
Continual Inference: A Library
for Efficient Online Inference with Deep

Neural Networks in PyTorch

Lukas Hedegaard(B) and Alexandros Iosifidis

Department of Electrical and Computer Engineering,
Aarhus University, Aarhus, Denmark

{lhm,ai}@ece.au.dk

Abstract. We present Continual Inference, a Python library for imple-
menting Continual Inference Networks (CINs), a class of Neural Net-
works designed for redundancy-free online inference. This paper offers a
comprehensive introduction and guide to CINs and their implementation,
as well as best-practices and code examples for composing basic modules
into complex neural network architectures that perform online inference
with an order of magnitude less floating-point operations than their non-
CIN counterparts. Continual Inference provides drop-in replacements of
PyTorch modules and is readily downloadable via the Python Package
Index and at www.github.com/lukashedegaard/continual-inference.

Keywords: Online inference · Continual Inference Network · Deep
Neural Network · Python · PyTorch · Library

1 Introduction

Designing and implementing Deep Neural Networks, which offer good perfor-
mance in online inference scenarios, is an important but overlooked discipline in
Deep Learning and Computer Vision. Research in areas such as Human Activity
Recognition focuses heavily on improving accuracy on select benchmark datasets
with limited focus on computational complexity and still less on efficient online
inference capabilities. Yet, important real-life applications such as human mon-
itoring [13,18], driver assistance [3], and autonomous vehicles depend on per-
forming predictions on a continual input stream with low latency and low energy
consumption.

Continual Inference Networks (CINs) [7–9], are a recent family of Deep Neural
Networks, which can accelerate a wide range of architectures for time-series
processing (e.g., CNNs and Transformers) during online inference, even though
source networks may have been trained exclusively for offline processing.

This paper provides comprehensive introduction to CINs (Sect. 2), the guid-
ing principles of their design and implementation via the Continual Inference
library (Sect. 4), and summarizes and compares achieved reductions in stepwise
computational complexity and memory-usage using the library (Sect. 4).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Karlinsky et al. (Eds.): ECCV 2022 Workshops, LNCS 13807, pp. 21–34, 2023.
https://doi.org/10.1007/978-3-031-25082-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25082-8_2&domain=pdf
www.github.com/lukashedegaard/continual-inference
https://doi.org/10.1007/978-3-031-25082-8_2

22 L. Hedegaard and A. Iosifidis

2 Continual Inference Networks

Originally introduced in [9] and subsequently elaborated in [7,8], Continual Infer-
ence Networks denote a variety of Neural Network, which can operate without
redundancy during online inference on a continual input stream, as well as offline
during batch inference. Specifically, CINs comply with Definition 1 [7]:

Definition 1 (Continual Inference Network). A Continual Inference Net-
work is a Deep Neural Network, which

– is capable of continual step inference without computational redundancy,
– is capable of batch inference corresponding to a non-continual Neural Network,
– produces identical outputs for batch inference and step inference given iden-

tical receptive fields,
– uses one set of trainable parameters for both batch and step inference.

Many prior networks can be viewed as CINs. This includes networks, which
perform their task within a single time-step (e.g., object detection and image
recognition models), or which inherently process temporal data step-by-step
(e.g., Recurrent Neural Networks such as LSTMs [10] and GRUs [2]). Some net-
work types, however, are limited to batch inference exclusively. These include
Convolutional Neural Networks (CNNs) with temporal convolutional compo-
nents (e.g., 3D CNNs), as well as Transformers with tokens spanning the tem-
poral dimension. While they can in principle be used for online inference, it is
an inefficient process, where input steps are assembled to full (spatio-)temporal
batches and fed to the network in a sliding window fashion, with many redundant
intermediary computations as a result.

While some specialty architectures have been devised to let 3D convolu-
tional network variants make predictions step by step [11,16], and accordingly
also qualify as CINs, these were not weight-compatible with regular 3D CNNs.
Recently, Continual 3D Convolutions [9] changed this. Through a reformulation
of the 3D convolution to compute outputs for each time-step individually rather
than for the whole spatio-temporal input at once, well-performing 3D CNNs
such as X3D [4], Slow [5], and I3D [1] trained for Trimmed Activity Recogni-
tion were re-implemented to execute step by step without any re-training. Like-
wise, Spatio-temporal Graph Convolutional Networks for Skeleton-based Action
Recognition [14,15,20], which originally operated only on complete sequences of
skeleton graphs, were transformed to perform stepwise inference as well though
a continual formulation of their Spatio-temporal Graph Convolution blocks [8].
Temporal Transformer networks had also been restricted to operate on batches
until a Continual Multi-head Attention (CoMHA) [7] was introduced, which
is weight-compatible with the original MHA [19], while being able to compute
updated outputs for each time step.

