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Abstract. End-to-end autonomous driving seeks to solve the percep-
tion, decision, and control problems in an integrated way, which can
be easier to generalize at scale and be more adapting to new scenarios.
However, high costs and risks make it very hard to train autonomous
cars in the real world. Simulations can therefore be a powerful tool to
enable training. Due to slightly different observations, agents trained
and evaluated solely in simulation often perform well there but have
difficulties in real-world environments. To tackle this problem, we pro-
pose a novel model-based reinforcement learning approach called Cycle-
consistent World Models. Contrary to related approaches, our model can
embed two modalities in a shared latent space and thereby learn from
samples in one modality (e.g., simulated data) and be used for inference
in different domain (e.g., real-world data). Our experiments using differ-
ent modalities in the CARLA simulator showed that this enables CCWM
to outperform state-of-the-art domain adaptation approaches. Further-
more, we show that CCWM can decode a given latent representation
into semantically coherent observations in both modalities.

Keywords: Domain adaption · Reinforcement learning · World
models · Cycle-GAN

1 Introduction

Many real-world problems, in our case autonomous driving, can be modeled as
high-dimensional control problems. In recent years, there has been much research
effort to solve such problems in an end-to-end fashion. While solutions based on
imitation learning try to mimic the behavior of an expert, approaches based
on reinforcement learning try to learn new behavior to maximize the expected
future cumulative reward given at each step by a reward function. In a wide range
of areas, reinforcement learning agents can achieve super-human performance
[25,28,33] and outperform imitation learning approaches [32].
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However, for high-dimensional observation spaces many reinforcement learn-
ing algorithms that are considered state-of-the-art learn slowly or fail to solve
the given task at all. Moreover, when the agent fails to achieve satisfactory per-
formance for a given task, it is hard to analyze the agent for possible sources
of failure. Model-based reinforcement learning promises to improve upon these
aspects. Recent work has shown that model-based RL algorithms can be a mag-
nitude more data-efficient on some problems [7,11,13,14,19,21]. Additionally,
since a predictive world model is learned, one can analyze the agent’s perception
of the world [5].

Still, such agents are mostly trained in simulations [1,4,31] since interaction
with the real world can be costly (for example, the cost for a fleet of robots or
the cost to label the data). Some situations should be encountered to learn, but
must never be experienced outside of simulation (e.g., crashing an autonomous
vehicle). While simulations allow generating many interactions, there can be a
substantial mismatch between the observations generated by the simulator and
the observations that the agent will perceive when deployed to the real world.
Furthermore, observations from simulation and reality are mostly unaligned, i.e.,
there is no one-to-one correspondence between them. This mismatch is often
called the domain gap [9] between the real and simulated domain. When the
domain gap is not taken into account, the behavior of an agent can become
unpredictable as it may encounter observations in reality that have never been
seen before in simulation.

One family of approaches to reduce this gap is based on the shared-latent
space assumption [22]. The main idea is that the semantics of an observation are
located in a latent space from which a simulated and an aligned real observation
can be reconstructed. Approaches grounded on this assumption have recently
been able to achieve impressive results in areas such as style transfers [16] and
imitation learning [2].

Inspired by this, we propose adopting the idea of a shared latent space to
model-based reinforcement learning by constructing a sequential shared-latent
variable model. Our main idea is to create a model that allows to plan via latent
imagination independently of the observation domain. The model is trained to
project observation sequences from either domain into a shared latent space and
to predict the future development in this latent space. By repeatedly rolling out
the model one can then plan or train a policy based on low-dimensional state
trajectories.

Our contributions can be summarized as follows: 1. We present a novel cycle-
consistent world model (CCWM) that can embed two similar partially observable
Markov decision processes that primarily differ in their observation modality
into a shared latent space without the need for aligned data. 2. We show that
observation trajectories of one domain can be encoded into a latent space from
which CCWM can decode an aligned trajectory in the other domain. This can
be used as a mechanism to make the agent interpretable. 3. We test our model
in a toy environment and train a policy via latent imagination first and then
evaluate and show that it is also able to learn a shared latent representation for
observations from a more complex environment based on the CARLA simulator.
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2 Preliminaries

