GT 1, about 80% of LiDAR scans to GT 2, approximately 60%
of LiDAR scans to GT 3 and roughly 70% of LiDAR scans to GT 4.

4 Dataset: ConSLAM

We collected the four raw streams of data at a part of a story at Whiteley’s in London
which had been originally designed by John Belcher and John James Joass in 1911
as one of London’s leading department stores. At the time of writing this paper, the
building is undergoing redevelopment, which involved the demolition of the existing
shopping centre behind a retained historic façade. The new development involved the
creation of luxury retail, leisure and a residential scheme involving the construction of
a new six to nine-story building.

4.1 Dataset Structure

Our dataset is structured as shown in Fig. 6. The directory includes five main files in the
ZIP file format, four of them containing data from four individual scans carried once
per month. The scans are numbered from 1 to 4, with the earliest scan marked with 1
and the oldest one marked with 4. In order to save space in Fig. 6, we encoded this fact
with data unpacked x.zip where x = 1, . . . , 4.

Each of the four data zipped files contains a recording.bag file recorded during
scanning. This file can be played using rosbag13 and contains four topics with the stream
of RGB and NIR images, LiDAR points and IMU messages. groundtruth scan.ply

file is our ground-truth point cloud created by land surveyors as described in Sect. 3.5.
Next, there are three folders rgb/, nir/ and lidar/ which contain messages unpacked

Fig. 3. Visualization of incorrectly registered LiDAR poses, which have been marked by the light-
brown ellipse

13 https://wiki.ros.org/rosbag.

https://wiki.ros.org/rosbag
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Fig. 4. Top-view visualization of the ground-truth datasets: GT 1 – (a), GT 2 – (b), GT 3 – (c), GT 4

– (d). Note that in some places we can see incorrectly registered LiDAR poses, i.e., (a) and (c)

from the recording.bag file. The corresponding LiDAR scans in lidar/ and images
in rgb/, nir/ are named with the same timestamp coming from LiDAR scans recorded
during scanning. The last folder pose/ contains the ground-truth poses of the LiDAR
sensor created as described in Sect. 3.5 and named also with the corresponding times-
tamps. The collection of these poses makes up the ground-truth trajectory of the LiDAR
sensor.

The file data calib.zip includes all the calibration parameters including:
RGB and NIR camera calibration matrices along with their distortion coeffi-
cients in calib rgb.txt and calib nir.txt respectively. Moreover, there is a
rigid-body transformation matrix between the LiDAR and the RGB camera in
calib lidar2rgb.txt, rigid-body transformation matrix between the LiDAR and
the NIR camera in calib lidar2nir.txt, and finally, a rotation matrix between the
LiDAR and IMU in calib lidar2imu.txt.

4.2 Practical Application: Projecting LiDAR Points onto Corresponding Images

Our ConSLAM dataset is available at https://github.com/mac137/ConSLAM, where a
complete description and examples on how to use the data are provided.

https://github.com/mac137/ConSLAM
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As an example, we take an extrinsic LiDAR-camera calibration matrix TLiDAR
RGB

stored in calib lidar2rgb.txt and RGB intrinsic camera matrix for distorted images
KRGB

dist along with five distortion coefficients (k1, k2, k3, k4, k5) from calib rgb.txt. We
define

Fig. 5. Close-up visualization of the ground-truth datasets: GT 1 – (a-b), GT 2 – (c-d), GT 3 – (e-f),
GT 4 – (g-h), together with the LiDAR positions depicted by red spheres. The LiDAR position
have been connected to provide approximated paths
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Fig. 6. Dataset folder structure

TLiDAR
RGB =

[

RLiDAR
RGB TLiDAR

RGB
01×3 1

]

, (3)

where RLiDAR
RGB ∈ SO(3) is a 3 × 3 rotation matrix from the LiDAR to the camera and

TLiDAR
RGB is a 3 × 1 translation vector also from the LiDAR to the camera.

Now, let us take an RGB image from the rgb/ folder of any sequence from one to
four, undistort it and compute the RGB camera intrinsic matrix for undistorted images
KRGB

undist using OpenCV14 package, KRGB
dist and (k1, k2, k3, k4, k5). We find the correspond-

ing LiDAR scan in the lidar/ folder using the file name of the image, and we iterate
over its points. In order to project a single LiDAR point xi = [xi, yi, zi]� onto the undis-
torted images, we follow

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u′
v′
w′

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= KRGB
undist

[

�3×3

01×3

]�
TLiDAR

RGB
−1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xi
yi
zi
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4)

and then the pixel coordinates [u, v]� are recovered from the homogeneous coordinates
as follows

[

u
v

]

=

[

u′/w′
v′/w′

]

. (5)

We refer the reader to Fig. 7, which shows an example of LiDAR points projected onto
the corresponding image.

14 https://opencv.org.

https://opencv.org
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Fig. 7. Example of projecting of LiDAR points onto the corresponding image

5 Conclusion and Future Direction

We introduced a new real-world dataset, the “ConSLAM”, recorded periodically by a
hand-held scanner on a construction site. The dataset aims at facilitating the comparison
of SLAM algorithms for periodic and accurate progress monitoring in construction.
The dataset contains the ground-truth trajectories of the scanner, which allows for an
accurate comparison of SLAM methods run on our recorded data streams.

In the future, we aim at registering of all LiDAR scans to the ground-truth scans,
hence recovering the full ground-truth trajectory of our scanner. The objective is also
to extend this dataset with ground-truth for semantic segmentation of images and point
clouds. This will allow the development of progress monitoring systems based on the
comparison of Design-Intent and As-Built, for example, using the volume of individual
building elements. The semantic annotations will also allow prospective algorithms to
measure the accuracy of inferred information in such popular tasks like object detection
or instance segmentation.
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