With these innovations, many existing DNNs can be converted to operate
efficiently during online inference. In general, non-continual networks, which are
transformed to continual ones attain reductions in per-step computational com-
plexity in proportion to the temporal receptive field of the network. In some
cases, these savings can amount to multiple orders of magnitude [8]. Still, the

Continual Inference 23

implementation of Continual Inference Networks with temporal convolutions and
Multi-head Attention in frameworks such as PyTorch [12] requires deep knowl-
edge and practical experience with CINs. With the Continual Inference library
described in the next section, we hope to change this.

3 Library Design

3.1 Principles

The fundamental feature of CINs, that networks are flexible and perform well on
both online inference and batch inference, is a guiding principle in the design of
the Continual Inference library as well: Refactoring of existing implementations
in pure PyTorch should be straightforward. In the following, we will adopt the
Python import abbreviations import continual as co and from torch import
nn. The library follows Principle 1 to ensure that co modules can be used as
drop-in replacements for nn modules without behavior change:

Principle 1 (Compatibility with PyTorch). co modules with identical
names to nn modules also have:

1. identical forward,
2. identical model weights,
3. identical or extended constructors,
4. identical or extended supporting functions.

Before proceeding to the enhanced functionality of co modules, let us state our
assumption to the input format:

Assumption 1 (Order of input dimensions). Inputs to co modules use the
order (B,C, T, S1, S2, ...) for multi-step inputs and (B,C, S1, S2, ...) for single-
step inputs, where B is the batch size, C is the input channel size, T is the
temporal size, and Sn are additional optional dimensions.

The core difference between Continual Inference Networks and regular net-
works is their ability to efficiently compute results for each time-step. Besides
the regular forward function found in nn modules, co modules add multiple call
modes that allow for continual inference with a simple interface:

Principle 2 (Call modes). co modules provide three forward operations:

1. forward: takes a (spatio-) temporal input and operates identically to the
forward of an nn module,

2. forward step: takes a single time-step as input without a time-dimension
and produces an output corresponding to forward, had it’s input been shifted
by one time-step, given identical prior inputs.

3. forward steps: takes multiple time-steps as input and produces outputs iden-
tical to applying forward step the number of times corresponding to the tem-
poral size of the input.

24 L. Hedegaard and A. Iosifidis

Furthermore, the call method of co modules can be changed to use any of
the three by either setting the call mode attribute of the module or applying the
co.call mode() context with a string spelling out the wanted forward type.

Let us exemplify Principle 2 in practice. Example 1.1 shows how the differ-
ent forward functions introduced in Principle 2.1 can be used. Principle 2.2 is
illustrated in Example 1.2.

import torch

import continual as co

con = co.Conv3d(in_channels=4,

out_channels=8,

kernel_size=3)

assert con.delay == 2

assert con.receptive_field == 3

reg = torch.nn.Conv3d(in_channels=4,

out_channels=8,

kernel_size=3)

Reuse weights

con.load_state_dict(reg.state_dict ())

x = torch.randn ((2, 3, 5, 6, 7)) # B,C,T,H,W

y = con.forward(x)

assert torch.equal(y, reg.forward(x))

Multiple steps

firsts = con.forward_steps(x[:, :, :4])

assert torch.allclose(firsts , y[:, :, : con.delay])

Single step

last = con.forward_step(x[:, :, 4])

assert torch.allclose(last , y[:, :, con.delay])

Example 1.1. Definition and usage of co.Conv3d and its forward modes.

net(x) # Invokes ‘forward ‘ by default

net.call_mode = "forward_step"

net(x[:, :, 0]) # Invokes ‘forward_step ‘

with co.call_mode("forward_steps"):

net(x) # Invokes ‘forward_steps ‘

net(x[:, :, 0]) # Invokes ‘forward_step ‘ again

Example 1.2. Changing the call mode for a continual module net.