Sequential Latent Variable Models. In contrast to model-free reinforce-
ment learning (RL), model-based RL explicitly learns an approximate transition
model of the environment to predict the next observation xt+1 from the cur-
rent observation xt and the chosen action at [30]. The model is used to rollout
imagined trajectories xt+1, at+1, xt+2, at+2, ... which can be either used to find
the best future actions or to train a policy without the need to interact with the
real environment. A problem with such a model is that rollouts become com-
putationally expensive for high-dimensional observation spaces. For this reason,
many recent model-based RL algorithms make use of sequential latent variable
models. Instead of learning a transition function in observation space X ⊆ R

dX ,
observations are first projected into a lower-dimensional latent space S ⊆ R

dS

with dS � dX . Then a latent transition function can be used to rollout trajec-
tories of latent states st+1, at+1, st+2, at+2, ... computationally efficient [12,15].
Since naive learning of latent variable models is intractable, a prevailing way to
train such models is by variational inference [20]. The resulting model consists
of the following components:

– Dynamics models: prior pθ(st|st−1, at−1) and posterior qθ(st|st−1, at−1, xt)
– Observation model: pθ(xt|st)

Furthermore, at each time step the resulting loss function encourages the
ability to reconstruct observations from the latent states while at the same time
enforcing to be able to predict the future states from past observations. This loss
function is also known as the negative of the evidence lower bound (ELBO):

Lt = −E
qθ(st|x≤t,a≤t)

[pθ(xt|st)]

︸ ︷︷ ︸

reconstruction loss
Lrecon

+E
qθ(st−1|x≤t−1,a≤t−1)

[KL(qθ(st|st−1, at−1, xt) ‖ pθ(st|st−1, at−1))]

︸ ︷︷ ︸

regularization loss
Lreg

(1)

Shared Latent Space Models. We want to enable our model to jointly embed
unaligned observation from two different modalities of the same partially observ-
able Markov decision process into the same latent space. Let XA and XB be two
observation domains (e.g., image domains with one containing RGB images and
the other one containing semantically segmented images). In aligned domain
translation, we are given samples (xB , xB) drawn from a joint distribution
PXA,XB

(xA, xB). In unaligned domain translation, we are given samples drawn
from the marginal distributions PXA

(xA) and PXB
(xB). Since an infinite set

of possible joint distributions can yield the given marginal distributions, it is
impossible to learn the actual joint distribution from samples of the marginals
without additional assumptions.

A common assumption is the shared-latent space assumption [23,24]. It pos-
tulates that for any given pair of samples (xA, xB) ∼ PXA,XB

(xA, xB) there
exists a shared latent code s in a shared-latent space such that both samples
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can be generated from this code, and that this code can be computed from any
of the two samples. In other words, we assume that there exists a function with
s = EA→S(xA) that maps from domain XA to a latent space S and a function
with xA = GS→A(s) that maps back to the observation domain. Similarly, the
functions s = EB→S(xB) and xB = GS→B must exist and map to/from to the
same latent state.

Directly from these assumptions follows that observations of domain A can
be translated to domain B via encoding and decoding and the same must hold
for the opposite direction:

GS→B(EA→S(xA)) ∈ XB

GS→A(EB→S(xA)) ∈ XA

(2)

Another implication of the shared latent space assumption is that observa-
tions from one domain can be translated the other one and back to the original
domain (cycle-consistency [37]):

EA→S(xa) = EB→S(GS→B(EA→S(xA)))

EB→S(xb) = EA→S(GS→A(EB→S(xB)))
(3)

The fundamental idea is that by enforcing both of them on semantically
similar input domains, the model embeds semantically similar samples close to
each other in the same latent space.

3 Cycle-Consistent World Models

In this section, we present our cycle-consistent world model (CCWM). Con-
sidering the structure of sequential latent variable models and the constraints
resulting from the shared latent space assumption, we show how both can be
integrated into a single unified model. In the following, we explain the model
architecture and the associated loss terms (Fig. 1).