Continual Inference 25

Continual modules, which use information from multiple time-steps, are
inherently stateful. Whenever forward step or forward steps is invoked, inter-
mediary results needed for future step results are optimistically computed and
stored. Principle 3 states the rules for state-manipulation and updates.

Principle 3 (State). Module state is updated according to the following rules:

– forward step and forward steps use and update state by default.
– Step results may be computed without updating internal state by passing

update state=False to either forward step or forward steps.
– forward neither uses nor updates state.
– Module state can be wiped by invoking the clean state() method.
– A module produces non-empty outputs after its has conducted a number of

stateful forwards steps corresponding to its delay.

Regular nn modules predominantly operate on input batches in an offline
setting and do not have a built-in concept of delay. co modules on the other
hand are designed to operate on time-series. Since co modules often integrate
information over multiple time-steps and online operation is causal by nature,
some modules produce the output corresponding to a given input only after
observing additional steps. For instance, a co.Conv1d module with kernel size
= 3 produces an output from the third input step as illustrated in Fig. 1. The
delay of a module is calculated according to Principle 4:

Principle 4 (Delay). co modules produce step outputs that are delayed by

d = f − p − 1 (1)

steps relative to the earliest input step used in the computation, where f is the
receptive field and p is the temporal padding.

While padding is used in regular networks to retain the size of feature-maps
in consecutive layers, this interpretation of temporal padding does not make
sense in the context of an infinite, continual input, as handled by CINs. Instead,
we may interpret padding as a reduction in delay. For instance, a co.Conv1d
module with kernel size = 3 and padding = 2 has a delay of zero, because
the padded zeros already “saturated” the state before-hand. This is illustrated
in Fig. 2. Considering, that co modules expect an infinite and continual input
stream, end-padding padding is omitted by default. If an end-padding is required,
the library supports its use by either passing manually defined zeros as steps or
by setting pad end = True for an invocation of the forward steps function.

Similar to padding, the stride of a co module impacts the timing of the out-
puts. Specifically, stride results in empty outputs every (s − 1)/s outputs, as
well as larger delays for downstream network modules through increased recep-
tive fields. This is stated in Principles 5 and 6.

26 L. Hedegaard and A. Iosifidis

Fig. 1. Sketch of delay and receptive field. Here, the stepwise operation of a co module
net with receptive field = 3 is illustrated. � are non-zero step-features and � are
empty outputs.

Fig. 2. Sketch of how padding reduces delay. Here, the stepwise operation of a co

module net with receptive field = 3, padding = 2 is illustrated. � are padded zeros
and � are non-zero step-features.

Principle 5 (Stride and prediction rate). For neural network of N modules
with strides s(i), i ∈ {1..N}, the accumulated stride at any given layer is

s(i)acc = s(i) · s(i−1)
acc i ∈ 1..N (2)

s(0)acc = s(0). (3)

Equivalently, the resulting network stride is

sNN =
N∏

i=1

s(i), (4)

and the network prediction rate is

rNN = 1/sNN . (5)

Accordingly, the outputs of a co network are empty every (sNN − 1)/sNN steps.

Principle 6 (Accumulated delay). The accumulated receptive field of a
downstream module i in a network of N modules is given by:

f (i)
acc = f (i) + (f (i−1)

acc − 1)s(i), i ∈ 1..N (6)

f (0)
acc = f (0). (7)

The accumulated delay of layer i in a network is

d(i) = f (i)
acc − p(i)acc − 1, (8)

Continual Inference 27

where the accumulated padding pacc is given by

p(i)acc = p(i) · s(i−1)
acc , i ∈ 1..N, (9)

p(0)acc = p(0). (10)

Figure 3 illustrates a mixed example, where the first layer of a two-layer network
has padding = 2 and stride = 2. Noting layer attributes in consecutive order,
and using Eqs. 2 to 10, the example has the following network attributes:

s = {2, 1}
p = {2, 0}

sacc = {2, 2 · 1 = 2}
pacc = {2, 2 + 2 · 0 = 2}
facc = {3, 3 + (3 − 1) · 2 = 7}
dacc = {3 − 2 − 1 = 0, 7 − 2 − 1 = 4}
sNN = s(1)acc = 2
rNN = 1/sNN = 1/2

dNN = d(1)acc = 4.

Before continuing onto the specific modules, we have to discuss a final prin-
ciple of CINs, namely that of parallel modules.

Fig. 3. A mixed example of delay and outputs under padding and stride. Here, we
illustrate the stepwise operation of two co module layers, l1 with receptive field =

3, padding = 2, and stride = 2 and l2 with receptive field = 3, no padding and
stride = 1. � denotes a padded zero, � is a non-zero step-feature, and � is an empty
output.

Principle 7 (Parallel modules). Modules can be arranged in parallel to exe-
cute on each their separate stream of data under the following rules:

28 L. Hedegaard and A. Iosifidis

– Parallel modules follow the same global clock.
– The delay of a collection of parallel modules is the maximum delay of any

module in the collection.
– If the merger of parallel step values includes an empty value, then the resulting

step output of the merger is also empty.

A discussion of residual connections provides a practical example for Principle
7.

Residual Connections. The residual connection is a simple but crucial tool
for avoiding vanishing and exploding gradients; by adding the input of a module
to its output, gradients can flow freely through models with hundreds of layers.
Without exaggeration, we can state that almost all recent deep architectures
at the time of writing use some form of residual connection [5,6,19,20]. Yet,
their implementation in Continual Inference Networks may not follow common
intuition in all cases. Let us first consider the residual connection during regular
forward operation as found in a non-continual residual shown in Fig. 4a. Here,
the wrapped module will almost always use padding to ensure equal input and
output shapes (known as “equal padding”). For a module with receptive field
three, we would thus have a padding of one. In this case, the forward computa-
tion of the residual amounts to adding the input to the output of the convolution.
However, the implementation of forward step illustrated in Fig. 4b is different.
Since the first output uses information from the second step, the module has a
delay of one. Accordingly, the residual connection requires a delay of one as well.

Now consider the same scenario but without padding. This will be quite
foreign to many Deep Learning practitioners, and it is not clear how exactly
to align residuals. We will use a separate module to shrink the residual by an
equivalent amount as the wrapped module. Of the possible alignment choices,
a sensible approach is to discard the border values to align the feature maps
on center. Contrary to other alignment forms, this has the benefit of weight-
compatibility between the no-padding case and the case with equal padding
described in the former paragraph. The outputs of step 3 in Figs. 4b and 5b are
equal given the same weights and inputs. However, two issues arise:

1. Delay mismatch: While the residual connection has a delay of one, the
wrapped module has a delay of two.

2. Mix of empty and non-empty results: C.f. the differences in delay, the residual
will start producing non-empty outputs before the wrapped module.

Principle 7 helps us navigate this. Despite the internal delay mismatch, the delay
of the whole residual module corresponds to the largest delay, in this case two.
Consequently, the whole residual module produces outputs from the third step,
despite the fact that the delayed input already has non-empty outputs from the
second step. Both of these issues can also be avoided if we force residuals to
employ the same delay as the wrapped module. This corresponds to a lagging
alignment. However, using such a strategy breaks weight compatibility between
the same residual modules with and without padding.

Continual Inference 29

Fig. 4. Residual connections ↑ over a module with receptive field of size � and padding
one (“equal padding”) �. � are empty outputs.

Fig. 5. Centered residual connections ↑ over a module with receptive field of size �
and no padding. � are empty outputs.

3.2 Core Modules

Designed as an augmentation of PyTorch, the Continual Inference library pro-
vides a collection of basic building blocks for composing neural networks. Fol-
lowing Principle 1, we use the same public interfaces as PyTorch, i.e. class con-
structor, function names and arguments, and attribute names, to ensure that co
modules can be used as drop-in replacements for nn modules. The basic modules
can be categorized as follows:

• Convolutions [9]: co.Conv1d, co.Conv2d, . . .
• Pooling: co.AvgPool1d, co.MaxPool1d, . . .
• Linear: co.Linear.
• Transformer [7]: co.TransformerEncoder, . . .
• Shape: co.Delay, co.Reshape.
• Arithmetic: co.Lambda, co.Add, . . .

Here, the MultiheadAttention implementation is a special case, which features
two distinct versions of continual operation: 1) “single-output”, where only the
attention output corresponding to the latest input is produced, and 2) “retro-
spective”, where updates to prior outputs are also produced retrospectively. The
details of this are explained in greater detail in [7]. Linear co modules follow
the nn modules closely, but ensure compatibility of dimension c.f. Assumption 1.
co.Delay adds a specified delay to the input stream. This is handy for aligning

30 L. Hedegaard and A. Iosifidis

Table 1. Composition modules.