Architecture. As our model is a sequential latent variable model, it includes
all the components that have been presented in Sect. 2, namely a prior transition
model pθ(st|st−1, at−1), a posterior transition model qθ(st|st−1, at−1, ht) and an
observation model pA

θ (xt|st) with DecA(st) = mode(pA
θ (xt|st)). Additionally, we

define a feature extractor with ht = EncA(xt) and a reward model pA
θ (rt|st). So

far, this model can be used as the basis of an RL-agent that acts on a single
domain by first building up the current latent representation st using the fea-
ture extractor and posterior and then rolling out future trajectories st+1, st+2, ...
with their associated rewards with the prior dynamics and the reward model.
To project to and from another domain XB into the same latent space S we
add another feature extractor EncB(xt) and observation model pB

θ (xt|st) with
DecB(st) = mode(pB

θ (xt|st)). Both are similar to their domain XA counterparts
but do not share any weights. The prior dynamics model is shared since it does
not depend on observation. In contrast, we need another posterior dynamics
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Fig. 1. Cycle-consistent world model. In the pictured situation, a sequence of top
camera images is used a the input. The images are encoded frame-wise into latent states
and forward predicted by the transition model. From these latent codes, reconstructed
top camera images and images translated to semantic top camera images are calculated.
From the translated images, cyclic latent codes are calculated. Finally, the four losses
can be calculated, which enforce Eqs. (2) and (3).

model for domain B, but since we let it share weights with its domain A coun-
terpart, we effectively only have a single posterior dynamics model. Additionally,
we add a reward model pθ(rt|st) that also is shared between both domains so that
latent trajectories can be rolled out independently of the observation domain. A
major advantage of this approach is that we can train a policy with our model
without regard to the observation domains.

Finally, for training only, we need two discriminators DisA
φ and DisB

φ to
distinguish between real and generated samples for each domain. It is important
to note that the discriminators have a separate set of parameters φ.

Losses. Given a sequence of actions and observations {at, xt}k+H
t=k ∼ DA from

a dataset DA collected in a single domain XA, we first roll out the sequential
latent variable model using the posterior to receive an estimate for the posterior
distribution q(st|st−1, at−1, xt) and the prior distribution q(st|st−1, at−1, xt) for
each time step. We can then calculate the following losses: Lrecon is the recon-
struction loss of the sequential latent variable model and Lreg(q, p) = KL(q ‖ p)
is the regularization loss that enforces predictability of futures state as shown
in Eq. 1. Ladv(x) = DisB(x) is an adversarial loss that penalizes translations
from domain XA to XB via S that are outside of domain XB to enforce Eq. 2 of
the shared latent space assumption. Here, DisB is a PatchGAN [17] based dis-
criminator that is trained alongside our model to differentiate between real and
generated observations. The cycle loss Lcyc(q, p) = KL(q ‖ p) is derived from
the cycle constraints of Eq. 3 and calculates the KL-divergence between the pos-
terior state distributions conditioned on observations and states from domain A
and conditioned on observations and states that have been translated to domain
B, i.e. xt → st → xtrans

t → scyct (see Algorithm 1; line 7, 8 and 12). To calculate
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the cyclic loss it is necessary to roll out a second set of state trajectories using
the cyclic encoding hcyc

t and the cyclic state scyct .
For sequences of domain B, we train with the same loss functions, but with

every occurrence of A and B interchanged. This is also shown in Algorithm 1line
26 and line 28.

Algorithm 1: Training Routine of the CCWM
1 Input: Replay Buffers DA and DB , Encoders Enca and Encb, Decoders Deca

and Decb, Model parameters Θ, Discriminator parameters Φ;
2 Function Lgen(Enc1, Dec1, Enc2, Dec2, x1:T ):
3 foreach t ∈ T do
4 ht ← Enc1(xt);
5 s′

t ∼ q(st|s′
t−1, ht);

6 xrecon
t ← Dec1(s

′
t);

7 xtrans
t ← Dec2(s

′
t);

8 hcyc
t ← Enc2(x

trans
t );

9 scyct ∼ q(scyct |scyct−1, h
cyc
t );

10 Lret += Lrecon(xt, x
recon
t );

11 Lret += Ladv(x
trans
t );

12 Lret += Lreg(q(st|s′
t−1, ht), p(st|s′

t−1));
13 Lret += Lcyc(q(st|s′

t−1, ht), q(st|scyct−1, h
cyc
t ));

14 end
15 return Lret;

16 Function Ldis(Enc1, Dec2, x1, x2):
17 foreach t ∈ T do
18 ht ← Enc1(x

1
t );

19 st ∼ q(st|st−1, ht);
20 xtrans

t ← Dec2(st);
21 Lret += Ladv(x

2
t ) + (1 − Ladv(x

trans
t ));