Module Description

Sequential Arrange modules sequentially

Broadcast Broadcast one stream to multiple parallel streams

Parallel Apply modules in parallel, each on a separate stream

Reduce Reduce multiple input streams into one

Residual Add a residual connection for a wrapped module

Conditional Conditionally invoke a module (or another) at runtime

the delay of multiple streams as required by residual connections (see Sect. 3.1).
co.Lambda allows a user to pass in functions and functors that are applied step-
wise to the inputs. Besides the above list of tailor-made modules, the Continual
Inference library has interoperability with most activation functions (nn.ReLU,
nn.Softmax, etc.), normalisation layers (nn.BatchNorm1d, nn.LayerNorm, etc.),
and nn.DropOut when used within the composition modules as presented in
Sect. 3.3. The full list of compatible modules can be found at www.github.com/
lukashedegaard/continual-inference.

3.3 Composition Modules

In PyTorch, modules are composed by either by using the nn.Sequential con-
tainer or by creating a new class which inherits from nn.Module and manually
controls data flow within the forward function. While the latter is commonly
used to handle complex modules in a simple and easily debuggable manner, it
is not necessarily the simplest approach for implementing complex Continual
Inference Networks. In addition to defining the basic forward flow, a CIN imple-
mentation also needs to handle stepwise computations, which require meticulous
alignment of delays if Principle 2 is to be kept.

Instead, we expand the container interface of PyTorch to include modules
for parallel and conditional processing (Table 1). While each module is simple
in nature, they can be used to compose complex neural network architectures,
which retain all the principles in Sect. 3.1 without explicitly needing to consider
them. A brief overview and description of each co container module is given
in Sect. 3.3. To get a practical understanding of these, we will give implemen-
tation examples of two common architecture blocks, the residual connection as
discussed in Sect. 3.1 and an Inception module [17].

Example 1.3 shows three equivalent implementations of a residual 3D con-
volution block. res1 is the verbose version, in which co.Broadcast is used to
split a single input into two parallel stream, co.Parallel specifies that conv
handles the first stream, while a delay is used on the second. co.Reduce merges
the streams via an add reduce operation. Due to the commonality of broadcast-
apply-reduce operations, the library features a co.BroadcastReduce shorthand
to specify such composition more succinctly. Even shorter, co.Residual can

www.github.com/lukashedegaard/continual-inference
www.github.com/lukashedegaard/continual-inference

Continual Inference 31

conv = co.Conv3d(1, 1, kernel_size=3, padding=1)

res1 = co.Sequential(co.Broadcast (2),

co.Parallel(conv , co.Delay (1)),

co.Reduce("sum"))

res2 = co.BroadcastReduce(conv , co.Delay (1))

res3 = co.Residual(conv)

Example 1.3. Equivalent implementations of a residual block.

automatically infer the needed delay from the module it wraps. Other reduc-
tion functions can be specified in co.BroadcastReduce and co.Residual using
the reduce argument, which is "sum" by default. The code in Example 1.3 cor-
respond to Fig. 4. The centered residual module in Fig. 5 is easily specified as
co.Residual(conv, residual shrink=True) where conv has padding = 0.

def norm_relu(conv):

return co.Sequential(conv ,

nn.BatchNorm3d(conv.out_channels),

nn.ReLU())

inception_module = co.BroadcastReduce(

co.Conv3d (192, 64, 1),

co.Sequential(

norm_relu(co.Conv3d (192, 96, 1)),

norm_relu(co.Conv3d (96, 128, 3, padding=1)),

),

co.Sequential(

norm_relu(co.Conv3d (192, 16, 1)),

norm_relu(co.Conv3d (16, 32, 5, padding=2))

),

co.Sequential(

co.MaxPool3d(kernel_size=(1, 3, 3),

padding=(0, 1, 1),

stride=1),

norm_relu(co.Conv3d (192, 32, 1)),

),

reduce="concat",

)

Example 1.4. Continual Inception module using a mix of co and nn modules.

We can showcase a more advanced application of parallel streams by consid-
ering an Inception module [17]. An Inception module broadcasts the input into
four streams and applies convolution of varying kernel sizes in parallel before
concatenating the channels to produce one output. Without the co container

32 L. Hedegaard and A. Iosifidis

modules, it would be complicated to keep track of and align delays of the dif-
ferent branches to create valid forward, forward step, and forward steps
methods. Using co.Sequential, which automatically sums up delays, and
co.BroadcastReduce, which automatically adds delays to match the branch
with highest inherent delay, the implementation becomes simple as shown in
Example 1.4.

Table 2. Dataset performance, parameter count, maximum allocated memory (Max
mem.), and floating-point operations (FLOPs) of continual and non-continual mod-
els on video and spatio-temporal graph classification datasets. Subscriptxx denotes
expanded temporal average pooling, b1 and b2 denote one and two block transformer
decoders, and superscript∗ indicates architectures where network stride was reduced to
one. Parentheses show the improvement/deterioration of the continual model relative
to the corresponding non-continual model. The noted metrics were originally presented
in [7–9].

Model Dataset performace Params Max mem. FLOPs

(%) (M) (MB) (G)

Kinetics-400 (Acc.)

X3D-L 69.3 06.2 240.7 19.17

CoX3D-L64 71.6 (+2.3) 06.2 184.4 0(75%) 01.25 0(↓ 15.34×)

X3D-M 67.2 03.8 126.3 04.97

CoX3D-M64 71.0 (+3.8) 03.8 069.0 0(55%) 00.33 0(↓ 15.06×)

X3D-S 64.7 03.8 061.3 02.06

CoX3D-S64 67.3 (+2.6) 03.8 042.0 0(69%) 00.17 0(↓ 12.12×)

Slow-8×8 67.4 32.5 266.0 54.87

CoSlow64 73.1 (+5.7) 32.5 176.4 0(66%) 06.90 00(↓ 7.95×)

I3D 64.0 28.0 191.6 28.61

CoI3D8 59.6 (−4.4) 28.0 235.9 (123%) 05.68 00(↓ 5.04×)

THUMOS14 TVSeries

(mAP) (mcAP)

OadTR-b2 64.2 89.0 15.9 067.6 01.08

CoOadTR-b2 64.4 (+0.2) 88.2 (−0.8) 15.9 071.7 (106%) 00.41 00(↓ 2.61×)

OadTR-b1 64.4 89.1 09.6 043.3 00.67

CoOadTR-b1 64.5 (+0.1) 88.0 (−1.1) 09.6 045.1 (104%) 00.01 0(↓ 63.49×)

NTU RGB+D 60 (Acc.)

X-Sub X-View

ST-GCN 86.0 93.4 03.1 045.3 16.73 ↓ 000.0×
CoST-GCN∗ 86.3 (+0.3) 93.8 (+0.4) 03.1 036.1 0(80%) 00.16 (↓ 107.7×)

AGCN 86.4 94.3 03.5 048.4 18.69 ↓ 000.0×
CoAGCN∗ 84.1 (−2.3) 92.6 (−1.7) 03.5 037.4 0(77%) 00.17 (↓ 108.8×)

S-TR 86.8 93.8 03.1 074.2 16.14 ↓ 000.0×
CoS-TR∗ 86.3 (−0.3) 92.4 (−1.4) 03.1 036.1 0(49%) 00.15 (↓ 107.6×)

Continual Inference 33

4 Performance Comparisons

Using the basic co modules and composition building blocks, continual ver-
sions of advanced neural networks have been implemented in multiple recent
works with manyfold speedups and significant reductions in memory consump-
tion during online inference [7–9]. Specifically, the 3D-CNNs CoX3D, CoI3D,
and CoSlow for video-based Human Activity Recognition were proposed in
[9]; the Transformer CoOadTR for Online Action Detection in [7]; and Spatio-
temporal Graph Convolutional Networks CoST-GCN, CoAGCN, and CoS-TR
for Skeleton-based Action Recognition in [8]. While direct conversion from reg-
ular to continual versions of the above noted architectures works well in accel-
erating inference in itself, further improvements can be achieved by exploiting
some core characteristics of CINs: in [9], accuracy was improved by increasing
model receptive fields through expansions of temporal global average pooling
to 64 steps, and in [8], the stride of temporal convolutions was reduced to one
to increase prediction rates. Table 2 presents a summary of benchmark perfor-
mance, computational complexity, and maximum allocated memory on GPU for
each of these networks alongside with their non-continual counterparts [7–9].