22 end
23 return Lret;

24 while not converged do
25 Draw sequence of xa,1:T ∼ DA;
26 Draw sequence of xb,1:T ∼ DB ;
27 Lgen = Lgen(Enca, Deca, Encb, Decb, xa,1:T ) +

Lgen(Encb, Decb, Enca, Deca, xb,1:T );
28 Update Model parameters Θ ← Θ + ΔLgen;
29 Ldis = Ldis(Enca, Decb, xa,1:T , xb,1:T ) + Ldis(Encb, Deca, xb,1:T , xa,1:T );
30 Update Discriminator parameters Φ ← Φ + ΔLdis;

31 end
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4 Related Work

Control with Latent Dynamics. World Models [10] learn latent dynamics
in a two-stage process to evolve linear controllers in imagination. PlaNet [15]
learns them jointly and solves visual locomotion tasks by latent online planning.
Furthermore, Dreamer [12,14] extends PlaNet by replacing the online planner
with a learned policy that is trained by back-propagating gradients through the
transition function of the world model. MuZero [28] learns task-specific reward
and value models to solve challenging tasks but requires large amounts of expe-
rience. While all these approaches achieve impressive results, they are limited to
their training domain and have no inherent way to adapt to another domain.

Domain Randomization. James et al. [18] introduce a novel approach to
cross the visual reality gap, called Randomized-to-Canonical Adaptation Net-
works (RCANs), that uses no real-world data. RCAN learns to translate ran-
domized rendered images into their equivalent non-randomized, canonical ver-
sions. In turn, this allows for real images to be translated into canonical sim-
ulated images. Xu et al. [36] showed that random convolutions (RC) as data
augmentation could greatly improve the robustness of neural networks. Random
convolutions are approximately shape-preserving and may distort local textures.
RC outperformed related approaches like [26,34,35] by a wide margin and is
thereby considered state-of-the-art by us.

Unsupervised Domain Adaptation. The original Cycle-GAN [37] learn to
translate images from one domain to another by including a cycle loss and an
adversarial loss into training. Liu et al. [23] extend this idea with weight sharing
of the inner layers and a normalization loss in the latent state, which enables
it to embed images of semantically similar domains into the same latent space.
Learning to drive [3] uses this idea to train an imitation learning agent in simula-
tion and successfully drive in reality. In RL-Cycle-GAN [27], a Cycle-GAN with
an RL scene consistency loss is used, and the authors show that even without
the RL scene consistency loss, RCAN [18] was outperformed by a wide margin.
RL-Cycle-GAN is state-of-the-art for unsupervised domain adaptation to the
best of our knowledge.

5 Experiments

First, we will demonstrate our model in a small toy environment. Then we will
show its potential in a more realistic setting related to autonomous driving based
on the CARLA simulator [8].

Implementation. Our prior and posterior transition models are implemented
as recurrent state-space models (RSSM) [15]. In the RSSM, we exchanged the
GRU [6] with a convolutional GRU [29]. A challenge of integrating the ideas of a
world model and a shared latent space assumption is that it is easier to enforce a
shared latent space on a large three-dimensional tensor-shaped latent space. In
contrast, most world models use a low-dimensional vector latent space. A bigger
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latent space makes it easier to embed and align both modalities, but it leads to
a less informative self-supervised encoding for the downstream heads, such as
the reward model. As we show in our ablation study choosing the right height
and width of the latent space is crucial for successful learning.

Proof of Concept. Reinforcement learning environments are often very com-
plex, so that evaluation and model analysis can become hard for complex models
such as ours. Additionally, domain adaptation complicates evaluation even more.
For this reason, we first construct a toy environment that we call ArtificialV0 to
show that our idea is working in principle. ArtificialV0 is constructed as follows:
A state of ArtificialV0 is the position of a red and a blue dot. Its state space is a
box [−1, 1] × [−1, 1]. As observations, we use images of the red and the blue dot
on a white background. The goal is to move the red dot towards the blue dot. The
actions are steps by the red dot with an action space of [−0.2, 0.2] × [−0.2, 0.2].
The negative euclidean distance between the blue and the red dot is used as
a reward. An episode terminates as soon as the absolute Euclidean distance is
smaller than 0.1. The other modality is constructed the same, but the obser-
vation images are inverted. Advantages of ArtificialV0 are that the actions and
observations are easy to interpret and the optimal policy as a reference bench-
mark is easy to implement. The optimal policy brings the red dot on a straight
line towards the blue dot and achieves an average return of −2.97. We find
that CCWM achieves a similar average return after 30K environment steps in
an online setting in both modalities, despite us only giving it access to a small
offline dataset of 5000 disjunct observations from the reversed modality without
downstream information. In Fig. 2, one can see that a trajectory can be started
in the inversed modality and successfully continued in both modalities. This
indicates that the model is capable of embedding both modalities into a shared
latent space.

Fig. 2. Qualitative results on ArtificialV0. The top row shows the observations recorded
from the environment if one observation is given to the model and the policy is rolled
out. It shows that the model can learn the optimal policy (bringing the red/turquoise
dot towards the blue/yellow dot on a straight line) only with downstream information
from the original modality but also works in the reversed modality. The second row is
the prediction of our CCWM back into the domain from that the agent retrieved the
initial observation. The last row is the cross-modality prediction. (Color figure online)
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Table 1. Comparison with the state-of-the-art. We measured the quality of the reward
prediction with the relative squared error against predicting the mean reward to show
that something better than predicting the mean is learned. Furthermore, we determined
how well the different models can predict the next states based on the peak signal-to-
noise ratio (PSNR) between the real future observations and the predicted observations.
We can see that all domain adaptation methods can transfer the reward predictions
while only using one modality. Our CCWM achieved the best reward transfer and the
best video prediction. It is worth mentioning that the cross-modality reward predictions
with only one modality and with RC were unstable, varying strongly over time steps
depending on the initialization. Since single modality and RC are fast, while Cycle-
GAN and CCWM are slow, we show the results after training approximately 24 h on
an NVIDIA GTX1080TI to keep the comparison fair.

Approach Reward RSE Reward RSE cross-modality PSNR

Single modality 0.25 3.86 10.21

RC 0.31 0.49 11.39

CycleGAN 0.28 0.57 12.28

Ours 0.23 0.48 13.91

Table 2. Ablation study on the size of the latent space. The models are identical except
that the convolutional GRU is used at different downsampling scales of the network. We
can see that latent spaces smaller than 4×4 are having trouble minimizing all objectives
at once, and the reward RSE is not falling significantly below simply predicting the
mean.

Latent space size Reward RSE Reward RSE cross-modality PSNR

1 × 1 0.92 1.18 13.00

2 × 2 0.95 1.10 13.80

4 × 4 0.57 0.57 13.81

8 × 8 0.23 0.48 13.91

Experiment Setup. To show the potential of our approach in a more realistic
environment, we also evaluate our model in the CARLA simulator. We choose
to use images from a semantic camera as the first modality and images from
an RGB camera as the second modality. Both look down onto the cars from a
birds-eye-view point.

For an even more realistic setting, one could replace the top view RGB camera
with an RGB surround camera in a real car and the schematic top view with an
RGB surround-view camera from in simulation. However, since we do not have
access to a real car with such sensors and we are restricted in computational
resources, we simplified the problem for now. Arguably, the visual difference
between the RGB camera from the simulation and the real world RGB camera
is smaller than the visual difference between the RGB camera in the simulation
and the schematic view of the simulation, so there is reason to believe that a
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transfer from the RGB camera of the simulation to the RGB camera of the real
world would work as well.

Comparsion with the State-of-the-Art. To show that the constructed
domain gap is not trivial and our model is outperforming current domain adapta-
tion methods, we compare our model with 1) no adaptation to the other modal-
ity at all, 2) the random convolutions (RC) [36] approach, which we regard as
being state of the art in domain randomization, and 3) the RL-CycleGan [27],
which we consider to be the start of the art in unsupervised domain adapta-
tion. All models are reimplemented and integrated into our codebase. They are
apart from their core idea as similar as possible regarding network structure,
network size, and other hyperparameters. The performance of a world model
rises and falls with two factors: 1) How well the model can predict the current
reward based on the current state and 2) how accurate the prediction of the next
states is. We recorded three disjunct offline datasets with the CARLA roaming
agent (an agent controlled by the CARLA traffic manager). The first contains
trajectories of observations of the semantic view with downstream information.
The second contains trajectories of observations of the RGB camera without
downstream information. The third contains aligned semantic and RGB camera
trajectories and downstream information. The first and the second dataset are
used for training the model, and the third is used for evaluation. The model
without any domain adaptation is trained on the first dataset in the regular
dreamer style for the model training. The RC model is trained on the first
dataset with randomized inputs. The RL-Cycle-GAN model is trained by first
learning a Cycle-GAN-based translation from the first modality to the second
modality. Then the model is trained on the translated observations of the first
dataset. CCWM is trained as described in the previous section on the first and
the second dataset.