5 Conclusion

We presented Continual Inference, an easy-to-use library for implementing Con-
tinual Inference Networks in Python. Following interfaces closely, the compo-
nents provided in the library are backwards-compatible drop-in replacements for
PyTorch modules, which add the capability of redundancy-free online inference
without the need for intimate knowledge of CINs nor their meticulous low-level
implementation. Having shown the vast computational advantages of CINs over
regular neural networks in multiple settings of video and spatio-temporal graph
classification, we hope that this library will contribute to the adoption of CINs
and the advancement of use-cases requiring low-latency online inference under
recourse constraints in general.

Acknowledgement. This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No 871449
(OpenDR).

References

1. Carreira, J., Zisserman, A.: Quo Vadis, action recognition? A new model and
the kinetics dataset. In: IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 4724–4733 (2017)

2. Cho, K., van Merriënboer, B., Bahdanau, D., Bengio, Y.: On the properties of
neural machine translation: encoder-decoder approaches. In: Proceedings of SSST-
8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation,
pp. 103–111 (2014)

34 L. Hedegaard and A. Iosifidis

3. Enkelmann, W.: Video-based driver assistance-from basic functions to applications.
Int. J. Comput. Vis. (IJCV) 45(3), 201–221 (2001)

4. Feichtenhofer, C.: X3D: expanding architectures for efficient video recognition. In:
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(2020)

5. Feichtenhofer, C., Fan, H., Malik, J., He, K.: SlowFast networks for video recog-
nition. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp.
6201–6210 (2019)

6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770–778 (2016)

7. Hedegaard, L., Bakhtiarnia, A., Iosifidis, A.: Continual transformers: redundancy-
free attention for online inference. In: International Conference on Learning Rep-
resentations (ICLR) (2023)

8. Hedegaard, L., Heidari, N., Iosifidis, A.: Online skeleton-based action recog-
nition with continual spatio-temporal graph convolutional networks. Preprint
arXiv:2203.11009 (2022)

9. Hedegaard, L., Iosifidis, A.: Continual 3D convolutional neural networks for real-
time processing of videos. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M.,
Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13664, pp. 369–385. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-19772-7 22

10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9,
1735–1780 (1997)

11. Köpüklü, O., Hörmann, S., Herzog, F., Cevikalp, H., Rigoll, G.: Dissected 3D
CNNs: temporal skip connections for efficient online video processing. Preprint
arXiv:2009.14639 (2020)

12. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning
library. In: Advances in Neural Information Processing Systems, vol. 32, pp. 8024–
8035. Curran Associates, Inc. (2019)

13. Pigou, L., van den Oord, A., Dieleman, S., Van Herreweghe, M., Dambre, J.:
Beyond temporal pooling: recurrence and temporal convolutions for gesture recog-
nition in video. Int. J. Comput. Vis. (IJCV) 126(2), 430–439 (2018)

14. Plizzari, C., Cannici, M., Matteucci, M.: Skeleton-based action recognition via
spatial and temporal transformer networks. Comput. Vis. Image Underst. 208,
103219 (2021)

15. Shi, L., Zhang, Y., Cheng, J., Lu, H.: Two-stream adaptive graph convolutional
networks for skeleton-based action recognition. In: IEEE Conference on Computer
Vision and Pattern Recognition, pp. 12026–12035 (2019)

16. Singh, G., Cuzzolin, F.: Recurrent convolutions for causal 3D CNNs. In:
IEEE/CVF International Conference on Computer Vision Workshop (ICCVW),
pp. 1456–1465 (2019)

17. Szegedy, C., et al.: Going deeper with convolutions. In: IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 1–9 (2015)

18. Tavakolian, M., Hadid, A.: A spatiotemporal convolutional neural network for auto-
matic pain intensity estimation from facial dynamics. Int. J. Comput. Vis. (IJCV)
127(10), 1413–1425 (2019)

19. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems (NeurIPS), vol. 30, pp. 5998–6008 (2017)

20. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for
skeleton-based action recognition. In: AAAI Conference on Artificial Intelligence,
pp. 7444–7452 (2018)

http://arxiv.org/abs/2203.11009
https://doi.org/10.1007/978-3-031-19772-7_22
http://arxiv.org/abs/2009.14639

	Continual Inference: A Library for Efficient Online Inference with Deep Neural Networks in PyTorch
	1 Introduction
	2 Continual Inference Networks
	3 Library Design
	3.1 Principles
	3.2 Core Modules
	3.3 Composition Modules

	4 Performance Comparisons
	5 Conclusion
	References