Results. All models are evaluated on the third dataset in the following ways:
First, we qualitatively analyze the predictive power for the next states of the
model. We warm up the model by feeding it some observations and then predict
the next observations of the target domain, as shown in Fig. 3. A general advan-
tage of CCWM noteworthy to mention is that it can predict into both modalities
simultaneously since both have a shared latent representation, which might be
practical for error search. Besides the qualitative analysis of the state predictions
based on the predicted observations, we also compare the predictions quantita-
tively by calculating the PSNR between the predicted and the real trajectory,
as seen in the Table 1. Furthermore, we compare the reward prediction in the
target domain where no downstream information was available. Both in qualita-
tive and quantitative comparison, one can see that our model outperforms the
other approaches.

Analysis. The advantage of our approach over RC is that RC generalizes ran-
dom distortions of the input image that RC can emulate with a random convo-
lution layer, which might include the semantic segmentation mask, but will also
include many other distributions, making it less directed despite its simplicity.



Cycle-Consistent World Models 571

Fig. 3. Qualitative Results on Carla. The first row shows the ground truth of the
semantic top camera sampled from dataset 3, and the second row the baseline of
what would happen if the dreamer was trained in one modality and rolls out the
other modality now. Row 3 and 4 show the state-of-the-art comparison with random
convolutions and a preprocessing input with a Cycle-GAN. Both were also only trained
on with the RGB top camera. The 5th and the 6th row shows our model rolled out
aligned in both modalities. The previous 19 frames and the first frame of the ground
truth are fed into the model for all models, and then the model is rolled out for fifteen
time steps (every second is shown).

Pre-translating with Cycle-GAN follows a more directed approach but is not able
to train the whole network end-to-end. Furthermore, it first encodes a training
image, then decodes it to a different domain, and then encodes it again to derive
downstream information and predict future states. This is a longer path than
encoding it only once like CCWM and leaves room for well-known problems with
adversarial nets like artifacts in the image, hindering training progress.

Ablation Study. Although probabilistic graphic models and reinforcement
learning approaches are generally susceptible to hyperparameters, the size of
the latent space has shown to be especially significant. As shown in Table 2 a
1× 1 latent space like it is common in many model-based RL approaches per-
forms poorly, while bigger latent spaces provide much better performance. Our
explanation for this is twofold. Firstly, related approaches such as UNIT [23] can-
not translate images well with a tiny latent space and instead use huge latent
spaces. Secondly, in autonomous driving, it might not be beneficial to compress
the whole complicated scene with multiple cars that all have their own location,
direction, speed, etc. into one vector, but give the network inductive bias to
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represent each of them in a single vector and calculate the dynamics through
the convolutional GRU with its suiting local inductive bias. Another important
consideration is the weights for the different losses, which need to be carefully
chosen. The reward loss tends to get stuck around the mean since its signal is
relatively weak, so it should be chosen relatively high. The KL based losses in the
latent space can get very high and destroy the whole model with a single step.
On the other hand, a high normalization loss leads to bad predictive capabilities,
and a high cyclic loss leads to a bad alignment of the modalities.

6 Conclusion

In this work, we introduced cycle-consistent world models, a world model for
model-based reinforcement learning that is capable of embedding two modali-
ties into the same latent space. We developed a procedure to train our model
and showed its performance in a small toy environment and a more complex
environment based on the CARLA simulator. Furthermore, we compared it in
an offline setting with two state-of-the-art approaches in domain adaptation,
namely RC and RL-Cycle-GAN. We outperformed RC by being more directed
and Cycle-GAN by training end-to-end without the necessity to encode twice.
For the future we plan to extend our model by training a full model-based RL
agent that is able to learn to control a vehicle in simulation and generalize to
reality given only offline data from reality without any reward information.
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